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Abstract

This paper investigates how to “observe” a planar object
being pushed by a finger. The pushing is governed by a non-
linear system that relates through contact the object pose
and motion to the finger motion. Nonlinear observability
theory is employed to show that the contact information
is often sufficient for the finger to determine not only the
pose but also the motion of the object. Therefore a sensing
strategy can be realized as an observer of the nonlinear
dynamical system, which is subsequently introduced. The
observer, based on the result of [6], has its “gain” deter-
mined by the solution of a Lyapunov-like equation.

Simulations have been done to demonstrate the feasibil-
ity of the observer. A sensor has been implemented using
strain gauges and mounted on an Adept robot with which
preliminary experiments have been conducted.

From a general perspective, this work presents an ap-
proach for acquiring geometric and dynamical information
about a task from a small amount of tactile data, with the
application of nonlinear observability theory.

1 Introduction

Sensing and grasping are often performed sequentially by
robots. But this is not the case with human beings. Even
with no help from vision, the human hand can usually ma-
nipulate an object by feeling the contact and utilizing this
information to control the object.

For example, try to grasp something, say, a pen, on the
table while keeping your eyes closed. Your hand gropes
for it on the table until one of the fingers touches the pen
and starts pushing it for a short distance. By feeling if
the contact is almost stable, moving counterclockwise, or
moving clockwise on the fingertip, you can quickly tell
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if the middle, the right end, or the left end of the pen is
being touched, respectively. Immediately, you are able to
coordinate other fingers to close in for a grip.

The above example suggests that the human hand has
some intrinsic way of exploiting the shape information
about an object and the tactile information generated by a
mechanical interaction with the object. In designing a sens-
ing or grasping strategy, we should try to take advantage of
the mechanics, the manipulator and object’s geometry, and
their correlation. This paper illustrates such idea through
the study of a specific problem:Can we determine the pose
and motion of a known object from the contact motion on
a pushing finger?

In this paper we will answer yes in general to the above
question, offering a pose and motion estimation algorithm
in Section 4. Figure 1 shows a simple example of a disk
pushing a 7-gon and estimating the pose and motion of the
polygon in less than a second using the algorithm.

1.1 Related Work

Dynamics of sliding rigid bodies was treated by MacMil-
lan [15] for non-uniform pressure distributions, and by
Goyalet al.[7] using geometric methods based on the limit
surface description of friction.

Montana [17] derived a set of differential equations de-
scribing the motion of a contact point in response to a
relative motion of the objects in contact. The kinematics of
spatial motion with point contact was also studied by Cai
and Roth [3].

Mason [16] pioneered the study of the mechanics of
pushing using quasi-static analysis. Alexander and Mad-
docks [1] offered analytical solution to the problem of de-
termining the motion of a slider under applied force by a
reduction to the case of a bipod. Lynchet al. [14] local-
ized an object using the mechanics of pushing and tactile
feedback.

The paper by Salisbury [19] introduced fingertip force
sensing which determines contact locations and orientations
from force and moment measurements. Fearing and Bin-
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(a) Actual Scene (b) Perceived Scene

Figure 1: A disk of radius 1cm at constantvelocity 5cm=s pushing
a 7-gonP while observing its pose and motion. Contact friction
is large enough to allow only the rolling of the 7-gon on the disk
edge. The coefficient of support friction is 0.3. (a) The scene of
pushing for 0:71s. (b) The imaginary scene as “perceived” by the
observer during the same time period. Although the real contact
and its estimate were about 4.5cm apart on the contact edge at the
start of estimation, the error becomes negligible in 0.56s.

ford [5] designed a cylindrical tactile sensor to determine
the principal curvatures of an object throughrollingcontact.
Inspired by the results on exploratory procedures in human
haptics, Allen and Roberts [2] fit a number of contact points
around an object obtained by robot fingers to a superquadric
surface representation to reconstruct the object’s shape.

The foundation of our work comes from the theory of
the observability and observers of nonlinear systems. For a
general introduction to nonlinear control theory,werefer the
reader to Isidori [9] and Nijmeijer and van der Schaft [18].

Necessary and sufficient conditions for linearization by
output injection for autonomous nonlinear systems (i.e.,
without input) were given in [11] by Krener and Isidori, and
in [12] by Krener and Respondek along with a constructive
algorithm.

Gauthier, Hammouri, and Othman [6] described an ob-
server for affine-control nonlinear systems whose “gain” is
determined via the solution of an appropriate Lyapunov-
like equation. Ciccarellaet al. [4] proposed a similar
observer whose gain vector is controlled by the properly
chosen eigenvalues of a certain matrix obtained from the
original system’s Brunowsky canonical form.

Zimmer [20] presented a state estimator based on New-
ton’s method that conducts on-line minimization over some
objective function.

2 Motion of Contact

Throughout the paper we consider the two-dimensional
problem of atranslating finger F pushing an objectB.

The coefficient ofsupport frictionbetweenB and the plane
is everywhere�. ObjectB has uniform mass and pressure
distributions. Let us assumefrictionlesscontact betweenF
andB at present and discuss contact friction in Section 5.
LetvF be the velocity ofF , known toF ’s controller,v and
! the velocity and angular velocity ofB, respectively, all in
the world coordinate frame (Figure 2).
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Figure 2: FingerF translating and pushing objectB

LetF be bounded by a smooth curve� andBbounded by
a piecewise smooth closed curve� such that�(u) and�(s)
are the two points in contact in the local frames ofF andB,
respectively. Without loss of generality,� and� are unit-
speed curves with curvatures�� and�� (where defined),
respectively. Assume that one curve segment of� stays in
contact with� throughout the pushing and that� and� are
always convex in small neighborhoods of the two contact
points. To avoid any ambiguity, the notation ‘˙’ means
differentiation with respect to time, while the notation ‘0’
means differentiation with respect to some curve parameter.
For example, ˙� = �0u̇ = d�

du
du
dt

gives the velocity of the
contact point on the fingertip.

ThatF andB maintain contact imposes a velocity con-
straint:

vF + �0u̇ = v + ! �R� +R�0ṡ; (1)

whereR(�) is the rotation matrix associated with the orien-
tation� of B, which is determined by the orientation ofF ,
u, ands. In our previous work [10], we derived the contact
and object motions from (1), the geometric constraints of
contact, and Newton’s and Euler’s equations for dynamics.

Theorem 1 In the given system ofF pushingB, the points
of contact evolve according to

u̇ =
! + ���

0 � (v + ! � R� � vF )

�� + ��
; (2)

ṡ =
�! + ���

0 � (v + ! �R� � vF )

�� + ��
; (3)
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and the object’s angular acceleration and acceleration are
given as

!̇ = �

�
u̇�00 � (vF � v)�

�
u̇�00 �R� + (�0 � �)! � ṡ

�
!

+�0 � aF +
�g

A�0 � �
�0 � Γ

�� �
�0 � � +

�2

�0 � �

�
; (4)

v̇ =
A�2!̇ �R�0 � �gΓ

A�0 � �
; (5)

whereaF is the acceleration ofF , A and� the area and
radius of gyration ofB, respectively,g the acceleration of
gravity. The integralΓ =

R
B
R�0 � (Rp � v̂p) + (�0 �

�)v̂p dp is associated with support friction. Herevp =
v + ! � Rp is the velocity ofp 2 B and v̂p =

vp
jvpj

its

direction.1

3 Local Observability

Given the nonlinear system (2)–(5), sensing can be viewed
as to determine the object contacts, and possibly, the ob-
ject’s angular velocity! and velocityv, from the finger
contactu. In this section we shall study whetheru contains
enough information for such computation, resorting to the
notion of local observability in nonlinear control theory.

3.1 Nonlinear Local Observability

Let us consider a smooth affine (or input-linear) control
system together with an output map:

ẋ = f(x) +
mX
i=1

ui gi(x); u = (u1; : : : ; um) 2 U � <m;

y = h(x); (6)

wherex = (x1; : : : ; xn)T is the state in a smoothn-
dimensional manifoldM � <n (called thestate space
manifold), f ; g1; : : : ; gm are smooth vector fields onM ,
andh = (h1; : : : ; hk)T : M ! <k is the smooth out-
put map of the system. Heref is called thedrift vector
field andg1; : : : ; gm the inputvector fields. In the system,
u1; : : : ; um are the inputs, called thecontrols. Throughout
we are only concerned with the classU of admissible con-
trols that are piecewise constant functions and continuous
from the right.

Denote byy(t;x0;u), t � 0, the output function of the
system with initial statex0 and under controlu. Two

1Equations (2)–(5) are numerically solvable foru; s; v, and!. Closed
forms of Γ exist for polygonal objects; for most other shapes, it has to
be evaluated numerically. At the initial state, the object and the finger
are motionless. The initialaccelerations are solvable using Newton’s
method [10].

statesx1;x2 2 M in an open setV � M are said
to be V -indistinguishable, denotedx1I

V x2, if for any
T > 0 and any constant controlu : [0; T ] ! U such
thatx(t;x1;u);x(t;x2;u) 2 V for all 0 � t � T , it fol-
lows thaty(t;x1;u) = y(t;x2;u) for all 0 � t � T . The
system islocally observableat x0 if there exists a neigh-
borhoodW of x0 such that in every neighborhoodV � W
of x0 the relationx0I

V x1 implies thatx0 = x1. The sys-
tem is calledlocally observableif it is locally observable at
everyx0 2M .

The Lie derivativeof functionhj : M ! < along a
vector fieldX onM , denoted byLXhj , is the directional
derivativedhj(X) = dhj �X, wheredhj = (@hj

@x1
; : : : ;

@hj
@xn

)
is the differential or gradient ofh. Theobservation spaceO
of system (6) is the linear space (over<) of functions onM
that includesh1; : : : ; hk, and all repeated Lie derivatives:

LX1LX2 � � �LXl
hj = LX1(LX2(: : : (LXl

hj) : : :));

for j = 1; : : : ; k; l = 1; 2; : : :, and X1; :::; Xl 2
ff ; g1; : : : ; gmg. Theobservability codistributionat state
x 2M , denoteddO(x), is defined as:

dO(x) = spanf dH(x) j H 2 O g:

We refer the reader to [8] and [18, pp. 95–96] for more on
nonlinear observability.

Theorem 2 (Herman and Krener) System (6) is locally
observable at statex0 2M if dimdO(x0) = n.

The equation dimdO(x0) = n is called theobservabil-
ity rank condition. Basically, to distinguish between a
state and any other state in its neighborhood, it is nec-
essary to consider not only the output functions but also
their derivatives along all possible system trajectories. The
rank condition ensures the existence ofn output functions
and/or derivatives which together define a diffeomorphism
on some neighborhood of the state, which in turn ensures
that the state is locally distinguishable.

3.2 The Disk-Polygon System

Now we study the case of pushing in which fingerF is a
disk bounded by� = r(cosu

r
; sin u

r
)T and objectB is a

simple polygon. This type of pushing is representative of
real tasks. The interior of one edgee of B is in contact with
F throughout the pushing. Since a sensing strategy can
hypothesize all edges ofB as the contact edge and verify
them one by one, we assume thate is known. Leth be
the distance from the centroidO of B to e. Chooses as
the signed distance from the contact to the intersection ofe
and its perpendicular throughO such thats increases while
moving counterclockwise one, as shown in Figure 3. The
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Figure 3: A circular finger pushing a polygonal object.

orientationofB is� = u=r��=2.2 The tangent and normal
of F at the contact areT = �0 = (� sin u

r
; cosu

r
)T and

N=r�00=�(cosu
r
; sin u

r
)T , respectively. The system (2)–

(5) now reduces to3

u̇ = !r;

ṡ = T � (v � vF )� !(r + h);

!̇ =
s

s2 + �2

�
!2(r + h) � 2!T � (v � vF )� T � aF

�

�
�g

A(s2 + �2)
T � Γ; (7)

v̇ =
�2

s2 + �2

�
N � aF � !2(r + h) + 2!T � (v � vF )

�
N

�
�g

As
(T � Γ)T �

s

s2 + �2

�g

A
(N � Γ)N:

We refer to (7) and its future variations as thedisk-polygon
system. To apply Theorem 2 we still need to rewrite (7)
into the form (6) of an affine system.

Expressv in terms of the Frenet frame defined byT and
N : v = (vT ; vN )T , wherevT = v � T andvN = v � N .
Also express the disk velocityvF and accelerationaF in the
same frame as(vFT

; vFN
)T and(aFT

; aFN
)T , respectively.

We find thatvN depends ons, !, andvFN
by taking the dot

product ofN with the velocity constraint (1):

vN = vFN
+ s!:

System (7) is now rewritten as

ẋ = f(x) + aFT
gT (x) + aFN

gN (x): (8)

The state isx = (u; s; !; vT ; vFT
; vFN

)T ; the inputs are
the acceleration componentsaFT

andaFN
along the contact

tangent and normal, respectively; and the output is a triple

2Given a different contact edgee1 it follows � = u=r��=2+ �e1 for
some constant�e1 .

3These equations assume thatO and the disk center are on different
sides ofe. Otherwise the termr+ h in the following equations for ˙s; !̇; v̇
needs to be replaced byr� h.

y = (u; vFT
; vFN

)T . The drift and input fields are given as

f(x) =

0
BBBBBBBBBBBBB@

!r
vT � vFT

� !(r + h)
s

s2 + �2

�
!2(r + h)

�2!(vT � vFT
)�

�g

As
ΓN
�

!vFN
+ s!2 �

�g

As
ΓT

0
0

1
CCCCCCCCCCCCCA

;

(9)

gT (x) = (0; 0; 0; 0; 1;0)T;

gN (x) =

�
0; 0;�

s

s2 + �2 ; 0; 0; 1

�T
:

Theorem 3 The disk-polygon system (8) is locally observ-
able.

Proof By Theorem 2 it suffices to show that the observ-
ability codistributiondO has rank 6 at every state. Now the
observation spaceO consists of the outputsu; vFT

; vFN

and their repeated Lie derivatives. We choose fromdO the
following differentials:

du = (1; 0; 0; 0; 0; 0);

dvFT
= (0; 0; 0; 0; 1; 0);

dvFN
= (0; 0; 0; 0; 0; 1);

dLfu = (0; 0; r; 0;0; 0);

dLgNLfu =

�
0; r

s2 � �2

(s2 + �2)2
; 0; 0; 0; 0

�
;

dLgNLfLgNLfu
���
s=�

=

�
0;
r(r + h)

4�4 ; 0; 0; 0; 0

�
:

Clearly, it suffices to find one more function inO whose
partial derivative with respect tovT does not vanish.

Such a task is quite easy, for we have

@(LfLgNLfu)

@vT
= r

s2 � �2

(s2 + �2)2 ;

@

@vT
(LfLgNLfLgNLfu)

����
s=�

=
r(r + h)

4�4
: 2

The above proof in fact constructs several control se-
quences which, when applied for infinitesimal amounts of
time, will distinguish between different states in any neigh-
borhood. Assumings 6= �, one of the functionsu, vFT

,
vFN

, Lfu, LgNLfu, andLfLgNLfu must have different
values in any two different states close enough as guaran-
teed by the observability rank condition. Note thatLfu
is in fact the differential output under zero control. Since
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LgNLfu may be written as12Lf+gNLfu �
1
2Lf�gNLfu,

one of these two functions must distinguish the two states
if LgNLfu does. Obviously,Lf+gNLfu (or Lf�gNLfu)
is realizable in an arbitrarily small amount of time by the
control sequence starting with zero control and ending with
aFN

= 1 (or�1). The case with functionLfLgNLfu is
similar.

Support friction does not affect the local observability of
the disk-polygonsystem, as none of the differentials chosen
in the proof to spandO involve the integralΓ or any of its
partial derivatives.

4 Pose Observer

With the local observability result we can view sensing
strategies as nonlinear observers for the disk-polygon sys-
tem (8) or for the general pushing system (2)–(5). An
observerof a nonlinear system is a new system whose state
always converges to the state of the original system. The
input of the observer consists of the input as well as the
output of the original system.

Luenberger-like asymptotic observers [13] for nonlinear
systems are often designed through linearization. The disk-
polygon system, however, cannot be linearized for we have

LgNLfLgNLfu = r(r + h)
s(s2 � �2)

(s2 + �2)3
;

violating one of Nijmeijer’s necessary conditions [18, p.
156] on linearization. Another approach of observer de-
sign transforms the original system into a linear system
modulo an output injection [11]. The necessary condi-
tions for a nonlinear system to admit linear observer error
dynamics are rather restrictive and hardly satisfied by the
disk-polygon system, let alone system (2)–(5).

Our observer, for the disk-polygon system only, uses the
following result by Gauthier, Hammouri, and Othman [6].

Theorem 4 (Gauthier, Hammouri, and Othman)
Consider the single output nonlinear (and analytic) system

ẋ = f(x) (10)

y = h(x)

defined on ann-dimensional state space manifoldM . If

1. the mapping� : x 7! z =
�
h(x); : : : ; Ln�1

f h(x)
�T

is a diffeomorphism onM ,

2. Lnfh(x) can be extended fromM to <n by a C1

function that is globally Lipschitzian on<n,

then the system

˙̃x = f(x̃)�
@��1

@z

�
�(x̃)

�
S�1
1 CT

�
h(x̃)� y

�
(11)

whereC = (1; 0; : : : ; 0), andS1 is the solutionof equation

0 = ��S1 �ATS1 � S1A+ CTC; (12)

with Ai;j = �i;j�1, for � large enough, is an observer
for (10) with error dynamics

kx̃(t) � x(t)k � K(�)e�
�t

3 kx̃(0)� x(0)k:

The GHO observer for a nonlinear system (6) with inputs
is a copy of theoriginal system plus the error corrective term
given in (11). To admit such an observer, not only must
conditions 1 and 2 in Theorem 4 hold for the drift system
ẋ = f(x), but also the original system must be observable
for any input.

Getting back to the disk-polygonsystem (8), we consider
u; s; !, andvT only as the state variables sincevFT

and
vFN

are known. The drift and input fields reduce from (9)
accordingly. Withu being the system’s only output, the new
coordinates under map� consist ofu and its Lie derivatives,
up to the third order:

0
BB@

u
s
!
vT

1
CCA �

�! x =

0
BB@

u
!r

rLf!
rL2

f!

1
CCA :

For all except at most a finite number of states,
du; rd!; rdLf!, andrdL2

f! are linearly independent, so
the map� is locally diffeomorphic almost everywhere. The
Jacobian of the inverse transformation��1 is then the in-
verse of the Jacobian of�.

Solving equation (12) undern = 4 forS1 and plugging
it into (11), we obtain an observer for system (8):

0
BB@

˙̃u
˙̃s
˙̃!
˙̃vT

1
CCA = f(ũ; s̃; !̃; ṽT )�

�
aF �N (ũ)

�
gN (s̃)

�

0
BB@

1 0 0 0
0 0 r 0

rdLf!(ũ; s̃; !̃; ṽT )
rdL2

f!(ũ; s̃; !̃; ṽT )

1
CCA
�10
BB@

4�
6�2

4�3

�4

1
CCA(ũ� u): (13)

It should be noted that thesecond conditionin Theorem 4
does not hold sinceL4

fu is generally not extendable to a
globally Lipschitzian function. However,L4

fu is locally
Lipschitzian. The observer we just gave is a local one, like
most other nonlinear observers.

5 Contact Friction

In the presence of contact frictionbetween thefinger and the
object, we need to consider two modes of contact:rolling
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Figure 4: State variable trajectories vs. state estimate trajectories
in Figure 1.

and sliding, according to whether the contact force lies
inside the contact friction cone or on one of its two edges.
Each mode is hypothesized and solved; then the obtained
contact force is verified with the contact friction cone for
consistency.

It is not difficult to set up motion equations for rolling
and sliding that are similar to (2)–(5) and prove that local
observability carries over to both situations. A GHO ob-
server for pure rolling can also be derived. We will show
the simulation results on this observer in the next section.

6 Simulations and Experiments

The GHO observers for frictionless contact (13) and for
rolling were simulated. The object data in our simulations
were randomly generated polygons. The coefficient of sup-
port friction was chosen to be uniformly 0.3. The finger
accelerations and velocities used in simulations are achiev-
able on an Adept robot.

For the rolling example shown in Figure 1, the trajec-
tories ofu; s; ! and their estimates ˜u; s̃; !̃ are shown in
Figure 4.4 Table 1 shows more test results with the same

4All time measurements in the figure and in the following table refer
to the real world not to computer simulation. To give an idea, simulating
1s of observation for rolling contact took about 100s, while simulating 1s

polygon and contact edge.

Type aF � No. of Successes
(cm2=s) Tests No. Avg Time (s)

Frictionless 0 10 30 29 0.37
Contact 10 10 30 26 0.41
Rolling 0 10 30 27 0.22

0 5 30 25 0.56
10 10 30 26 0.25
10 5 30 23 0.57

Table 1: Observer performance for the polygon and contact edge
in Figure 1. In each test, the real contacts0 and its estimate
s̃0 were generated randomly on the edge. The disk velocityvF
at the start of observation was always 5cm=s north. The disk
accelerationaF was either 0cm=s2, or 10cm=s2, which lasted
for 0.5s before vanishing. The parameter� controls the GHO
observers (see Theorem 4). A test was considered a failure if ˜s
had not converged tos in 1.5s.

We have built a “finger” with tactile capability using
four strain gauges as shown in Figure 5. The strain gauges
are connected to an Omega PC plug-in card to form two
Wheatstone half bridges that measure the components of a
force exerted on the disk boundary along thex andy axes
of the disk, respectively. When contact friction is small
enough, the contact force measured by the gauges would be
along the disk normal at the contact, thereby indicating the
contact point.

The sensor can detect force in microstrains with a fre-
quency over 2000 Hz. It reports a contact with the disk
boundary in terms of its polar angle with respect to the disk
center. After calibration, the sensed static contacts (in 1000
readings) constantly have a mean within one degree away
from the real contact and a standard deviation of less than
0.5 degree.

To realize the GHO observer, we are working on im-
proving the sensor readings of moving contacts which are
currently noisy due to varying contact friction.

7 Summary

We have introduced a sensing approach based on nonlinear
observability theory which makes use of one-finger tactile
information. The approach determines the pose of a known
planar object by pushing it with a finger that can “feel” the
contact motion. It also estimates the object motion during
the pushing.

The kinematics of contact and the dynamics of pushing
yield a system of nonlinear ODEs whose state includes the
object pose and motion and whose output is the moving

of observation for frictionless contact took about 600s.
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Figure 5: A force sensor for contact sensing. The sensor is
composed of a horizontal disk and a cylindrical stainless steel
beam erected vertically on the disk and attached to the gripper of
an Adept robot at the top. Two pairs of strain gauges are mounted
on the upper end of the beam where they would be most sensitive
to any force exerted on the disk.

contact on the fingertip. We establish the local observabil-
ity of this system for the special case of a disk pushing a
polygon. Such result is expected to carry over to most other
finger and object shapes. This result forms the underlying
principle of our sensing algorithm, which is an observer of
the nonlinear dynamical system.

Based on the result of [6], we construct asymptotic
nonlinear observers taking into account support friction
and/or contact friction and demonstrate them by simula-
tions. These online observers are capable of correcting any
local error in estimating the object pose and motion.

We have implemented a force sensor using strain gauges
to detect contact locations. Preliminary experiments have
been carried out with an Adept robot.

Our undergoing research focuses on the sensor experi-
ments and the extension of pose and motion observability
to 3-D tasks.
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