
Orientation Only Loop-closing with Closed-form Trajectory Bending

Gijs Dubbelman, Peter Hansen, Brett Browning and M. Bernardine Dias

Abstract—In earlier work closed-form trajectory bending
was shown to provide an efficient and accurate out-of-core
solution for loop-closing exactly sparse trajectories. Here we
extend it to fuse exactly sparse trajectories, obtained from
relative pose estimates, with absolute orientation data. This
allows us to close-the-loop using absolute orientation data
only. The benefit is that our approach does not rely on the
observations from which the trajectory was estimated nor
on the probabilistic links between poses in the trajectory. It
therefore is highly efficient. The proposed method is compared
against regular fusion and an iterative trajectory bending
solution using a 5 km long urban trajectory. Proofs concerning
optimality of our method are provided.

I. INTRODUCTION

Estimating the pose of a moving system from on-board

sensors is important for many application domains. One

of the currently most researched methods is that of visual

pose estimation or visual odometry (VO). In recent years

visual odometry has gained significantly in accuracy, see for

example [4], [14], [15], [17], [23]. Structural error build up,

also known as drift, is inevitable however [5], [9] This is

due to the fact that the VO solution is obtained from relative

pose estimates to which no correction in terms of absolute

pose information is applied. Often, accurate absolute pose

information is available, be it at a significant lower rate than

the visual data on which the relative poses are estimated. The

goal of the presented method is to integrate this absolute

pose information into the VO solution at the time it is

registered, i.e. online such that it reduces drift and improves

the estimated trajectory entirely (i.e. all poses from the first

time-step up to the current time-step). Our method can do so

without using the observations from which the relative poses

were estimated. This makes it significantly more efficient

than methods which rely on observations, such as e.g. bundle

adjustment (BA) [21] or certain Simultaneous Localization

and Mapping (SLAM) approaches [2], [3], [11].

In previous work [8] the absolute pose information was

derived from loop-detection [1]. However, detecting loops

is not always possible because moving in loops is not

an effective strategy to reach a desired destination. Many

realistic trajectories contain no loops at all, they are loop-less.

In order to reduce drift in estimated loop-less trajectories

one can use on-board absolute pose sensors. The most well

known are based on the global position system (GPS). This is

not always a viable solution as it, for example, requires line
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of sight to several satellites orbiting the earth. In this work

we therefore focus on using an attitude heading reference

system (AHRS) to provide absolute orientation data. An

AHRS typically consists of gyroscopes, accelerometers and

magnetometers. By fusing the information from these sen-

sors an AHRS can deduce absolute orientation information.

AHRS devices based on micro-electro-mechanical systems

(MEMS) are affordable and widely available. These MEMS

based AHRS systems are error prone when subjected to

acceleration. When little acceleration is exercised however,

they can provide accurate absolute orientation information.

The task is to use these accurate AHRS readings to not

only update the current pose (as in regular fusion) but to

update all previous poses as well without relying on visual

observations or on the probabilistic links between poses

(as in e.g. graph based SLAM). The method of closed-

form trajectory bending can do so by applying constraint

optimization on the manifold of rotations, basically bending

the trajectory such that it ends in the desired orientation.

The way the trajectory bends at each pose is determined

by the uncertainty in the relative pose estimates. We show

that our method has linear computational complexity in the

number of poses while its memory requirements are constant

for first-order memory (e.g. processor cash) and linear for

second-order memory (e.g. flash). It can therefore compute

its solution out-of-core.

Once improved orientation estimates are obtained, the

positional estimates can be improved as well. This is because

long term drift in VO trajectories are mainly driven by

locally correlated relative rotational errors. This, in a sense,

allows for closing-the-loop using absolute orientation data

only. Here our approach is used stand-alone but its true

utility may lie in initialization of more complex (non-linear)

optimizers such as [12], [13], [22]. This will make them

more efficient and more robust against local minima of the

underlying (non-linear) objective function. Our approach can

easily be incorporated into such optimization strategies and

its source code is available at [7]. Furthermore, it can be

applied to general trajectories and not only to those estimated

by VO.

In Sec. II a detailed mathematical analysis of closed-form

trajectory bending is provided. In this section we also discuss

its closest related alternative: iterative trajectory bending

[16]. Proofs concerning the convergence and optimality of

our approach are also provided. These proofs were not

present in [8] and they are an important contribution of this

work. In Sec. III our closed-form approach, a regular fusion

approach and an iterative approach are evaluated on a real 5

km long urban trajectory. This trajectory is estimated using



binocular VO and its dataset is available at [7].

II. TRAJECTORY BENDING

Consider a trajectory consisting of n relative pose esti-

mates M1, ...,Mn. Each relative pose is an element of SE(3)
and consists of a rotation Rn ∈ SO(3) and a translation

tn ∈ R3. An estimate for the absolute pose at time-step n,

denoted as An, is obtained by concatenating relative pose

estimates with

An = A0M1...Mn = A0

n
∏

i=1

Mi . (1)

The absolute coordinate frame A0 can be assumed to be I
without loss of generality. Such a trajectory is exactly sparse

as there are probabilistic links between successive poses only.

These links are governed by the uncertainty in the relative

pose estimates.

At time-step n the system receives additional information

regarding its current absolute orientation. This orientation

update can be fused with the current estimate, obtained from

the relative pose estimates, resulting in an improved estimate

for the current absolute orientation. This improved orienta-

tion estimate obtained after fusion is denoted asDn ∈ SO(3).
It will automatically improve the positions and orientations

for all all future poses, i.e. after n, in the trajectory.

The goal of trajectory bending is to also improve all

previous orientations and positions, i.e. prior to n, using the

orientation update Dn.

A. Iterative bending in SO(3)

We start by considering an iterative maximum-likelihood

(ML) solution. In spirit it is similar to the method proposed

in [16], although in their work it was used for regular

loop-closing and not for orientation-only loop-closing. We

therefore modified their approach to work in the rotational

subspace only.

When focusing on the rotational subspace, Eq. 1 reduces

to

Bn = B0R1...Rn = B0

n
∏

i=1

Ri , (2)

where Bn is the absolute orientation of the nth pose in

the trajectory and B0 is again I. The goal is to update

each R1, ...,Rn such that the final absolute orientation Bn

becomes equal to Dn. When every relative orientation is

improved the absolute positions can be improved by recom-

puting them with Eq. 1.

By using an intrinsic parametrization, see Appendix B, of

the updates the constraint in the final pose can be expressed

mathematically as

‖ logDn
(

n
∏

i=1

(

expRi
(ui)

)

)‖2 = 0 . (3)

This formula updates each relative orientation estimate by

a distributed correction term, e.g. ui, parametrized in their

respective tangent spaces, e.g. expRi
(ûi). Then it computes

the final absolute orientation of the trajectory by multiplying

each updated relative orientation estimate. By mapping the

final absolute orientation to the tangent space of the desired

absolute orientation Dn and computing the squared length

of the resulting tangent vector, the value of the constraint

is obtained. It is zero only when the final orientation Bn is

equal to the desired orientation Dn.

There are clearly infinitely many solutions for u1, ..., un
which fulfill this constraint. The interest is however in

obtaining a maximum likelihood solution. To this purpose

the uncertainties of the relative orientation estimates R1...Rn

are modeled as normal distributions with zero mean and

covariances Σ1...Σn in their respective tangent spaces. The

goal of ML trajectory bending is to find those distributed

correction terms u1, ..., un for which their likelihood given

these normally distributed uncertainties is maximized. This

task is expressed by the ML objective function

f(u1, ..., un) =
1

2

n
∑

i=1

u
⊤
i Σ

−1

i ui . (4)

In spirit of the approach in [16] the objective function Eq.4

is minimized with respect to u1, ..., un under the non-linear

constraint expressed by Eq. 3 by using sequential quadratic

programming(SQP). Due to the non-linearities in the con-

straint this is a demanding optimization task which requires

significant computation and is susceptible to local minima.

For trajectories consisting out of many poses (i.e. 100 < n)

it is not possible to compute a solution online on current

(portable) computational hardware.

Therefore, in order to provide a workable solution, a

sub-mapping approach was employed in [16]. Basically,

splitting the trajectory in several (i.e. 50) segments and only

optimizing with respect to the relative poses connecting those

segments. Such a sub-mapping approach does not offer the

same level of optimality as optimization with respect to every

pose of the trajectory. Nevertheless, in [16] it was shown

to provide better results than loop-closing using EKF based

trajectory-SLAM.

B. Closed-form bending in SO(3)

We now proof that, when the uncertainties in the relative

orientation estimates are isotropic, the ML constrained Eq. 3

and objective function Eq. 4 have a closed-form solution.

These proofs extend the work in [8].

We start with considering the constraint which can be

rewritten (see Appendix B) as

‖ log(D−1

n

n
∏

i=1

(RiUi))‖
2 = 0 , (5)

where each distributed correction term Ui = exp(ui).
A possible solution for U1, ...,Un that satisfies the con-

straint is setting all U1, ...,Un−1 to I and setting Un

to B−1
n Dn. Indeed ‖ log(D−1

n R1...Rn−1RnB
−1
n Dn)‖ =

‖ log(D−1
n BnB

−1
n Dn)‖ = ‖ log(I)‖ = 0. This solution

basically leaves the trajectory unchanged and only adds the

update B−1
n Dn at the end of the trajectory after Rn such that

it ends in the desired orientation Dn.



The next step is to distribute this one-step update B−1
n Dn

over the entire trajectory such that every orientation im-

proves. To this purpose we first segment B−1
n Dn in n relative

orientations Û1, ..., Ûn such that

B−1

n Dn =

n
∏

i=1

Ûi. (6)

The elements Û1, ..., Ûn are the local correction terms and

again ‖ log(D−1
n R1...RnÛ1...Ûn‖ = 0; the constraint is

satisfied.

These local correction terms are obtained by interpolating

B−1
n Dn with

Ûj = I(

j−1
∑

i=1

wi)
−1

I(

j
∑

i=1

wi), (7)

where

I(t) = expBn
(t logBn

(Dn)). (8)

The weights w1, ..., wn with w1+w2+...+wn = 1 determine

how much of the update B−1
n Dn will be distributed to a

particular pose in the trajectory. The larger the weight wi the

more bending will occur at the ith pose in the trajectory. In

Sec. II-C we show that a ML solution is obtained by setting

these weights proportional to the variance in the relative

orientation estimates.

So far we have obtained the local correction terms

Û1, ..., Ûn. The final step is distributing them over the

trajectory, i.e. specifying a mapping T which takes the local

correction terms Û1...Ûn to the distributed correction terms

U1...Un of Eq. 5 such that

(

n
∏

i=1

Ri

)(

n
∏

i=1

Ûi

)

=

n
∏

i=1

(

RiT(Ûi)
)

= Dn. (9)

This will add a correction term, e.g. T(Ûi), to each pose in

the trajectory assuring it ends in Dn.

In essence this mapping T is nothing more than a change

of basis applied to each of the local correction terms

Û1...Ûn. The difficultly however is that the change of basis

is not unique. This is due to the fact that we have a choice

in which order to process the local correction terms. For

n local correction terms there are n! distinct orders. Given
a general order, the mapping T for a single correction

term Ûj depends on other correction terms as well. This

prevents efficient computation, as it requires recomputing

the trajectory after each single correction term has been

processed by T. Here we are interested in a mapping T for

which such reintegration is not required and therefore is

significantly more efficient. It turns out that such a mapping

exists, it is provided by the following theorem.

Theorem 1: A relation between the local correction terms

Û1...Ûn and the distributed correction terms U1...Un obey-

ing the constraint Eq. 5 is provided by

T(Ûj) =

(

j
∏

i=1

Ri

)−1

DnÛjD
−1
n

(

j
∏

i=1

Ri

)

= B−1

j DnÛjD
−1
n Bj

= Uj

(10)

The proof for this theorem is provided in Appendix A and

guarantees that our method returns a solution which satisfies

the constraint (for any set of normalized weights w1, ..., wn).

The interesting property is that the mapping T for each

Ûj only depends on the original absolute orientation Bj and

the desired final absolute orientation Dn. The solution to

trajectory bending can therefore be obtained in closed form

and has computational complexity O(n). As the mapping

can be computed independently for each Û1, ..., Ûn the

memory requirements are constant for first-order memory

(e.g. processor cache) and linear in n for second-order

memory (e.g. flash). This allows for out-of-core processing

and makes our trajectory bending algorithm significantly

more efficient than alternative (ML) approaches such as that

of [16].

For further sections it is useful to define the inverse of T

as

Ûj = T
−1(Uj) = D−1

n BjUjB
−1

j Dn . (11)

It maps distributed correction terms back to local corrections

terms.

C. proof of optimality

In this section we derive that our algorithm provides a

ML solution when the uncertainties in the relative orientation

estimates are isotropic and the weights w1, ..., wn are set

proportional to these uncertainties.

We start with the ML constraint Eq. 3. This constraint is

specified using the distributed correction terms. In Sec. II-B

we showed that this constraint can also be satisfied using the

local correction terms Û1, ..., Ûn together with the mapping

T defined in Eq. 10. The constraint Eq. 3 is therefore

conceptually similar to the constraint

B−1

n Dn =

n
∏

i=1

Ûi. (12)

When this constraint is satisfied, then so is the original con-

straint of Eq. 3. Our approach even enforces this constraint

within machine precision.

Now we focus on the ML objective function Eq. 4. In

the case of isotropic and inhomogeneous noise in SO(3) the

covariance matrices in Eq. 4 are of the form

Σi = σ2

i I (13)

and the ML objective function reduces to

f(r1, ..., rn) =
1

2

n
∑

i=1

‖ri‖
2

σ2

i

=
1

2

n
∑

i=1

‖ log(Ui)‖
2

σ2

i

. (14)

The following well known equality, e.g. see [18], is important

‖log(Uj)‖ =
∥

∥log(RUjR
−1)
∥

∥ , (15)



with R and Uj elements of SO(3). It is a direct consequence
of the fact that the norm on rotations is left and right invariant

with respect to a change of basis in SO(3). The importance

of this equality is that we are allowed to apply any change

of basis in SO(3) to each U1, ...,Un in the ML objective

function Eq. 14. We are therefore also allowed to apply the

change of basis T−1 defined in Eq. 11. This change of basis

maps a distributed correction Ui term back to its related local

correction term Ûi. The ML objective function can therefore

be rewritten as

1

2

n
∑

i=1

‖ log(T−1(Ui))‖
2

σ2

i

=
1

2

n
∑

i=1

‖ log(Ûi)‖
2

σ2

i

, (16)

What we have gained is that, just as the constrained Eq. 12,

the ML objective is now specified using local correction

terms Û1, ..., Ûn instead of distributed correction terms

U1, ...,Un.

Thus, when the noise in the relative rotational estimates is

isotropic, minimizing the ML objective Eq. 4 wrt. U1, ...,Un

under the constraint Eq.3 is similar to minimizing

1

2

n
∑

i=1

‖ log(Ûi)‖
2

σ2

i

with constraint B−1

n Dn =

n
∏

i=1

Ûi

(17)

wrt. Û1, ..., Ûn. This optimization task basically states:

finding a path through SO(3), made up of steps Û1, ..., Ûn,

starting at I and ending in B−1
n Dn such that the summed

squared lengths of these segments is minimal with respect

to σ2
1 , ..., σ

2
n.

In order for the summed squared step lengths to be

minimal, the path itself must be the minimal length path from

I to B−1
n Dn. Such paths through SO(3) are well known and

called minimizing geodesic [6]. As our interpolation function

Eq. 8 involves the Riemannian logarithm and exponent

the path traced out by Û1, ..., Ûn follows this minimizing

geodesic for any set of normalized weights w1, ..., wn.

The remaining question is therefore: which particular

values to use for the weights w1, ..., wn such that an optimal

solution is obtained. Consider that the length of the path from

I to B−1
n Dn is ‖ log(B−1

n Dn)‖. The length of each step is

‖ log(Ûi)‖ = wi‖ log(B
−1

n Dn)‖. (18)

Plugging the right hand side of this equality into the ML

objective of Eq. 17 we get

1

2

n
∑

i=1

w2

i

σ2

i

(19)

(where we also took out ‖ log(B−1
n Dn)‖

2 because it is a

constant). This new objective function must be minimized

with respect to w1, ..., wn under the constraint

1 =

n
∑

i=1

wi. (20)

(a) (b)

Fig. 1. Representative images from the 5 km long binocular urban data
set made available at [7].

By using the method of Lagrange multipliers we find that

the optimal value for each weight is provided by

wj =
σ2

j

n
∑

i=1

σ2

i

. (21)

Each weight and therefore the length of each step over the

geodesic is proportional to the uncertainty, i.e. the variance,

in its corresponding relative orientation estimate. The more

uncertainty in the relative orientation estimate the more

bending will occur at its location in the trajectory. This

clearly agrees with an intuitive understanding of statistically

informed trajectory bending.

When considering the argumentation concerning optimal-

ity in [8], then the fact that the combined norm on R3×SO(3)
is not invariant with respect to a change of basis in SE(3),

e.g. see [18], prevents rewriting the ML objective as in

Eq. 16. Therefore, in contrast to Eq. 16, the objective

function in [8] is not related to the original ML objective

function.

III. EVALUATION

In this section our closed-form approach is compared

against regular fusion and against its closest related alterna-

tive: iterative trajectory bending. The comparison is based

on a 5 km long urban trajectory estimated by binocular

VO. This dataset consists out of approximately ten thousand

stereo image pairs from which 2000 poses are estimated. The

dataset is accompanied by D-GPS based ground truth. It is

one of the most challenging publicly available VO datasets.

This is mainly due to many stop-and-go traffic situations,

e.g. see Fig. 1, during which large regions of the image are

occupied by independent moving objects.

Our experimental setup, incorporating closed-form trajec-

tory bending, comprises the following:

1) Running visual odometry: We use the approach of

[10] with automatic key-framing as in [23] and inlier-outlier

tracking to suppress independent moving objects. Besides the

relative poses themselves we also estimate their uncertainties.

2) Detecting time-windows of low acceleration: The ab-

solute orientation data is provided by an affordable micro-

electro-mechanical based AHRS. This AHRS is used as a

black-box and we directly work with its fused output. The



(a) (b) (c) (d)

Fig. 3. Results of the four tested approaches: regular fusion (a), with time-window selection (b), closed-form trajectory bending (c), iterative trajectory
bending (d). The VO trajectory is depicted in red, the D-GPS based ground truth in green and the results obtained after applying each approach in blue.
The selected time-windows of low acceleration are depicted by the blue dots on the trajectories.

AHRS is error prone when subjected to (angular) accel-

eration. In case of low acceleration, it provides relatively

reliable absolute orientation readings. We therefore choose

to only use the AHRS readings within time-windows of

low acceleration. They are detected by first measuring the

acceleration from the VO estimates (we use the VO estimates

because they exhibit high short-term accuracy). Thresholds

are applied to the measured accelerations and we only use

time-windows of at least 5 seconds long. The threshold on

the translational acceleration is set to pass below 20 mm/s2

and the threshold on the angular acceleration is set to pass

below 0.02 deg./s2. For the 5 km long dataset only three

time-windows of low acceleration are detected.

3) Fusing the VO absolute orientation estimate with the

AHRS readings: When a suitable time-window is detected the

ARHS orientation readings are fused with estimates obtained

from VO thereby providing the update Dn. We choose to

do so by computing an intrinsic weighted mean [19] of

all visual odometry and AHRS estimates falling within the

time-window. These visual odometry and AHRS estimates

provide a Monte-Carlo representation of their underlying

uncertainties. This fusion approach is therefore not limited

to Normal distributions neither requires linearization. The

intrinsic mean is that point in SO(3) which provides a

ML estimate given the uncertainties. As there are typically

significantly more AHRS readings (it operates at 60 Hertz)

within a time-window than VO estimates, the VO estimates

are re-weighted such that the total VO weight α = 0.65 times

that of the total AHRS weight. After the update is obtained,

the AHRS is reset to equal Dn. This suppresses drift of the

fusion inside the AHRS itself.

4) Applying trajectory bending: At this point we only have

an update Dn for the current time-step. Trajectory bending

uses this update to improve all relative VO orientation

estimates up to the previous detected time-window. This

assures that the trajectory ends in the desired absolute

orientation when recomputing it from the updated relative

poses with Eq. 1.

When using regular fusion we do not detect time windows

of low acceleration. Instead, we repeatedly fuse after each

10th pose. The method of fusion is exactly the same as in

step 3, except for the duration of the time-window which

is now fixed to 200 milliseconds, furthermore, α is set to

20 to account for the fact that we are using significantly less

reliable AHRS readings. We also show the results when using

this regular fusion approach together with the time-window

selection mechanism of step 2. For this experiment α is again

set to 0.65 because we are using accurate AHRS readings

only. For these two approaches no trajectory bending is

performed after fusion. When using the iterative bending

approach of Sec. II-A, we follow exactly the same steps 1 to

4 but replace our closed-form trajectory bending approach

with the iterative approach using 50 sub-maps as in [16].

This assures that a solution of good accuracy is obtained

within a reasonable time budget.

A. Results and discussion

The results of the four tested approaches are visualized in

Fig. 3. The methods which include bending are also depicted

in Fig. 2 on top of aerial imagery.

From Fig. 2.a it can observed that closed-form trajectory

bending is able to significantly reduce drift in the VO

trajectory on basis of orientation data only. To verify that

this is due to trajectory bending, we can compare its result

in Fig. 3.c with that of Fig. 3.b. The only difference between

these two methods is using (Fig. 3.c) or not using (Fig. 3.b)

trajectory bending. In the latter case, the drift is marginally

reduced because orientations at selected time-windows are

improved but not back-propagated by trajectory bending.

When using regular fusion, see Fig. 3.a, drift is also reduced.

However, only up to the point that the AHRS readings

become erroneous (i.e. significantly outside the range of their

expected operational uncertainty). From Fig. 3.d and Fig. 2.b

it can be observed that using the ML bending approach has

no additional benefit over our closed-form approach, both

approaches practically provide the same solution. However,

the closed-form approach has a computation time of only 0.3



(a)

(b)

Fig. 2. Results of closed-form trajectory bending (a) and a close-up at
the final pose with the results of iterative bending (b). The VO trajectory
is depicted in red, the D-GPS based ground truth in green, the results after
closed form bending in blue and that of iterative bending in orange. The
selected time-windows of low acceleration are depicted by the blue dots on
the trajectory.

seconds for the total of 2000 poses (in Matlab) whereas the

iterative approach takes around 3 seconds. Our closed-form

approach also is significantly easier to implement on small

embedded processors than the SQP based iterative approach.

The positional error (including height) in the final pose

reduces from 550 m to 17 m when applying our closed-

form method. This is 0.35 percent of the 5 km of total

distance traveled. This is a remarkable performance as no

absolute positional data is used. The benefit of our approach

is that we can be highly selective on the quality of the AHRS

readings and, at the same time, are still able to improve the

entire trajectory to high accuracy. This makes our approach

more tolerant against erroneous readings of affordable AHRS

systems.

IV. CONCLUSIONS

A novel trajectory bending algorithm was proposed to

incorporate absolute orientation data into trajectories ob-

tained by visual odometry. This allows for closing-the-loop

on orientation data only. Contrary to an iterative optimizer,

the proposed algorithm operates in closed-form, has linear

computational complexity in the number of poses and can

be computed out-of-core. It is therefore significantly more

efficient than this iterative counterpart while its accuracy

is shown to be comparable under realistic conditions. The

results obtained on a 5 km long and challenging urban

trajectory extend the current state-of-art in pose estimation

from on-board sensors.
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APPENDIX A

Proof: The proof of our theorem is based on induction.

To allow for compact formulas we switch to the following

notation style:

Xj:k =
∏k

i=j Xi , X−1

j:k =
(

∏k

i=j Xi

)−1

=
∏j

i=k X
−1

i ,

(XY)j:k =
∏k

i=j XiYi and (XY)−1

j:k =
(

∏k

i=j XiYi

)−1

=
∏j

i=k Y
−1

i X−1

i

(22)

(note that these products are constructed from left to right as

in Eq. 1). By using this notation we can express constraint

Eq. 9 by the proposition

P (k) : R1:n−k (RT(Û))n−k+1:n Û1:n−k = Dn, (23)

where T is defined as in Theorem 5.1 with

T(Ûj) = R−1
1:jDnÛjD

−1
n R1:j = Uj . (24)

For our theorem 5.1 to be correct, the proposition P (k)
has to be valid for all 1 ≤ k ≤ n. For k = n the

proposition reads P (n) : (RT(Û))1:n = Dn, i.e. when all

correction terms are distributed over the trajectory it ends

in the desired pose. This is the goal of our bending algorithm.

The correctness of the basis P (k = 1) is provided by the

equalities

P (1) : R1:n−1RnT(Ûn)Û1:n−1 = R1:nT(Ûn)Û1:n−1

= R1:nR
−1
1:nDnÛnD

−1
n R1:nÛ1:n−1

= DnÛnD
−1
n R1:nÛ1:n−1

= DnÛn(R1:nÛ1:n)
−1R1:nÛ1:n−1

= DnÛnÛ
−1

1:nR
−1
1:nR1:nÛ1:n−1

= DnÛnÛ
−1

1:nÛ1:n−1

= DnÛnÛ
−1

n

= Dn.

(25)

The inductive hypothesis states that

P (k) : R1:n−k (RT(Û))n−k+1:n Û1:n−k = Dn (26)

is true. We now proof the correctness of the inductive step,

i.e. the correctness of P (k + 1) when assuming that the

inductive hypothesis P (k) holds. Let us start with rewriting

P (k) by singling out Ûn−k, i.e.

P (k) : R1:n−k (RT(Û))n−k+1:n Û1:n−k = R1:n−k (RT(Û))n−k+1:n Û1:n−(k+1)Ûn−k = Dn.

(27)

Observe from the last equality in Eq. 27 that the term

(RT(Û))n−k+1:n Û1:n−(k+1) = R−1
1:n−kDnÛ

−1
n−k (28)

when assuming P (k) is true. We can therefore rewrite the

inductive hypothesis P (k) to

P (k): R1:n−k(R
−1
1:n−kDnÛ

−1
n−k)Ûn−k(R

−1
1:n−kDnÛ

−1
n−k)

−1(RT(Û))n−k+1:n Û1:n−(k+1) = Dn.

(29)

Now observe that the term

(R−1
1:n−kDnÛ

−1
n−k)Ûn−k(R

−1
1:n−kDnÛ

−1
n−k)

−1 = R−1
1:n−kDnÛ

−1
n−kÛn−kÛn−kD

−1
n R1:n−k

= R−1
1:n−kDnÛn−kD

−1
n R1:n−k

= T(Ûn−k),

(30)

it is our mapping function T applied to Ûn−k. This allows

reformulating proposition P (k) as

P (k) : R1:n−kT(Ûn−k)(RT(Û))n−k+1:n Û1:n−(k+1) = Dn

(31)

By rewriting its equality we find that

R1:n−kT(Ûn−k)(RT(Û))n−k+1:n Û1:n−(k+1) = Dn

R1:n−(k+1)Rn−kT(Ûn−k)(RT(Û))n−k+1:n Û1:n−(k+1) = Dn

R1:n−(k+1)(RT(Û))n−(k+1)+1:n Û1:n−(k+1) = Dn

P (k + 1) = Dn.
(32)

This validates the correctness of the inductive step. The proof

of our theorem 5.1 then follows from induction.

APPENDIX B

In this appendix we provide the intrinsic statistical func-

tions for rotation matrices. For more information on intrinsic

statistics in general we recommend [19].

The Riemannian exponential map wrt. the identity I for a
tangent vector r is

R = Exp(r) = I+sin(‖r‖)[
r

‖r‖
]×+(1− cos(‖r‖))[

r

‖r‖
]2×, (33)

where

[

(sx, sy , sz)
⊤
]

×
=





0 −sz sy
sz 0 −sx
−sy sx 0



 . (34)

It coincides with the Rodrigues rotation formula in that

it produces a rotation matrix R which encodes a rotation

around an axis r

‖r‖ with angle ‖r‖.
To express the Riemannian logarithmic map wrt. the

identity I we need the notation

[S]
↑
=





0 −sz sy
sz 0 −sx
−sy sx 0





↑

= (sx, sy, sz)
⊤

(35)

to map a skew symmetric matrix S into a vector. With this

notation the logarithmic map is

r = Log(R) =











[

θ
(R−R⊤)
2 sin(θ)

]

↑
, θ 6= 0

(0, 0, 0)⊤ , θ = 0

(36)

with

θ = arccos

(

trace(R)− 1

2

)

(37)

[20]. For a rotation matrix R expressing a rotation around

normalized axis r with angle α it effectively produces the

tangent vector r = αr.

The Riemannian mappings for general rotation matrices

are provided by

R2 = ExpR1
(r2) = R1(Expe

(r2)) (38)

r2 = LogR1
(R2) = Log

e
(R−1

1 (R2)) (39)

and the intrinsic distance between rotations can then be

expressed with
∥

∥LogR1
(R2)

∥

∥ . (40)


