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Abstract

Highway driving can be more safe and reliable when maps contain lane-level de-
tailed cartographic information. Such maps are a resource for driving-assistance sys-
tems, enabling them to provide human drivers with precise lane-by-lane advice.

This paper proposes new aerial image analysis algorithms that, from highway ortho-
images, produce lane-level detailed maps. We analyze screenshots of road vectors to
obtain the relevant spatial and photometric patterns of road image-regions. We then
refine the obtained patterns to generate hypotheses about the true road-lanes. A road-
lane hypothesis, since it explains only a part of the true road-lane, is then linked to
other hypotheses to completely delineate boundaries of thetrue road-lanes. Finally,
some of the refined image cues about the underlying road network are used to guide a
linking process of road-lane hypotheses.

We tested the accuracy and robustness of our algorithms withhigh-resolution, inter-
city highway ortho-images. Experimental results show promise in producing lane-
level detailed highway maps from ortho-image analysis – 89%of the true road-lane
boundary pixels were successfully detected and 337 out of 417 true road-lanes were
correctly recovered.
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1 Introduction

Maps are important for human navigation. Given a route, a route-guidance system
consults maps to provide human drivers with turn-by-turn directions to their destina-
tions. Such guidance helps us safely drive through familiarand even entirely foreign
terrains. Route-guidance systems work particularly well because those systems rely on
exceptional human perception capabilities. For example, when a route’s direction is
given, a human driver steers his vehicle along a particular road-lane while taking note
of geometric shapes of the roads, the posted rules, and road-lane boundaries.

However, such route guidance can be very confusing when, dueto a lack of infor-
mation, a guidance system does not detail the actual road geometries. For example, a
person driving in the far left lane of a four-lane highway will not be able to exit a ramp
on the right immediately after being advised to do so. If the cartographic database
serving the guidance system has lane-level detailed information, the route-guidance
will surely be more reliable.

This paper proposes new aerial image analysis algorithms that, from highway ortho-
images, produce a map of road-lanes that appear on a given highway ortho-image. A
road-lane (or a lane), in this paper, refers to the part of a road built for controlling and
guiding a single line of vehicles. The output of this procedure is cartographic informa-
tion about road-lanes in a set of pixel coordinates of road-lanes’ centerlines and lateral
road-widths. Such lane-level detailed highway maps with traffic rules and accurate
coordinates can be prepared in advance to facilitate the guiding of highway driving.

To extract such lane-level detailed information from a given aerial image, pix-
els along road-lane boundaries must be visually and computationally accessible. To
meet this requirement, we choose ortho-images with 15-centimeter ground resolution
in which lane boundaries can be observed by the naked eye and can potentially be
processed computationally. Because the normal longitudinal pavement markings on
highways are 4-6 inches wide (10.16-15.24 centimeters) [24], there is at least one pixel
for laterally delineating a part of lane-markings. Highways appearing in our target im-
ages are inter-city (or arterial) highways built for facilitating transportation between
cities [22].

Since our target images are depicted in high-resolution, such image objects as lane-
markings and road image-regions contain significant variations in their appearances,
such that an object appears differently based on the condition of an image acquisition
process and road surface materials. For example, even in a given arterial highway im-
age, road surfaces may be covered with different materials,such as asphalt or concrete.
Such variation in road surfaces cause an inconsistency in the color and texture of lane-
markings and road-regions. Another example of appearance variation is occlusions
caused by man-made structures such as buildings, over-hanging traffic signs, as well as
overpasses and their shadows. These structures make parts of roads partially or com-
pletely unobservable. The geometry of arterial highways also makes it difficult to de-
lineate a lane’s boundary. Ramps with circular paths have high curvatures that require
a boundary-following process that tracks non-linear paths. Road-lane junctions near
an overpass require extra care due to the complex traffic directions. Road-boundary
tracking must also be carefully done at a bifurcation point,where one splits into two,
because one of the multiple tracking lanes might disappear.
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To effectively tackle these challenges, we develop a hierarchical approach to three
tasks: gathering road boundary image cues, generating road-lane hypotheses, and link-
ing the hypotheses. To this end, we first scrutinize input images, to harvest two types
of image cues about the underlying roads: road image-regions and the geometry of un-
derlying road-lanes. Knowledge of road image-regions are useful in specifying where
to look for road-lane boundaries. To obtain the informationof road image-regions,
we formulate this image segmentation problem as a binary classification. Another im-
portant image cue we collect is the geometry of the underlying roads. To obtain this
information, we extract lines and analyze the screenshot image of the road-vector to es-
timate the legitimate driving direction and to identify relevant road structures, such as
overpasses. These collected image cues about road surface and geometry will provide
strong evidences of the true road-lanes. In particular, these cues facilitate a road-lane
hypothesis generation and guide a linking of these hypotheses to build an accurate map
of road-lanes. For the problem of linking road-lane hypotheses, we formulate it as a
min-cover problem [25]. We look for a set of hypotheses aboutthe unknown true road-
lanes to maximally cover the estimated road image-regions with a minimum sum of
costs.

In what follows, we briefly review the related work. We detailthe methods of
harvesting low-level features, the methods of converting these low-level features into
meaningful mid-level features, and the methods of generating road-lane hypotheses
and of linking them, so as to generate a map of road-lanes in a given image.

2 Related Work

Guiding humans to their destinations, a map is an essential component for reliable and
safe navigation. In the GIS community aerial image analysishas played a crucial role
in maintaining existing cartographic databases [1, 2, 3, 6]. Despite being potentially out
of date, the geometric relations among spatial objects (e.g., intersection between road
segments) appearing on aerial images are invariant over a long period of time, even af-
ter natural disasters [20]. To delineate the underlying road network’s geometry, struc-
tural top-views of interesting areas on aerial images provide better vantage points than
those of perspective sensor measurements (e.g., vision sensors and range finders). This
provides an alternative way of maintaining existing cartographic databases without vir-
tually going out to the regions of interest. The clear difference between these work
and ours is the ground resolution. Most of these work analyzed low-resolution aerial
images in which the ground resolution was greater than one meter [1, 2, 3, 7, 8, 11].

We detect interesting road structures, such as intersections and overpasses, to iden-
tify potentially complex road geometry. For example, knowing the boundary (or a
location) of an overpass is useful in correctly understanding a hierarchical spatial or-
der among road-lanes passing thru the overpass. To recover such 3-dimensional road
structures, researchers have directly accessed a road vector or utilized 3D data such as
air-borne point clouds [13, 16, 17].
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3 Harvesting Road-Boundary Image Cues via Bootstrap-
ping

(a) An input highway ortho-image with 15 centimeters per pixel ground resolution.

(b) A screenshot of the road-vector of the input image.

Figure 1: Two input images for our lane-level map building are shown.

This section explains how to analyze input images to extractlow-level image fea-
tures and how to refine such features to produce task-specificimage features that can
be directly used to execute other sub-tasks. Our algorithmstake two images as the
input: highway ortho-image and the input image’s road-vector screenshot. Figure 1(a)
shows an example of a highway ortho-image and Figure 1(b) shows an example of a
road-vector screenshot image.

A road-vector screenshot is a screencapture image that depicts, with distinctive
colors, the underlying road-network of a highway scene. When a road-vector image
is overlaid with an ortho-image, road-regions in the ortho-image are labeled with real-
world cartographic information. One might think that the road-vector screenshot image
would trivialize the task of identifying boundaries of road-lanes. Such is not the case.
First, the sketches of road-vectors are just parts of images, meaning they do not possess
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any information about road-vectors, which are directly accessible in a computational
form. Second, the road-vector sketches are not entirely overlapped with images of
road-regions, resulting in cases where some road-regions remain uncovered. From
a pattern recognition perspective, this is a very confusingsignal in that some image
regions of true road-lanes are marked as “non-road” and viceversa. Thus, when using
a screenshot of a road-vector, one should take extra care.

We first parse two input images, to extract low-level features, such as lines and
superpixels. As a preprocessing step, we apply a histogram equalization to normal-
ize intensity, a bilateral filter [21] to preserve natural edges, and then compute image
gradients. For line extraction, we first run Canny edge detector on image gradients,
link those pixels based on their gradient orientations, andfit a line using eigendecom-
position [9, 19]. To obtain a superpixel image, we apply the watershed segmentation
algorithm to the gradients of the image to obtain a coarse segmentation. We then reit-
erate this process until the dimensions of individual superpixels are large enough [10].
We terminate this iteration when the number of superpixels is less than or equal to the
predefined proportion (e.g., 15%) of the initial number of segments produced by the
watershed algorithm. Figure 2(a) shows an example of a superpixel image.

To extract the useful geometric information of the underlying roads from a road-
vector screenshot, we first extract image regions of road-vector sketches, i.e., yellow
or yellowish paintings in Figure 1(b), and produce a binary image. This image con-
tains only those fragments of road-vectors without any map-symbols. We then further
analyze each of the road-vector fragments, to obtain their geometric properties, such
as extremity and bifurcation points. Figure 2(b) shows a result of such analysis. Each
(green) polygon represents road-vector fragments where “+” indicates a ridge point,
“+” with a triangle is an extremity point, and “+” with a circle is a bifurcation point.

Since these low-level features contain only basic information about road-lanes ap-
pearing on the input image, we need to refine these features, making them more rele-
vant and useful in executing our task of producing road-lanemaps. These new features
include a segmentation of a road image-region, an estimation of some legitimate driv-
ing directions of roads appearing on the input image, a lane-marking detection, and
locations of interesting road-structures, such as intersections and overpasses.

3.1 Road-Image Region Segmentation

Having knowledge of road image regions would help one know where to look for road-
lane boundaries. Acquiring knowledge of road image-regions is carried out through
an image segmentation task that divides an input image into two image sub-regions:
road- and non-road-region. We tackle this image segmentation problem as a binary
classification problem that takes superpixels as input and assigns each superpixel with
one of two class labels: road or non-road. We utilize one of the inputs, a road-vector
screenshot image, to prepare, without human intervention,training data. In particular,
we treat a superpixel as a positive example if its area is significantly overlapped (e.g.,
more than 90%) with road-vector paintings; otherwise we treat it as a negative example.
Notice that the sketches (or drawings) of road-vectors are not entirely overlapped with
image road-regions, resulting in some of road-region superpixels being treated as non-
road regions.
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(a) A superpixel image. The elongated green polygons (or blobs) are fragments of a road-vector screenshot.

(b) An analysis of road-vector fragments is performed to obtain their geometric properties.

Figure 2: An intensive image analysis results in two low-level image features. These
figures are best viewed in color.

To execute the superpixel classification, we first representeach of the superpixels
as a feature vector. A feature vector consists of color and texture information. We use a
histogram to represent color values in a superpixel and a texton [12] to represent texture
values. To handle the initial noisy superpixels’ class assignments based on road-vector
screenshots, we learn a classifier, a Gaussian Mixture Model(GMM), to probabilis-
tically assign individual superpixels with class labels. To smooth out the potentially
inconsistent outputs of the GMM, we run pairwise Markov Random Fields (MRF) and
infer the most probable segmentation of the input image using loopy belief propaga-
tion. Figure 3(a) shows a result of image road-region segmentation. Results of the
road-region segmentation define image regions of interest where all of the remaining
tasks for building lane-level highway map have been executed.
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(a) Results of road image region segmentation. The blue regions represent identified road image-regions
and the red regions represent non-road image-regions. Although some non-road image-regions are labeled as
road, for the most part segmentation results correctly depicted road image-regions.

(b) Results of driving direction estimation. The blue linesindicate the estimated driving direction of a grid
cell and the non-drivable regions are depicted by red circles.

Figure 3: Two of the four task-specific image features: road image region segmentation
and driving direction estimation results are shown. Viewedbest in color.

3.2 Driving-Direction Estimation

The goal of our task is to extract boundaries of individual road-lanes in the given image.
This requires tracking boundary pixels of road-lanes that appear in the given image.
Thus knowing the driving direction at any given image location is useful for tracking
road-lanes boundaries.

To approximate the driving direction from a given image, we use line extraction
results that each of the extracted lines partially explain as the contour of roads in a
given image. It is undesirable to approximate the driving direction at a pixel level
because of all the noise that must be handled. Instead we partition the input image into
a number of grid cells. For each grid cell, we identify extracted lines which pass by it
and use them to approximate the driving direction of the gridcell. Suppose there are
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m number of lines identified as passing theith grid cell. We compute the direction of a
grid cell,i, by using the vector sum method,θ̂i = tan−1(y, x), wherex =

∑m

j cos(θj)

andy =
∑m

j sin(θj), whereθj is the orientation of thejth line. The orientation of a
grid cell is mostly homogeneous to its neighboring cells, particularly in road image
regions. To enforce such a constraint, we run an MRF to infer the most probable
driving direction of the input image as a whole. Our method ofapproximating driving
direction is motivated by the method proposed in [4] where the authors extract lines
from laser-scan data and run an MRF to infer the driving direction homogeneous to a
given parking lot image. They use a combination of Canny edgedetection and Hough
transform to extract lines from a laser scan image. We also tried this combination but
found the extracted lines too short to use. Figure 3(b) showsa result of driving-direction
estimation.

3.3 Lane-Marking Detection

Lane-markings are one of the most important photometric cues for extracting road-
lane boundaries. In fact, our goal would be easier met if we had a perfect lane-marking
classification on a given ortho-image.

Lane-markings are a type of road-marking that depicts boundaries of road-lanes.
On an ortho-image, we can, readily with the naked eye, distinguish lane-markings
because they have whitish (or yellowish) colors, relatively higher intensity than their
neighboring background pixels. However, these salient features are not always avail-
able for image processing because the actual values of lane-marking pixels vary based
on image acquisition conditions.

To effectively address the challenge of appearance variation of lane-marking pix-
els’, we formulate the lane-marking detection task as a binary classification problem
of discriminating non lane-marking pixels from true lane-marking pixels. To this end,
we first downloaded 20 highway ortho-images separated from the images for generat-
ing lane-level highway map and sampled 47,640 pixels as a lane-marking classification
data. These consisted of 15,204 lane-marking (positive) pixels and 32,436 non lane-
marking (negative) pixels. We converted some of these sampled pixels into features,
to learn a binary classification model of lane-marking pixels’ photometric variations.
For the feature representation, we look into the contrast ofintensity values between a
lane-marking pixel and its neighboring pixels. In fact, to generate a feature vector of
the pixel, we use the local binary pattern (LBP) [15] and fourdifferent statistics, such
as entropy, smoothness, uniformity, and variance of a target pixel and its neighboring
pixels. Note that this is the only place we use manually labeled data for training a part
of our system.

To find the best one for our lane-marking detection task, we first set aside a por-
tion (about 30%, 14,292) of the labeled pixel data as testingdata and used the rest of
them to train a classifier. We tried six different classification setups and found that the
AdaBoost outperformed all others – AdaBoost with a feature representation without
color information produced 0.98 precision and 0.97 recall rates on average. Figure 4(a)
shows a result of lane-marking detection.
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(a) Lane-marking detection results. Because the outputs ofour lane-marking classification are probabilistic,
the results are shown in a heat-image where the color closestto red represents the highest probability.

(b) Results of overpass detection. A red parallelogram represents the boundary of the detected overpass, and
two (blue and cyan) lines inside the polygon depict two principal axes.

Figure 4: Other two task-specific image features: lane-marking detection and overpass
detection results are shown. Viewed best in color.

3.4 Interesting Road-Structure Detection

To accurately delineate a road-lane’s boundaries, it is necessary to recognize road-
structures such as overpasses and intersections that may indicate complex road geome-
tries. For example, a presence of an overpass suggests the fact that multiple roads pass
each other in the same image region.

The input of the overpass detection algorithm is the road-vector screenshot. As
described earlier, the road-vector screenshot image is analyzed and converted into a set
of road-vector fragments. Each of the road-vector fragments contains the geometric
characteristic of parts of the underlying roads. For each ofthe road-vector fragments,
we extend each of the extremity points in the direction of thefragment and identify
any intersection with other fragments if their intersection angle is greater than a given
threshold (e.g.,π/3). A potential overpass is localized by investigating intersections of
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these extended lines.
To finalize the overpass detection process, it is necessary to identify the boundary

of a localized potential overpass. To this end, we search forany of the closest ex-
tracted lines that intersect with any of the two lines from the overpass localization and
are greater than the same threshold used earlier. Figure 4(b) shows the final result of
overpass detection. The bounding box of a detected overpasslets other sub-tasks of ex-
tracting lane-level highway information know of the existence of an overpass and that
the road geometry around this bounding box has more than one direction. Our method
of detecting an overpass is much simpler than those relying on 3-dimensional data of
road vector databases [16, 17]. In particular, our method require no 3-dimensional
geometry-related computation.

We describe how we obtain four mid-level image features. Aside from the lane-
marking detection in which we used some human-labeled data to train a lane-marking
classifier, we obtain, without human intervention, three other important cues – road-
region segmentation, driving direction estimation, and overpass detection.

In the next section we detail how these four mid-level features are used to generate
road-segment hypotheses and how to link them to build lane-level detailed highway
maps.

4 Road-Lane Hypotheses

The previous steps of extracting image cues about the true road-lanes provide us a
better understanding of road-lanes appearing in the input image. In particular, we
know which image sub-regions are most probably road-regions, which pixels within the
road-regions are likely parts of lane-markings, how the roads are laid out, and where
overpass structures occur. Based on this understanding, weare generating road-lane
hypotheses and linking them, in order to delineate road-lane boundaries.

4.1 Generating Hypotheses about the True Road-Lanes

A road-lane is modeled by a piecewise linear curve that consists of multiple control
points along the centerlines of the road-lane and their properties, such as lateral width
and orientation. Thus, generating a hypothesis about a trueroad-lane would be equiva-
lent to identifying these (control) points’ locations. However, given that the boundary
location of road-lanes are unknown, it is difficult to localize the centerlines of road-
lanes. Instead we investigate pixels of lane-marking detection results (or lane-marking
pixels). No lane-marking pixels along the true centerlinesof road-lanes are available,
but one can interpolate the centerline locations from a set of regularly-spaced, lane-
marking pixels.

A true lane-marking pixel has many neighboring lane-marking pixels regularly-
spaced longitudinally and laterally (or orthogonal to the longitudinal direction). Be-
cause two true lane-markings located at each other’s side can be used to accurately
measure the width of a road-lane at that location, we are looking for lane-marking
pixels that have strong supportive (or neighboring) patterns in longitudinal and lateral
directions of the roads.
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(a) Resulting road-width cues. A dumbbell-like symbol is a road-width cue where the two circles at the ends
of a line indicate lane-marking pixel locations with stronglongitudinal and lateral neighboring lane-markings.

(b) The road-lane hypothesis generation process produces 99 hypotheses about the 10 true road-lanes.

Figure 5: Results of road-lane hypothesis generation process. Viewed best in color.

While searching for lane-marking pixel candidates, we can also utilize our prior
knowledge of the legitimate road-width of a normal highway.Given that we know the
minimum width of a highway lane (i.e., 12 feet) in the U.S.[23] and the ground res-
olution of our test image, we can remove any pairs of lane-marking pixels that have
lateral support (i.e., neighboring lane-marking pixels found at orthogonally to the es-
timated driving direction) shorter than 24 pixels (24× 15cm = 3.75meters) or longer
than any maximum values. However, care must be taken before incorporating such
prior knowledge because road-widths vary – on arterial highway images, some of the
road-lanes may have wider or narrower lateral distances. Weempirically found that 22
to 35 pixels worked best for the variation in road-widths.

From the road-region segmentation results and lane-marking detection results, we
already have a good sense of which image sub-regions are likely to be parts of roads
and which part of estimated road-regions are probably lane-markings. To make the
search of these road-width cues efficient, we begin with superpixels that belong to
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the segmented road-regions. For each superpixel, we investigate whether each of the
lane-marking pixels has a sufficient number of neighboring lane-marking pixels in lon-
gitudinal and lateral directions on the roads. Any lane-markings with more than the
predefined threshold remain in the candidate list for generating road-lane hypotheses.
Figure 5(a) shows the results of a road-width cue search. A road-width hypothesis is
represented by a numeral width value and two lane-marking pixels.

After we find a set of road-width cues, the next step is to generate a set of road-
lane hypotheses. This process is executed in a similar manner to that of the road-width
cue search. For each road-width cue (or road-width hypothesis), we draw two lines,
longitudinally, from the center of the two lane-marking locations and group together
any road-width cues within extending line segments. This forms a road-lane hypoth-
esis. The longitudinal direction corresponds to the driving direction estimated earlier
from extracted lines. This search results in grouping the neighboring road-width cues
around the input road-width hypothesis. Figure 5(b) shows aset of resulting road-lane
hypotheses.

4.2 Linking Road-Lane Hypotheses for Delineating Road Bound-
ary

By searching for road-width cues and linking the identified cues, we generate a set of
road-lane hypotheses. To extract boundary lines of true road-lanes, we need to link
road-lane hypotheses. We formulate the problem of linking hypotheses as a min-cover
problem in which we search for a set of road-lane hypotheses to maximally cover the
estimated road regions with a minimum sum of costs. In particular, we are looking for
a new set of road-lane hypotheses,X = {L1, ..., Lk}, which link the generated road-
lane hypotheses based on the previously obtained local evidences of the unknown true
road-lanes with a minimum sum of linking costs. While linking road-lane hypotheses,
the new set of road-lane hypotheses should maximally cover the estimated road image-
regions.

X∗ = argmin
X

Cost(X)

Cost(X) =
∑

Li∈X

C(Li)

whereC(Li) is the cost of linking any two road-lane hypotheses,Hr andHs. Our
formulation is motivated by two previous studies [5], [27].For our case, we generate
a set of hypotheses about unknown true road-lanes to cover approximated true road
image regions. The previous studies generated hypotheses to delineate object contours
[5] and to cover road regions in a LIDAR intensity image [27].

To find approximate solutions to these cost functions, we devise two linking func-
tions. The first linking function considers a potential connection between any two hy-
potheses purely following geometric constraints. And the second function investigates
any photometric constraints of a potential link.

While implementing the first linking function, we refer to the geometry of actual
highways where the geometric shape of the road is highly correlated with its speed lim-
its. In other words, it is easy to observe a low curvature road-shape on highways due
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Figure 6: The collected image cues and prior information about arterial highways
imposes geometric constraints on finding a potential linking of any two road-lane hy-
potheses.

to its higher speed limits. Another piece of useful knowledge for linking hypotheses
based on geometric constraints is to observe driving direction between two road-lane
hypotheses. It is highly unlikely for any two hypotheses to be linked to each other when
a path of homogeneous driving direction is absent. Figure 6 illustrates an example of
geometry-based hypotheses linking, where a road-lane hypothesis,u, is searching for
a good candidate hypothesis with which to link. Due to the fact that our target roads
are highways, any hypotheses located behind an input hypothesis should be discarded.
We compute one-to-many dot-products between an input hypothesis and all remaining
hypotheses. We do this to filter out any hypotheses located behind the input hypothesis.
In the example shown in Figure 6, the hypothesis,vl, is removed from the candidate
list, v1 andvk, remain in the candidate list for further consideration. For each of the
hypotheses in the candidate list, we compute the value of geometric linking poten-
tial based on three geometric properties: curvature, intersection angle, and Euclidean
distance.

The second linking function investigates whether sufficient image photometric cues
are present (i.e., lane-marking pixels) on a potential pathlinking any two hypotheses.
We assume that an optimal link always exists between two consecutive control points
that maximizes photometric constraints around the link. The second linking function
thus searches for the locally optimal link between two vertices along a potential path
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(a) The obtained photometric image cues provide strong evidence of potential links among the generated
road-lane hypotheses. A tracking of photometric cues amongany potential, geometrically plausible, links is
conducted before actual linkings are established. Red dotsrepresent lane-marking pixels and a blue rectangle
represents a road-lane hypothesis.

(b) The result of photometric cue tracking illustrated in Figure 7(a). The road-lane hypothesis labeled 82 was
successfully, through a high-curvature path, linked to another road-lane hypothesis labeled 62.

Figure 7: These figures illustrate how two linking functionsfind the best potential
links among road-lane hypotheses. Viewed best in color.

13



between two road-lane hypotheses. A connection between allthese locally optimal
links would result in an optimal approximation of a true road-lane. The incremental
examination of consecutive links will be terminated when the next potential move in-
tersects with either another road-lane hypothesis or one ofthe image bounds. While
tracking the locally optimal path, the direction of tracking is initially set to the direction
of the hypothesis, but after the initial step, the directionis adjusted by looking at the
estimated driving direction.

Figure 7(a) illustrates such tracking of road-lane boundary cues. In this example,
the tracking is about to begin at the vertex (v2) of a road-lane hypothesis and search
for a locally optimal link for the next point. Currently, it examines one of the possible
links to a point,p1, within the yellow rectangle where lane-marking pixels on the left
side of the tracking direction are marked with magenta circles and lane-marking pixels
on the right side are marked with blue circles. We use two linesegments to collect road
boundary cues: a longitudinal line,l1 = p1−v2 and a lateral line,l2 = p2−p3. We first
project all lane-marking (magenta and blue) pixels onto these two lines. Let us denote
p(b) as a projected point of a lane-marking pixelp. The projected pointp(b) on linel1,

for example, can be expressed asp(b) = v2+ b(p1− v2), whereb = (P−v2)T (p1−v2)
(p1−v2)T (p1−v2) .

p(b) is projected on the line segmentl1 if it satisfiesb ∈ [0, 1]. Using these projected
points, the second linking function evaluates the quality of a potential link to the next
control point (e.g., a line segment betweenv2 andp1). In general, the optimal link has
a wide spread projection on the longitudinal line and a narrow spread projection on the
lateral line.

Figure 7(b) shows the result of a photometric road-lane boundary cue tracking.
This linking function based on tracking is similar to work that traces road image cues
to extract road-networks from low-resolution aerial images. In particular, Zhou et al.
used for their road cue tracking an extended Kalman filter [26] and Movaghati and
his colleagues utilized an unscented Kalman filter [14]. Theprimary difference is the
ground resolution of testing images. Most of the variationsin object appearances,
imperative to analyzing high-resolution ortho-images, fail to appear in low-resolution
aerial images.

In summary, the linking function based on local geometric constraints searches for
the potential links that maximally satisfy geometric cues.The link function based on
photometric constraints searches for a potential link thatmaximally complies with the
spatial patterns of the detected lane-marking pixels. The optimal link between two
road-lane hypotheses would be one that locally minimizes these two constraint func-
tions. Unlike previous work of the min-cover algorithm applications [5],[27], where
their solutions were explicitly searching for a sequence ofhypotheses, we look for a
set of hypothesis pairs such that their potential, geometrically plausible, links are se-
quentially traced by photometric image cues to cover road image-regions.

5 Experiments

This section details experiments conducted to investigatethe robustness of our ap-
proach to extracting a lane-level highway map and the accuracy of the resulting maps.
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In what follows, we first explain the experimental setup and evaluation methods, then
show experimental results, and finally discuss the findings.

5.1 Experimental Settings

From Google’s map service1, we collected 50 ortho-images that are sampled from the
route between the Squirrel Hill Tunnel to the Pittsburgh International Airport. We also
saved road-vector screenshots of the ortho-images and manually drew boundary lines
of individual road-lanes in each of the collected images forthe ground truth.

Although the number of our testing images might seem insufficient, the images con-
tain a sufficient level of difficulty, which, had we increasedthe number, we would have
been challenged to overcome. For example, on 18 out of 50 images 23 ramps with high
curvatures appear. When two lanes merge, one of the tracked lanes must, to produce
a correct road geometry, disappear. From 27 images, we observed 39 lane-mergings.
Variations in road-surface materials were observed from 33out of 50 images.2

5.2 Experimental Results

In this section we discuss the findings from testing our algorithms. To the best of
our knowledge, no prior work or image data was available on extracting road-lane
boundaries that we could have used for comparison. Hence, wehad to come up with
reasonable ways of evaluating our results. We evaluate resulting road-lane boundary
delineation in two-ways: accuracy of matching between output and ground truth pix-
els and counting the number of correctly recovered road-lanes in the final outputs.
Matching pixel to pixel aims at investigating the performance of our approach at the
micro-level; counting the number of road-lanes aims at revealing the accuracy of the
resulting geometries.

To evaluate our results at a pixel-to-pixel level, we utilized the method from eval-
uating performance of object boundary detection [12]. Similar to [12], we regard the
extraction of road-lane boundaries as a classification problem of identifying boundary
pixels and of applying the precision-recall metrics using manually labeled road-lane
boundaries as ground truth. Precision is manifested in the fraction of outputs that are
true positives; recall is the fraction of correct outputs over true positives. Each of the
output pixels is evaluated by whether it detects true positive pixels. Once we obtain
such correspondence between output pixels and ground truthpixels, computing the
precision and recall is straightforward.

While resolving this correspondence problem, we must carefully consider a local-
ization error that accounts for the (Euclidean) distance between an output pixel and
a ground truth pixel. Indeed, localization errors are present even in the ground truth
images. For resolving the correspondence between output pixels and ground truth pix-
els, we utilized the Berkeley Segmentation Engine’s3 performance evaluation scripts.

1http://maps.google.com
2The complexity analysis of and the complete experimental results of these 50 test images are available

from [18].
3The BSE and related information are available athttp://www.cs.berkeley.edu/ ˜ fowlkes/

BSE/
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These scripts solve, using Goldberg’s Cost Scaling Algorithm (CSA) package, the cor-
respondence problem as a minimum cost bipartite assignmentproblem. We also used,
as a baseline method, BSE’s probabilistic boundary detection outputs. BSE was devel-
oped to detect generic object boundaries, not road-lane boundaries. In addition, since
training BSE with our image data is impossible, it may fall short of being a fair com-
parison. But since anyone can think of such probabilistic boundary outputs as a starting
point of delineating road-lane boundary lines, we comparedit with our output. Table
1 presents an averaged performance difference between the two outputs over fifty test
images.

F-measure Precision Recall

Ours 0.82 0.77 0.89
BSE’s 0.44 0.38 0.54

Table 1: An averaged precision-recall measure of micro-level performance between
the two outputs.

In achieving our goal, the performance evaluation by a pixel-to-pixel matching for
road-lane boundary extraction outputs might be insufficient. The pixel-to-pixel mea-
sure counted a match when an output boundary pixel was located to a true boundary
pixel within a predefined distance threshold (e.g., 10 pixels). Therefore a collection
of boundary pixels would not necessarily correspond to a road-lane boundary. To be
useful, these detected boundary pixels must be interpretedas parts of a road-lane. In
other words, the desirable output for our purpose, is one that treats a road-lane as a
polygon, bounded by a closed path and image boundaries, where we can estimate lat-
eral road widths, curvature, and other interesting geometric properties along the cen-
terline of a road-lane polygon. To measure such macro-levelperformance, we first
visually inspected our outputs and the input image to resolve the correspondence be-
tween the resulting road-lanes and true road-lanes appearing on the input image. We
then counted the number of correct and incorrect output road-lanes and missed true
road-lanes. If the area of overlap between a road-lane output and a true road-lane was
roughly greater than 80%, then we counted it a correct match.This counting resulted
in a two-contingency table for the performance of each test image. Table 2 shows
a macro-level performance that is obtained by merging individual contingency tables
over fifty test images. An averaged performance was then computed by using this ta-
ble, precision =0.792 = 337

337+88 , and recall =0.771 = 337
337+100 , meaning that 79% of

the resulting road-lanes were correct and 77% of true road-lanes appearing on the test
images were correctly recovered.

Examples of resulting maps are shown in Figure 8. Figure 8(a)shows some of
the most accurate results with all of the true road-lanes appearing on test images re-
covered correctly. While processing these images, our approach successfully tracked
high-curvature ramps, correctly connected road-lane boundaries around overpasses, ef-
fectively handled variations in road-surface materials, and partial image distortions.

Figure 8(b) shows some reasonable results where most of the true road-lanes were
recovered correctly. However, not all the true road-lanes have been recovered and some
of the geometry of the resulting road-lanes is incorrect. Our approach was unable to
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(a) Highly accurate results of highway map generation.

(b) Near-perfect results of highway map generation.

(c) Near-failure case of highway map generation.

Figure 8: Some of resulting maps. There are two sub-figures ineach row. The figure
on the left is a test image and the figure on the right is our output, where each road-lane
output is depicted in a different color and the background isdepicted in blue. These
figures are best viewed in color.
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Ground Truth
Road-lane Not road-lane

Output
Road-lane 337 88

Not road-lane 100 ×

Table 2: A contingency table is used to measure the macro-level performance of our
highway map generation methods.

correctly produce road-lane maps from the testing images inFigure 8(b) because these
images contained more challenging image characteristics.For example, the overpass
in the first row was successfully detected. But, the underestimated boundary of the de-
tected overpass resulted in inaccurate linkages of road-lanes at the edge of the overpass.
For the examples in the second row, there was a false positivearound the ramp. This
happened because our method identified the road-shoulder image-regions as a road-
lane. In the testing image in the third row, the shadow of the overpass covers most of
road-lanes located to the left of the overpass. Even with a successful detection of the
overpass, due to a relatively high curvature, our approach failed to correctly identify
the direction of road-lanes.

Figure 8(c) shows near-failure cases where some of the true road-lanes are not re-
covered and where some of the true road-lanes are incorrect.The test image shown
in the first row posed the most significant challenge in our test image collection. The
road-lanes appearing on the left of the image are significantly distorted and a cascade
of overpasses makes it even harder to analyze. Although our approach recovered some
parts of the true road-lanes, most of them were inaccurate and the linkages among them
were incorrectly determined. In the second example, our approach failed to link road-
lane hypotheses due to the presence of the bridge’s suspension span and was unable
to complete the linkage of road-lanes near the overpass at the bridge-entering region.
Testing images shown in the third showed complicated road geometries. Image distor-
tions appearing on overpasses made it even harder to track road-boundary image cues.
Our lane-marking detector failed to detect road-boundary cues from the road surface of
the overpass in the last example and was unable to correctly delineate road-lane bound-
aries, resulting in incorrect linkages of road-lane hypotheses around the overpass.

6 Conclusion

This paper presented a new approach to extracting lane-level detailed highway maps
from a given ortho-image. We chose high-resolution, inter-city highway ortho-images
as target images because pixels along road-lane boundariesmust be visually and com-
putationally accessible. To effectively address photometric variations in interesting
object appearances, we developed a hierarchical approach to three tasks: to collecting
road boundary image cues via bootstrapping, to generating hypotheses about the un-
known true road-lanes, and to linking hypotheses with respect to the photometric and
geometric constraints imposed by the collected image cues and prior information. To
minimize human intervention for analyzing given ortho-images, we analyzed screen-
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shots of road vectors to obtain the relevant spatial and photometric patterns of road
image-regions. We then refined the obtained patterns to generate hypotheses about the
true road-lanes. A road-lane hypothesis, since it explainsonly a part of the true road-
lane, was then linked to other hypotheses to completely delineate boundaries of the true
road-lanes. Finally, some of the refined image cues about theunderlying road network
were used to guide a hypothesis-linking process.

We tested our algorithms with 50 challenging arterial highway images. The results
were evaluated according to two aspects: pixel-to-pixel matching and counting correct
and incorrect outputs. Our approach demonstrated promising results in that, overall,
79% of the resulting road-lanes were correct and 77% of true road-lanes appearing on
the test images were correctly recovered.

Although we believe our test images pose sufficient challenges for the task of pro-
ducing lane-level detailed highway maps, for future work, we would like to test our
algorithms with more challenging aerial images.
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