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Abstract

Highway driving can be more safe and reliable when maps cotdaae-level de-
tailed cartographic information. Such maps are a resouncdrfving-assistance sys-
tems, enabling them to provide human drivers with precise-lay-lane advice.

This paper proposes new aerial image analysis algorithatsftbm highway ortho-
images, produce lane-level detailed maps. We analyzersitets of road vectors to
obtain the relevant spatial and photometric patterns af ioege-regions. We then
refine the obtained patterns to generate hypotheses aleutithroad-lanes. A road-
lane hypothesis, since it explains only a part of the truelaae, is then linked to
other hypotheses to completely delineate boundaries ofrtigeroad-lanes. Finally,
some of the refined image cues about the underlying road nieave used to guide a
linking process of road-lane hypotheses.

We tested the accuracy and robustness of our algorithmgwgthresolution, inter-
city highway ortho-images. Experimental results show psenin producing lane-
level detailed highway maps from ortho-image analysis — 8%e true road-lane
boundary pixels were successfully detected and 337 out bt road-lanes were
correctly recovered.
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1 Introduction

Maps are important for human navigation. Given a route, derguidance system
consults maps to provide human drivers with turn-by-tumections to their destina-
tions. Such guidance helps us safely drive through famdlied even entirely foreign
terrains. Route-guidance systems work particularly wedlduse those systems rely on
exceptional human perception capabilities. For examplenia route’s direction is
given, a human driver steers his vehicle along a particolad+ane while taking note
of geometric shapes of the roads, the posted rules, andaoadzoundaries.

However, such route guidance can be very confusing whentadadack of infor-
mation, a guidance system does not detail the actual roadefeies. For example, a
person driving in the far left lane of a four-lane highwaylwibt be able to exit a ramp
on the right immediately after being advised to do so. If theagraphic database
serving the guidance system has lane-level detailed irdtiom, the route-guidance
will surely be more reliable.

This paper proposes new aerial image analysis algorithatsftbm highway ortho-
images, produce a map of road-lanes that appear on a givewdngortho-image. A
road-lane (or a lane), in this paper, refers to the part obad tailt for controlling and
guiding a single line of vehicles. The output of this proceds cartographic informa-
tion about road-lanes in a set of pixel coordinates of r@amk$’ centerlines and lateral
road-widths. Such lane-level detailed highway maps widffitr rules and accurate
coordinates can be prepared in advance to facilitate thdirguof highway driving.

To extract such lane-level detailed information from a giaerial image, pix-
els along road-lane boundaries must be visually and cortipngdly accessible. To
meet this requirement, we choose ortho-images with 15+oetgr ground resolution
in which lane boundaries can be observed by the naked eyeangatentially be
processed computationally. Because the normal longiaigiavement markings on
highways are 4-6 inches wide (10.16-15.24 centimeterg) {Rdre is at least one pixel
for laterally delineating a part of lane-markings. Highwappearing in our target im-
ages are inter-city (or arterial) highways built for faiting transportation between
cities [22].

Since our target images are depicted in high-resolutiarh suage objects as lane-
markings and road image-regions contain significant vianatin their appearances,
such that an object appears differently based on the condifian image acquisition
process and road surface materials. For example, even urea giterial highway im-
age, road surfaces may be covered with different matesatd) as asphalt or concrete.
Such variation in road surfaces cause an inconsistencgiadior and texture of lane-
markings and road-regions. Another example of appearaagation is occlusions
caused by man-made structures such as buildings, oveirganaffic signs, as well as
overpasses and their shadows. These structures make parésie partially or com-
pletely unobservable. The geometry of arterial highwagse ahakes it difficult to de-
lineate a lane’s boundary. Ramps with circular paths hagke burvatures that require
a boundary-following process that tracks non-linear pafRead-lane junctions near
an overpass require extra care due to the complex traffictdires. Road-boundary
tracking must also be carefully done at a bifurcation poirtere one splits into two,
because one of the multiple tracking lanes might disappear.



To effectively tackle these challenges, we develop a hibieal approach to three
tasks: gathering road boundary image cues, generatingaoacypotheses, and link-
ing the hypotheses. To this end, we first scrutinize inpugiesato harvest two types
of image cues about the underlying roads: road image-regind the geometry of un-
derlying road-lanes. Knowledge of road image-regions aeful in specifying where
to look for road-lane boundaries. To obtain the informatidroad image-regions,
we formulate this image segmentation problem as a binasgifieation. Another im-
portant image cue we collect is the geometry of the undeglygads. To obtain this
information, we extract lines and analyze the screenshag@of the road-vector to es-
timate the legitimate driving direction and to identifyeeant road structures, such as
overpasses. These collected image cues about road sunhgeametry will provide
strong evidences of the true road-lanes. In particulasaloeies facilitate a road-lane
hypothesis generation and guide a linking of these hype#iesbuild an accurate map
of road-lanes. For the problem of linking road-lane hypetse we formulate it as a
min-cover problem [25]. We look for a set of hypotheses alfoeiunknown true road-
lanes to maximally cover the estimated road image-regidatis a/minimum sum of
costs.

In what follows, we briefly review the related work. We detdie methods of
harvesting low-level features, the methods of convertivesé low-level features into
meaningful mid-level features, and the methods of gemegatbad-lane hypotheses
and of linking them, so as to generate a map of road-lanesivea gnage.

2 Redated Work

Guiding humans to their destinations, a map is an essentiaponent for reliable and
safe navigation. In the GIS community aerial image analyasplayed a crucial role
in maintaining existing cartographic databases [1, 2,.3D&pite being potentially out
of date, the geometric relations among spatial objects, (@igrsection between road
segments) appearing on aerial images are invariant oveiggpleriod of time, even af-
ter natural disasters [20]. To delineate the underlyingl mogtwork’s geometry, struc-
tural top-views of interesting areas on aerial images pi®bietter vantage points than
those of perspective sensor measurements (e.g., visisaorseamd range finders). This
provides an alternative way of maintaining existing caragdpic databases without vir-
tually going out to the regions of interest. The clear diéfere between these work
and ours is the ground resolution. Most of these work andlyae-resolution aerial
images in which the ground resolution was greater than onerrfie 2, 3, 7, 8, 11].

We detect interesting road structures, such as intersecéiod overpasses, to iden-
tify potentially complex road geometry. For example, knogvithe boundary (or a
location) of an overpass is useful in correctly understag@i hierarchical spatial or-
der among road-lanes passing thru the overpass. To reasstei3sdimensional road
structures, researchers have directly accessed a roaut vecttilized 3D data such as
air-borne point clouds [13, 16, 17].



3 Harvesting Road-Boundary I mage Cuesvia Bootstr ap-
ping

(b) A screenshot of the road-vector of the input image.

Figure 1: Two input images for our lane-level map building shown.

This section explains how to analyze input images to extoaetlevel image fea-
tures and how to refine such features to produce task-speudige features that can
be directly used to execute other sub-tasks. Our algorittakes two images as the
input: highway ortho-image and the input image’s road-oestreenshot. Figure 1(a)
shows an example of a highway ortho-image and Figure 1(byslam example of a
road-vector screenshot image.

A road-vector screenshot is a screencapture image thattdepiith distinctive
colors, the underlying road-network of a highway scene. Waeoad-vector image
is overlaid with an ortho-image, road-regions in the oritmage are labeled with real-
world cartographic information. One might think that thadevector screenshotimage
would trivialize the task of identifying boundaries of rekhes. Such is not the case.
First, the sketches of road-vectors are just parts of imageaning they do not possess



any information about road-vectors, which are directlyessible in a computational
form. Second, the road-vector sketches are not entirelylapyged with images of
road-regions, resulting in cases where some road-regamain uncovered. From
a pattern recognition perspective, this is a very confusiggal in that some image
regions of true road-lanes are marked as “non-road” andwécga. Thus, when using
a screenshot of a road-vector, one should take extra care.

We first parse two input images, to extract low-level featusich as lines and
superpixels. As a preprocessing step, we apply a histogcaalieation to normal-
ize intensity, a bilateral filter [21] to preserve naturaged, and then compute image
gradients. For line extraction, we first run Canny edge detean image gradients,
link those pixels based on their gradient orientations, faradline using eigendecom-
position [9, 19]. To obtain a superpixel image, we apply tlaershed segmentation
algorithm to the gradients of the image to obtain a coarsmeatation. We then reit-
erate this process until the dimensions of individual spipets are large enough [10].
We terminate this iteration when the number of superpixelsss than or equal to the
predefined proportion (e.g., 15%) of the initial number ajraents produced by the
watershed algorithm. Figure 2(a) shows an example of a piygtimage.

To extract the useful geometric information of the undewyroads from a road-
vector screenshot, we first extract image regions of roatbveketches, i.e., yellow
or yellowish paintings in Figure 1(b), and produce a binamage. This image con-
tains only those fragments of road-vectors without any syapbols. We then further
analyze each of the road-vector fragments, to obtain thengetric properties, such
as extremity and bifurcation points. Figure 2(b) shows alted such analysis. Each
(green) polygon represents road-vector fragments whetrénticates a ridge point,
“+” with a triangle is an extremity point, and “+” with a cirelis a bifurcation point.

Since these low-level features contain only basic inforomeéibout road-lanes ap-
pearing on the input image, we need to refine these featuadngthem more rele-
vant and useful in executing our task of producing road-faaps. These new features
include a segmentation of a road image-region, an estimafisome legitimate driv-
ing directions of roads appearing on the input image, a faagking detection, and
locations of interesting road-structures, such as intéises and overpasses.

3.1 Road-Image Region Segmentation

Having knowledge of road image regions would help one knowrelo look for road-
lane boundaries. Acquiring knowledge of road image-regiisrcarried out through
an image segmentation task that divides an input image waoimage sub-regions:
road- and non-road-region. We tackle this image segmentatioblem as a binary
classification problem that takes superpixels as input aeijas each superpixel with
one of two class labels: road or non-road. We utilize one efiiputs, a road-vector
screenshot image, to prepare, without human interverttiaiming data. In particular,
we treat a superpixel as a positive example if its area isfggntly overlapped (e.g.,
more than 90%) with road-vector paintings; otherwise wattiteas a negative example.
Notice that the sketches (or drawings) of road-vectors atentirely overlapped with
image road-regions, resulting in some of road-region quipels being treated as non-
road regions.



(b) An analysis of road-vector fragments is performed t@ivbtheir geometric properties.

Figure 2: An intensive image analysis results in two loweldmage features. These
figures are best viewed in color.

To execute the superpixel classification, we first represaah of the superpixels
as a feature vector. A feature vector consists of color axtdtte information. We use a
histogram to represent color values in a superpixel andtarig¢t2] to represent texture
values. To handle the initial noisy superpixels’ classgrgsients based on road-vector
screenshots, we learn a classifier, a Gaussian Mixture M@M), to probabilis-
tically assign individual superpixels with class labels simooth out the potentially
inconsistent outputs of the GMM, we run pairwise Markov Ramd-ields (MRF) and
infer the most probable segmentation of the input imagegukiopy belief propaga-
tion. Figure 3(a) shows a result of image road-region segmtien. Results of the
road-region segmentation define image regions of interbstevall of the remaining
tasks for building lane-level highway map have been execute



(a) Results of road image region segmentation. The blu®megiepresent identified road image-regions
and the red regions represent non-road image-regionsodgthsome non-road image-regions are labeled as
road, for the most part segmentation results correctlyadegiroad image-regions.

(b) Results of driving direction estimation. The blue linedicate the estimated driving direction of a grid
cell and the non-drivable regions are depicted by red arcle

Figure 3: Two of the four task-specific image features: roaage region segmentation
and driving direction estimation results are shown. Viewesdt in color.

3.2 Driving-Direction Estimation

The goal of our task is to extract boundaries of individual¥danes in the given image.
This requires tracking boundary pixels of road-lanes tipgtear in the given image.
Thus knowing the driving direction at any given image looatis useful for tracking
road-lanes boundaries.

To approximate the driving direction from a given image, vee line extraction
results that each of the extracted lines partially explainhee contour of roads in a
given image. It is undesirable to approximate the drivingdion at a pixel level
because of all the noise that must be handled. Instead w&grathe input image into
a number of grid cells. For each grid cell, we identify extegiclines which pass by it
and use them to approximate the driving direction of the gelll Suppose there are



m number of lines identified as passing titie grid cell. We compute the direction of a
grid cell, 7, by using the vector sum methdlj,= tan~'(y, z), wherex = Z;” cos(6;)
andy = 37" sin(6;), whered; is the orientation of thgth line. The orientation of a
grid cell is mostly homogeneous to its neighboring cellgtipalarly in road image
regions. To enforce such a constraint, we run an MRF to irifermhost probable
driving direction of the input image as a whole. Our methodroximating driving
direction is motivated by the method proposed in [4] wherdhthors extract lines
from laser-scan data and run an MRF to infer the driving dioechomogeneous to a
given parking lot image. They use a combination of Canny efigection and Hough
transform to extract lines from a laser scan image. We aied this combination but
found the extracted lines too shortto use. Figure 3(b) staowsult of driving-direction
estimation.

3.3 Lane-Marking Detection

Lane-markings are one of the most important photometris ¢ae extracting road-
lane boundaries. In fact, our goal would be easier met if vebshperfect lane-marking
classification on a given ortho-image.

Lane-markings are a type of road-marking that depicts bartiesl of road-lanes.
On an ortho-image, we can, readily with the naked eye, djsigh lane-markings
because they have whitish (or yellowish) colors, relagiidfher intensity than their
neighboring background pixels. However, these saliertifea are not always avail-
able for image processing because the actual values ohtenking pixels vary based
on image acquisition conditions.

To effectively address the challenge of appearance vaniati lane-marking pix-
els’, we formulate the lane-marking detection task as arinkssification problem
of discriminating non lane-marking pixels from true lanesking pixels. To this end,
we first downloaded 20 highway ortho-images separated fhenimhages for generat-
ing lane-level highway map and sampled 47,640 pixels aseaaarking classification
data. These consisted of 15,204 lane-marking (positivalpiand 32,436 non lane-
marking (negative) pixels. We converted some of these saanpikels into features,
to learn a binary classification model of lane-marking pkehotometric variations.
For the feature representation, we look into the contrasitefsity values between a
lane-marking pixel and its neighboring pixels. In fact, engrate a feature vector of
the pixel, we use the local binary pattern (LBP) [15] and fdiffierent statistics, such
as entropy, smoothness, uniformity, and variance of a tauigel and its neighboring
pixels. Note that this is the only place we use manually ktbelata for training a part
of our system.

To find the best one for our lane-marking detection task, vet §iet aside a por-
tion (about 30%, 14,292) of the labeled pixel data as testatg and used the rest of
them to train a classifier. We tried six different classificatsetups and found that the
AdaBoost outperformed all others — AdaBoost with a feateesentation without
color information produced 0.98 precision and 0.97 reeca#is on average. Figure 4(a)
shows a result of lane-marking detection.



(a) Lane-marking detection results. Because the outputsioine-marking classification are probabilistic,
the results are shown in a heat-image where the color clasest represents the highest probability.

(b) Results of overpass detection. A red parallelogramessts the boundary of the detected overpass, and
two (blue and cyan) lines inside the polygon depict two ppakaxes.

Figure 4: Other two task-specific image features: lane-ingrketection and overpass
detection results are shown. Viewed best in color.

3.4 Interesting Road-Structure Detection

To accurately delineate a road-lane’s boundaries, it i®ssary to recognize road-
structures such as overpasses and intersections that tiegtencomplex road geome-
tries. For example, a presence of an overpass suggeststliegfamultiple roads pass
each other in the same image region.

The input of the overpass detection algorithm is the roaderescreenshot. As
described earlier, the road-vector screenshot image Igzathand converted into a set
of road-vector fragments. Each of the road-vector fragmenntains the geometric
characteristic of parts of the underlying roads. For eadh®foad-vector fragments,
we extend each of the extremity points in the direction offlagment and identify
any intersection with other fragments if their intersectamgle is greater than a given
threshold (e.g#/3). A potential overpass is localized by investigating isgations of



these extended lines.

To finalize the overpass detection process, it is necessadgntify the boundary
of a localized potential overpass. To this end, we searctafgrof the closest ex-
tracted lines that intersect with any of the two lines from tiverpass localization and
are greater than the same threshold used earlier. Figuyehdivs the final result of
overpass detection. The bounding box of a detected ovelgiaggher sub-tasks of ex-
tracting lane-level highway information know of the existe of an overpass and that
the road geometry around this bounding box has more thaniceaidn. Our method
of detecting an overpass is much simpler than those relying-dimensional data of
road vector databases [16, 17]. In particular, our methgdire no 3-dimensional
geometry-related computation.

We describe how we obtain four mid-level image features.dég$rom the lane-
marking detection in which we used some human-labeled datainh a lane-marking
classifier, we obtain, without human intervention, thregeotimportant cues — road-
region segmentation, driving direction estimation, andrpass detection.

In the next section we detail how these four mid-level feadlare used to generate
road-segment hypotheses and how to link them to build lewetidetailed highway
maps.

4 Road-Lane Hypotheses

The previous steps of extracting image cues about the trag-lemes provide us a
better understanding of road-lanes appearing in the inpagée. In particular, we

know which image sub-regions are most probably road-regighich pixels within the

road-regions are likely parts of lane-markings, how thedsoare laid out, and where
overpass structures occur. Based on this understandingrevgenerating road-lane
hypotheses and linking them, in order to delineate road-taundaries.

4.1 Generating Hypotheses about the True Road-L anes

A road-lane is modeled by a piecewise linear curve that stmsif multiple control
points along the centerlines of the road-lane and theirgnt@s, such as lateral width
and orientation. Thus, generating a hypothesis about adad:lane would be equiva-
lent to identifying these (control) points’ locations. Hever, given that the boundary
location of road-lanes are unknown, it is difficult to loealithe centerlines of road-
lanes. Instead we investigate pixels of lane-marking dietecesults (or lane-marking
pixels). No lane-marking pixels along the true centerlinesoad-lanes are available,
but one can interpolate the centerline locations from a setgularly-spaced, lane-
marking pixels.

A true lane-marking pixel has many neighboring lane-maykixels regularly-
spaced longitudinally and laterally (or orthogonal to tbeditudinal direction). Be-
cause two true lane-markings located at each other’s sidébeaused to accurately
measure the width of a road-lane at that location, we areithgofor lane-marking
pixels that have strong supportive (or neighboring) patén longitudinal and lateral
directions of the roads.



(a) Resulting road-width cues. A dumbbell-like symbol imad-width cue where the two circles at the ends
of aline indicate lane-marking pixel locations with strdaggitudinal and lateral neighboring lane-markings.

(b) The road-lane hypothesis generation process prod@ckgmtheses about the 10 true road-lanes.

Figure 5: Results of road-lane hypothesis generation ggoddewed best in color.

While searching for lane-marking pixel candidates, we dap atilize our prior
knowledge of the legitimate road-width of a normal highw@ven that we know the
minimum width of a highway lane (i.e., 12 feet) in the U.S][28d the ground res-
olution of our test image, we can remove any pairs of lanekmgrpixels that have
lateral support (i.e., neighboring lane-marking pixelsrfd at orthogonally to the es-
timated driving direction) shorter than 24 pixels (2415cm = 3.75meters) or longer
than any maximum values. However, care must be taken befoorgorating such
prior knowledge because road-widths vary — on arterial\Wwaghimages, some of the
road-lanes may have wider or narrower lateral distancesarically found that 22
to 35 pixels worked best for the variation in road-widths.

From the road-region segmentation results and lane-nmadetection results, we
already have a good sense of which image sub-regions afg likbe parts of roads
and which part of estimated road-regions are probably taagkings. To make the
search of these road-width cues efficient, we begin with ixels that belong to
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the segmented road-regions. For each superpixel, we igaestvhether each of the
lane-marking pixels has a sufficient number of neighboramgtmarking pixels in lon-
gitudinal and lateral directions on the roads. Any lanekimys with more than the
predefined threshold remain in the candidate list for gaimgraoad-lane hypotheses.
Figure 5(a) shows the results of a road-width cue search.al-midth hypothesis is
represented by a numeral width value and two lane-markixgsi

After we find a set of road-width cues, the next step is to geeen set of road-
lane hypotheses. This process is executed in a similar mémtteat of the road-width
cue search. For each road-width cue (or road-width hyphege draw two lines,
longitudinally, from the center of the two lane-markingdtions and group together
any road-width cues within extending line segments. Thimfa road-lane hypoth-
esis. The longitudinal direction corresponds to the dgwuiirection estimated earlier
from extracted lines. This search results in grouping thighimring road-width cues
around the input road-width hypothesis. Figure 5(b) shoastaf resulting road-lane
hypotheses.

4.2 Linking Road-Lane Hypotheses for Delineating Road Bound-
ary

By searching for road-width cues and linking the identifieds we generate a set of
road-lane hypotheses. To extract boundary lines of trud-la@es, we need to link
road-lane hypotheses. We formulate the problem of linkiygptheses as a min-cover
problem in which we search for a set of road-lane hypothesesaiximally cover the
estimated road regions with a minimum sum of costs. In paleticwe are looking for
a new set of road-lane hypothesés= {L, ..., Li}, which link the generated road-
lane hypotheses based on the previously obtained locateeéd of the unknown true
road-lanes with a minimum sum of linking costs. While linfiroad-lane hypotheses,
the new set of road-lane hypotheses should maximally chesestimated road image-
regions.

X* = argn;}nC’ost(X)
Cost(X) = Y C(L)
L,eX

whereC(L;) is the cost of linking any two road-lane hypothes&s,and H;. Our
formulation is motivated by two previous studies [5], [2Fpr our case, we generate
a set of hypotheses about unknown true road-lanes to copeoxipated true road
image regions. The previous studies generated hypothedetineate object contours
[5] and to cover road regions in a LIDAR intensity image [27].

To find approximate solutions to these cost functions, wesgdwo linking func-
tions. The first linking function considers a potential ceation between any two hy-
potheses purely following geometric constraints. And #mwosd function investigates
any photometric constraints of a potential link.

While implementing the first linking function, we refer toetlyeometry of actual
highways where the geometric shape of the road is highletated with its speed lim-
its. In other words, it is easy to observe a low curvature tstaape on highways due
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Figure 6: The collected image cues and prior informationualasterial highways
imposes geometric constraints on finding a potential liglohany two road-lane hy-
potheses.

to its higher speed limits. Another piece of useful knowlkedar linking hypotheses
based on geometric constraints is to observe driving dinedtetween two road-lane
hypotheses. Itis highly unlikely for any two hypothesesgdibked to each other when
a path of homogeneous driving direction is absent. Figufkigtiates an example of
geometry-based hypotheses linking, where a road-lanethgpis,u, is searching for
a good candidate hypothesis with which to link. Due to the fiaat our target roads
are highways, any hypotheses located behind an input hgpistehould be discarded.
We compute one-to-many dot-products between an input hesat and all remaining
hypotheses. We do this to filter out any hypotheses locateatiéhe input hypothesis.
In the example shown in Figure 6, the hypothesis,is removed from the candidate
list, vi andvy, remain in the candidate list for further considerationr €ach of the
hypotheses in the candidate list, we compute the value ahga@ linking poten-
tial based on three geometric properties: curvature,setdion angle, and Euclidean
distance.

The second linking function investigates whether sufficierage photometric cues
are present (i.e., lane-marking pixels) on a potential paking any two hypotheses.
We assume that an optimal link always exists between twoemutive control points
that maximizes photometric constraints around the linke $&cond linking function
thus searches for the locally optimal link between two eegialong a potential path

12



(a) The obtained photometric image cues provide strongeeei of potential links among the generated
road-lane hypotheses. A tracking of photometric cues anaoggotential, geometrically plausible, links is
conducted before actual linkings are established. Redrdptesent lane-marking pixels and a blue rectangle
represents a road-lane hypothesis.

(b) The result of photometric cue tracking illustrated igdiie 7(a). The road-lane hypothesis labeled 82 was
successfully, through a high-curvature path, linked tatleeroroad-lane hypothesis labeled 62.

Figure 7: These figures illustrate how two linking functidirel the best potential
links among road-lane hypotheses. Viewed best in color.

13



between two road-lane hypotheses. A connection betweehesk locally optimal
links would result in an optimal approximation of a true rdade. The incremental
examination of consecutive links will be terminated whea tiext potential move in-
tersects with either another road-lane hypothesis or orikeoimage bounds. While
tracking the locally optimal path, the direction of tradiis initially set to the direction
of the hypothesis, but after the initial step, the direci®adjusted by looking at the
estimated driving direction.

Figure 7(a) illustrates such tracking of road-lane boupdaes. In this example,
the tracking is about to begin at the vertex) of a road-lane hypothesis and search
for a locally optimal link for the next point. Currently, ikamines one of the possible
links to a point,p1, within the yellow rectangle where lane-marking pixels be keft
side of the tracking direction are marked with magentaegeind lane-marking pixels
on the right side are marked with blue circles. We use twodegments to collect road
boundary cues: alongitudinal ling,= pl1—v2 and a lateral linely = p2—p3. We first
project all lane-marking (magenta and blue) pixels ontséitevo lines. Let us denote
p(b) as a projected point of a lane-marking pixelThe projected point(b) on linel;,

for example, can be expressediék) = v2 + b(pl — v2), whereb = M%.
p(b) is projected on the line segmeitif it satisfiesb € [0, 1]. Using these projected
points, the second linking function evaluates the qualits potential link to the next
control point (e.g., a line segment betwa@nandp1). In general, the optimal link has
a wide spread projection on the longitudinal line and a nvaspread projection on the
lateral line.

Figure 7(b) shows the result of a photometric road-lane Hanncue tracking.
This linking function based on tracking is similar to worlathraces road image cues
to extract road-networks from low-resolution aerial imsgn particular, Zhou et al.
used for their road cue tracking an extended Kalman filtef f281 Movaghati and
his colleagues utilized an unscented Kalman filter [14]. phimary difference is the
ground resolution of testing images. Most of the variation®bject appearances,
imperative to analyzing high-resolution ortho-imaged,ttaappear in low-resolution
aerial images.

In summary, the linking function based on local geometriestmints searches for
the potential links that maximally satisfy geometric cu&he link function based on
photometric constraints searches for a potential link thatimally complies with the
spatial patterns of the detected lane-marking pixels. Tftenal link between two
road-lane hypotheses would be one that locally minimizesahwo constraint func-
tions. Unlike previous work of the min-cover algorithm aipptions [5],[27], where
their solutions were explicitly searching for a sequenclygfotheses, we look for a
set of hypothesis pairs such that their potential, geow®dlyi plausible, links are se-
quentially traced by photometric image cues to cover roayjgaregions.

5 Experiments

This section details experiments conducted to investitfaerobustness of our ap-
proach to extracting a lane-level highway map and the acgwéthe resulting maps.
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In what follows, we first explain the experimental setup anal@ation methods, then
show experimental results, and finally discuss the findings.

5.1 Experimental Settings

From Google’s map serviéewe collected 50 ortho-images that are sampled from the
route between the Squirrel Hill Tunnel to the Pittsburgketnational Airport. We also
saved road-vector screenshots of the ortho-images andaiyadvew boundary lines

of individual road-lanes in each of the collected imagesHerground truth.

Although the number of our testing images might seem insafficthe images con-
tain a sufficient level of difficulty, which, had we increagbd number, we would have
been challenged to overcome. For example, on 18 out of 50em28 ramps with high
curvatures appear. When two lanes merge, one of the traaked imust, to produce
a correct road geometry, disappear. From 27 images, wewdis80 lane-mergings.
Variations in road-surface materials were observed fromi@f 50 images.

5.2 Experimental Results

In this section we discuss the findings from testing our allgors. To the best of
our knowledge, no prior work or image data was available dmaeking road-lane
boundaries that we could have used for comparison. Henceéadéo come up with
reasonable ways of evaluating our results. We evaluatdtiresuoad-lane boundary
delineation in two-ways: accuracy of matching between wusmd ground truth pix-
els and counting the number of correctly recovered roaddan the final outputs.
Matching pixel to pixel aims at investigating the perforroarf our approach at the
micro-level; counting the number of road-lanes aims atakng the accuracy of the
resulting geometries.

To evaluate our results at a pixel-to-pixel level, we ugitizhe method from eval-
uating performance of object boundary detection [12]. &intb [12], we regard the
extraction of road-lane boundaries as a classificationlprolof identifying boundary
pixels and of applying the precision-recall metrics usingnonally labeled road-lane
boundaries as ground truth. Precision is manifested inrdibn of outputs that are
true positives; recall is the fraction of correct outputgiotrue positives. Each of the
output pixels is evaluated by whether it detects true pasipixels. Once we obtain
such correspondence between output pixels and ground piixgls, computing the
precision and recall is straightforward.

While resolving this correspondence problem, we must odyetonsider a local-
ization error that accounts for the (Euclidean) distandsvben an output pixel and
a ground truth pixel. Indeed, localization errors are pmesgen in the ground truth
images. For resolving the correspondence between outgls@Eind ground truth pix-
els, we utilized the Berkeley Segmentation Engifg@rformance evaluation scripts.

Ihttp://maps.google.com

2The complexity analysis of and the complete experimentallte of these 50 test images are available
from [18].

3The BSE and related information are availablétap://www.cs.berkeley.edu/ ~fowlkes/
BSE/
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These scripts solve, using Goldberg’s Cost Scaling Algari{CSA) package, the cor-
respondence problem as a minimum cost bipartite assignpnebtem. We also used,
as a baseline method, BSE's probabilistic boundary detectiitputs. BSE was devel-
oped to detect generic object boundaries, not road-lanedaries. In addition, since
training BSE with our image data is impossible, it may falbghof being a fair com-
parison. But since anyone can think of such probabilistioiatary outputs as a starting
point of delineating road-lane boundary lines, we compdradth our output. Table
1 presents an averaged performance difference betweewdhautputs over fifty test
images.

|F—measure Precision Recall

Ours 0.82 0.77 0.89
BSE’s 0.44 0.38 0.54

Table 1: An averaged precision-recall measure of micretlperformance between
the two outputs.

In achieving our goal, the performance evaluation by a piagdixel matching for
road-lane boundary extraction outputs might be insufficifihe pixel-to-pixel mea-
sure counted a match when an output boundary pixel was khéate true boundary
pixel within a predefined distance threshold (e.g., 10 gixelTherefore a collection
of boundary pixels would not necessarily correspond to d-taae boundary. To be
useful, these detected boundary pixels must be interpestgxhrts of a road-lane. In
other words, the desirable output for our purpose, is onetthats a road-lane as a
polygon, bounded by a closed path and image boundariesewlecan estimate lat-
eral road widths, curvature, and other interesting gedmptoperties along the cen-
terline of a road-lane polygon. To measure such macro-lesgbrmance, we first
visually inspected our outputs and the input image to restite correspondence be-
tween the resulting road-lanes and true road-lanes amgeani the input image. We
then counted the number of correct and incorrect output-taaels and missed true
road-lanes. If the area of overlap between a road-lane batplia true road-lane was
roughly greater than 80%, then we counted it a correct mathis counting resulted
in a two-contingency table for the performance of each testge. Table 2 shows
a macro-level performance that is obtained by merging idda contingency tables
over fifty test images. An averaged performance was then atedgby using this ta-
ble, precision .792 = % and recall =0.771 = %7100 meaning that 79% of
the resulting road-lanes were correct and 77% of true raadd appearing on the test
images were correctly recovered.

Examples of resulting maps are shown in Figure 8. Figure §ifajvs some of
the most accurate results with all of the true road-lanesapg on test images re-
covered correctly. While processing these images, ouroagprsuccessfully tracked
high-curvature ramps, correctly connected road-lane Baries around overpasses, ef-
fectively handled variations in road-surface materiatgl partial image distortions.

Figure 8(b) shows some reasonable results where most authedad-lanes were
recovered correctly. However, not all the true road-larse®ibeen recovered and some
of the geometry of the resulting road-lanes is incorrectr @pproach was unable to
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(a) Highly accurate results of highway map generation.

=

(c) Near-failure case of highway map generation.

Figure 8: Some of resulting maps. There are two sub-figureadm row. The figure

on the left is a testimage and the figure on the right is ourw@utphere each road-lane
output is depicted in a different color and the backgroundeigicted in blue. These
figures are best viewed in color.



Ground Truth
Road-lane Not road-lane
Road-lane 337 88
Not road-lane 100 X

Output

Table 2: A contingency table is used to measure the macel@rformance of our
highway map generation methods.

correctly produce road-lane maps from the testing imag€éggiare 8(b) because these
images contained more challenging image characteridtios example, the overpass
in the first row was successfully detected. But, the undienaséd boundary of the de-
tected overpass resulted in inaccurate linkages of raaekslat the edge of the overpass.
For the examples in the second row, there was a false poaitiuend the ramp. This
happened because our method identified the road-shouldgehmegions as a road-
lane. In the testing image in the third row, the shadow of therjpass covers most of
road-lanes located to the left of the overpass. Even withcaessful detection of the
overpass, due to a relatively high curvature, our approaitéd to correctly identify
the direction of road-lanes.

Figure 8(c) shows near-failure cases where some of the dagklanes are not re-
covered and where some of the true road-lanes are incoiféet.test image shown
in the first row posed the most significant challenge in ouriteage collection. The
road-lanes appearing on the left of the image are significdigtorted and a cascade
of overpasses makes it even harder to analyze. Althoughppuoach recovered some
parts of the true road-lanes, most of them were inaccuratériinkages among them
were incorrectly determined. In the second example, ourcgmi failed to link road-
lane hypotheses due to the presence of the bridge’s suspessin and was unable
to complete the linkage of road-lanes near the overpas®dirttige-entering region.
Testing images shown in the third showed complicated roadthgtries. Image distor-
tions appearing on overpasses made it even harder to tradkdmundary image cues.
Our lane-marking detector failed to detect road-boundaegdrom the road surface of
the overpass in the last example and was unable to corregihedte road-lane bound-
aries, resulting in incorrect linkages of road-lane hyps#s around the overpass.

6 Conclusion

This paper presented a new approach to extracting lanédetaled highway maps
from a given ortho-image. We chose high-resolution, iigr-highway ortho-images
as target images because pixels along road-lane boundargde visually and com-
putationally accessible. To effectively address photoimetriations in interesting
object appearances, we developed a hierarchical approdktee tasks: to collecting
road boundary image cues via bootstrapping, to generatipgtheses about the un-
known true road-lanes, and to linking hypotheses with retsjpethe photometric and
geometric constraints imposed by the collected image co@peor information. To
minimize human intervention for analyzing given ortho-ges, we analyzed screen-
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shots of road vectors to obtain the relevant spatial andgphetric patterns of road
image-regions. We then refined the obtained patterns targenieypotheses about the
true road-lanes. A road-lane hypothesis, since it explaiig a part of the true road-
lane, was then linked to other hypotheses to completelpeale boundaries of the true
road-lanes. Finally, some of the refined image cues aboutrttierlying road network
were used to guide a hypothesis-linking process.

We tested our algorithms with 50 challenging arterial higiwnages. The results
were evaluated according to two aspects: pixel-to-pixethiag and counting correct
and incorrect outputs. Our approach demonstrated progiisisults in that, overall,
79% of the resulting road-lanes were correct and 77% of wad+tanes appearing on
the test images were correctly recovered.

Although we believe our test images pose sufficient chadierigr the task of pro-
ducing lane-level detailed highway maps, for future worle, would like to test our
algorithms with more challenging aerial images.
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