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Abstract— Rivers with heavy vegetation are hard to map
from the air. Here we consider the task of mapping their course
and the vegetation along the shores with the specific intent of
determining river width and canopy height. A complication in
such riverine environments is that only intermittent GPS may
be available depending on the thickness of the surrounding
canopy. We present a multimodal perception system to be used
for the active exploration and mapping of a river from a small
rotorcraft flying a few meters above the water. We describe
three key components that use computer vision, laser scanning,
and inertial sensing to follow the river without the use of a
prior map, estimate motion of the rotorcraft, ensure collision-
free operation, and create a three dimensional representation
of the riverine environment. While the ability to fly simplifies
the navigation problem, it also introduces an additional set
of constraints in terms of size, weight and power. Hence, our
solutions are cognizant of the need to perform multi-kilometer
missions with a small payload. We present experimental results
along a 2km loop of river using a surrogate system.

I. INTRODUCTION

We are developing a minimal sensor suite to be used by a
low-flying aircraft to autonomously explore rivers, mapping
their width and the surrounding canopy. In some cases, the
canopy can be so thick and high covering a river that it blocks
GPS signals and the problem becomes one of simultaneous
localization and mapping in an unstructured fully three-
dimensional environment. Exploration from a low-flying
vehicle is attractive because it extends the sensing horizon
and removes complications of navigating in shallow water
and aquatic vegetation. However, a flying solution also adds
constraints on the size, weight and power available for per-
ception. This is a significant constraint given that the multi-
kilometer missions will force all the sensing/computation to
be conducted onboard. It is our estimate that given the size
of rotorcraft that could reasonably fly in environments with
thick canopy, it will be necessary to keep all the sensing and
computation components to less than one kilogram.

These constraints on payload and the inability to rely
on GPS have significant implications for our design. First,
we will need to depend on perception to produce a high
resolution 6DOF pose estimate that is much more stable
than can be produced by simply integrating inertial sensors.
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Fig. 1: A typical riverine environment that we expect to map. A
small rotorcraft is able to fly above the shallow, fast-moving water
and yet remain below the thick canopy to navigate and map the
river. The foliage along the banks is dense enough to block or
seriously degrade GPS signals.

Second, any active imaging, such as from laser scanning, will
be required to be very lightweight and low power and hence
will be short range. Third, river-following without a prior
map will require a perception system that goes significantly
further than could be sensed through laser ranging.

In this paper we describe three key modules for perception.
The first is a short range, laser-ranging based system tasked
with obstacle detection and the creation of a metric, three-
dimensional map. Here we use a continuously rotating,
lightweight line laser scanner to produce a three-dimensional
scanning pattern that enables collision avoidance and the
creation of a three-dimensional representation of the riverine
environment. The second is a long range color vision system
that uses a forward pointing color camera to automatically
find the river even in the face of significant variation in
the appearance of the river. We solve this problem with a
self-supervised method that continually learns to segment
images based only on an estimate of the horizon (from
inertial sensing) and some simple heuristics that describe
riverine environments. The third is a graph-based system
for state estimation of the vehicle’s motion in 6DOF. Using
consecutive and global constraints from visual odometry,
inertial sensing, and sparse GPS, we demonstrate its ability
to globally estimate the vehicle’s state while maintaining an
accuracy that allows for precise local mapping.

The remainder of this paper is organized as follows.
Section II reviews related work. Section III details the short-



range perception strategy. Section IV presents our method
for visually identifying the river. Section V describes our
solution for state estimation using visual odometry, IMU,
and sparse GPS. Section VI discusses the the approach to
registering sensor data into global river maps. Section VII
presents simulated and experimental results. Finally, sec-
tion VIII concludes and discusses future work.

II. RELATED WORK

Previous work in autonomous river mapping has utilized
small boats [1] or higher altitude, fixed wing UAVs [2].
While these platforms could be more practical in simple
riverine environments, we aim to develop a platform that can
perform in the most difficult situations such as rapidly flow-
ing water, obstructed waterways, or dense forest canopies.
Preliminary work in river mapping on small rotorcraft using
passive vision and ultrasonic ranging (for elevation esti-
mation) has been been reported over short distances [3].
Our work is similarly motivated but we explictly consider
substantially longer missions in which it is important to not
only map the extent of the river but also to map the vegetation
along the shore line and avoid obstacles that might appear
in the middle of the river.

The three main sections of our work are river detection
and mapping using passive vision, position estimation for a
lightweight flying vehicle in areas of sparse GPS availability,
and 3D mapping.

In the first area, our system uses a visual river seg-
mentation algorithm to detect the extent of the river for
mapping and guidance. Most previous work on detecting
water in images has been focused on detecting water hazards
like puddles using color, texture and stereo disparity cues
for autonomous ground vehicles [4], [5]. Our problem is
complicated by ripples on the water surface and the lack of
stereo imagery captured from a sufficiently wide baseline.
Our solution automatically learns models of river and shore
appearance for segmentation by exploiting the structure of
riverine environments in a scheme that shares some similar-
ities to self-supervised road detection [6].

In the second area of position estimation, there has been a
growing interest recently in SLAM for unstructured outdoor
environments [7], [8]. Popular approaches employ an EKF to
combine heterogeneous sensor inputs to estimate the vehicle
state [9], [10]. In order to avoid issues related to linearization
in EKF-based state estimation [11], we take an approach
most similar to [12], [13], [14] that treats the the problem
as a nonlinear optimization represented by a graph. The
approach successively linearizes around the current state, and
is therefore able to deal with highly nonlinear sensor models.

In the third area of 3D mapping, our work is related to [15]
where points are globally registered from a spinning laser
scanner while the vehicle is moving. However, on an aerial
vehicle we cannot use wheel encoders and instead use visual
odometry as a primary input to the state estimation.

III. SHORT RANGE PERCEPTION

The rotorcraft must be able to operate in the space
between the water’s surface and the tree canopy. In this

cluttered space, a reliable short range perception system is
necessary for obstacle avoidance and mapping. To measure
3D information about the environment, we use an off-axis
rotating 2D laser line scanner. As seen in Fig. 2, the Hokuyo
UTM-30LX is mounted with the scan plane tilted at 45◦ with
respect to a sweep motor axis.

Fig. 2: Off-axis spinning scanner

Other laser mounting and actuation configurations such
as nodding, spinning on-axis, or roundly swinging [15], did
not provide the same scan density or sensing field of view.
Our configuration has the advantage of equal detection of
horizontal and vertical obstacles with a full 360◦ field of
view. Fig. 3 shows the hatched scan pattern sensed by the
spinning scanner. This scan pattern detects thin horizontal
and vertical obstacles equally well as opposed to a nodding
laser, which has difficulty detecting thin horizontal obsta-
cles or an vertically-mounted on-axis spinning laser, which
has difficulty detecting thin vertical obstacles. In a natural
river environment, thin horizontal and vertical tree branches
should be expected and can be reliably sensed with our
configuration.

A. Registration and Calibration

To register ranged data points Pr from the laser into
a non-spinning base frame Pb, we apply a series of 4x4
homogeneous transformations to each ranged point.

Pb = TwTmTsPr (1)

Tw: Time dependent single axis rotation to account for the
rotation of the laser module around the sweep motor axis.
This angle is calculated by assuming a constant sweep speed
and interpolating the angle given by the motor encoder at the
beginning and end of the scan.

Tm: Full 6 DOF transformation, which remains constant
and represents the mounting configuration of the scanner.
This transform takes into account the tilt of the laser scan
plane, the translation between sweep axis of rotation and
the laser receiver, and any mechanical misalignment. We
currently hand measure this transformation but are working
on a nonlinear optimization similar to [16] or [17].

Ts: Time dependent single axis rotation, which expresses
the position of the rotating mirror within the laser scanner.



(a) Isometric View (b) Side View

Fig. 3: Laser scan pattern when the scan plane is tilted at 45◦ to
the sweep motor axis. The horizontal magenta line segment in 3b
shows the widest unseen visual angle at the hatched diagonals.

B. Obstacle Detection Confidence

We developed a model of the laser’s obstacle detection per-
formance to provide a confidence measure for the detection
of variously sized obstacles at different vehicle velocities.
Obstacles are modeled as thin, floating objects to model the
worst case senario such as a hanging vine or thin branch.
The magenta line in Fig. 3b could represent a horizontal
obstacle. Obstacles are defined only by their length, which
is a valid model for the small tree branches that will pose
significant danger to the rotorcraft above the river. We make
two important assumptions: 1) if a scan line falls on the
object, the object will be detected and 2) the rotation of the
hatched scan pattern varies randomly from sweep to sweep.
This random rotation variation could come from external
perturbations in the vehicle’s yaw or could be manually
introduced by adding an angular offset to the motor for each
sweep. The unseen angle between scans after one sweep is:

θu =
√

2
2πλw

λs
(2)

where λw is the sweep rate and λs is the scan rate. The
factor of

√
2 expresses the greatest unseen angle, which is at

the diagonal of the square in the hatched scan pattern. The
visual angle θo of an obstacle with length l at a distance r
is expressed as:

θo = 2arctan
(

l
2r

)
(3)

The probability of detection after one sweep is simply the
ratio of the obstacle’s visual angle to the unseen angle, with
a maximum probability of one. Here we consider a static
obstacle directly in the path of the vehicle moving at velocity
v from an initial starting distance D0. The distance r and thus
the visual angle will be reduced for each new sweep. The
probability of an observation after k sweeps is:

Pk(obs) = 1−
(

1−min
(

θo(r)
θu

, 1
))k

(4)

r = D0−
(i−1)v

λw
(5)

where the object’s visual angle θo depends on r.

For a desired observation confidence, safe maximum ve-
locities are found which satisfy the following equation with a
fixed C-Space expansion LC, reaction time ta, and maximum
vehicle acceleration a:

D0−LC ≥
(

k
λw

+ ta

)
v+

v2

a
(6)

The inequality states that the rotorcraft must observe the
obstacle, react, and come to a stop in a distance equal
to or less than the maximum laser range minus the C-
Space expansion. Safe velocities are solved numerically
using realistic obstacle sizes and presented in section VII.

IV. LONG RANGE PERCEPTION

The rotorcraft needs to be able to determine the course
of the river and follow it. Also, river width measurements
are needed to build the river map. The onboard laser sensor
has an effective range limit of 30 meters which is sufficient
for obstacle avoidance but not for guidance or mapping.
Our solution is to use images from an onboard camera.
Images are segmented to find the extent of the river from
the current viewpoint of the vehicle. Using knowledge of
the vehicle’s orientation and height above the river provided
by the vehicle’s IMU and altimeter, the extent of the river
in the image can be projected into a local coordinate frame.
This forms a local map of the river for guiding the vehicle
along the river’s course. Many such local maps can be fused
as the vehicle moves to build a global map of the river shape.

The main challenge is building a suitable appearance
model for the water. Within a single image, the appearance
of water can vary greatly due to reflections of the foliage
and other structures on the bank, reflections of the sky, and
dark regions that fall in the shadows. In addition, ripples
on the water’s surface create variations in texture. This
variability in river appearance in an image makes it hard
to determine the extent of the river. Also there are large
changes in water appearance with variation in weather and
illumination conditions. All these factors make it difficult to
learn a single classifier to detect river regions that performs
well in a variety of settings and which can generalize to
previously unseen environments.

We build upon our earlier river segmentation algo-
rithm [18]. The algorithm utilizes knowledge about the
position of the horizon in each image and assumes that
anything appearing above the horizon line is not part of
the river. The image is divided into small square patches
and a feature descriptor with color and texture information
is calculated for each patch. Two generative appearance
models are learned online from the input image, one for
patches above the horizon (which are all part of the non-
river region) and another for patches below the horizon (the
majority of which we expect to be part of the river). These
two appearance models are used to calculate a probability
of each patch being part of the river. Patches with a high
probability of belonging to the river and patches above the
horizon line are used to train a two class (river/non-river)
linear SVM which is then used to find the extent of the



(a) Training Examples (b) Output without Adaptive Model (c) Detector Output

Fig. 4: Visual River Detection: (a) Input image with automatically selected training examples marked. The green regions above the horizon
line are used as non-river example patches. The red regions are automatically selected as candidate river patches by the appearance modeler.
The blue regions below the horizon are novel regions that did not fit well with the historical model of river appearance. The other highlighted
patches below the horizon are places where reflections were detected. (b) The output of the river detection algorithm without the adaptive
appearance model or reflection modelling. This version of the algorithm was completely memoryless and so it misclassified the pier and
boats along the shore (circled). (c) The output of the river detector with the extent of the river marked in red. With the adaptive modelling,
the algorithm is able to detect novel objects and classifies the pier and boats correctly.

river in the entire image. The original algorithm did not
explicitly model reflections and was completely memoryless
which made it difficult to correctly classify novel objects
appearing below the horizon. We addressed these issues by
detecting reflections and using a history of river appearance
from previous frames to build an adaptive appearance model.
These improvements are described in detail below.

A. Detecting Reflections

Reflections are a useful cue for determining the extent
of the river. If an object and its reflection can be found it
is fairly safe to assume that the reflection was from the
water’s surface. We look for reflections of salient points
(Harris Corners [19]) that occur above the horizon line. The
water surface is modelled as a ground plane and the vehicle
pose estimate from the state filter provides the orientation
and distance to the plane. With this, it is easy to use the
geometry of reflections to find where the reflection of a
point in 3D space should appear. Since we do not have
complete depth information, we instead localize each salient
point’s reflection to a small region below the horizon where
(if present) it should be found. We neglect effects caused
by change in effective viewpoint between the object and
its reflection and search this region for patches that are
similar to a vertically mirrored version of the patch centered
around the point being considered. The similarity measure
used is normalized cross correlation. Pairs of patches that
get similarity scores above a threshold are marked as object-
reflection pairs. Patches surrounding the reflection are added
to the SVM training data as examples of river patches.

B. Adaptive Appearance Modelling

In [18], new appearance models for the river and non-
river regions were built from scratch for every new frame,
the algorithm was unable to handle novel objects like piers
or boats that appeared below the horizon because of the
assumption that the above horizon part of the image is repre-
sentative of the entire non-river region. To solve this problem
we maintain two appearance models for the river, one built

as before from just the current frame, Pcur and another built
from patches sampled from the river region segmented out
in previously images Pold . Patches are sampled selectively
from previous frames to build Pold , with patches from older
images being less likely to be used than patches from more
recently seen images. The probability of a patch from the kth

frame before the current frame being sampled for Pold is λ k

where λ < 1 is a parameter that sets the rate of decay. We
define a novelty value η(X) for each patch whose value is
given by

η(X) = log
Pcur (X)

Pold(X)
(7)

η(X) is a measure of how well a patch fits into the
model of water appearance built over recent frames. A high
value of η(X) for a patch below the horizon in the current
image means the patch is unlikely to be part of the river
given the water’s appearance over the last few frames. We
threshold η(X) to select novel patches below the horizon line
that are then used along with the above horizon patches as
negative training examples in the SVM classifier. Figure 4a
shows some of the novel patches below the horizon that the
algorithm found.

V. VEHICLE STATE ESTIMATION

An estimate of the vehicle’s pose is required for flight con-
trol of the rotorcraft as well as mapping of the environment.
In many applications, this estimate heavily depends on GPS
measurements. However, in river mapping applications, GPS
may not be available or unreliable for large stretches due to
occlusion by the canopy. In order to deal with intermittent
GPS signals, additional means of localization have to be
exploited. Our approach relies on a filter architecture that
combines visual odometry, inertial measurements, and sparse
GPS to provide a combined state estimate that minimizes
drift.

We use the approach to visual odometry presented in [20].
This approach makes use of the stereo setup by triangulating
3D points based on matches in one stereo pair. The relative



motion is determined by iteratively adjusting the translation
and rotation of the camera in order to minimize the repro-
jection error of these 3D points in the consecutive image
pair. A framing Kalman Filter with a constant acceleration
model smooths the estimated motion and provides an error
covariance for each pose.

In order to fuse inertial measurements, visual odometry
and intermittent GPS readings, we employ a graph-based
optimization approach comparable to [12], [21], [13] that
estimates a set of vehicle states [s1, ..,sn], for which a set of
measurements [x1, ..,xm] obtained with the onboard sensors
was most likely to occur. In this framework, nodes represent
the state sk of the vehicle at different points in time tk.
Sensor readings xi induce constraints on these states, which
are represented as edges that connect two state nodes in
the graph. We make the assumption that the measurement
xi can be modeled as xi = hi(ŝki , ŝli)+νi , where hi(ŝki , ŝli) is
generally nonlinear function of two true states ŝkiand ŝli with
ki, li ∈ [1, ..,n] and νi is a zero-mean Gaussian distributed
random vector with covariance matrix Ci. With C−1

i = QT
i Qi,

the maximum likelihood estimation of the set of vehicle
states is the one, which minimizes the following nonlinear
cost function:

[s1, ..,sn] = argmin
s

m

∑
i=1

∥∥Qi
(
xi−hi(ski ,sli)

)∥∥ (8)

Visual odometry and integrated gyroscope measurements
provide relative pose measurements, which result in con-
straints on consecutive nodes in the graph. GPS and the
accelerometer as inclinometer impose global constraints on
the state, which are represented by edges to a fictitious zero
state at the origin of the global coordinate frame. The overall
state S of the system is determined by collecting the state of
each node and the cost E associated with this state is a vector
containing the terms of all edges. We minimize the cost
iteratively using the Levenberg-Marquardt algorithm [22].
With the Jacobian JE = δE/δS, the state update ∆S is found
by solving the augmented normal equation:(

JT
E JE +λ I

)
∆S =−JT

E S (9)

The sparse interconnection of the state nodes in the graph
directly corresponds to a sparsity pattern in JE , that we
exploit by using an implementation of the LM algorithm
optimized for sparse systems [23]. Furthermore, the opti-
mization is only performed over a sliding window since the
effect of constraints between distant nodes generally decays
quickly along the graph.

VI. MAPPING

The previous sections provide an overview of how our
robot will perceive and navigate the river. The next stage is
to take the sensor data and produce metric maps of riverine
environments. Our design will produce two types of maps,
a 2D map of the river’s shape and a detailed 3D point cloud
of vegetation and canopy clearance.

(a) (b)

Fig. 5: Local 2D River Mapping: (a) Image with the detected extent
of the river (thresholded at Priver = 0.5) overlaid in red. (b) The
same detected extent of the river projected into a top down view.
Blue regions are part of the river and red regions are the shore. The
surrounding light green area is unobserved in this image as it lies
outside the viewing frustum.

Fig. 6: Demonstrative example of 2D river maps our system can
generate. Left: The three input images with the contour of the
river highlighted. Right: The contours are projected from image
into world frame, then imported and displayed on a satellite image.

A. 2D Map

Our system builds a 2D map of the river by registering
the outputs of the visual river detection algorithm into a
global frame using vehicle pose estimates from the state
filter. The visual river detection algorithm outputs an estimate
of the probability of each pixel in an image being part of
the river or the shore. Since the river surface is assumed
to lie on the ground plane, the probabilistic labeling from
the vehicle’s viewpoint can be projected into a top down
view using knowledge of the vehicle orientation and height
provided by the state filter. Each of these top down views
is a local, vehicle centered map of a small section of the
river (Fig 5b). These local maps are registered globally with
position information from the state filter and fused into
a global map of the river using occupancy grid mapping.
Figure 6 shows a demonstrative example of the sort of map
our mapping technique can generate. In satellite imagery,
parts of the river are hidden under the canopy, but by
mapping with a low flying camera we can see all of the
river. Figure 11a shows a larger map built by our algorithm.

B. 3D Map

To generate a 3D map of the river environment we register
laser scans from the spinning scanner into the world frame



Fig. 7: Data Collection System

using the previous discussed state estimation framework.
The approach requires us to calibrate the stereo camera pair
with the spinning laser scanner and synchronize the data
streams coming from both. The calibration between laser and
camera is determined using the Laser-Camera Calibration
Toolbox [24]. To time synchronize camera images, laser
range data, and laser angular position, a microcontroller
measures a rotary encoder attached to the spinning laser
scanner and calculates the temporal offset between laser
scans (marked by a 40 Hz pulse from the Hokuyo) and a
15 Hz camera shutter synchronization pulse.

VII. RESULTS

A. Short Range Perception

Fig. 8 plots safe rotorcraft velocities versus obstacle length
from 0.1 m to 1 m for three different maximum laser ranges.
Obstacle detection confidence is 95%, C-Space expansion
is 0.5 m, reaction time is 0.1 s, maximum acceleration is
5m/s2, scan rate is 40 Hz and sweep rate is 1 Hz. Maximum
velocities increase in discrete steps since we require that a
full sweep must be completed before an obstacle can be
detected.
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Fig. 8: Worst case analysis of maximum safe velocity for varying
obstacle lengths. Maximum velocities increase in discrete steps
since we require that a full sweep must be completed before an
obstacle can be detected.

B. Long Range Perception

We tested the river detection algorithm using four datasets
captured on two different rivers. Each dataset contains be-
tween 120 to 150 images taken from a boat moving along
the river along with ground truth segmentation of the river
region. These datasets were used in [18] to evaluate the
earlier memoryless version of the algorithm. The perfor-
mance of both versions of the algorithm are reported in
Table I (error rates for the earlier memoryless and current
adaptive versions are under the ‘old’ and ‘new’ columns
respectively). The performance metric used for evaluation
is the percentage of pixels misclassified by the algorithm
compared to ground truth. The algorithm performs better
with the reflection detector and the adaptive model of river
appearance.

TABLE I: River Detector Performance: Mean Error Rates

Dataset Old New
Allegheny Day 2.75% 2.68%
Allegheny Dusk 4.15% 3.03%
Allegheny Fall 2.73% 2.05%
Youghiogheny 3.22% 3.15%

C. Vehicle State Estimation

Fig. 9 depicts the reconstructed path for various sensors
overlaid onto an aerial map of the area. For ground truth, we
acquired position information with a high accuracy L1/L2
GPS post-processed with RTKLIB [25], which is shown in
green. Ground truth is not available when passing under the
steel bridges since the GPS signal is lost. The sequence spans
about 1.9 km and roughly 10,000 video frames.

Fig. 9a shows the results of the visual odometry for stereo
image pairs taken at 15 Hz. The stereo camera is a Point
Grey Bumblebee2 with an image resolution of 1024 x 768,
12 cm baseline, and 97◦ HFOV. For this sequence, the path
sensed by visual odometry is smooth and locally accurate.
However as errors accumulate, it diverges from the reference
path quite significantly. The path in Fig. 9b was estimated by
fusing visual odometry and inertial measurements recorded
at 100 Hz. The IMU is a MicroStrain 3DM-GX3-35 with
integrated L1 GPS. Gyroscope outputs constrain relative
rotations, while the accelerometer served as an inclinometer
to determine the orientation in a global coordinate frame.
Incorporating additional sensor information improves the
results, but errors still accumulate as the sensors provide
mostly relative motion information. In Fig. 9c, position
information from the cheap, lightweight, integrated L1 GPS
receiver was incorporated into the estimation at a rate of 0.2
Hz. For most parts of the sequence, the resulting estimation
lines up well with the reference path. Furthermore, the path is
locally smooth, thus providing a suitable basis for laser point
cloud registration. The motion estimated by visual odometry
suffers from a scaling issue, which is also observed by [26].
We believe the underestimation of motion comes from a
small stereo baseline and a lack of nearby feature points,
which will be addressed in future work.



(a) (b) (c)

Fig. 9: Estimated path for different sensor suites, overlaid onto an aerial map and ground truth obtained with a highly accurate GPS
system. Fig. 9a depicts the estimated path, if visual odometry is used exclusively. Fig. 9b displays the results, if inertial data is incorporated
the estimation. In Fig. 9c intermittent position readings of a consumer-grade GPS were used in addition. In Fig. 9a and 9b, the starting
positions were picked manually, while for Fig. 9c no information in addition to the sensor inputs was provided.

Fig. 10: Example Image and Point Cloud Reconstruction. On the left is an image from the camera. On the right is the reconstructed point
cloud built using the pose estimation and overlaid with an aerial image and elevation data.

D. Mapping

Fig. 10 shows examples of the 3D reconstruction built
by the laser scanner as the vehicle moves through the envi-
ronment. Each laser scan is globally registered and placed
into a world map by using the filtered state estimate. Since
the laser scans occur at a higher frequency than the state
estimates, an intermediate state is found by interpolating
between neighboring state estimates. The filtered state is
locally smooth and accurate enough to build clean 3D
reconstructions. The terrain mesh seen in the reconstruction
is built from Elevation data and Orthoimagery provided by
USGS and the Seamless Data Warehouse [27].

The final desired output of our exploration run is a 3D map
describing the structure and a 2D map giving an estimate

of the bank. Fig. 11b shows the map at the end of a
2km run moving up and down a channel with our sensor
payload. The map shows that even though GPS data is
only integrated sparsely at 0.2 Hz, it is still possible to
create a globally registered map of the environment. The
individual river classification results are integrated into a
map in Fig. 11a. River classification images are calculated
at 2Hz and then filtered using an evidence grid into a
global representation. The current reliable maximum range
for integrating the classification results into the map is about
30 meters. Therefore in some regions, the bank was not
visible to the camera.



(a) Full 2D river map from river
detection algorithm

(b) Overhead view of accumulated
3D laser points

Fig. 11: Maps showing a 2km river traverse (a) River map built
from multiple camera images fed into the river detector and fused
into an occupancy grid (b) Overhead view of 3D laser point cloud
reconstruction globally registered using graph-based state estimator
and overlaid on an aerial imagery

VIII. CONCLUSIONS AND FUTURE WORK

We have described the lightweight perception and state
estimation systems required to navigate and map a river from
a low-flying rotorcraft. We developed an obstacle detection
model for our off-axis spinning laser scanner and calculated
maximum safe velocities for the rotorcraft. We demonstrated
our self-supervised river classification system with improve-
ments for recognizing novel objects. We discussed our graph-
based global state estimation and we built a global 2D river
map and 3D vegetation map for a 2km river loop.

Our future work will be moving the sensor suite onto our
rotorcraft and feeding perception and state information back
to a motion planner to realize autonomous exploration and
mapping. We are also working to improve scaling issues
in visual odometry and incorporate scan matching from the
laser scan as an additional input to the state estimator. Finally,
satellite imagery or the 3D location of previously identified
river segments could provide prior knowledge for the river
detection algorithm.
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