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Abstract

Registering a surgical tool to an a priori model of the environment is an important first step

in computer-aided robotic surgery. Registration of the surgical tool to a flexible environment

such as an organ is difficult due to organ shifting and deformation. Palpating an organ reveals

stiffness information that can serve as anatomic fiducials and facilitate the registration. In this

work, locally stiff features such as arteries and tumors are used to preregister the tool to the

organ model. Following that, we use a Kalman filtering framework to register the surgical tool

to the surface of the organ. The tissue is palpated with regulated forces and a palpation depth

dependent stiffness model is used to capture the interaction between the tool and the tissue.

We believe this is the first presentation of a method to preregister and register a surgical tool

to a flexible environment using only mechanical palpation. The algorithm is experimentally

evaluated using a 3-DOF Cartesian slave robot that interacts with a phantom tissue model.

The effectiveness of the preregistration step and the registration algorithm are validated and

the results demonstrate that the proposed method improves registration accuracy and the pre-

registration step leads to faster convergence.
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1 INTRODUCTION

Minimally invasive surgery (MIS) has the potential to reduce patient trauma and complications,

while at the same time lowering costs and hospital stays. The reason for these benefits stems from

the fact that MIS is typically performed through small incisions, as opposed to a large incision

common in open surgery. While it has the aforementioned benefits, MIS is still limited by the

narrow field of view, small workspace and reduced sensory information. The physician can hardly

see the internal anatomy, let alone feel it. This makes it difficult for the physician to assess the

current situation of a procedure, let alone correlate preoperative models, like CT scans, with the

current intraoperative scene.

Integration of robotic surgery with computer-aided surgery (CAS) can assist the surgeon in

overcoming some of these shortcomings of MIS. New mechanisms, such as surgical snake robots [19,

4], can increase the accessible workspace from a single incision or even a natural orifice [7]. CAS

can further assist the physician in execution of the surgical task by displaying the functional and

geometric information, obtained preoperatively, over the surgeon’s field of view, or on a three-

dimensional display, or even super-imposed over live data collected during the procedure.

The success of the CAS is contingent upon accurate registration of the surgical tool to the coor-

dinate frame of the 3D preoperative model of the anatomy. When the anatomy is rigid, registration

is relatively simple and a number of techniques have been developed to do the same [3, 2, 10, 1].

However, when dealing with tissues or soft organs, the anatomy’s shape might change during the

procedure due to gravitational forces or organ swelling and might complicate the task of registra-

tion. An inaccurate registration can degrade surgical execution accuracy. Already, prior work has

been developed to overcome some of these challenges using geometry and imaging based tech-

niques [20, 15]. Such methods perform poorly when obfuscated with blood or other body fluids

and also respond adversely to change in lighting. In addition vision-based methods are not effec-

tive in finding critical features that might be hidden beneath layers of tissue. Ultrasound imaging

and mechanical palpation can reveal such hidden features, by detecting change in local stiffness.

While there has been some work on using ultrasound imaging to register rigid bodies, not much

work has been done to register soft bodies.

Instead of registering the preoperative model to the visible anatomy using intraoperative imag-

ing and sensing, this paper describes a novel registration technique using mechanical palpation.

While there are approaches in literature to perform mechanical palpation to find tissue stiffness [17,

13, 23, 5, 24], we are interested in using the stiffness properties to perform registration. This work

leverages the fact that mechanical palpation can reveal stiff features that are hidden beneath the

tissue layers. Thus, using this information and a stiffness model for the tool-tissue interactions, the

robot can be registered to the coordinate frame of the a priori model of the organ.

This work builds upon [16], where simultaneous registration and compliance estimation is

1
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done using a filtering approach while assuming that the tool-tissue interactions are approximated

by a linear spring-based stiffness model. In this work, we relax the assumptions of linearity in

the tool-tissue interactions to account for palpation depth-dependent changes in the stiffness, a

commonly observed phenomena in deformable materials such as soft tissue [11]. We also utilize

the experimental system presented in our previous work in [8], where an approach for stiffness and

impedance exploration and autonomous motion in a deep cleft were investigated.

Furthermore, in our previous work in [16], we used the iterated extended Kalman filter (IEKF)

for estimating the registration and stiffness parameters, where was initialized using an uniformative

prior distribution. In this work, a pre-registration step is presented to estimate a prior for the filter

which uses stiffness features segmented from a ground truth stiffness map, that can be generated

either by ultrasound elastography or mechanical palpation. The pre-registration gives a good initial

guess that helps in faster convergence of the filter as opposed to an uninformative prior. In addition,

an unscented Kalman filtering approach is adopted with the hope of handling non linearities in

process and observation model better than extended Kalman filters or iterated extended Kalman

filters.

2 PROBLEM STATEMENT AND ASSUMPTIONS

Given an a-priori model of a soft body, the surgical tool needs to be registered to the frame

of the model given the measurements of the tool tip positions and associated contact forces. The

following are some of the assumptions that we make in this work, and their justifications:

• The position of tip of the robot used for palpation can be measured accurately either by using

the kinematics of the robot or using a position sensor.

• The robot has force sensing capability, so that it can be servoed in a hybrid position-force

control manner, wherein position control can be commanded in certain directions and force

control can be commanded in orthogonal directions.

• The forces applied by the robot are not very high in magnitude in order to prevent large

deformation and possible damage to the soft body being palpated.

• The friction between the tool tip and the surface of the soft body is negligible as the surface

of the anatomy is typically lubricated and the tool tip can be made spherical and smooth.

• This work assumes that stiff features are present in the anatomy under consideration. This

is a valid assumption to make as most anatomies of interest usually have arteries, tumors or

ducts that have a stiffness higher than the neighboring tissues.

2
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• Individual nonlinearities in the tool-environment interactions arising out of geometric non-

linearities (due to probe geometry) and material nonlinearities (due to hyperelasticity, vis-

coelasticity in the organ) are lumped together in the acquisition of palpation depth dependent

stiffness maps.

In this work, we first estimate the stiffness of the soft body by performing a number of controlled

palpation experiments in a structured manner as described in Section 4. When doing this, we as-

sume perfect registration between the robot tool tip and the model of the anatomy. Once we obtain

the ground truth stiffness map of the anatomy, the anatomy could be displaced and positioned in

any desired manner and using the framework described in this work, the tool can be registered to

the frame of the model of the anatomy.

3 METHODOLOGY

In this work, we first develop a structured framework to estimate the material properties of the

soft body being probed. To do this, we discretize the surface of the soft body into a grid mesh

and at each of the grid points, we fit a polynomial to describe the variation of the stiffness with

respect to change in palpation depth. It is worth noting that while this ground truth variation of

stiffness with respect to palpation depth is calculated, perfect registration between the soft body

and its CAD model is assumed. A detailed description of this is provided in Section 3.1. For

any unknown position of the organ with respect to the robot base, a pre registration is performed

to find a good initial registration estimate. This is done by scanning the surface at two different

controlled force levels and estimating a rough stiffness contour map. Following that, the stiff

regions are segmented from the contour stiffness map and the centroids of the stiff features are

compared against the centroids of stiff features on the ground truth stiffness map. The registration

between the centroid points of the stiff features is obtained using standard registration algorithms

such as ICP [3]. Section 3.2 describes the pre registration procedure in detail. The registration

is carried out by using an unscented Kalman filtering framework. The registration estimate from

the pre registration step is used as the prior and the using the polynomial description for stiffness

variation at grid points, the palpation force is modelled given the depth estimate at the point of

palpation. The innovation step of the filter comprises of minimizing the difference between the

modelled force and the measured force of palpation. Incorporating the raster palpation trajectory

in the process model helps converge faster. The filtering is performed in the space of the Lie

groups instead of a Euclidean parameter space [9], the procedure to do the same and its benefits

are described in Section 3.3.

3
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3.1 Generating the ground truth stiffness map

In our previous work [16], we assumed a linear stiffness model for the palpated object where

the stiffness did not vary with the palpation depth. In most practical applications however, this

assumption is unlikely to hold due to the nonlinear material properties of biological tissues, which

has been well established [6]. Capturing nonlinear material properties become crucially impor-

tant when palpation is being carried out for a subsurface embedded object such as a tumor or an

artery, which are located significantly below the organ surface, quite possibly beyond the linear

approximation of the stiffness relating force with the palpation depth.

In order to characterize depth dependent stiffness in the palpated object, we perform the fol-

lowing steps (see Fig.1 ):

1. The surface is raster scanned with the 3 DOF cartesian robot (See Section IV for further

details). The point cloud of the robot tip pi = (xi, yi, zi), the contact force fi and the local

surface normal ni at each point pi are acquired. The point cloud pi and the contact force fi

are obtained in the robot base frame and the force sensor frame respectively. This process is

repeated for i = 1 . . . q, where q is the total number of constant force scans.

2. The raw data f i, ni, and the z-coordinate of the point cloud z are fitted to a surface at pre-

specified X-Y planar grid points (gx, gy) using a linear interpolation scheme. This leads to

the following fitted data n̂i, f̂ i and p̂i = (gx, gy, ẑi).

3. At each grid location (gx, gy), the stiffness along the local surface normal is computed using

a backward difference scheme, and is given as:

si(gx, gy) = −
n̂i−1

T (f̂ i − f̂ i−1)

n̂i−1
T (p̂i − p̂i−1)

(1)

The negative sign in the right hand side of Eqn. 1 accounts for the fact that the force acting

on the palpated object is opposite to the reaction force on the force sensor measuring f i.

Representative stiffness maps are shown in Fig. 2.

4. At each grid location (gx, gy), the palpation depth di, computed relative to the first scan

corresponding to i = 1, and is given by:

di = n̂T
1 (p̂i − p̂1) (2)

5. At each grid point (gx, gy), si is regressed on di using the quadratic relation:

si(di) = ad2i + bdi (3)

where a and b are regression coefficients.

4
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Figure 1: Schematic describing location of palpating points and the local surface normal at con-

secutive force scans.

Stiffness [N/mm] at 1.5N

 

Stiffness [N/mm] at 2.0N Stiffness [N/mm] at 2.5N
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Figure 2: Representative stiffness distributions obtained at (a) f2 = 1.5N , (b) f3 = 2.0N and (c)

f4 = 2.5N .

3.2 Pre-registration

The pre registration step is carried out to find a rough initial guess for the registration, which

can then be used as a prior in the filtering process described in Section 3.3 for estimating the

registration. In prior work [16], no pre-registration was done and the initial guess was arbitrarily

chosen. However it will be shown in Section 5 that choosing a reasonable initial guess from a

pre registration step provides more accurate registration estimate. To perform pre-registration, the

organ is palpated at a very low force value. A low force value f 1 would deform the surface very

little and the tip positions obtained would closely emulate the points on the surface of the organ

model. Following this, the organ is palpated at a higher force value f 2 and the tip positions are

recorded. The depth of palpation is estimated from the two palpation experiments performed and

the stiffness is estimated assuming a linear stiffness model. We justify such an assumption by

acknowledging the fact that in the pre registration step we are not interested in computing the

exact stiffness, but instead we wish to identify the approximate locations of relatively stiff regions.

The location of the stiff regions are used as anatomical fiducials to register to the stiff regions in

the ground truth stiffness map.

The relative-stiffness contour map of the surface of the organ that is obtained, shows contours

of varying stiffness with varying color gradients as shown in Fig. 3(a). While the stiffness map

in Fig. 3(a) looks like a blurred out version of the ground truth stiffness map shown in Fig. 3(b),

5
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(a) Stiffness map obtained by palpating at arbitrary locations with 1.5N

force. Centroids of locally stiff regions are shown by circular markers.

(b) Ground truth stiffness map for 1.5N force. Centroids of locally stiff

regions are shown by diamond shaped markers.

Figure 3: Locally stiff regions are segmented from the stiffness map and centroid of the segmented

regions are computed.

6
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the stiff regions still appear to be at the same relative position. Thus we compare the location of

the centroids of the stiff regions to infer the transformation. The regions corresponding to higher

stiffness are segmented as shown in Fig. 3. Further the centroids of the segmented regions are

computed. The coordinates of the centroids computed in the image frame can be readily trans-

formed to coordinates in the frame of the robot base. Similarly the centroids of stiff regions are

obtained from the ground truth stiffness map described in Section 3.1 corresponding to force f 2.

The coordinates of the centroids in the ground truth stiffness map can be readily transformed to

the frame of the organ model. The registration between these two sets of centroids can be obtained

using any standard registration technique such as ICP [3].

3.3 Registration

Registration process involves estimating the homogeneous transformation matrix T ∈ SE(3),

that relates the reference frame fixed to the base of the robot to the reference frame attached to

the model of the organ of interest. In this work, a filtering approach is followed for estimating

the registration. Unlike our earlier work [21, 16] where the state vector of the filter contains Euler

angles and Cartesian coordinates that parameterize T , in this work the registration is carried out

directly in the space of the Lie group by using a state matrix: T . The underlying Lie algebra of the

space is used to derive the equations of the filter as shown in [9]. Filtering in the tangent space of

the group provides more accurate estimation of the state as shown in [12, 9, 14], especially in the

presence of high uncertainties in the process or measurement models. In this work, we therefore

adapt this approach of filtering in the space of the Lie group, instead of chooseing a Euclidean

parameter space.

The state matrix is defined as:

Xk = T , where T =

R t

0 1

 , (4)

whereR ∈ SO(3) is the rotation matrix and t ∈ R3 is the translation vector. We use a UKF in this

work as it is known to handle non-linearities in the process and measurement models better [22].

The unscented filtering framework involves computing intermediate states called ‘sigma points’

which are propagated through the non-linear process and measurement models of the system.

3.3.1 Sigma point computation

Consider the stateX ∈ SE(3) and covariance P expressed in the basis of the tangent space at

X . The tangent space se(3) can be described using a six dimensional basis commonly referred to

as exponential coordinates [18]. Let σT = σ0, . . . ,σ12 be the sigma points of the covariance P

7
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calculated in the Euclidean tangent space:

σ0 = x, (5)

σm = x+
(√

(M + λ)P
)
m
, m = 1, . . . ,M (6)

σm = x−
(√

(M + λ)P
)
m
, m = M + 1, . . . , 2M (7)

where M = 6 the dimension of the tangent space of SE(3), x̂ = logX are the exponential

coordinates that describe X , (
√
·)m denotes mth column of the Cholesky decomposition and λ

is a parameter for controlling the distance between the sigma points and the mean. The sigma

points obtained are then projected to the manifold describing SE(3) using the matrix exponential:

σm
SE(3) = expσm, where m = 0, . . . , 12.

3.3.2 Process and measurement models

The filtering process comprises of two main steps: prediction and update. In the prediction

step, a process model is used to predict the future state of the system given it current estimate and

in the update step, sensor data is used to correct the state estimate. In this work, the process model

is designed to be static i.e.,Xk|k−1 = Xk−1|k−1 and P k|k−1 = P k−1|k−1. The control input for the

system is the estimated tip position of the robot. The tip position is estimated using another UKF

as described in Section 3.3.4. The controlled force applied to the organ during the palpation serves

as the measurement. The measurement model for this system is:

h(Xk) = δkS(pc, δk), where δk = nT (pc − ptipc ), (8)

where the subscript c denotes quantities in the frame of the organ model and S(pc, δk) is a function

that returns the stiffness value associated with a point pc on the organ model when palpated to a

depth δk, as described in Section 3.1. The point ptipc = Rkp
tip
r + tk, whereXk =

Rk tk

0 1

 and

ptipr is in the frame of the robot base as estimated is Section 3.3.4. In Eq. 8, the surface normal n is

obtained by finding the normal associated with the point pc on the organ model. The measurement

function Eq. 8 is evaluated at the sigma points obtained earlier:

yk =
12∑

m=0

wmh(σSE(3)), (9)

where the weights wi are defined as:

w0 = λ/(λ+M), (10)

wm = 1/2(λ+M), m = 1, . . . , 2M, (11)

where the dimentionality of the space, M = 6.

8



3 METHODOLOGY A.R.M.A Report Template

3.3.3 Update step

The update step uses the sensor data zk to update the mean and variance and obtain Xk|k and

P k|k. The covariance and cross-covariance required to compute the Kalman gain are:

P yy =
1∑

m=0

2wm(h(σm
SE(3))− yk)(h(σm

SE(3))− yk)T ,

P xy =
1∑

m=0

2wm(σm − xk|k−1)(h(σm
SE(3))− yk)T .

The Kalman gain can be obtained asK = P xyP
−1
yy . The sensor measures the normal force applied

to the organ and thus we have zk = Fn. The estimate of the state is updated as follows:

Xk|k = exp ˆ(xk|k−1 +K(zk − yk)). (12)

The covariance is updated as follows:

P k|k = P k|k−1 +KP yyK
T . (13)

3.3.4 Estimation of tip position

The control input to the UKF presented above is ptipr , which is the position of the tip of the

robot in the frame of the base of the robot. At every iteration of the UKF, ptipr is estimated using

another UKF. The state vector of this second UKF is qk = ptipr ∈ R3. The process model for the

filter uses a constant velocity motion model:

qk|k−1 = qk−1|k−1 + v∆t,

Qk|k−1 = Qk−1|k−1 +N ,

where v = (qk−1|k−1 − qk−2|k−2)/∆t and ∆t is the time elapsed between two successive filtering

loops and N is the uncertainty in the process model that helps take care of unmodelled scenarios

such as change of direction of motion, accuracy of the robot etc. The measurement model for this

filter is:

h(q) = q,

The sensor measurement is the tip position: zk = ps. The sigma points and weights are computed

using Eq. 5 and Eq. 10 respectively, with the dimensionality of the state vector M = 3. Since the

state vector belongs to the Euclidean space, standard equations for prediction and update for the

UKF [22] are used. The state q is continuously updated and whenever the UKF that estimates the

registration requires a control input, the latest estimate of q is used.

9
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4 EXPERIMENTAL SETUP

To demonstrate the validity of the proposed approach, palpation experiments at various con-

stant forces were carried out, as outlined in Section 3.1. The experimental setup consisted of a

3-DOF cartesian robot equipped with a force/torque sensor (ATI Gamma F/T Transducer, S/N:

FT8578) with an attached spherical probe 12.7 mm in diameter (see Fig 4. Centralized computed

torque control for the Cartesian robot was implemented in a real-time system running at 1 kHz.

Hybrid-force control was used for raster positioning a silicone tissue phantom (M-F Manufactur-

ing), wherein force control was applied in along the local surface normal computed from the F/T

sensor, and position control was applied along the orthogonal direction. Further details on the

control architecture can be found in [8].

Five consecutive force-controlled scans were carried out from 1.0 N to 3.0 N at intervals of 0.5

N. We observed that at higher forces, there was considerable distortion in the phantom tissue, due

to which data acquired at these forces were not considered in the registration process.

Figure 4: (a) 3-DOF Cartesian Robot and (b) Experimental setup with the probe palpating the

phantom tissue.

5 RESULTS

As a first step, the ground truth stiffness maps were computed for various forces as described

in Section 3.1. The stiffness maps for three sample forces are shown in Fig. 2. Since the stiffness

computations are interpolated over the surface of the organ by using a grid mesh of points taken

along a plane and projected to the surface, the estimates are poor at the regions where the surface

normals undergo a quick change in orientations. As a result we omit points belonging to such

regions during our computations due to high uncertainities in the estimated values at those points.

Fig. 5(a) shows a contour plot of the variation in orientation of the surface normals and in Fig. 5(b),

the points in the light colored regions are not considered for stiffness computation in the UKF.

10
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(a) Contour plot of the variation in surface normal over

the surface of the model

(b) The white regions show high variation in surface

normal orientation

Figure 5: Plots showing variation in surface normal across the surface of the organ and the regions

with high variation in surface normal orientation.

The location of the organ with respect to the base of the robot was carefully measured to provide

a ground truth registration, in order to measure how good our estimated registration is. The ground

truth registration is:

T =


0.9996 0.0276 0.0101 −34.7452

−0.0278 0.9995 0.0171 −7.2757

−0.0096 −0.0174 0.9998 16.3866

0 0 0 1.0000

 . (14)

The surface is first palpated at two force levels, 1N and 1.5N at arbitrary locations. The tip location

is sensed in both these experiments and a stiffness map is generated from this data following the ap-

proach shown in Section 3.1. The stiffness map generated is as shown in Fig. 3. Upon performing

a pre-registration as shown in Section 3.2 we obtain the following transformation matrix:

T =


0.9990 0.0436 0.0104 −34.8915

−0.0438 0.9989 0.0169 −6.5140

−0.0096 −0.0174 0.9998 16.3866

0 0 0 1.0000

 . (15)

Having performed the pre registration, the surface was raster scanned as shown in Fig. 6 with a

constant force of 1.5N.

Palpation points were sampled at regular time intervals along the trajectory. Fig. 7(a) shows the

coordinates of the palpation points against the surface of the organ. The UKF was used to estimate

the registration using the prior from pre registration step. The UKF successfuly registers the points

11



5 RESULTS A.R.M.A Report Template

Figure 6: Raster path that was used to palpate the silicon model

to the surface of the model as shown in Fig. 7. The final registration as estimated by the filter was:

T =


0.9989 −0.0316 0.0333 −34.5227

0.0320 0.9994 −0.0111 −8.5058

−0.0329 0.0122 0.9994 16.7827

0 0 0 1.0000

 ,

which is very close to the ground truth. When the registration estimation was performed without

using the palpation trajectory model, the estimates for tip position took longer time to converge.

(a) The red dots represent the palpation points in the

frame of the organ model before registration

(b) The red dots represent the palpation points in the

frame of the organ model after registration

Figure 7: Example of successful registration using the initial guess for the UKF from pre-

registration step.

The estimation procedure when performed with an arbitrary initial guess, yields inferior results.

12
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A sample result for a failed registration is as shown in Fig. 8. This example demonstrates the

importance of the pre-registration step. The registration was also estimated using an iterative

extended Kalman filter (IEKF) instead of UKF and the results obtained were found to be very

similar.

(a) The red dots represent the palpation points in the

frame of the organ model before registration

(b) The red dots represent the palpation points in the

frame of the organ model after registration

Figure 8: Example of bad registration when the intial guess for UKF is not chosen from the pre

registration step.

6 CONCLUSIONS

This paper outlines a probabilistic approach based on unscented Kalman filtering to register a

deformable object to a surgical tool using mechanical stiffness information obtained by palpating

the object. We assumed a realistic deformation dependent stiffness model obtained by raster-

scanning the object at varying forces along the local surface normal of the object using a 3-DOF

Cartesian robot. Subsequently, the stiffness distribution at a given scan force was used to pre-

register the object to the robot tip. In addition, a pre-defined palpation trajectory was used to

specify the process model of the filtering algorithm instead of uniformative distribution of the

palpation path.

To the best of the authors’ knowledge, this paper presents for the first time, a mechanical pal-

pation based pre-registration step to provide a good initial guess to the registration process. One

of the key findings of this paper is that a pre-registration step significantly improves registration

accuracy. The implication of this result is that registration of the surgical tool inside the human

anatomy improves if an accurate pre-operative elastic map of the anatomy of interest is provided

prior to the surgical task . We also observed that absence of a pre-defined trajectory leads to inac-

curate registration. These findings encourage further research in proper selection of the palpation

trajectory that leads to the most optimal registration.
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In this work, we did not consider global deformations in the deformation during palpation. This

is not an unlikely scenario, since anatomical structures are typically geometrically unconstrained

and could move globally during the palpation process. In the future, we will focus on accounting

for global deformations in the registration process.
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