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Abstract

The authors consider the fundamental problem of finding good poli-
cies in uncertain models. It is demonstrated that although the gen-
eral problem of finding the best policy with respect to the worst
model is NP-hard, in the special case of a convex uncertainty set
the problem is tractable. A stochastic dynamic game is proposed,
and the security equilibrium solution of the game is shown to cor-
respond to the value function under the worst model and the opti-
mal controller. The authors demonstrate that the uncertain model
approach can be used to solve a class of nearly Markovian Deci-
sion Problems, providing lower bounds on performance in stochas-
tic models with higher-order interactions. The framework consid-
ered establishes connections between and generalizes paradigms of
stochastic optimal, mini-max, and H,/robust control. Applica-
tions are considered, including robustness in reinforcement learn-
ing, planning in nearly Markovian decision processes, and bounding
error due to sensor discretization in noisy, continuous state-spaces.

1 Introduction

A problem that is of fundamental interest in planning and control problems is
determining the robustness of a plan or policy to modeling errors. It has long been
recognized in the control community that controllers developed in the framework
of stochastic optimal control may exhibit unsatisfactory online performance due to
poor robustness to small modeling errors. More recently, this problem has been
recognized in the reinforcement learning community as well, and algorithms have
been suggested to deal with it. Minimizing the risk and impact of brittle controllers
is one of some import in model-based reinforcement learning solutions, particularly
ones where failure has significant consequences [Bagnell and Schneider, 2001], as
invariably a learned model has certain inaccuracies, due both to under-modeling
and insufficient training data.

One basic approach is to abandon the framework of stochastic control entirely.
[Heger, 1994] and [Morimoto and Doya, 2001] adopt this approach, replacing a
probabilistic model of interactions with a deterministic, worst case evaluation crite-
rion. [Heger, 1994]’s technique (mini-max Q-learning) assumes that at each step the
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worst possible result happens to an agent. As might be imagined, this can lead to
rather conservative estimates of the value of a policy, particularly in the instances
where a stochastic model is an accurate representation. In the worst case- a truly
stochastic model where there is some small probability of catastrophe at each state,
this algorithm evaluates all policies as equally abysmal performers.

Much work in the control community has been directed towards this problem, and
the formulation known as H., robust control has been a research focus for decades
and the efficient computational solution to the linear problem has attracted a great
deal of interest among practitioners. H,, generalized to non-linear problems is
closely related to mini-max criterion described above as in this framework the con-
troller is pitted against a disturber that can inject an Lo bounded disturbance into
the feedback loop. The controller seeks to maintain the stability of the system by
attenuating this disturbance. The relation between disturbances in the H., for-
mulation and model error can be attributed to results like the small-gain theorem
[van der Schaft, 1999]. The relationship is particularly sharp in the linear case,
where the disturber can be identified with a norm-bounded (in the Hardy-space,
H,, hence the name) linear perturbation. In the context of finite-state machines
(deterministic MDP’s), H, reduces to the mini-max framework described above
with the addition of costs incurred against the disturber for the “energy” required
for applying each disturbance. [Morimoto and Doya, 2001] shows how H., might
be phrased in terms of reinforcement learning.

Stochastic models were developed to model situations where state transitions hap-
pen due to events that are largely unobservable and uncontrollable. While H, is
doubtless a useful scheme for control, there are many applications of practical in-
terest where a stochastic model remains an excellent approximation of real system
behavior, and a worst case deterministic model has both very poor fidelity with the
real system and leads to controllers with performance so conservative as to have
little practical value. Yet we still wish to ensure that our policies remain robust to
errors made in modeling the stochastic process. A fundamentally different approach
has been taken in risk-sensitive optimal control. In the risk sensitive framework, the
basic structure of a stochastic model is retained, but the risk-neutral additive cost
function is replaced with a cost function that emphasizes variance in cost occurred
during control- in particular, risk-sensitive controllers will prefer a deterministic
reward r to a lottery ! with E[l] = r. This seems a natural preference— at least for
human decision makers. Risk sensitive criteria can also be related to a type of model
uncertainty; [Fleming and Hernandez-Hernandez, 1997] connects risk-sensitive con-
trol, where the value is defined as the time-average expectation of an exponential
sum of costs, to a dynamic game, similar to the H,, problem, where the disturber
influences next state transitions distributions, but pays a penalty for the relative
entropy incurred at each step between the nominal model and the disturber’s pre-
ferred next state distribution. The risk sensitive criterion thus provides a link to our
desiderata of robustness, but lacks strucuture: deviations in the transition proba-
bilities at every state are considered equally and no bound is imposed to prevent
possibly arbitrarily large deviations from a nominal model by the disturber.

2 Model Uncertainty Sets

We propose to address the stochastic robustness problem more directly. Consider
the problem of finding a stationary, Markovian policy that performs optimally in cu-
mulative discounted reward in an uncertain Markov Decision Problem. Uncertainty
will be described in terms of a set (henceforth the uncertainty set) of possible tran-
sition matrices, and optimality will be defined as maximizing cumulative discounted



reward starting from a given state. (Equivalently a distribution over states.) As
the only thing to vary between the processes will be the transition functions, we
will abuse notation somewhat and denote each MDP and its transition matrix,
Pf = Pr(jli,a) with the same symbol.

We denote the (finite) state space by X and the (finite) space of controls by .A. The
discount factor in the MDP will be indicated by 7, the reinforcement function by
R(z), the uncertainty set of transition probabilities by P, and the set of next state
distributions drawn from P corresponding to a state ¢ and control a as P}.

To ensure robustness we wish to find controllers that perform well on all models
in the uncertainty set. Specifically we envision a static game in which a stationary
Markovian controller is chosen, and then a model is chosen from the uncertainty
set so as to minimize the expected reinforcement recieved by the controller. That
is, the games value (to the controller) is defined as:
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2.1 General Sets

It is unfortunately the case that finding policies that are guaranteed to be good
across unrestricted sets of models is computationally challenging. A reduction simi-
lar to Littman’s proof [Littman, 1994] of the hardness of finding optimal memoryless
policies in POMDPs proves the following result:

Proposition 1 Finding the stationary memoryless policy that mazimizes the least
expected reward over an uncertainty set of Markovian Decision Problems is NP-
hard. &

2.2 Convex Sets

We now consider more restricted uncertainty sets that we will show are both broad
enough to be quite interesting with regard to applications, yet restrictive enough to
admit tractable solutions.

Definition 1 We call an uncertainty set of transition functions convex if for every
action a, every state i, and any two transitions kernels T* and S{, all distributions
“on the line” between the two sets are included. That is, all transition functions of
the form

Vit = a(i, )T + (1 = a(i, a)) S}

for any function a(i,a) taking its values in the range [0,1], are also in the uncer-
tainty set.

To support the claim that convexr uncertainty sets are interesting, we provide some
examples.

Example 1 The class of uncertainty sets known as interval-MDPs [?] where every
element of the transition matriz has bound constraints such as 5 S PE<pisa
conver uncertainty set.

Example 2 The class of uncertainty sets where each row of the the transition ma-
triz is constrained to lie in some relative-entropy ball around a nominal distribution
@ {PEZ(PP|CE) < €2}, describes a convex uncertainty set.



Example 3 In the mini-max model next states are chosen independently and de-
terministically for each state-action pair. The uncertainty set consisting of for each
state-action pair the convexr hull of the possible next states in the probability simplex
constitutes a convex uncertainty set.

A fundamental requirement of Definition (1) is that the uncertainty factor by
state/action pair— that is, for each state-action pair the next-state distribution can
be chosen independently of the next state-distribution chosen elsewhere in the state
space. It is this condition that suggests the introduction of a stochastic dynamic
game with turns between a controller that chooses an action a at each time step,
and a disturber who counters with the next step distribution P(j|i’,a) from a set
of allowable next state distributions P;'. The value of each state ¢ for the controller
in the game is defined, with Xy := 4, as the (lower) limit of the discounted cost
averaged over trajectories.
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We note that the dynamic game described above is a zero-sum one of complete
information. It follows from well know results in game theory [Basar and Olsder,
1995] that the following holds:

Lemma 1 IfP¢ defines a compact region of the probability simplex for every x and
a, then there exists for both the controller and disturber Markovian, stationary, and
deterministic optimal strategies.

Proof:  This follows from moting that in the one time-step game the reinforcement
incurred is continuous over a compact region and hence its minimum is attained.
An appeal to the contraction mapping theorem standard in discounted MDPs and
stochastic games proves the result. |

Note that value-iteration in the dynamic game implicitly gives a policy for both
the disturber and the controller by look-ahead in the one-step game. Surprisingly,
although the dynamic game was introduced as a relaxation of the game defined in
equation (1), as it appears to give much more power to the controller and disturber,
the above result implies that under the further assumption that P is a convex
uncertainty set (which as noted factors by state-action pairs), the dynamic game
solution is also a solution to the static game (1) of uncertain models described
above:

Theorem 1 If P is a compact and convex uncertainty set, then the optimal distur-
bance is a stationary, Markovian distribution over next states and can be identified
with an element of P. Value-iteration in a compact convexr uncertainty converges
to the value function of the optimal policy with respect to worst model in P.

We present the algorithm:

Algorithm 1 Robust Value Iteration

1. Initialize V' to the zero vector the size of the state space.

2. Repeat until V converges:



3. For all states i and controls a, assign to matriz Q, the solution to the
optimization problem:

Qmin(i,a) = zfrelg}‘ EP[V + R(Z)]

4. Update V' by mazximizing over the control set:

V(i) = o
(’L) r;leaj{( szn(z,u)

This algorithm can also be easily extended to run asynchronously and online. It is
not clear however, that Algorithm (1) leads to a computable solution, as Step 3 re-
quires a minimization over an uncountable set of probability distributions. Perhaps
surprisingly it is not only computable but tractable:

Corollary 1 Finding the (near)-optimal policy to guarantee performance (within
a given €) in a compact and convex uncertainty set of MDPs is a polynomial time
problem, and Algorithm (1) solves the problem in polynomial time.

Proof:  (Sketch) Note that the minimization required in the algorithm is a convex
program: The expectation is linear in p and thus forms a linear objective function
subject to convex constraints. It is known that convex programs can be solved in
polynomial-time (in the number of states) by interior point (e.g. ellipsoidal algo-
rithm) methods. Further, each epoch of value-iteration reduces the error geomet-
rically, so that in time logarithmic in €, the mazimum allowed sub-optimality, an
approzimately optimal policy can be computed. |

We see that in sharp contrast to the general problem, convex uncertainty sets lead
to a tractable solution to the uncertain model control problem. The algorithm
presented, as it requires convex programs to be solved at each step can be quite
expensive in practice, despite the polynomial time guarantees. However, the algo-
rithm naturally takes advantage of structure in the uncertainty set. In the case of
variation bounds on the probabilities, the convex program reduces to a linear pro-
gram, and so for small structured uncertainty sets, the LP can reduce to a simple
minimization over a finite set of possible disturbances corresponding to the vertices
of the constraint set.

3 Solving Nearly Markovian Decision Problems

Under-modeling is a certainty; compromise is an inevitable consequence of the need
for computationally tractable models— both learned and hand-designed. Ensuring
that control algorithms aren’t brittle with respect to these unmodeled dynamics is
of paramount importance in model-based reinforcement learning and and planning
problems. We briefly consider some notions of stochastic processes that behave as
if they were “nearly” Markovian, and then discuss algorithms designed to behave
robustly to this form of perturbation.

Definition 2 Two controlled stochastic processes, P and () are e-close in variation
if P(2'|z,u) — e < Q(z'|z,u) < P(z'|x,u) + € holds for all z,z',u and all possible
histories of the process.

Definition 3 Controlled stationary stochastic process P is e-close in relative en-
tropy to processes @ if for all possible histories of each process

supy o W I(P (2|2, u)|Q(z'|z,u)) <€



Definition 4 A controlled stochastic processes X is boundedly non-markovian in
variation, with bound € if there exists a Markov process with transition matric T
such that T and X are € close in variation. T is denoted the nominal model for X.

Definition 5 A controlled stochastic process X is boundedly non-markovian in
relative-entropy if there exists a Markov process with transition matriz T such that
X is e-close in relative entropy to T. T is denoted the nominal model for X.

We first observe that MDP solutions possess some inherent robustness to bounded
non-markovian behavior of a process:

Theorem 2 Solving for the optimal policy in a nominal Markovian decision prob-
lem T, corresponding to a boundedly non-markovian decision problem (with bound
€ in either variation or relative entropy) induces error over the optimal policy that
is polynomially bounded in €. Proof:

Note that bounded relative entropy implies polynomially bounded variation and thus
w.l.o.g. we consider only the variation case. At each time step the loss is bounded
by 2 Rmax, so that the total error is bounded by 2 Rmax/(1 — 7). [ |

As discussed in the introduction, methods other than stochastic optimal control with
respect to the nominal model exist for mitigating the impact of non-markovian be-
havior. Of particular interest is the H., paradigm, where energy costs are associated
with disturbances injected at each time step.

The simple modification of step (3) of Algorithm (1) to include energy costs as
follows:

Qmin(i,a) = pnel’lPI} EP[V + R(Z) + AS(Z,J)]

where S(i,7) is a non-negative cost associated with each transition (from i to j),
representing energy injected by the disturber to induce unfavorable transitions and
A is the scalar H, coefficient, generalizes the standard discrete state, discounted
H, problem. It is easy to recover the standard formulation by relaxing all of the
next-state distribution constraints to include the entire simplex, and ensuring that
for every state i there exists a j so S(i,j) = 0.

Noting that the dynamic game introduced in Section (3) does not require the Markov
property, and recognizing that both definitions of boundedly non-markovian pro-
cesses form convex and compact uncertainty sets, we immediately have an algorithm
that computes the strongest possible performance bounds on this very general class
of controlled stochastic processes, and computes stationary, Markovian policies that
achieve that bound.

4 Experiments

4.1 Path Planning

Robot path planning has been the subject of a great deal of research effort, but
the vast majority of it concentrates on static obstacles. Recent research on mobile
robots operating in crowded domains [Burgard et al., 1999] has revealed some of the
limitations of this approach, and further recent research [Montemerlo and Thrun,
2001] has demonstrated that tracking dynamic objects is feasible using sequential
monte-carlo filtering applied to the laser-range finder data collected by the robot. A
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Figure 1: These figures illustrate a path planned by the robot (dark leftmost circle)
giving a dynamic obstacle (lighter circle adjacent to the robot) a wide berth on it’s
route to the goal (light circle on far right). The figure on right illustrates the value
function compute by the robust dynamic programming algorithm while the figure
on the right illustrates the path taken.

significant difficulty in planning with dynamic obstacles is the difficulty of modeling
such objects— the dynamics of a human obstructing the robot’s path are stochastic
and possibly very high dimensional.

In this work, we developed a new planner for the Nursebot project, modeling a
dynamic obstacle in the robot’s path in the uncertain MDP framework. Specifically,
the dynamic obstacle is modeled as a “lazy” random walk with unknown and time-
varying drift. In the eight connected grid used for planning, the dynamic obstacle
is subject only to the linear constraints:

Pr(Obstacle doesn’t move) > .25

This gives a vast space of possible dynamics (transition matrices) for the object
whose details we leave unspecified. In this model the dynamic obstacle is thought
of as inadvertently adversarial (perhaps not an unrealistic assumption for some
humans interacting with the robot), and we require path planning to remain robust
to all such obstacles.

In many situations paths resulting from the uncertain MDP solutions result in paths
that show greater deference to the impedance caused by the dynamic obstacle than
solutions that treat the object as static. Figure (1) illustrates the robot circuiting
the obstacle, and the resulting value function. Lighter regions indicated regions of
higher cost. As the resulting plans are feedback strategies, the illustrations depict
the plan resulting from the object staying still. (The computed strategy, of course,
does not.) A conventional planner skirts the obstacle to minimize cost.

In the Figure (2) we compare solutions derived by the standard planner and the
robust planner, noting that to avoid interference from the dynamic obstacle, the
robust controller takes a longer and very different path to the goal, despite the ex-
istence of a feasible (although potentially quite difficult) path between the dynamic
obstacle and the other impediments in the environment.

The behaviors engendered by this robust planner have some very desirable charac-
teristics for planning with dynamic obstacles.
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Figure 2: The left figure shows the plan generated by the conventional dynamic
programmer. On the right the uncertain MDP solution leads to a path (from the
dark circle robot to the light circle goal) that makes a greater effort to avoid the
dynamic obstacle.

4.2 The Mountain-Car POMDP

We briefly illustrate how the algorithm described in the section above can be used
to solve certain non-Markovian problems. In particular, we consider a variation on
the well-studied “Mountain-Car” problem, where unlike the standard formulation,
only an approximate, discrete representation of the state is available for control.

The dynamics used are the standard ones given in [Sutton and Barto, 1998], but
complete state observability is replaced by discrete valued sensors that output the

car position to within .085 position units (s of the cars position range) and .007

20
velocity units (21—0 of the maximum speed). Two approaches are presented to solving
the problem. First the state uncertainty is treated by approximating the problem
with a Markovian one. Assuming that for a given sensor measurements all states
that result in this sensor measurement are equally likely, we compute transition
probabilities by sampling one step forward from a uniform distribution over each
sensor grid cell. Standard dynamic program is run on the resulting discrete MDP.
Next, we use the robust value iteration described above to model the possible error
introduced by assuming the problem is a discrete, fully-observed MDP. Sampling is
again used to compute possible next state distributions, and the minimization step
of Algorithm (1) is approximate with a simple minimization over a finite sample set.
To ensure that the mountain car doesn’t get “stuck” in certain states, additional
time-extended actions are available to the controller that simply perform the accel-
erate, decelerate, or do nothing for 2,4, and 8 periods consecutively. These simply
correspond to short, open-loop strategies the controller can choose to use.

Both methods are able to find satisficing controllers, however, the robust algorithm’s
value function serves as a lower bound on the actual cost when the controller is run
on a simulation of the mountain car dynamics. The MDP solution often significantly
under-estimates the actual cost of a state. (Figure 2) The controller developed
using the robust value iteration algorithm is quite conservative, preferring multiple
swing-ups to ensure success. In a number of places it still out-performs the standard
controller. (Figure 3).

It is interesting to observe that the sharp under-estimates of the true cost of a
policy in the MDP do not vanish with increased resolution of the discretization.
(See Figure(4.2)). This is a very general phenomenon that occurs along switches
in the optimal policy, so that given a J-fine discretization, one can expect these
kind of inaccurcate value estimates to occur on O(1/4) of the state space. MDP



Figure 3: A graphical depiction over the coarsely discretized state-space of the
relative performances of the robust and standard controllers. The left graph illus-
trates the degree to which the standard control underestimates the true value of
each state, while the right graph illustrates the relative performance of the two con-
trollers in simulations. Positive values indicated the robust solution out-performed
the standard one.

Figure 4: The left figure illustrates the mountain-car value-function computed by
Algorithm (1) on a fine discretization of state-space. On the right the we see the
simulated performance of the MDP solution. Note the difference in vertical scale.

solutions are helped by noise in this case as it smoothes the dynamics, making the
uncertainty in the transitions due to discretization relatively small.

Although space does not permit details of experiments, it is worth noting that the
framework of uncertain MDPs is very natural for model-based reinforcement, learn-
ing, and enables the learning of controllers that can guarrantee (with high probabil-
ity) performance while learning, ensuring robustness that the certainty-equivalent
approach cannot. This provides an efficient dynamic programming alternative to
the policy search methods for robustness in reinforcement learning presented in
[Bagnell and Schneider, 2001].

5 Conclusions and Further Work

The authors in this work have considered diverse application of the stochastic ro-
bustness framework including bounding error due to discretization, guaranteeing
performance in reinforcement learning problems, and robust planning for a difficult
to model dynamic obstacle, but by no means have exhausted the potential of the
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Figure 5: Error in the MDP cost estimate at a fine discretization.

approach presented. Future work may consider the application to variable reso-
lution discretization in optimal control, as the technique naturally provides error
bounds on the discretization. It would also be interesting to apply the technique
to the kind of “assumed-density planning” demonstrated as practical POMDP so-
lution algorithm by [Roy and Thrun, 1999] and [Rodriquez et al., 1999] to achieve
a measure of robustness to the errors introduced by the reduced belief-state.
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