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Abstract

This paper explores the use of volumetric features for
action recognition. First, we propose a novel method to
correlate spatio-temporal shapes to video clips that have
been automatically segmented. Our method works on over-
segmented videos, which means that we do not require back-
ground subtraction for reliable object segmentation. Next,
we discuss and demonstrate the complementary nature of
shape- and flow-based features for action recognition. Our
method, when combined with a recent flow-based correla-
tion technique, can detect a wide range of actions in video,
as demonstrated by results on a long tennis video. Although
not specifically designed for whole-video classification, we
also show that our method’s performance is competitive
with current action classification techniques on a standard
video classification dataset.

1. Introduction

The goal of action recognition is to localize a particular
event of interest in video, such as a tennis serve, both in
space and in time. Just as object recognition is a key prob-
lem in image understanding, action recognition is a funda-
mental challenge for interpreting video. A recent trend in
action recognition has been the emergence of techniques
based on the volumetric analysis of video, where a sequence
of images is treated as a three-dimensional space-time vol-
ume. Eschewing the building of explicit models of the actor
or environment (e.g., kinematic models of humans), these
approaches attempt to perform recognition directly on the
raw video. An obvious benefit is that recognition need not
be limited to a specific set of actors or actions but can, in
principle, extend to a variety of events — given appropriate
training data. The drawback is that volumetric represen-
tations do not easily generalize across appearance changes
due to different actors, varying environmental conditions
and camera viewpoint. This observation has motivated the
employment of video features that are robust to appearance;
these can be broadly categorized as shape-based (e.g., back-
ground subtracted human silhouettes) and flow-based (e.g.,

Figure 1. Our goal is to detect specific actions in realisitic videos
with cluttered environments. First, we segment input video into
space-time volumes. Then, we correlate action templates with the
volumes using shape and flow features. We are able to localize
events in space-time without the need for background-subtracted
videos.

motion fields generated using optical flow). However, as
discussed below, both of these types of methods have sig-
nificant limitations.

Silhouette-based approaches attempt to recognize ac-
tions by characterizing the shape of the actor’s silhouette
through space-time, and thus are robust to variations in
clothing and lighting [2, 3, 21]. There are two major lim-
itations with such approaches. First, they assume that the
silhouettes can be accurately delineated from the back-
ground. Second, they assume that the entire person is rep-
resented as one region. Therefore, such techniques typi-
cally require static cameras and a good background model.
Unfortunately, even state-of-the-art background subtraction
techniques generate holes when parts of the actor blend in
with the background, or create protrusions on the silhouette
when strong shadows are present. These artifacts conse-
quently reduce the accuracy of shape-based action recog-
nition techniques. A more subtle limitation of silhouette-
based techniques is that they ignore features inside the
boundary, such as internal motion of the object.

Flow-based techniques estimate the optical field between
adjacent frames and use that as the basis for action recogni-



a) serve action b) run right action c) return serve action
Figure 2. Illustration of actions detected in a tennis sequence. Top row: templates; Bottom row: example detections.

tion. Ke et al. learn a discriminative cascade of 3D box fea-
tures on the flow [12]. Shechtman and Irani use a template
matching approach to correlate the flow consistency be-
tween the template and the video [19]. In addition to being
invariant to appearance variations, an important advantage
of flow-based approaches is that they require no background
subtraction and thus these methods can process videos with
limited camera motion. However, optical flow is a very
coarse feature and therefore many scenes are likely to ex-
hibit similar flows over short periods of time. For exam-
ple, Ke et al. observed that in the KTH actions dataset [18],
their boxing detector was triggered near a hand-clap action
because those regions contained the same flow [12].

Common to all appearance-based approaches are limi-
tations due to changes in camera view and variability in
the speed of actions. Very few representations are robust
to these variations, and the standard approach is to span the
space of variations using multiple training examples. Others
have attempted to use space-time interest point features for
added robustness [10, 16, 18]. While the sparsity of the in-
terest points is certainly appealing from an efficiency stand-
point, it is unclear how these methods compare against vol-
umetric approaches. This paper evaluates shape- and flow-
based volumetric features against interest point techniques
on a standard dataset.

Our paper makes two major contributions. First, we pro-
pose a simple yet effective shape-based representation for
matching videos that does not require background subtrac-
tion, nor explicit background models. Second, we com-
bine our shape-based method with recent flow-based tech-
niques and demonstrate improved recognition performance.
Our shape-based matching consists of spatio-temporal re-
gion extraction and region matching. For region extrac-
tion, we employ an unsupervised clustering technique to
segment the video into three-dimensional volumes that are
internally consistent in appearance; we term these “super-
voxels” since they are conceptually analogous to superpix-
els [17]. We observe that real object boundaries in spatio-
temporal volumes typically fall on supervoxel borders, just
as superpixel borders correspond to useful segmentation
boundaries [15]. As with all bottom-up segmentation tech-
niques, we do not expect the region extractor to segment

the entire object as a single region, and thus we err on the
side of over-segmentation. We propose a shape matching
technique that works despite over-segmented videos. This
is similar in spirit to recent work in shape-guided figure-
ground segmentation [4]. We then discuss the limitations of
shape and flow-based techniques for action recognition and
argue that their complementary nature allows them to mit-
igate each other’s limitations. To show the benefits of the
combined features, we incorporate Shechtman and Irani’s
flow-based features [19] into our classifier and demonstrate
improved performance on a challenging event detection task
(see Figure 2) and a standard video classification task.

2. Shape-Based Matching

2.1. Spatio-Temporal Region Extraction

Region extraction is a process for automatically seg-
menting the video into 3D spatio-temporal volumes. An
ideal region extractor would not only automatically segment
individual objects in space, but it would also track their mo-
tion through time. Stable object segmentation is currently
difficult for images [14] and video [20]. Because we want
the region extraction to be general for many types of appli-
cations, we use mean shift [6, 8] to cluster the video into
regions. Instead of indivually segmenting video frames and
then linking the regions temporally (which causes unstable
regions), we segment the three-dimensional spatio-temporal
volume of pixels created by stacking a sequence of frames.
The smallest processing unit is a voxel, taken from a 1 × 1
pixel from one 1 frame. The voxel location and color are
used as features for mean shift. Our method works well
despite having used simple features because it is not de-
pendent on the precise segmentation of the object from the
background. In general, any segmentation algorithm could
have been used and we plan to explore more sophisticated
algorithms and features in the future.

A critical parameter that must be chosen for mean shift,
and nearly all clustering algorithms, is the kernel band-
width size. Intuitively, the bandwidth size encodes the prior
on the size of the objects that should be segmented. A
small bandwidth will correctly segment small objects, but
will over-segment large objects into multiple parts. Con-



versely, a large bandwidth will correctly segment large
objects, but will incorrectly group small objects together.
While there are proposed methods for adapting the kernel
bandwidth [7] or automatically choosing a stable bandwidth
based on scale-space theory [9,13], it is inherently impossi-
ble to choose the correct bandwidth for segmentation with-
out higher-level semantic knowledge. Therefore, we per-
form hierarchical clustering using mean shift that segments
the image into a pyramid of region sizes [9]. Because of the
small scaling factor of the region sizes, this only increases
the number of regions by a small constant factor, while en-
abling us to deal with arbitrarily-sized objects. Figure 3
shows hierarchical mean shift applied to a video sequence.
As expected, larger regions are extracted with larger band-
widths. At run-time, we search over the hierarchy using the
matching algorithm described below.

2.2. Volumetric Region Matching

We now present a novel method for matching action
templates to over-segmented video that accomplishes three
goals. First, the algorithm matches on the shape of the
spatio-temporal volume, rather than the pixels in the vol-
ume. This is motivated by the fact that the spatio-temporal
“shape” of an action is robust to variations in an object’s ap-
pearance (e.g., an actor’s clothing). Second, the algorithm
robustly matches over-segmented spatio-temporal volumes.
In other words, it identifies the set of supervoxel regions
that, when aggregated, best match the given template. Fi-
nally, the method must be computationally-efficient because
video data is extremely large. Because our action represen-
tation is composed of three-dimensional shapes, it would
seem straightforward to directly apply algorithms from the
3D shape matching literature to this task. Unfortunately,
most of the existing algorithms cannot efficiently cope with
over-segmented regions.

2.2.1 Proposed Algorithm

Our algorithm is based on the region intersection of bi-
nary volumes. One natural distance metric between two
binary shapes (A,B) is the volume of the set difference
between the union and the intersection of the regions, i.e.,
|A∪B \A∩B|. We adapt the algorithm to work with over-
segmented regions as follows. First, we limit the search to a
single level of the segmentation hierarchy, and then extend
the search to multiple levels as described in Section 2.2.2.
Given a template T of volume |T |, we slide the template
along the x, y, and t dimensions of the video. Consider
a candidate volume V with the template at some location
(x, y, t). Because the video is over segmented, V could be
composed of k regions Vi such that V = ∪k

i=1Vi. Consider
how one might calculate the voxel intersection distance be-
tween the template T and a subset of regions of V . Since

every region Vi is either selected or not selected, a naive ap-
proach would enumerate all possible 2k subsets of V , cal-
culate voxel intersection between the template T and each
subset, and choose the minimum. We propose a fast method
for both identifying the subset of V that minimizes the dis-
tance and for calculating this distance.

There are four cases that we must consider when decid-
ing whether a region Vi belongs in the minimum set. In
Figure 4, we have drawn the template T in bold and over-
laid onto the candidate volume V , which is segmented into
11 regions V1 . . . V11. The set of regions that minimizes the
distance to the template is {V4, V5, V7, V8}, and the actual
distance is the area occupied by the shaded regions. By in-
spection, it is obvious that removing any region from the
minimal set or adding any region not already in the mini-
mal set, will increase the distance. The four cases of region
intersections that we must consider are as follows. If a re-
gion Vi is completely enclosed by the template, such as V5,
then it is always contained in the minimal set. Similarly, if a
region Vi does not intersect with the template, such as V11,
then it is never contained in the minimal set. The two inter-
esting cases are when Vi intersects the template, such as V2

and V4. Let us consider V2; it is obvious that excluding V2

minimizes the distance between the template and the min-
imal set. Similarly, including V4 in the minimal set mini-
mizes the distance. Intuitively, we should include a region if
there is a large overlap between the region and the template.
More formally, we include region Vi if |Vi ∩ T | > |Vi|/2.
The distance is therefore

d(T, Vi) =
{

|T ∩ Vi| if |T ∩ Vi| < |Vi|/2
|Vi − T ∩ Vi| otherwise. (1)

It is important to note that once the relative positions of the
template T and the candidate volume V are specified, each
of the regions Vi can be considered independently. In other
words, whether Vi is in the minimal set is independent of
any of the other regions V{1...k}\i. Therefore, the distance
between the template T and the candidate volume V is

d(T, V ) =
k∑

i=1

d(T, Vi). (2)

It can easily be shown that this function correctly computes
the distance between the template and the minimal set. As
we slide the window across the video, we mark all locations
with a distance less than some threshold θ as a match. It can
be shown that once the distance is computed at one location,
distance computations at adjacent locations can be updated
with only a small cost. The cost is proportational to the
surface area of template, and in practice we reduce from 30
minutes to 3 minutes to match 10 seconds of video.



Frame Level 1 Level 2 Level 3 Level 4
Figure 3. Hierarchical mean shift automatically finds differently-sized regions at various levels of the hierarchy. The bottom level, with the
smallest bandwidth, finds the smallest regions. Larger regions are found at higher levels of the hierarchy.

Figure 4. Example showing how a template is matched to an over-
segmented volume using the Region Intersection method. The
template is drawn in bold, and the distance (mismatch) is the area
of the shaded region.

2.2.2 Modeling Segmentation Granularity

A potential problem with our method is that highly-textured
regions of the video can generate many false positives. This
is because such volumes consist of many tiny supervoxels
that can be appropriately aggregated to match the given tem-
plate. More formally, recall that the maximum error that a
region Vi can contribute to the distance between the tem-
plate and the volume is |Vi|/2. Therefore, as V is seg-
mented into more regions, the smaller the size of each re-
gion, and therefore the more likely that some portion of V
will match any template. In the limiting case, when V is
segmented into |V | unit-sized supervoxels, then the distance
between V and any template is 0, since any volume can be
trivially constructed from 1 × 1 × 1 voxels. This motivates
the need for a regularization term that balances the template
match by the target volume’s inherent flexibility. Therefore,
we propose a normalization model as follows.

Instead of setting the decision boundary to d(T, V ) < θ,
we set the decision boundary on the normalized distance,

d(T, V )
ET [d(·, V )]

< θ, (3)

where the denominator is the expected distance of a tem-
plate to volume V , averaged over T , the set of all possible
templates that fit within V . Essentially, this is an estimate
of the match confidence. Enumerating through all possi-
ble templates to compute the expected value may seem in-
tractable at first, but we show that it is possible to compute
this efficiently. Writing out the definition of the expectation,

we have

ET [d(·, V )] =
1
|T |

∑
τ∈T

d(τ, V )

=
1
|T |

∑
τ∈T

k∑
i=1

d(τ, Vi), by Eqn. 2

=
1
|T |

k∑
i=1

∑
τ∈T

d(τ, Vi), by indep. (4)

For each region Vi, we enumerate all possible tem-
plates that have j pixels intersecting the region, which is
2|V |−|Vi|

(|Vi|
j

)
. Then, we calculate the distance between the

region and the template which is either the area of the inter-
secting region or the non-intersecting region, whichever is
smaller. Therefore, the expected distance is equal to

=
1

2|V |

k∑
i=1

|Vi|−1∑
j=1

2|V |−|Vi|
(
|Vi|
j

)
min(j, |Vi| − j)

=
k∑

i=1

1
2|Vi|

|Vi|−1∑
j=1

(
|Vi|
j

)
min(j, |Vi| − j). (5)

This can be simplified to:

=
k∑

i=1

f(|Vi|), where (6)

f(n) =

{
n
2 − 1

2n

(
n

n/2

)
(n/2), n even,

n
2 − 1

2n

(
n−1

(n−1)/2

)
n, n odd.

(7)

There exists a simple recurrence for computing f(n) ex-
actly. Note that the term within the sum depends only on the
size of the regions Vi and therefore can be pre-computed.
At run-time, we only need to perform one table look-up for
each supervoxel in the volume.

Not only does this algorithm automatically filter out clut-
tered backgrounds, it also chooses the best level in the seg-
mentation hierarchy against which to match. Objects that
are under-segmented will not match the template at all.
And although over-segmented objects will match the tem-
plate, they will be penalized for having too many regions.
The “correct” segmentation level, the one that least over-
segments without under-segmenting, will get the highest
score.



3. Complementary Nature of Shape and Flow
We now highlight some fundamental limitations of

shape- and flow-based features and how these can be over-
come when the two feature types are combined. Previous
work that employs shape features, whether in images or
video, typically extracts the outline or silhouette of the ob-
ject. This raw shape is then frequently represented as a bi-
nary image. Since silhouettes are robust to appearance vari-
ations due to internal texture and illumination, they are un-
able to represent the internal motion of an object. For exam-
ple, a textured rolling ball is indistinguishable from a static
ball based on shape alone — yet could easily be recognized
based on flow. Figure 5 shows a portion of a hand-clap ac-
tion sequence. When viewed from the front, the silhouette
changes very little, although there is a distinctive change of
flow at the hands. Therefore, one would expect the addition
of flow features to help particularly in cases where an action
cannot be distinguished from its silhouette alone.

Conversely, some actions cannot be distinguished using
flow-based features alone. While such features explicitly
model the motion of an object, they only implicitly model
the object shape; more importantly, the shape of stationary
parts of the object are ignored. For example, as observed by
Ke et al. [12], in the KTH action recognition database, the
flow of the boxing action looks very similar to that of the
hand-clap (see Figure 6). This is because the horizontal tra-
jectories of the arms is similar and the (stationary) body of
the actor is invisible; thus the outward motion of the punch
matches the inward motion of the clap. However, a shape-
based feature could trivially distinguish between the person
and the grassy background and disambiguate these actions.
Therefore, we argue that shape- and flow-based features are
complementary and should be used in conjunction for ac-
tion recognition. We believe that we are the first to propose
a volumetric approach that combines these two feature types
and show their effectiveness on non-background subtracted
videos.

Despite the normalization, our shape-based correlation
algorithm can sometimes generate false positives on highly-
textured regions, which are finely segmented (Figure 7a).
However, we can obtain accurate flow measurements on
these regions and a flow-based algorithm such as Shecht-
man and Irani’s flow consistency [19] can filter out these
false positives. Similarly, uniform regions pose an analo-
gous problem for flow-based algorithms because these re-
gions have indeterminate flow, and therefore can match all
possible templates. Consequently, we add a pre-filtering
step to Shechtman and Irani’s technique to discard uni-
form regions by thresholding on the Harris score of the
region. Even with this filtering, we observe that the ma-
jority of false-positives occur in low-textured regions (Fig-
ure 7b). Fortunately, our shape-based correlation works
well on those regions and can be used to filter out the false

positives. We quantify the benefits of combining shape and
flow in Section 5.

4. Classification
This section describes how our spatio-temporal shape

correlation technique can be applied to detect events in
video and to classify video sequences. We also describe
how Shechtman and Irani’s flow-based correlation is incor-
porated into our framework. Suppose first (for now) that we
have a template of a single instance of an action of interest.
To find other instances of this action in a video clip, we can
slide the template over the entire video and measure the cor-
relation distance at all locations in space and time. Thresh-
olding the correlation distance and finding the peaks would
give us locations of potential matches. Figure 8 shows the
minimum correlation distance of a hand-wave action pro-
jected on a time axis. Note that the cyclic nature of the
action and the distance is minimized when the phases of the
template and the action match. Although the action in the
video is periodic, our algorithm does not assume periodic
motion and thus we can can detect all instances of the event
and localize them in both space and time. The advantage
of using single templates for matching is that minimal hu-
man effort is required to bootstrap the system. This works
well in scenarios where we have not trained the system on a
large collection of template actions or where a human oper-
ator is interactively searching for novel events in large video
databases. In such scenarios, the user can manually adjust
the threshold to balance the detection and the false positive
rates. The flow-based correlation technique by Shechtman
and Irani [19] assumes that the action of interest always ap-
pears somewhere in the video database; thus, simply thresh-
olding on 80% of the highest correlation score is sufficient
to suppress most false positives. Similar thresholding tech-
niques could also be employed here.

A limitation of using single templates for matching is
that they typically generalize poorly. Some of the varia-
tions, such as scale and changes in action speed could be
solved by scaling the template and searching over the scales.
However, it would be difficult to generalize to different
styles of the same action, or the same action seen from dif-
ferent viewpoints. We now describe how scores from multi-
ple training templates can be combined to build a classifier.
Employing multiple templates enables us to generalize over
the variability in observed actions. A straightforward ap-
proach could attempt to match all templates to the video
and use a k-nearest neighbor classifier. The challenge with
this approach is that the distances to each template are not
directly comparable. Furthermore, different features such
as our region intersection and flow consistency lie in com-
pletely different spaces. While there are a number of classi-
fiers that one could use, we chose to use SVM because of its
reported success in a wide range of applications. We train



Figure 5. Notice how the silhouette stays constant during this part of the hand-clapping event. More generally, a fundamental limitation of
such shape features is that they cannot represent motion inside the silhouette.

Figure 6. These two different actions (clapping and boxing) have very similar flow and are easily confused using flow-based features. The
addition of a shape feature could easily tell that the grassy area does not contain a person and eliminate this false positive.

(a) shape fp (b) flow fp
Figure 7. False positives on found using a) shape correlation and
b) flow consistency correlation. The false positives using shape
features occur on highly textured regions, whereas the false pos-
itives using flow features occur on uniform regions. Using both
features filters out each other’s false positives.

Figure 8. The minimum correlation distance of two templates on
a hand-waving action. Notice the cycles in the action, where the
distance is minimized when the phase of the template matches that
of the action.

the SVM (using LIBSVM [5] and an RBF kernel) as fol-
lows. Given a candidate video at some space-time location,

we correlate it with a database of n template actions. This
gives us a feature vector of size n if use our region intersec-
tion algorithm, or 2n if we also include flow features. Each
dimension of the feature vector corresponds to a distance
between the candidate video location and a template action.
We then train the SVM on both positively- and negatively-
labeled regions.

5. Evaluation

We first illustrate how our algorithm performs on an
event detection task, where we try to detect and localize
an event in space-time. Only one template is used to search
the video. This is useful in scenarios where we need to
search for novel events using only one or two examples. For
this experiment, we used a real life video — a Wimbledon
2000 match between Agassi and Rafter [1]. This experi-
ment is difficult because the video contains a lot of clutter
(e.g., Figure 7a) and only a few instances of the actions are
present in the video. We manually selected an example of
Rafter serving (Figure 2a) and used it as a template to find
all other instances of him serving in the first 30 minutes
of the video. The template was scanned over all spatio-
temporal locations (with 5 frame offsets for efficiency) and
we kept the best match for each frame, assuming the action
only occurs once per frame. There were 28 instances of the
serve and we considered a detection to be a positive match if
there was at least 75% overlap between the detection bound-
ing volume and the manually-labeled event volume. Fig-
ure 10 shows the results of using various matching methods,
where we varied the matching distance threshold to gener-
ate the precision-recall curve. “Shape Baseline” is the per-



(a) (b)
Figure 9. Handwave detections in a cluttered scene and with a
moving background. Notice the difference in scale between the
template (Figure 3) and the actors.

Figure 10. Comparison of various features on 30 minutes of tennis
video in an event detection task.

formance of our shape-based region intersection algorithm
without normalizing for segmentation granularity. “Shape
(normalized)” normalizes for the segmentation granularity
and performs markedly better. In this experiment, flow-
based correlation performs better than shape-based correla-
tion. This is partly due to false positives matching on finely-
segmented crowd scenes, despite the normalization. How-
ever, combining both methods performs the best, achiev-
ing 80% recall at 80% precision. The two methods remove
the false positives from each other and therefore results in
a much higher precision. Qualitative examples of other ac-
tions we can detect are illustrated in Figures 2 and 9.

Although our goal is to detect and locate events, we
adapted our algorithm to perform video classification on the
KTH action database to compare against other algorithms.
The KTH actions database contains 25 people performing
six actions in four different scenarios [18]. Each video clip
contains one person performing an action multiple times.
This dataset is difficult because it contains drastic lighting,
clothing, and scale changes (Figure 11). Different people
also perform the actions at different speeds and orientations.
The videos were recorded using a handheld camera which
prevent simple background subtraction techniques from re-
liably extracting the person. The goal of the experiment is to
classify the video clips into one of the six actions — walk-
ing, jogging, running, boxing, clapping, and waving. Clas-

(a) (b)
Figure 11. Notice the difference in scale between some videos in
the KTH dataset. The contrast is also low making segmentation
difficult.

sifying the entire video simplifies the training and recogni-
tion process because we do not have to label each instance
of the action; we only need to label the sequence as a whole.
Following the methodology of Niebles et al. [16], we use
leave-one-out cross-validation grouped by person to mea-
sure the classification accuracy. We train the SVM clas-
sifier as follows. First, we manually label 4 templates for
each action. Each template contains one cycle of the action,
typically 15 to 30 frames long. The videos used to extract
the templates are removed from the cross-validation set. For
each template ti, we scan over all space-time locations in a
video clip. For each frame of the video, we extract the best
correlation score for each template. There is one feature f
per frame, where fi is the best correlation score to template
ti. During classification, each frame in a video clip is clas-
sified as one of the six actions and votes for the label of the
entire video clip.

Table 1 shows the confusion matrix on the KTH dataset.
The result is generated using both shape and flow features
and correlated against two templates per action. We achieve
an accuracy of 80.9%, which is comparable to the most re-
cent studies on the same dataset (Table 2). Unfortunately,
we can only loosely compare the results in Table 2 because
different groups employed different experimental method-
ologies. Like the other studies, we find that there is confu-
sion mainly between walk-jog-run and box-clap-wave. As
expected, running is more easily confused with jogging than
with walking. Boxing is also more easily confused with
clapping (horizontal motion) than waving (vertical motion).
Figure 12 shows the effect of using different features and
training on different number of templates. We are able to
generalize the actions and increase the classification perfor-
mance by training on more templates, but with diminishing
returns. On this dataset, shape-based correlation performs
better than the flow-based correlation, and performance im-
proves slightly when we combine the two features.

6. Conclusion
We propose a new spatio-temporal shape-based correla-

tion algorithm for action recognition that does not require
background subtraction for silhouette extraction. The video



Table 1. Confusion matrix using our method (combined shape and
flow) on the KTH actions database. Accuracy = 80.9%.

walk jog run box clap wave
walk 0.88 0.08 0.04 0.00 0.00 0.00
jog 0.14 0.66 0.19 0.00 0.00 0.00
run 0.04 0.15 0.81 0.00 0.00 0.00
box 0.03 0.00 0.00 0.84 0.10 0.03
clap 0.00 0.01 0.00 0.12 0.79 0.07
wave 0.00 0.00 0.00 0.06 0.06 0.88
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Figure 12. Results on the KTH actions database. Training on more
templates improves results with diminishing returns. The com-
bined shape and flow features perform better than either alone,
especially with few training examples.

Table 2. Although our method is not specifically designed
for whole-video classification, our results on the KTH actions
dataset [18] are competitive with recent studies.

Related work Accuracy
Our Method (shape + flow) 80.9%
Ke et al. [12] 63.0%
Schuldt et al. [18] 71.7%
Dollar et al. [10] 81.2%
Niebles et al. [16] 81.5%
Jiang et al. [11] 84.4%

is segmented in space-time using mean shift, which gives
us a hierarchy of segmented regions. Our matching algo-
rithm can efficiently calculate the distance between a tem-
plate and the over-segmented video. The results are compet-
itive with the state-of-the-art on a standard dataset and we
show that combined shape and flow-based features perform
better than either alone. For future work, we will explore the
effects of other region segmentation and classification algo-
rithms. Further, we plan to explore semi-supervised learn-
ing of template actions to minimize the labor required to
label them.
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