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Abstract

The coating of a fluorescent lamp with fluorescent paint is an example of a complex industrial

process. Improved control of this process could lead to reduction in the cost of producing a lamp.

Modeling the process is necessary for improved control. As a first step, a study of the coating process

at the Wcstinghousc Fairmont Works in Fairmont, West Virginia has been made. The study

included two criterion, or dependent, variables and 12 predictor, or independent variables. Analysis

of the study data has produced a linear regression model with five independent variables which

accounts for 58% of the variation in coating thickness. Also, a set of linear classification functions has

been found which correctly classify 92% of visual defects from 12 input variables, using the training

data.

These preliminary models have been used to design a controlled experiment. The controlled

experiment will allow the significance of seven independent variables in determining optical density

and visual defects to be established conclusively.
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Chapter 1
The Coating Process

1.1. Introduction

The Carncgie-Mcllon University Robotics Institute research effort to study the fluorescent lamp

coating process at the Fairmont Works of the Wcstinghousc Electric Company is aimed at modeling

and developing a control system for the process and providing data for an Intelligent Management

System. It is believed that improved control of the process could result in substantial benefits

including reduction of material loss, improved performance of the finished lamps, and reduced

training costs for machine attendants [Wimbcrly 81]. The objective of this project is to develop a

statistical input-output model from production data. This model is intended to be static rather than

dynamic. Such a model is appealing because detailed knowledge of the physical processes involved Is

not required. Standard statistical methods are applied to develop the model from records of the

input and output variables. The model is designed to serve as the basis for the development of a

dynamic model and computer controlled system.

The modeling effort entails three steps. The first step is to study the process and identify the

relevant input and output variables. The second step Is to design an experiment to provide the

production data. This step includes both the planning of the experiment and the specification of the

instruments required to carry it out The third step is to conduct the experiment and analyze the

results. This report covers the work done from September 1981 to May 1982, and summarizes

completion of die first two steps.

The work described in this report contributes to the Robotics Institute study of the coating process

in several ways. First, It provides a written description of the process. It describes the use of standard

statistical methods to make a static input-output model It identifies several input variables which

should be Investigated by a controlled experiment An experimental design Is suggested which offers

a good compromise between simplicity and thoroughness. Finally, off-the-shelf instrumentation

required for the experiment is described. It is the author's hope that this report shows that



experimental modeling of the coating process is practical, and that others who may work on making

such a model will find the information provided here useful.

The ultimate goal of this work is a control system for the coating process. The static model which

is the topic of the present work can be used to determine set-points for such a control system. The

process variables would then be maintained to these set points by individual closed-loop systems.

The set points are derived from the regression model developed in Chapter 3. The regression model

does not imply that any combination of the process variable values is acceptable; rather, the model is

valid over only a limited range of values. The nominal value of the process variable over which the

regression model is calculated can be taken as the starting point. These values can be adjusted

gradually until the regression model is satisfied. The process variable values which satisfy the model

can then be used as set-points. Closed-loop control requires a dynamic model of the process. Such a

model can be developed from observations of the input and output variables of the process. The

static model described in subsequent chapters can suggest which variables arc significant, paving the

way for future development of a dynamic model and feedback control system. The issues are

amplified in [Box 70].

1.2. Overview of the Report

In this chapter a description of the. coating process on Line 1 at Fairmont, West Virginia is

presented. Chapter 2 describes a preliminary study of the process made in November of 1981.

Chapter 3 contains a review of the statistical methods used to analyze the study data, and the

preliminary models derived arc presented. In Chapter 4 a design for a controlled experiment and the

requirements for hardware to carry it out are set forth. Conclusions and a summary of the report are

found in Chapter 5.

1.3. The Coating Process

The coating of a fluorescent lamp with fluorescent paint is a multi-step process. A block diagram

of the process is shown in Figure 1-1. Each of the steps is discussed in turn. The process begins with

an tincoated glass tube, open at each end The tubes are suspended vertically on a conveyor (chain)

by an operator. From this point the tubes are washed, coated with paint, dryed, etched with a

trademark, and baked The glass is treated with sulfur dioxide gas to reduce friction between tubes*

die ends of the tubes are brushed, and the tubes are then inspected visually for defects. Except for

mounting and inspection, each step of the process is completely automatic. Tubes pass through the

process at a rate of several thousand per hour.
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Figure 1-1: The Coating Process

The quality of the coated tubes is accessed by coating thickness and freedom from visual defects.

Coating thickness can vary from tube to tube, and from end to end in an individual tube. Coating

which is too thick or too thin results in poor performance of the completed lamp, and, in the case of a

thick coating, waste of fluorescent paint The presence of visual defects in the coating, such as

uncoatcd areas, bubbles, or veils is unacceptable.

1 .3 .1 . The Wash P r o c e s s

In the first step of the coating process, the tubes are washed to remove dust that may have

accumulated during their storage. The tubes enter the wash enclosure end up (Figure 1-2). Hoi wash

water (190 °F) is discharged from nozzles above the tubes. The wash water Is made up of dc-ionized

water and a surfactant De-ionized water is added from time to time to make up lost volume. After

flowing over the tubes* the wash, water falls Into a tank where it is re-heated and pumped back

through die nozzles. As time passes* impurities, collect in the water. The water is changed daily to

limit the buildup. The tubes pass through the wash in about 15 seconds and then pas- to the paint

coating area. The passage takes about three minutes* During this time, excess water drips out and

the tubes arc at toast partially dry by the time they reach the paint coating turret A blast of

compressed air is directed onto the tube1 hanger to remove water caught between the hanger and tube.

Impurity of the wash water is monitored by a conductivity meter. Should the conductivity rise above

a sctpoixu; the machine operator adds de-ionized water to the wash. Wash water temperature is

monitored by a thermocouple and controlled by a comercially available controller*
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1.3.2. The Paint Coating Process

The paint coating system shown in Figure 1-3 consists of a mixing tank, a line tank, a delivery

pump, a paint turret and a recover)' basin. The paint is mixed in 100 gallon lots in a mixing tank. The

paint is made up of de-ionized water and a water-soluble lacquer. The lacquer is added to produce

the desired viscosity. The fluorescent material is added as a powder. The paint then consists of

fluorescent paint particles held in suspension in the water-Iacqucr mixture. Paint is periodically

transferred to the line tank from the mixing tank by an electric pump.

When the paint reaches the coating line, a portion is bled off to the drip basin, and an additional

sample is drawn away to a viscosimctcr. The remainder is passed through a mesh filter and flows to a

reservoir directly above the paint turret.

The paint turret consists of a number of nozzles, each fitted with a cam actuated valve. As the

turret rotates, a tube, still in vertical position, is transferred from the conveyor to the turret. The

valve actuator senses that a tube is in place, and the valve is opened for a fixed period of time. Paint

flows from the valve into the top of the tube, and then flows by gravity, coating the entire interior

surface of the tube. The valve is closed again, and the turret rotates back to the conveyor. The tube m

transferred buck to the conveyor and passes to the drying hood.

Beneath the turret and drying hood lies the drip basin. Excess paint drips from the tube and m
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strikes the tube. Thh is done b> wirying the ski width and placing wire mesh in the slot and results

in air uiutities which win oxer a range of a few hundred feet per minute. The purpose of varying

the velocity is to achieve uniform end-to-end thickness of the paint, which tends to creep down the

walls of the tube. ITic drying process is depicted in Figure 1-4,
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Figure 1-4: The Drying Process
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-uftcs 'he tube 'ITiis is done by varying the slot width and placing wire mesh in the slot and rest

•r air velocities which vary over a range of a few hundred feet per minute. The purpose of varyi

Ac velocity is to achieve uniform end-to-end thickness of me paint, which tends to creep down <

Jails of the tube. The drying process is depicted in Figure 1-4

•STEAM HEATING COILS

TOLEHR

DRYING HOOD
ENCLOSURE

FLOOR LEVEL
AIR RETURN

THERMOSTAT

FROM WASH

Figure 1-4: The Drying Process

The drying hood Is partially enclosed. A return duct gathers the air from the floor of the

am The air is then propelled by a large blower through a duct where it is heated. It then passes

oteritead to a set tf masifolds and ultimately back to the slots,. The duct work is fairly air tight, but'.

3ere arc epeningi under the hood where the tubes pass in and out and these openings allow

..-&&&£ airio enter.

1*3,4, ithring Process

The ielrisg Process» depicted la Figure 1-5. When the tube exits the drying hood, the paint is

¥M€\tL Be tubes are released from the chain, and fall onto a ramp. From the ramp, they rol

Mto a aonieyor *hich tarries them pm the etching station where one end of the tube is marked will

i trademark mi trade-name
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"The tubes then enter the Lchr oven. In the oven they arc subjected to temperatures of over

1000 °F. Air is blown into the ends of the tubes to create an oxidizing atmosphere. Binders in die

paint arc burned away, leaving only the fluorescent material. (This oxidation is separate from that of

the combustible gas fuel, which is carbureted before entering the oven.) Near die end of the Lchr,

sulfur dioxide gas is introduced. Hie gas reacts with the glass on the surface of the tube, imparting a

quality of slippcrincss called "lubricity" to it.

Upon leaving the Lchr, the tubes arc cooled. They then pass by a series of brushes. The brushes

contact the ends of the tubes and remove the paint from the inner surface around the edge, or

"collar", to present a clean surface to be fused to the filament mount.

SULFUR
DIOXIDE GAS

TEMPERATURE
CONTROLLER/INDICATOR

END OF
COATING LINE

FROM
DRY

Figure 1-5: ITie Lehring Process

1.3.5, Inspection

At the end of the conveyor, the tubes roll over a lighted table. An Inspector checks the tubes for

defects and removes those tubes in which defects are visible. The tubes then pass onto another

conveyor where they are transferred to another line for ftirther processing.
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Chapter 2
Statistical Study of the Process

2.1 . Introduction

The study of the coating process is designed to answer the following questions:

1. What is the range and variability of the input and output variables?

2. What precision is necessary to measure significant changes in the variables?

3. Which of the input variables are significant in determining the output variables, and
therefore merit further study?

A study differs from a controlled experiment in that no attempt is made to control the input

variables and operating conditions. Instead, the input and output variables arc observed and their

numerical values are recorded. The data are then statistically analyzed to seek out relationships

between the input and output variables.

A study is less powerful than a controlled experiment because:

1. A study cannot guarantee that all possible values of the variables are encountered, and
therefore the resulting model may be restricted in its range of validity.

2. A study cannot guarantee that the independent variables are uncorrelated and is therefore

subject to the problems associated with multicollinearity.

A study of the process is useful as an initial effort because it is much easier to carry out The study

can then serve as the basis for choosing the variables and treatment levels for a controlled

experiment In this chapter the study design, including the identification of the variables to be

measured* the method of measurement, and special considerations for time delays in the process are

considered. The study data are analyzed in Chapter 3.



14

2.2. Study Design

Design of the study includes identification of the process variables to be measured and formulati

of the plan for carrying out those measurements.

2,2.1. Process Variables

l l L L T h c Output Variables

There arc two output variables of interest: optical density and visual defects. Optical density is

measure of the thickness of the coating of fluorescent paint on the inside of the tube. It is of intere

because It affects both the luminosity and the lifetime of the fluorescent lamp. The effect of optic

density on initial luminosity is shown in Figure 2-1.

ZERO HOUR
LUMENS

SOURCE: C.E. MOORE [MOORE 80]

•
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Figure 2-1; Luminosity vs. Optical Density

tytfcri dearty k mmmmi with an mstrumem made by Westinghousc. It consists o f «

• c a t a m i top and a p h ^ e l cedased In a box. The tube to be measured is inserted
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measured by a milliammctcr. The higher the reading, the thinner the coating; the instrument

actually measures the transmittancc of the tube. The scale is arbitrary and although the reading is in

milliampcrcs, optical density is a dimcnsionlcss number. The correlation between the weight

(amount) of fluorescent powder in the tube and its optical density as measured on the Westinghouse

instrument is known. (Analysis of data for a typical set of tubes produced the relation

powder weight =-0.25646 optical density +13.05165

where powder weight is in grams and optical density is in optical density units. The data were

supplied by C.E. Moore [Moore 80].) The correlation varies among paint lots. A correction factor,

known as the mill factor, can be applied to the correlation to compensate for the variation1. The

nominal value of optical density is 29 ± 1 optical density units.

"Visual defects" is a term used to describe a number of problems which make the tube

unacceptable for use. They arc detected visually by a human inspector at the end of the coating line.

The various types of visual defects are enumerated in Table 2-1, along with their suspected causes.

2.2.1.2. Input Variables

The input variables are the process variables which are thought to affect the outcome (optical

density and visual defects). Some arc measured and controlled during normal operation; others are

not The list of input variables in Table 2-2 was chosen in consultation with Westinghouse personnel-

Table 2-2 lists all of the variables which are believed to affect the outcome.

2.2.2. Study Plan

The study was carried out by a group of CMU students and researchers, and Westinghouse

engineers. The study is of the sample survey type [Neetcr 78]. With the coating line in normal

operation, tubes are chosen randomly at a rate of about one per minute from the end of the coating

line. The optical density of the tube at one point near its center is read and recorded, along with the

time of the observation. Concurrently, measurements of the input variables arc made and the

measured values recorded. A data table of the optical density reading and corresponding input

variable values is then built up.

Visual defects are studied concurrently with optical density. Each tube rejected by the inspector at

the existence of the mill factor wss panted out by We&tkighcwse Engineer George Preston in a meeting at CMU oa July 2,
19GL
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Table 2-1: Types of Visual Coating Defects

CODE VISUAL DEFECT
NUMBER

1 Bubbles

Streaks

Short Coat (top)

Texture

Hangar Marks

Partial Coat

Density

TMn End (top)

SUSPECTED CAUSE

Obstruction in paint pump vanes
Agitator on in Mill Room
Low volume in Mill Room
Improper head closing on turret
Too much surfactant (small bubbles)
Too little surfactant (large bubbles)
Insufficient bubble breaking air
Insufficient bubble breaker

Wash water dirty
Too much surfactant
Drying conditions not proper
Tubes not hanging straight

Insufficient paint in system
Dirty filters

Improper milling
Not enough surfactant or defoaming agent
Too much surfactant or defoaming agent

Too much heat
Air blast too weak to blow wash
water of f hanger (water marks)

Improper head adjustment
Paint too heavy
Paint too th in
Dirty wire mesh f i l t e r

Line stops
Paint too thin
Paint too heavy
Drying pattern

Bubble breaking air
Drying pattern

e ertd ef the coating line is noted along with the reason for and time of the rejection. The deftc

k! &c commencing input variable values are added to the data table. This process continued b

u ^ l hc-n en cads of r*o days, until the data table contained several hundred observations.

:f »c study, fee data are analyzed statistically. What is sought are relationship
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Table 2-2: Variables 'Thought to Determine Coating Properties

VARIABLE MEASUREMENT CONTROL
(During Normal Production)

1. Wash Water Temperature
2. Wash Water Conductivity

Paint Viscosity
Paint Specific Gravity
Paint pH
Drying Air Temperature
Drying Air Velocity
Drying Air Humidity
Percent Excess Oxygen
in Lehr Gas-Air Mixture
Natural Gas Flow Rate
Lehr Oven Temperature

Conti nuously
Continuously

Continuously
Periodically
Not Measured
Conti nuously
Not Measured
Not Measured

Not Measured
Conti nuously
Continuously
Continuously

Automatic
Manual
(Corrected Daily)
Semi-Automatic
Manual
None
Automatic
None
None

None
None
Automatic
None

between the input and output variables. The range and mean value of the variables in the survey,

useful for specifying measuring instruments and judging the physical, as opposed to statistical,

significance of observed variation, are also computed.

2.3. Data Collection

2.3.1. Output Variable Measurement

The methods used to measure each of the output variables in the study were as follows:

1. Optical Density: Tubes were selected randomly at the end of the coating line at one
minute intervals. Optical density was measured with the Wcstinghouse instrument and
recorded with a precision of 0.1 optical density units.

2, Visual Defects: All visual defects noted by the inspector were recorded.

2.3.2. Input Variable Measurement

The methods used to measure each of the input variables in the study were as follows;

I. Wash Water Temperature: An existing thermocouple in the wash water tank was used
Readings were taken at the rate of one every two minutes on the first day and one every
five minutes on the second day with a precision of 0.5 °F.
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2. Wash Water Conductivity: The existing conductivity meter was used. The probe was
mounted in the return pipe from the pump. Readings were taken every two minutes on
the first day and every five minutes on the second day. A precision of 0.5 /xS/cm was
used.

3. Paint Viscosity: The on-line viscosimcter was used. The probe was mounted in a

chamber filled in parallel to the paint turret. Readings were taken about every nine

minutes the first day, and every three and one-half minutes the second with a precision of

0.1 cP.

4. Paint Specific Gravity: A hydrometer with a precision of 0.005 s.g.u. (gm/cm3) was
used. The sample was taken from the drip basin oscillator once every nine minutes the
first day and once every six minutes the second day.

5. Paint pH: A Fisher Accumet Model 525 Digital pH Meter, with a precision of 0.001 pH,
was used. Readings were recorded to 0.01 pH. The sample drawn for the specific gravity
measurement was used. Readings were taken once every nine minutes the first day and
once every six minutes the second day.

6. Drying Air Velocity: The instrument was an Anemotherm model 60 hot tip anemometer.
Equipped with a hand-held probe, it is precise to 25 ft/min. The sample was taken at the
first vent of the drying hood. Readings were taken once every two and one-half minutes
the first day and once every five and one-half minutes the second.

7. Drying Air Temperature: A mercury-filled glass thermometer was read to a precision of
0.5 °C Air temperature was sampled at the same spot as air velocity ever)' two and
one-half minutes the first day and once every five and one-half minutes the second day.

8. Drying Air Humidity: The wet-bulb dry-bulb method was used. Wet-bulb temperature
was measured with a mercury-filled glass thermometer with its bulb covered with a
dampened cloth. Readings were recorded with a precision of 0.1 °C. Wet bulb
temperature was sampled at the same place and rate as drying air temperature.

9. Percent Excess Oxygen in Lehr Air-Gas Mixture: A Thermox was temporarily Installed

in the fuel line to the Lehr oven. It was read every 2 minutes the first day and every one
and three-quarter minutes the second day to a precision of 0.01% excess O2-

10. Combustible Fuel Gas Flow Rate: A ball and tube type gage permanently installed o&

the Lehr gas line was used. Readings precise to 25 ftVhr were recorded every two

minutes the first day and every one and three-quarter minutes the second day.

11. Lehr Temperature: A thermocouple located inside the Lehr oven provides a temperature
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signal for the oven temperature controller. The controller provides a panel meter read-
out of temperature which can be read to 1.0 °C. Readings were recorded every two
minutes the first day and every one and three-quarter minutes the second day.

12. Sulfur Dioxide Plow Rate: A ball and tube type gage which can be read to 0.005 ftVhr is
permanently installed in the supply line to Lehr. Readings were recorded every two
minutes the first day and every one and three-quarter minutes the second day.

Measurements were made and recorded with pencil and paper by the observers. One person was

assigned to record optical density and visual defects; one to Lehr temperature, gas flow, SO2 flow,

and % excess O2; one to humidity, air temperature and air velocity (and specific gravity on the second

day); one to paint pH, viscosity, and specific gravity ( and wash water temperature and conductivity

the second day); and one to wash water conductivity and temperature. Each observer also recorded

the time of each measurement to the nearest second. Time measurement was by wristwatches

synchronized at the beginning of each day.

2.4. Interpolation

Because the process of coating a tube takes place over a 21 minute time period, the inherent

process time delays must be taken into account. For example, the optical density of a tube is

measured when it reaches the end of the line, 21 minutes after it is subjected to the wash process.

Thus the current optical density reading must be paired with the wash water temperature and

conductivity measurements made 21 minutes earlier.

To determine these time delays, measurements of the time interval from the point where the

various input variables impinge on the tube to the end of the process were made. The average of two

sets of measurements are listed in Table 2-3.

A second delay is introduced by the time required for the material (paint, wash water and drying

air) whose qualities are measured to travel from the point of measurement to the point of

impingement on the tube. These time delays range from a fraction of a second to several seconds.

The effect of these delays OQ the study was judged to be negligible because the measurement times

are likely to ha?e errors of the same order of magnitude as these delays. Therefore, they are ignored

in this study.

The data table described in Section 2.2.2 consists of a series of 457 cases. Each case consists of a
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PROCESS
STEP

Enter Wash

Mid-Lehr

End Lehr

Table 2-3: Time Delays for Input Variables

VARIABLES

Conductivity, Temperature

Enter Painting Viscosity, pH, Specific Gravity

Enter Drying Air temp., Humidity, Velocity

Gas, O2, Temperature

SO2 flow

TIME TO END OF
SECONDS

1213

1047

1006

141

96

PROCESS

MINUTES

20.2

17.5

16.8

2.4

1.6

dependent (output) variable and its associated independent (input) variables. The value of tfie

independent variable is the value that existed when that variable impinged on the tube. The time of

impingement is found by subtracting the delay time for that variable from the time of measurement

of the output variable.

The value that existed when the input variable impinged on the tube is not necessarily recorded,

since the period of each measurement was not controlled. More likely, the input variable impinged

on the tube at a time which falls between the times of two recorded values. The input variable value

for the data table is determined by a linear interpolation between the two recorded values whose

measurement times bracket the time of impingement The independent (input) variable values used

in the analysis are therefore interpolated values.

2.5. Summary

A sample survey study of the coating process on Coating Line I at the Westinghouse Lamp Works

at Fairmont, West Virginia was made on November 4thand 6thof 1981. Two output variables and

twelve input variables were measured. The recorded values were used to calculate, by time shifting

and interpolation, the values of the input variables at the time of impingement on a tube for which

the output variables were measured. The study data are analyzed in Chapter 3.
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Chapter 3
Data Analysis

3.1 . Introduction

The objectives of this chapter arc to review and apply statistical methods to analyze the study data.

Separate treatment of optical density and visual defects is necessary because the former is a

continuous, ratio-level variable, arid the latter is a discrete, nominal-level variable. A standard

statistical package, Statistical Package for the Social Sciences (SPSS) [Nie 75] is used for the analysis.

3.2. Descriptive Statistics

Because the variables were not controlled in the study, it is of interest to sec how much variation

occurred. The percentage of variation is given by %V = oVJxlOO% where X is die mean and a is

the variance of the variable. The percentage of variation for each variable is shown in Table 3-1.

Table 3-1: Percentage of Variation for each Study Variable

%V, NOV. 6
3.08
0.32
8.49
0.15
1.29
0.56
1.32
1.30

1.79
2.09
0.44
2.31
0.73

VARIABLE
Optical Density
Wash Temperature
Wash Conductivity
Paint Specific Gravity
Paint Viscosity
Paint pH
Drying Air Velocity
Drying Air Temperature
Temperature Difference
(Humidity)
% Excess Oxygen
Lehr Temperature
Lehr Gas Flow Rate
Sulfur Dioxide Flow

%V, NOV.
2.77
0.09
3,96
0.29
2.62
0.18
4.32
1.25

4.62
2.49
0.31
2.14
0.11
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3.3. Optical Density as a Function of the Process Inputs

3.3.1. Bivariate Correlation

Investigation of the relationship between optical density and the independent variables begins with

computing the simple correlation for each. The linear relation of a single independent variable J t o a

single dependent variable Kis often measured by Pearson's correlation coefficient

where

and

A =̂ meanofAr = -^2/=i^r/>
y= mean of Yt

A/= I ̂ observation of X,
Yf= i^observation of F, and
;i= number of observations of X and Y. [Nic 75]

The correlation coefficient r takes on values from + 1 to — 1. The magnitude of r indicates the

strength of the relation and the sign its sense.

The probability that the sample for which the correlation is computed is drawn from a populatioii

in which the true correlation is zero is called the significance of r, and is found by computing the t

statistic p i e 75}

/ n i<— *?

t h e / statistic is distributed as Ihe Student's Uf{tj\ where v is the number of degrees of freedom

(/»—2 in this case). Tie / distribution is similar to the normal distribution in shape, being slightly

flatter md broader. As * Increases, the / distribution becomes indistinguishable from the

distribution. The significance ofris
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which is called the two tailed test of significance; it docs not assume that / is positive or negative. The

significance is the probability that the population correlation p = 0 even though the sample'

correlation r ^ O ; i.e., that there is no systematic relation between the dependent and independent

variable in the population at large even though such a relation was found in the sample.

Table 3-2 shows the bivariate correlation between optical density and each of the input variables,

for each of the two days. The correlations were obtained by an SPSS SCATTKRGRAM analysis.

The correlations range from 0 (completely uncorrelatcd) to 0.6785 (moderately correlated). rITie

results arc nearly all significant to the 0.001 level; i.e., there is less than 1 chance in 1000 that the true

correlation is 0. The high degree of significance is due to the large number of cases examined.

There is considerable disagreement in the results of the two days, both in magnitude and sign of

the correlation coefficient. It is doubtful that the relationships actually changed so much over the

space of two days. More likely, the data have serious systematic error. ITiis error is most likely to

have occurred on the first day, when the data takers were learning their jobs. The first day's data are

therefore dropped in the subsequent discussion, and henceforth only the second day's data are

considered.

3.3.2, Linear Regression Analysis

The next step in the analysis of the study data is a regression analysis. The analysis allows the

independent variables to be ranked according to their marginal value in predicting optical density.

That is, we can find the contribution of a variable to explaining variation in optical density over and

above die variation already explained by other variables. This allows us to concentrate future efforts

on those variables which appear to be most useful as predictors. Ultimately, the development of a

regression model also allows us to predict the optical density which will result from a set of input

variable values.
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Table 3-2:

Independent Variable

Water Temp.

Conductivity

Specif ic Gravity

Viscosity

pH

Air Veloci ty

Dry Bulb Temp.

% Excess 02

Lehr Temp.

Gas Flow

S02 Flow

Temp. Difference
(Humidity)

Correlation of Input

Correlation

Nov. 4
(53 Cases)

Insuff ic ient
Variation

-0.3978
(0.003)

-0.4001
(0.003)

-0.5158
(0.000)

0.3715
(0.006)

0.2422
(0.081)

0.0087
(0.951)

-0.5352
(0.000)

0.2779
(0.044)

0.5813
(0.000)

0.0000
(1.000)

0.4882
(0.000)

Variables with Optical Density

Coef f ic ient /

Nov. 6
(213 Cases)

0.0241
(0.726)

0.4911
(0.000)

-0.3219
(0.000)

-0.4102
(0.000)

-0.5109
(0.000)

0.0947
(0.168)

-0.6785
(0.000)

0.3251
(0.000)

-0.1158
(0.092)

-0.2745
(0.000)

. 0.1517
(0.027)

-0.3144
(0.000)

' (Significance

Both
(266 Cases)

0.0800
(0.193)

0.3630
(0.000)

-0.0962
(0.118)

-0.4023
(0.000)

-0.4283
(0.000)

0.0970
(0.115)

-0.1792
(0.003)

0.1352
(0.027)

-0.0249
(0.686)

-0.0766
(0.213)

0.0920
(0.134)

-0.0118
(0.849)

33*2.1. Finding the Model from Experimeiital Data

IH multiple linear regression [Neetcr 74J, the dependent variable Tis assumed to be linearly related

to the independent variables I%JP ...tXH according to the regression model
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where Yj is the response to the /^observation, fiofii,... ,Pp-\ arc parameters (the regression

coefficients), X^X^ ... <Xip-.l arc the known values of the /^observation, and e, arc independent

JVX0,CF2) random errors.

The regression function is

and estimated regression function is

where Y' is the value of the estimated regression function at the values of XltX2,... ,Xp^l and

. . . tbp-i arc the sample estimates of the parameters.

The sample estimates, or regression coefficients, are chosen by the method of least squares. Let
n

be the sum of n squared deviations. The least squares estimators arc chosen to minimize Q by setting

the partial derivative of Q with respect to the p least squares estimators equal to zero. The result is a

set of p simultaneous equations, called the normal equations.

The normal equations for a multivariate linear regression model can be expressed concisely in

vector notation. Let b=[Z>0,£lf... ,Ap-J7 ' be the vector of least squares estimator regression

coefficients, and Y = [YltY2,... JJiT be the vector of n observed responses. Let X be the [nxpl

matrix of known independent variable values, and define Xfo= 1, so that the /^row of X is

[ 1, Xilt Xi2 Xfp^ ]

The normal equations are then

(X7X)b=X rY

and the vector of regression coefficients is

b=(X r X)" 1 X r Y

Once b is computed, the estimated regression function can be written as

r=xi

where Y^IY/ , YJ,..., Y/f* is the vector of fitted values. The equation for 7 / in terms of X and b is

a linear model obtained from the experimental data.
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3.3.2.2. resting the Significance of the Regression Coefficients

The test of the significance of the simple correlation coefficient r is made using the t statistic. A

similar test of the regression coefficients b* is made using the I* statistic. The /•** statistic is

distributed as the /'"ratio, a tabulated probability function with parameters px, the numerator degrees

of freedom, p2, the denominator degrees of freedom, and a, the level of significance. The F

distribution/(/0 is asymmetric and of domain 0 < F< oo.

The level of significance a is the probability that the population regression coefficient/?^ is equal

to zero given the sample estimate regression coefficient b*. The significance is given by
F*

1- f AF)dF
o

The tables of F distributions list values of F{php2) for common levels of significance a such as 0.O5,

0.01 and 0.001.

To test the regression coefficients, the level of significance a is chosen. The statistic

is calculated as follows:

SSE= 2 ?=i (JY-" ^/)2 IS ^ e e r r o r s u m °f squares. A separate error sum of squares is
calculated for both the full and reduced model.

The parameter CJ> denotes the reduced model; i.e., the model excluding those variables
whose regression coefficients are to be tested.

The parameter SF denotes the full model; i.e., the model with all variables included.

dj\%) = /?—p+q is the number of degrees of freedom of the reduced model error sum
of squares, where n is the number of observations, p is the number of parameters in the
lull model and q is the number of variables removed from the reduced model.

~n—p is the number of degrees of freedom of the full model error sum of
squares.

The critical value of Ff F{ajr±tp^ is found from the table of Fdistributions given the significance

level a, numerator degrees, of freedom Pi = df{R)—df{F\ and denominator degrees of freedom

^i~€{F)* If F* >Fta$pvp^ then It is more than (l-cr)xlO0% sure that fifry^O, and the

estimate b^ is said to be significant at the a leveL
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When the test is applied to only one regression coefficient/?* at a time, #= 1 and the test is of the

marginal contribution of die variable Xk given that the remaining /;—2 variables arc in the model

The test can also be applied to all of the coefficients at once. In this case, the hypothesis under test is

that )81 = 0 and fi2 = 0 and . . . and / J ^ ^ O . Thus, q=-p— 1. If F* > I\atpltvJ) the conclusion is

that there is a regression relation between the variables XitXl%... ,Xp^ taken together and the

dependent variable Y. Both types of test are necessary when there is intcrcorrclation in the variables,

since the marginal contribution of each variable may not be significant, but the contribution of some

or all of the variables taken at once (and hence their regression coefficients /?*) may be significant.

3.3.2.3. Forward Entry Regression Procedure

The forward entry regression procedure used by SPSS operates in the following manner [Nie 75].

The user selects three parameters used to control the program. They are n, F, and T where

n is the maximum number of independent variables to be entered into the equation.
The default value is 80.

F is the F-to-Entcr value. It is compared to the F ratio computed for a regression
coefficient for a variable not yet in the equation. The value computed is the F ratio for
that variable if it were brought into the equation on the next step. The Fratio is used in a
test of significance for the estimated regression coefficient. The default value is 0.0 L

T(Q< T< 1) is the T-to-Enter value. It is compared to the tolerance of the independent
variable being considered for inclusion in the model. ITie tolerance is the proportion of
the variance of that variable that is not explained by the independent variables already in
the regression equation. The default value is 0.01.

The procedure also uses the coefficient of multiple determination R2 as a measure of the amount of

variance in the dependent variable explained when there are p parameters in the regression equation.

The coefficient of multiple determination is defined as

SSE
SSTO

where SSR = I>(Yf- Yf is the regression sum of squares, SSE='2(kYf— Yt)\ is the error sum of

squares, and SSTO = S( Ky— Yf is the total sum of squares. As p increases, SSE remains the same or

decreases. Thus R2
p increases as p increases. The larger the increase, the greater the contribution of

the last variable added to the explanatory power of the regression equation. fNeeter 74]

The forward entry procedure computes the tolerance T for each variable. The tolerance is
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SSE/SSTO for a regression of the k—l independent variables in the equation against the k^

independent variable about to be added. The purpose is to check for variables highly correlated with

variables already in the equation. If the correlated variables were included, the X^X matrix would

become ill-conditioned [Nie 75].

The forward entry procedure begins by computing a simple (one independent variable) regression

for each of the p independent variables. rFhc independent variable with the largest R2 is chosen to be

in die model. The F* statistic

* _MSR(Xk) _SSTO-SSE(Xk) A
t k ~ MSE{Xk) ~~ («—1)—(#i—2)

OCD ^ SSE

in which MSR = " _ , is the mean regression sum of squares , and MSE= - ^ — is the mean

error sum of squares, is then calculated for the k independent variable. If the F* statistic is greater

than the specified F-to-enter, calculation continues. Otherwise the process stops. Next, the tolerance

is computed and compared to the T-to-enter value. If the T statistic is greater than the T-to-enter

value, the variable is allowed to enter the model. If not, die process stops.

Each possible two-variable regression equation is then found. The F* statistic

PJ ~ MSE(XbXj) ~ ( / i - 2 ) - ( n - 3 ) # ( « -3 )

is calculated, as is 7. If F* and T exceed F-to-entcr and T-to-enter, the variable with the largest

increment in R1 is allowed to enter the equation.

The process continues until cither

(1) n is exceeded, or

(2)F*< F-to-enter, or

(3) T£ T-to-enter, or

(4) aU of the independent variables arc in the equation. [Neeter 74], [Nie 75]

m tit case where the reduced model las no variables, them is only one parameter, the constant /?0. Then Y[ = Y and ME
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3.3.2.4. Results of Linear Regression Analysis for November Data

The data from November 6 were submitted to analysis by the SPSS forward entry regression

procedure. The results arc summarized in 'Fable 3-3.

Table 3-3: Forward Entry Results

INPUT VARIABLE

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

Drying Air Temperature
Paint pH
% Excess Oxygen
Paint Specific Gravity
Wash Water Conductivity
Drying Air Velocity
Lehr Oven Gas Flow
Dry-Wet Bulb Difference
Sulfur Dioxide Flow
Paint Viscosity
Lehr Temperature -
Water Temperature
Unexplained Variance

R2p CHANGE

0.46035
0.04858
0.02230
0.01337
0.02274
0.01431
0.00479
0.00407
0.00338
0.00160
0.00118
0.00009
0.40324

BETA

-0.38651
-0.11303
0.06319
-0.33275
0.29077
-0.13811
-0.11486
0.12172
-0.06794
-0.05714
-0.03782
-0.01243

MARGINAL F

12.129
1.229
0.658

21.795
9.587
6.649
2.264
3.401
0.911
0.542
0.560
0.046

OVERALL F: 24.665 SIGNIFICANCE: 0.000

In the table, the column labeled R2
p Change represents the marginal decrease in residual variance in

optical density. This statistic may be interpreted as the fraction of the variance explained in optical

density by each independent variable as it is added to the regression model. Thus, drying air

temperature accounts for about 46% of the variance in optical density when it is added to the

equation first. Paint pH accounts for an additional 4.9% when it is added to the model and drying air

temperature is already in the model, and so on.

The F* statistic shown is also marginal in the sense that it is a measure of the significance of an

individual regression coefficient /?# given that all of the other independent variables are already in

the equation. The significance of pk is tested thus: If F * > ^(0.01,12,200)=2.18 then /?£=^G. Thus,

if F* > 2.18, we are 99% sure that ($% is not zero, given that all of the other variables are in the model.

This test only tells us about the significance of /?# in the particular model for which the F* statistic

was computed. Therefore, we cannot use the marginal F* statistic to reject more than one variable in

Table 3-3. Rather, we would reject one variable, recompute the F* statistics for the resulting eleven

variable model and use them to reject the next variable, until all of the remaining variables in the

model are significant. This method of eintifiating variables from the model because their regression

coefficients are not statistically significant is- called backward elimination. A backward elimination

was carried out in the same SPSS ran as the forward entry procedure, and the reduced model shown

in Table 3-4 was obtained



Rp CHANGE

0.10135
0.18024
0.24120
0.03337
0.02605

BETA

-0.36677
-0.33168
0.39465
-0.14096
-0.16805

MARGINAL F

36.071
39.138
38.435
7.807
12.909
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Table 3-4: Reduced Model for Optical Density

VARIABLE

Drying A i r Temperature
Paint Speci f ic Gravity
Wash Water Conductivi ty 0.24120
Drying A i r Veloc i ty
Lehr Oven Gas Flow
Unexplained variance 0.41779

OVERALL F: 57.693 SIGNIFICANCE: 0.000

Tables 3-3 and 3-4 also show the standardized regression coefficients, Beta. These coefficients are

the regression coefficients found when the variables have been transformed so as to have a mean of

zero and a variance of one. The resulting coefficients are all to the same scale, and so can be

compared to assess their relative importance, under the assumption that the corresponding input

variables are uncorrelatcd. The transformation is given by

where

sk is the standard deviation of variable X^

$Y is the standard deviation of dependent variable Y

/ ? / is the standardized regression coefficient for variable X^.

With standardized coefficients, the intercept of the regression model is always zero; Le., /?0'=0.

The overall F and associated level of significance in Tables 3-3 and 3-4 is for the regression

equation as a whole.

The reduced model may be written with unstandardized coefficients as

7 = 205.958 - 0392Xx -102.949 JT2 + 0.067X3 - 0.014X4 - 0.002A;

where Y is optical density, Xx is drying air temperature ( ° C), X2 is specific gravity (s.g.u.)» X3 is well

conductivity QtS/cm\ X4 is air velocity (ft/min), and X5 is lehr oven gas flow (ft3/hr). This equation

can be used to predict optical density from the five input variable values. If this were done, the

observed value of optical density might deviate considerably from the predicted value, for
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discussed in the next section. The principal value of the analysis of the data taken in November is in

suggesting which variables should be studied further to try to produce a reliable model.

33.2.5. Interpretation of the SPSS Results

Table 3-4 lists the variables found to be significant in the present study. It is fair to ask whether

they can be ranked by the methods discussed in Section 3.3.2.4, and whether it is certain that the

other variables arc not significant. The answer to both questions is no. This is because of

intcrcorrclations and limited range in the data collected for the study.

Variables may be ranked by the percentage of variance explained, or by the size of their regression

coefficients only if the data are free from moderate to strong intcrcorrclations between the

independent variables. When the independent variables are correlated, the regression coefficients are

influenced by the correlated variables. When the independent variables are uncorrclatcd, each of the

regression coefficients is independent of the others. A single multivariatc regression or a series of

bivariate regressions would yield identical coefficients. [Younger 79]

The problem of generalizing the regression coefficients to the population also comes up when the

independent variables are correlated. According to Cooley and Lohncs [Cooley 71], the regression

coefficients found may fluctuate wildly from one sample to the next When we calculate

correlated variables make the XTX matrix ill-conditioned, and the regression coefficients become

numerically unstable [Neeter 74].

The ranking of importance of the variables by changes in R}\ that is, the percentage of variance

explained as the variable is added to the regression equation is also affected by multicollincarity. In

Figure 3-1 the case of two independent variables is illustrated Even though Xl and X1 both explain a

large portion of the variance in F, the increase in explained variance when X2 is added is small

because the two variables arc correlated. If Xx and X2 are uncorrclatcd, their regions on the diagram

would be disjoint, and the incremental increase in R2 would be the same as the total variance

explained by each.

In the correlated case, a term that is added to the equation first gets all the credit, and any

subsequent tenm get no credit for variance already explained by preceding terms. Thus we can make

JKi important and X2 unimportant by the R2 change criterion, or vice-versa, just by changing the order
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TOTAL VARIATION IN Y

VARIATION IN Y

EXPLAINED BY X1 ALONE

VARIATION IN Y

EXPLAINED BY X2 ALONE

VARIATION IN Y EXPLAINED

BY X1 AND X2 REDUNDANTLY

VARIATION IN Y

UNEXPLAINED BY X1 OR X2

AFTER YOUNGER, PAGE 332. [YOUNGER 79]

Figure 3-1:
Percentage of variation in Y

explained by Xx and X2

where Xx and Xx are correlated.

in which they arc added to the regression equation. Tables 3-3 and 3-4 illustrate this phenomenon.

The variable drying air temperature accounted for 46% of the variance in optical density in the

forward entry results, but only 10% of the variance in the reduced model The difference is simply

the order in which the variables were added to the model.

There is significant iniercorrelation in the study data. A simplified correlation matrix, showing

only those entries with moderate to strong (r> 0.5) correlations, is displayed in Table 3-5.

The second problem with the data is the small range of values taken on by some of the variables.

The input variables found insignificant in the study may still have a significant effect The problem is

that the range of values observed for some variables is so small that the effect might be masked by

measurement error.

TTie study results for optical density therefore are not conclusive, but rather are suggestive. A

controied experiment is needed to produce conclusive results. A design for such an experiment k

presented in Chapter 4.
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Table 3-5: Correlation Matrix For November 6 Data

VARIABLES

1 2 3 4 5 6 7 8 9 10 11 12

1 1

1 -0.6 -0.7 -0.5

1 -0.5

-0.6 1 0-6

"°-7 1 0.6 0.5

-0.5 0.6 0.6 1 0 5

-0.8

10 -OS 1

11 -0.5 1

12 . 0.5 0.5

KEY:

1 Wash Water Temperature 5 Paint pH 9 Percent Excess Oxygen

2 Wash Water Conductivity 6 Drying Air Velocity 10 Lehr Temperature

3 Paint Specific Gravity 7 Drying Air Temperature 11 Lehr Gas Row Rat©

4 Paint Viscosity 8 Sulfur Dioxide Flow Rate 12 Drying Air Humidity
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3.4. Visual Defects as a Function of the Process Inputs

In analyzing the effect of the process input variables on the occurrence of visual defects, we would

like to identify the variables that are good predictors of visual defects, and to be able to predict the

occurrence of visual defects from the input variable values. The SPSS discriminant analysis

procedure is suitable for analysis of data where the independent variables are continuous variables

and the dependent variable is a discrete, nominal level variable.

3.4.1. Discriminant Analysis

In discriminant analysis [Tatsuoka 71], we undertake to write a linear combination of independent

variables that shows large differences in the means of observations associated with the dependent

variable categories. The linear combination is called a discriminant function,

3.4.1.1. Obtaining the Discriminant Function

A discriminant function is of the form

where Y is the discriminant score, v=[v1,v2,... tvp]
T is the vector of weighting coefficients, and

X=pf j t ^ s . . . j y ^is the vector of p independent variables.

The object is to find the weighting coefficients v such that the category, or group, means are

separated as far as possible on the dimension Y. The criterion for measuring the difference among

several group means against Fis

_ SSB/jK-1)
~~ SSW/{N-K)

where

K is -the number of groups,

N is the number of observations,

SSB is the between-the-groups sum of squares, and

SSWk the within-the-groups aim of squares.
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The expression for the criterion is rewritten in terms of v as follows. We drop, for convenience, the

constant (.V— A") and {K— 1) factors. The bctwccn-thc-groups sum of squares SSB( K) = v7Bv where

B is the bctwccn-thc-groups sum of squares and cross products (SSCP) matrix. The elements by of

B are given by
K

for /=/

and by

where

ik is the mean value of the / independent variable in the k group,

i is the mean value of the Ith variable over all the groups,

is the number of observations in the k group, and

A'is the number of groups.

Similarly, the within-the-groups sum of squares
K

, where

is the within-the-groups SSCP matrix. The elements Skap of S* are given by

' m- ' ' njr ' ' ftp '

J "*
The discriminant criterion is then written as

SSB(Y)
SSW(Y) "

Maximizing the discriminant criterion X with respect to v yields the eigenvector-eigenvalue

problem

'=l J

in which B is of rank r, where r=min(K—Lp). (W"1 always can be found if no variable is perfectly

correlated with the others [Tatsuoka 71], and no variable has zero variance within the groups,) The

solution of the maximization problem yields r non-zero eigenvalues X^ The corresponding
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eigenvectors, normalized to modulus one, arc the weighting coefficients vectors v. Thus by
T

maximizing die discriminant criterion A, a set of rdiscriminant functions, Ym=v /nX for /»= 1,2 r
is obtained.

3.4.1.2. Ranking and Testing the Discriminant Functions

The discriminant criterion A is proportional to the distance between group means on the associated

discriminant dimension. The mm discriminant function can therefore be ranked in discriminating

power according to the magnitude of the corresponding Xm.

The significance of the discriminant functions can be tested using Wilks' A. We compute the test

statistic

where T is the total SSCP matrix.3 Since ^ =(1 + XXX1 + X2). . . (1 + Xr), A * can be

computed from the eigenvalues of W^B.

Tables of A distributions are not used to test the significance of the discriminating functions;

rather, we use A* to compute Hardens' Vaccording to

r i
L J

Bartletts' V is approximately x2 distributed with p(K— 1) degrees of freedom. Thus, we can test the

significance of all the discriminating functions taken together by using tables of x2

distributions. [Tatsuok

Each individual discriminant function can be tested by computing

L J
which is distributed with degrees of freedom (p + Jf — 2m).

lie etateat$ Ttt g of the T mttiix are ptttj t^

f 1 T i C / ^ 11

1 ISi mi i | 1=1 i=i it
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The residual discrimination after the first discriminant function is accepted is V— Vx with

(/;— 1)(A'—2) degrees of freedom. If this statistic meets the confidence level, we accept the second

discriminant function and compute the residual discrimination K- Vx— V1 with (p—2)(AT-3) degrees

of freedom, then F - Vx-V2- V3 with (p—3)(AT—4) degrees of freedom, etc., until the residual is

smaller than the confidence limit perccntilc point desired.

3.4.1.3. Ranking the Independent Variables in the Discriminant Function

The relative contribution of the Ith independent variable to the m^ discriminant function can be

judged by comparing the magnitude of its standardized weighting coefficient vmi to those of the

other variables in the function. The weighting coefficients vm/are standardized by multiplying them

by the square root of the corresponding diagonal element of the within-the-groups sum of squares

and cross products matrix W:

The larger coefficients indicate the more important variables. This provides a basis for deciding

which variables merit further study.

3 .4 .2 . The SPSS DISCRIMINANT Subprog ram

SPSS calculates the discriminant functions by a stepwise procedure. As in linear regression, we cam

find the marginal contribution to the model as each variable is entered. The stepwise procedure

begins by computing the partial multivariate F ratio for each variable. This F* statistic is used to test

the significance of the amount of separation of the group ccntroids added by the variable being

considered. The F * statistic is compared to the parameter FIN, which has a default value of one. If

F* >FIN, and the tolerance computed exceeds the minimum,the variable is eligible for entry into

the model. Next, each eligible variable is added to the model, and the entry criterion computed. The

variable with the best entry criterion score is retained in the model Finally, each of the variables in

the model is tested with the partial multivariate F again. If F * < FOUT, that variable is removed. It

may reenter on a succeeding step if F * > FIN. The procedure repeats until oo more variables are

eligible or the entry criterion scores are below some minimum.

Several entry criterion are available. This analysis uses the criterion which minimizes the residual

variation in a set of dummy variables representing group pairs. This is a way of choosing the next

variable so as to maximize the distance between groups. The residual variation is estimated by

pie 75]
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K

where

is the Mahalanobis distance between groups /arid 7, jut, and /x/ arc the centroids of groups /and 7, and

2" 1 is the inverse of the covariance matrix [Duda 73]. (SPSS computes the Mahalanobis distance

using sample, rather than population parameters. [Norusis 79])

By observing the change in the residual variation R as the stepwise procedure adds new variables

to the model, we can sec the marginal contribution of the most recently added variable to the

discriminating power of the model, given the other variables that arc already in the model.

3.4.3. Discriminant Analysis of the Data

ITiere are eight categories of visual defects, plus the category of good tubes. The frequency of

occurrence of observations in each of the nine groups for the data taken on November 6th, 1981 is

shown in Table 3-6.

T a l k 3-6: Frequency of Occurrence of Visual Defects

CATEGORY * NUMBER OF CASES

1. Bubbles 6
2. Streaks 7
3. Short Coat 0
4* Texture 8
5. Hanger Marks 3
6. Par t ia l Coat 54
7. Density 17
8. Thin End 0
9. Good Tubes 225

Total 320

Because optical density Is analyzed separately* the density category is dropped
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3.4.3.1. Dichotomized Visual Defects

The results of an SPSS discriminant analysis with the visual defects lumped into two groups,

"good" and "bad", is shown in Table 3-7. For this analysis, the step wise procedure was followed with

FIN and FOUT set equal to one, and the residual variation minimizing criterion was used. Table

3-7 shows the variables listed in order of their discriminating power as measured by % R Change.

The standardized coefficients show a similar ranking, with the exception that Lchr gas flow should be

first.

The model derived is an eight variable model. The standardized coefficients form the weighting

vector v' and the variables form the vector X in the model Y=y/TX. The model is statistically

significant to the 0.0001 level. The model is not as small as possible since the tolerance, FIN and

FOUT were all set to let almost any variable enter the model. The physical significance of the model

is open to question since, of the twelve variables considered for inclusion, only four (wash water

conductivity, Lehr oven gas flow, paint viscosity, and drying air velocity) have differences in group

means of more than one percent

VARIABLE '

Table 3-7: Dichotomized Visual Defects

% R CHANGE STANDARD COEFFICIENTS

1. Sulfur Dioxide Flow
2. Drying Air Velocity
3. Wash Water Conductivity
4. Lehr Gas Flow
5. % Excess Oxygen
6. Paint Specific Gravity
7. Paint pH
8. Paint Viscosity
9. Unexplained Variance

37.631
16.192
6.178
4.427
2.573
0.235
0.515
0.147
32.101

-0.64460
-0.64716
+ 0.58135
+ 0.72526
+ 0.44860
-0.27027
+ 0.25234
-0.11126

Wash water temperature, Lehr oven temperature, drying air temperature, and dry-bulb wet-bulb

temperature difference (humidity) could not meet the FIN criterion, and were not entered into the

model.

3.4.3.2. Visual Defects by Groups

The results of a SPSS discriminant analysis with all six non-void categories of visual defects is

shown in Table 3-8,

In this case there arc six groups, so R is (2) or 15, if all of the variance is unexplained The

percentage change in R is then [(if/- J?/+1)/15] X100%.
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Table 3-8: Analysis Results With Six Groups

VARIABLE R CHANGE

27.56
14.02
8.05
7.16
4.85
3.91
3.36
1.69
1.37
1.75
2.12
0.59

27.57

FIRST FUNCTION
STANDARD COEFFICIENTS

-0.73989
-0.16071
+ 0.92121
+ 0.60744
+ 0.50859
-0.54192
-0.25577
+ 0.00549
-0.14453
+ 0.03468
-0.03884
+ 0.44010

1. Sulfur Dioxide Flow
2. Paint Viscosity
3. Lehr Gas Flow
4. % Excess Oxygen
5. Wash Water Conductivity
6. Drying Air Velocity
7. Paint Specific Gravity
8. Lehr Temperature
9. Drying Air Temperature
10. Dry-Wet Temp. Difference
11. Wash Water Temperature
12. Paint pH
13. Unexplained Variance

The first discriminant function accounts for 80% of the between-groups variance because the

eigenvalue associated with the first function is considerably larger than the others.4 Ranking by the

size of the standardized coefficients is roughly the same as by %R change. Viscosity is an exception,

but it makes up for lost ground on the remaining four functions. Of the five discriminant functions

derived, four are significant to the 0.01 level and arc accepted.

3.4 J .3. Interpretation of Discriminant Analysis Results

The ranking of the variables is nearly the same if the visual defects are all lumped into one

category or considered separately. Paint viscosity emerges as an important variable in the latter case.

Regardless of whether the cases are distributed along a single dimension or the four dimensions

found significant in the second analysis, the ultimate goal is to distinguish the operating conditions

which result in good bulbs. The choice of functions to do this should be based on a test of their

predictive validity. To test the validity of the discriminant functions derived, more data are required.

The test consists of using classification functions to classify new data with known group membcrebip.

The percentage of correct classifications is a measure of the validity of the classification functions.

percentage of between groups variance is calculated by (2OQA&)/ y_^ Xjt [Nonisls 79}
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3.5. Summary

A linear regression model for the effect of the input variables on optical density has been found to

contain five variables: drying air temperature, paint specific gravity, wash water conductivity, drying

air velocity, and Lehr oven gas flow. The model accounts for 58% of the variation in optical density.

Because of intercorrelations and limited range in the data, the model derived is preliminary and

serves as a basis for the design of a controlled experiment

Discriminant analysis of the effect of the input variables on .the occurrence of visual defects yields

a model consisting of four discriminant functions, each containing all twelve input variables. The

relative importance of input variables, as determined by the percentage of betwecn-groups variance

explained, is used in Chapter 4 to choose the variables in a controlled experiment.



42



43

Chapter 4
Design of a Controlled Experiment

4.1. Hypothetical Model of the Coating Process

The results of the study are used to propose a hypothetical model for the coating line. The model

is used in this chapter to design the controlled experiments. The study involves 12 independent

(input) variables. The complexity of an experiment increases at least linearly with the number of

variables; for some designs it increases exponentially. From the practical point of view, it is desirable

to design the experiment with as few independent variables as possible.

4 . 1 . 1 . Optical Density

Selecting variables for a reduced optical density model must involve some judgment. The high

intercorrclation and limited range of the variables in die study means there is no clear-cut criterion

for accepting or rejecting a variable. Of the five variables in the model displayed in Table 3-4, one is

a measure of the paint, and two more are measures of the drying process. This finding supports the

view that the variables which characterize the paint and drying conditions determine optical density.

The remaining two variables are conductivity and Lehr oven gas flow. Lehr gas flow is related to

the effect of the oven on optical density. In fact, gas flow depends upon oven dynamics. When the

line coating stops, the oven empties out and the cooling effect of the flow of tubes into the oven is

lost The oven temperature controller reduces the gas flow rate, affecting the percentage of excess

oxygen. When the line starts again, the oven fills with cool tubes. The gas flow increases and

percentage of excess oxygen is changed Thus, changes in gas flow and percentage of excess oxygen

are correlated with line stops. When the line stops, the coating thickness is affected because the air

velocity profile under the drying hood is altered. Thus there is a correlation between percentage of

excess oxygen, gas flow and optical density. By controlling for the line stops, the correlation can be

eliminated, Control could be obtained by excluding from the analysis any data taken for 21 minutes

(the time it takes one tube to traverse the line) after a line stop.
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The optical density experimental hypothesis is then:

Optical Density is determined by the paint variables (pfff viscosity, specific gravity), the

drying hood variables (velocity, temperature and humidity), and wash water conductivity.

4.1.2. Visual Defects

From Table 3-8, Lchr gas flow and percent excess oxygen arc among the first six variables ranked

in terms of the percentage of variance for visual defects explained by each of the independent

variables. If these can be removed by controlling for the line stops, the only remaining variable not

taken as an independent variable in the optical density experiment is sulfur dioxide flow rate. By

adding this variable, and removing one of the other variables used in the optical density experiment,

a visual defects experiment can be run concurrently with the optical density experiment with no

increase in experimental complexity. As a practical matter, all six of the optical density experimental

variables may as well be left in the visual defects experiment, since sulfur dioxide flow is very easily

controlled, and the savings in effort obtained by confounding it with one of the other variables is

small.

The visual defects experimental hypothesis is:

The occurrence of visual defects is a Junction of sulfur dioxide flow rate, paint viscosiiy\
wash water conductivity, drying air velocity, and paint specific gravity.

4.2. Design of the Experiment

la Section 4.1 the experimental hypothesis and the independent variables for the experiment are

stated. In this section we will decide which variables are to be controlled, the number and values of

the treatment levels, and the number of observations which are required

4.2.1, Classifying the Independent Variables

The Independent (Input) variables arc assigned to the following categories:

1, Constants: These variables are maintained at a fixed value during the experiment Any
effect they may have on the dependent variable is excluded from the experiment

2* Unmeasured Variable: These variables are not measured or controlled during the course
of the experiment Their effects, if any, on the dependent variable are lumped Into the
error of the experiment
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3. Measured Variables: These variables arc measured and may or may not be controlled
during the experiment. We seek to determine the effect of these variables on the
dependent variable.

Because experimental complexity is related to the number of controlled variables, it is desirable to

reduce the number of such variables. Therefore, as many variables as possible should be assigned to

categories 1 and 2. In Section 4.L1 it was suggested that percent excess oxygen and Lehr oven gas

flow could be held constant by controlling for the line stops. Thus, these two variables are placed in

category 1. Charles Trushcll, a Wcstinghousc engineer, has suggested a means of holding wash water

conductivity constant as well. Dc-ionizcd make-up water would be added to die wash tank

continuously by means of a set of nozzles at the end of the wash. The tubes would then be subjected

to a rinse of pure dc-ionized water as they left the wash, thus fixing wash water conductivity at zero.

On this basis the variables are classified as shown in Table

Table 4-1: Classes of Independent Variables

FIXED UNMEASURED MEASURED

I Jne Stops (Percent Excess Wash Water Temperature Paint pH
Oxygen, Lchr Gas Flow Rate) Lchr Temperature Paint Specific Gravity
Wash Water Conductivity Paint Viscosity
Mill Factor Drying Air Temperature

Drying Air Velocity
Drying Air Humidity
Sulfur Dioxide Flow Rate

4 .2 .2 . Measured Variables

In a controlled experiment, the measured variables must be held at certain values (called

"treatment levels"). The minimum number of levels is two, which yields a first, but not higher, order

relation. [Bartcc 68] (A first order model is one which contains no powers of the variables.) The

values of the treatment levels are set at the limits of normal operation so that the results will apply

over that range of values. C. Moore of Wcstinghousc supplied the limits of normal operation for

Cool-White paint on Line 1 at Fairmont which were used to set the levels tabulated in Table 4-2.



VARIABLE

1. Paint Specific Gravity

2. Paint Viscosity

3. Paint pH

4. Drying Air Temperature

5. Drying Air Velocity

6. Drying Air Humidity

7. Sulfur Dioxide Row Rate
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Table 4-2: Treatment Levels

% CHANGE FROM LOW

TO HIGH LEVELS

3.0

60

7.1

6.3

20.0

107J

18.2

UNITS

sgu(gm/cm3)

cP

pH

% of nominal

R.H.

ftVhr

4.2.3. Experiment Design

Each of the seven variables is to be set at two treatment levels. The next choice is whether to

implement a foil factorial experiment or an incomplete design. The merits of each are discused in

this section,

4.23.1. Full Factorial Design

The flill factorial design requires measurement of all combinations of high and low values for all of

the variables. To run two concurrent experiments with seven variables in each would require 2?= 128

observations. When the full factorial design is used, multicollincarity is eliminated. It is guaranteed

that no pair of the independent variables is correlated. With linear regression analysis, this yields

three advantages:

1. The regression coefficients arc meaningful indicators of the degree of influence of their
associated variables on the dependent variable.

2, The regression equation may be reliably generalized to the population.
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3. The data have come from the full range of all possible operating conditions, and we can
thus be confident of the resulting regression equation's predictive validity under all
normal conditions.

The main disadvantage of the full factorial design is that the required number of observations

increases exponentially with the number of independent variables. To model the coating process, 128

observations would be required. An experiment of this magnitude would be quite costly and time-

consuming.

4,2.3.2. Minimal Incomplete Design

A design in which the number of observations is less than kP~l, where k is the number of levels

and p~ 1 is the number of independent variables, is called incomplete [Bartcc 68]. For a regression

analysis, the minimum number of observations is equal to p. This is because the observation matrix

X (defined in Section 33.2.1) must have as many observations as parameters or XTX is singular and

we cannot solve for the regression coefficient vector /?. We need p = 8 observations, since p points

define a hyperplanc in (/?— 1 )-space. This minimal incomplete design has the great advantage that it

is much simpler to run than the full design. The design is illustrated in Table 4-3. It can be seen that

there is a slight tendency of one variable to be negatively correlated with the otliers.5

Table 4-3: Eight Observation Experimental Design

VARIABLE 1 = HIGH 0 = LOW

OBSERVATION

1

2
3
4

5
6

7

8

* i

0
1

0
0

0
0
0
0

*i

0
0
1

0

0
0

0

0

xi

0
0
0
1
0

0
0
0

0
0
0

0
1
0

0
0

x.
.• o

0
0
0
0
1
0
0

x6

0
0
0
0
0
0
1
0

A

0
0
0
0

0
0
0
1

The oorrdtttion of one variable to another may b€ tested by Pearson's r. as gwtm in Section 3.3.L
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As stated in Section 4.2.2, the experiment will consist of observations taken at two levels chosen to

cover the entire range of normal operation. A two level experiment yields only a first order model

(i.e. a model without power terms). A two level experiment with two independent variables is

illustrated in Figure 4-1.

Plane of model

Y = bO + b1 X1 + b2X2

Region of sample space

encompassed by three observation model.

Additional sample space encompassed

by adding the fourth observation.

Figure 4-1: A Two Level Experiment

In a full factorial design, the two variable, two level experiment requires four observations. These

observations are marked in Figure 4-1. A minimal observation design only requires three

observations, but the area of the "sample plane" enclosed is greatly decreased. The resulting model

can only be used to predict responses within this smaller range of variable value combinations. The

model Is planar; the power or interaction terms of the process are averaged over the range of

observations made. There is the danger that the model will be in error in regions of the sample space

not investigated.

The "sample plane" In the two variable, two level experiment consists of an area enclosed by four

points, the four observations of the ftill factorial experiment The fourth point greatly increases the

area enclosed. This point is the observation of the "Interaction effect", and the area enclosed contains

information about what happens when both ?ariablc$ simultaneously move through their range The

number of interaction effects increases as the number of independent variables is increased. A two

Mi,
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variable system has one two-variable interaction effect, a three variable system has three two-variable

effects and one three-variable effect, and in general, a // variable system has (") /-variable effects. A

seven independent variable experiment has 21 two-variable terms, 35 three-variable terms, 35 four-

variable terms, 21 five-variable terms, seven six-variable terms, and one seven-variable term. As the

order of the interaction effect is increased, it usually diminishes in significance.

The more interaction terms that are to be investigated, the more observations that must be made

up to the kp~l observations of the full factorial design, which allows all interactions to be investigated.

The need for more observations arises because without them, the interaction terms are intcrcorrclated

and cannot be distinguished from one-another. In linear regression analysis these terms are added to

the regression equation. The regression equation for a two variable system becomes

Y' = bQ + blXl + b2X2 + b^X^

Interaction terms are always correlated with the other variables used to construct them. This fact

should be kept in mind when interpreting models which contain interaction terms.

Investigation of power terms requires more than an increased number of observations. The

number of levels must be increased to at least three if these non-linear terms are to contribute to the

model. The fact is that two data points cannot define a curvilinear line! With only two levels, power

terms contribute to the model if we make the necessary observations (remember that the number of

observations must be at least' as great as the number of parameters in the model), but this

contribution cannot be resolved into separate terms.

Throughout the discussion it has been implied that only one observation is made for each variable

at each combination of levels. In practice we make several such observations of both dependent and

independent variables during the time the particular combination of levels is in effect We may

expect to sec some variation in the response recorded due to measurement errors and poor control of

the level. The resulting cloud of data points around each level is illustrated in Figure 4-2. As the

cloud spreads out, it becomes possible to detect power terms in the regression analysis. In fact, the

data arc more likely distributed over the range of the variables, since the data are recorded as the

variable is moved from one level to the other in the course of the experiment. Use of such cases

might allow investigation of power terms. At least, the observations which fall near the treatment

levels could be used to construct a first-order model and then intermediate observations used to test

its predictive validity.6

Lhe author is indebted to Pmf. Luc Tiemey of the Camegle-Mdioe Statistics Department for suggesting this method
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Figure 4-2: Responses in a Two Level Experiment

Y

%*%iJ •

- • x
LEVEL 0 LEVEL 1

4.233. Fractional Factorial Design

A fractional factorial design is a reduced-order design which allows for investigation of some, but

not all, of the interaction effects. It also assures that all single-term variables arc uncorrelated. A

fractional design using 32 observations is shown in Table 4-4. [Cochran 57]

Table 4-4: 32 Observation Design

OBSERVATION

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.

VARIABLE
*i

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0

,x3
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1

x4
1
1
0
0
0
0
1
1
1
1
0
0
0
o
1
1

X.

0
0
1
1
0
0
1
1
0
0
1
1
0
Q
1
1

0
•1

1
0
0
1
1
0
0
1
1
0
0
1
1
0

1
0
o-
1
0
1
1
0
1
0
0
1

0
1
1
0

OBSERVATION

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28,
29.
30.
31.
32.

VARIABLE

* i
0

• 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0

1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0

xA
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1

*i

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0

X

1
0
0
1
0
1
1
0
1
0
0
1
0
1
1
0

NUMBER OF CHANGES 1 2 4 8 15 16 23

In this design all of die two variable interactions can be distinguished, with the following exceptions:
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1. The interaction XA X5 is indistinguishable from the interaction X6XV

2. rFhc interaction XAXn is indistinguishable from the interaction X5X6.

3. The interaction XA J6 is indistinguishable from the interaction XSXV

These pairs of interaction terms are called alias pairs. They are indistinguishable because the

observations required to distinguish them have been ommitted from the fractional design and they

arc therefore intercorrclated. To minimize the possibility that an important effect might be

confounded with its alias, a variable, e.g., X1% is chosen to be that variable which is expected to have

the least effect on the experiment. If an alias pair is important in the analysis, it is assumed that the

interaction term causing the effect is the one that does not include Xv Higher order interactions are

confounded with the error in this design. Since the analysis of interaction terms is intended for the

optical density experiment, it is suggested that the sulfur dioxide flow rate be chosen z&X1% since it is

expected that sulfur dioxide flow rate will not affect optical density. The remaining six variables can

be assigned according to the effort required to control them, as discussed in Section 4.3.2.

4.3. Carrying out the Experiment

4.3.1. Hardware

To carry out the experiment, an automatic data acquisition system is essential. This is because the

data must be gathered on the production line during normal operation. Data gathered manually are

expensive, subject to error, and may be recorded too slowly to observe significant changes in the

variables. Since the sampling rate cannot be adequately controlled with manual data collection, it

becomes necessary to use values interpolated over time. The statistical analysis is then based on

calculated, rather than measured data, which is less desirable.

Automatic data acquisition is fast and precise. It allows experiments to be carried out rapidly and

unobtrusively with minimal manpower. Sampling times are easily controlled. Once installed, such a

system would facilitate both the present and future studies and could serve in a future control and

information management system. To design the automatic data acquisition system, the range and

precision of each measurement, and the sampling time required must be specified. Once this is done,

the means of transmitting and recording the data can be considered.
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4.1 I.I. Sensors

The range of each sensor must be large enough to accommodate the maximum range of values

expected In some cases the range of an instrument affects its precision; in those cases the range is

made as narrow as possible consistent with the expected range. The required ranges for the measured

variables (which were supplied by C Moore of the Westinghousc Fairmont Works) are given in

Table 4-1 These ranges arc for normal operation with cool-white paint on Line 1 at Fairmont.

The desired response time of the sensor is on the order of one second. The instrument should thus

register to within 95% of the new value within one second after a change in the variable value. The

figure of one second is chosen because the process proceeds with a period of less than one second per

robe, and it is unnecessary to resolve changes that happen in less time than it takes to fill a tube.

While, for statistical analysis, absolute accuracy is not as important as precision the instruments

should be as accurate as practicable.

Suggested sensors arc shown in Table 4-5. In some cases more than one suggestion is made. The

table shows the model manufacturer, and cost of the instrument, along with die range, accuracy, and

precision. The dewed precision is based on the results of the study described in Chapter 3; in cases

*Jicre this is not practical the precision specified is that commonly obtained with available

instruiRcnts. The measuring instrument must be precise enough to resolve variation within the

expected range*

In addinm to the set en input Yarkble sensors shown in Table 4-5, sensors for the two output

variables, optical density and visual defects, will be required. A sensor utilizing a linear Charge-

Couplcd Device (CCD) anay has been the subjcxt of research done by Mark Handclsman at CMU

|Hande!«ran 82), The sensor is said 10 be capable of detecting coating thickness and visual delects

*ilh a throughput of 6O0G cubes per htur* The cost of a practical instrument is estimated to be about

$20*000* John Murr*y has denwasiraiucl a simple coaling thickness sensor using a phototransistor

*hkh cotjfii be feyilf cheaply [Murray I2J. The experiment could be run without output sensors by

sampling We aibc* as !he> emerge dim the coating line and storing them for later evaluation, This

would be a ttd;ous ptmm however* and would require temporary storage of several hundred tubes.

The use tff ityStittaiic $C£&>rs 3 tc be preferred*
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Table 4-5: Suggested Sensors for Automatic Data Acquisition

Variable

Dry Temp.

Humidity

Paint
Density

Paint
pH

Paint
Viscosity

Air
Velocity

Instrument

Thermo-
couple

Chilled-
Mirror
Hygrometer

Vibration
type

Vibration
type

Gamma
Radiation
type

Model
7076-3
pH Meter

Model
VTA-100
Viscometer

Model IM-4
Hot Tip
type

Desired
Range

130-150 °F

to 0.0 ^C
@60 C
ambient

1.3 to 1.4
s.g.u.

same

same

7.5 to 9.0
PH

60 to 95
cP

600 to
UOOfpm

Precision

About 0.2 °F

0.1 °C

0.001
s.g.u.

0.0001
s.g.u.

0.0005
s.g.u.

0.01 pH

Not
Available

Not
Specified

Accuracy

About 2 °F

1.0 °C

Not
Specified

0.0005
s.g.u.

Not
Specified

1 % Full
Scale

3%

plus or
minus 2%

Response

0.12 Second

2.0 °C per
Second

Not
Specified

Milli-
seconds

Not
Specified

1 Second

10
Seconds

1 Second

Cost

$41

About
$3000

About
$3500

$8690

About
$3500

Not
Applicable

$450

$2800

Maker

Omega

General
Eastern

Yokogawa

Redland

Texas
Nuclear

Leeds &
Northrup

Brookfield

Anemostat

Sulfur Dioxide Flow Rate: Use of existing bail and tube type instrument recommended.

43.1.2. Data Logging

Because the process is to be sampled at a rate of about one observation per second, and there are

seven independent variables and two dependent variables to be measured automatically, the data

logger must be capable of making nine readings per second. This requirement is well within the

capabilities of most data loggers.

With the exception of the thermocouple and the pH meter, the output of the sensors is a 4 to 20 ma

current source. A current source permits the use of shielded, twisted-pair cable for the connection

between the instrument and the data logger. Such cable is superior in an electrically noisy

environment. The current source covers the range of the instrument The data logger must be

equipped with preamplifiers compatible with the sensor output. The preamplifier should have

adjustable gain and zero settings to allow maximum resolution.

Table 4-5 indicates that no instrument has a precision which is greater than one one-thousandth of
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its range. Thus, a 10 bit D/A converter should be capable of resolving any measurement to its

specified precision.

The data logger should also have a clock to keep track of the time each reading was made, to the

nearest second. It also should be capable of recording the readings permanently on a medium such as

a floppy disk. Because there can be an independent variable reading for every dependent variable

reading, there is no need for any interpolation.

4.3.2. Scheduling the Experiment

The goal in formulating a schedule is to reduce the effort required to carry out the experiment

The variables should be ranked in order from the most difficult to the least difficult to change from

the high to the low level. The most difficult variable is assigned to be the one changed the fewest

number of times and so on. In doing this, the opportunity to minimize bias error by random

selection of the order of observation is lost. In this case the difficulty of controlling the independent

variables justifies this choice.

The ranking is perhaps best left to those who will carry out the experiment. A tentative ranking

follows:

L Paint pH
2. Paint specific gravity
3. Paint viscosity
4. Drying air humidity
5. Drying air velocity
6. Drying air temperature
7. Sulftir dioxide flow rate

The first three variables are the paint variables. Changing them may require the line to be stopped

while new paint is added to the system. The next four probably can be changed "on the fly**.

Control of drying ait huinidily might be accomplished by spraying atomized water into the drying air

diet7 Air velocity could be controlled by venting the duct, reducing the pressure difference and thus

the velocity of discharge from the d i r t Air temperature is easily controlled by a thermostat; sulfur

dioxide flow rate is set by a valve

Hie measurement of humidity for the stutfy was made using the wet-bulb dry-bulb method which gives poor results in hoc,
dry amdUiom II is not clear why the a r does act become saturated, since it is continuous})' xccircuiated. Further ttudy of
humidity unier the drying hood with imm precise instruments should be cade to determine its variability. Insight gaineci
from this ttudy might suggest * means of controlling humility*
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The 32 observation experiment of Table 4-4 is arranged to show its hierarchical structure. Note

that the first variable only changes once in the course of the experiment, the second changes three

times, etc. The variables should be assigned in order of decreasing difficulty of control.

4.4. Analysis of the Results of the Controlled Experiment

4.4.1. The Optical Density Experiment

Linear regression models arc built through an iterative process. An excellent discussion of model

building is given in Chapter 11 of Necter and Wasscrman [Nccter 74]. The analyst first would try to

isolate a reduced set of variables through a stepwisc procedure. Tests for lack of fit (the F ratio tests

of Chapter 3) can be made, and residuals examined for lack of fit, outliers, and time dependence in

the data. Then the process may be repeated using interaction and power terms. The analyst may try

a number of combinations of variables before the best model for the data is found. The model must

also be tested for predictive validity. Data taken during the course of the experiment and set aside for

that purpose can be used. New data should be obtained at some other time to investigate whether the

model remains valid over time. The percentage of variance explained by the model can be used to

judge whether there arc other important factors not included in the experiment.

Once the model is constructed, tested, and validated, it may be put to use. The uses include:

1. Choice of optimal set points for coating line operation.

2, Suggestion of compensating changes when the line drifts from those set points. Since
tome variables can 'be made to change quickly and easily compared to others,
GOfttpeiiŝ tifig changes, invoked by a control system should enhance the operation and
productivity .of the process*

4.#,2»Th# Visual O#f«cis Experiment

Like the model for optical density, the mixiel for visual defects is built by searching for the best set

of discrimiiuuiiig variables. The test for predictive validity is made using classification functions

derived during the discriminant analysis.

The most general classification functions are Fishers Linear Discriminant Functions

Ci = CnXx
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in which the Q is the classification score for group /, and the c^-arc classification coefficients. [Nic 75]

There is a function for each group; a case is classified into the group on which it has the largest score.

Calculation of the coefficients c/y is described in Norusis. [Norusis 79]

This type of classifier is called a linear machine. Duda and Hart discuss how such a classifier can

be used to divide the independent variable space into regions in which the case is classified into a

given group. [Duda 73] Such a division could be used to provide additional constraints on the range

of permissible values for the input variables.

The linear functions arc derived under the assumption that the groups arc all of multivariate

normal distribution, and that the covariancc matrices for each group are equal. In the case where the

covariancc matrices are not equal, the discriminant functions are quadratics. Duda and Hart also

discuss the use of quadratic discriminant functions to partition the test space; again, such a

partitioning could be used to constrain the process operating limits. Both Tatsuoka [Tatsuoka 71] and

Cooley and Lohnes [Cooley 71] discuss how classification can be made by evaluating the probability

of group membership. This method is used by SPSS [Norusis 79]. Classification can take into

account the a priori probability of group membership. In the study data this probability was assumed

to be proportional to group size. Better than 90% of the study data were correctly classified. The true

test of a classification function requires the correct classification of data other than that from which

the function was derived. For such a test, new data arc required.

4.5. Summary

On the basis of the study results, the.hypothesis is made that optical density is a function of the

paint and drying air variables. Visual defects arc hypothesized to depend on these and sulfur dioxide

flow. The effects of multicollinearity provide the incentive to use an experimental design in which

the independent variables are uncorrclatcd. Inclusion of more observations allows power and

interaction effects to affect the model, but more levels are required to model power terms explicitly.

To test the hypotheses, it Is recommended that a two level, seven variable experiment be run. A

fractional factorial, 32 observation design represents a good compromise between experimental

complexity and thorough investigation of the test spare. It should result in data free from

iRtercorrclation, and sufficient to investigate most two-variable interactions, as well as the main

effects.

Automatic measuring instruments should be used to allow the model to be based on measured.
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rather than calculated values. A response time on the order of one second is suggested; range and

precision sufficient to resolve the range of normal operation arc necessary. The requirements for the

data logger are mass storage capability, speed sufficient to process about nine readings per second,

ten bit D/A resolution, adjustable prcamps for seven input variable instrument signals, and

compatible input(s) for the output variable sensor(s).

The experiment may be most easily carried out by scheduling the observations to require the

fewest adjustments for those variables most difficult to change. Analysis of the data generated by the

controlled experiment can be done using the methods of Chapter 3. Both models should then be

tested against new data to check their predictive validity. The resulting models can then be used to

constrain the range of set points for coating line operation.
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Chapter 5
Summary

5.1. Objectives of the Project

The objective of this project is to develop two models of the coating process on Line 1 at the

Westinghousc Fairmont Works in Fairmont, West Virginia. The first model is a linear regression

input-output model of the coating process relating optical density (the output) to the process inputs.

The model consists of a linear equation with constant coefficients which allows calculation of the

optical density of a tube from the values of the process inputs extant when the tube was made. The

second model is a discriminant analysis input-output model of the coating process relating coating

defects (the output) to input variable values. The discriminant analysis model consists of a set of

classification flinctions which allow prediction of the presence or absence of a visual defect from the

process input variable values.

5.2. The Study of the Coating Process

A preliminary, sample survey type study of the coating process was made on November 4 and 6 f

1981. Twelve input and two output variables were periodically sampled by a group of four to six

experimenters using hand instruments. Sampling rates were slow, ranging from one measurement

per minute to six measurements per hour. The study data were prepared for analysis by using the

input variables to calculate interpolated input variable values for each output sample.
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5.3. Analysis of the Study Data

5.3.1. Variance in the Data

The study data were analyzed first to see what variation of values occurred under normal

operation. Five of the input variables were found to have a percentage of variation of less than one

percent. The remaining seven input variables and the output variable, optical density, exceeded one

percent variability. Variability ranged from 8.5 % for wash water conductivity to 0.15 % for paint

specific gravity on November 6th. Variability of less than one percent seems too small to show up any

effect. Obtaining a large range of values will require deliberate changes in variable values.

5.3.2. Optical Density

Simple correlations between the input variables and optical density were found to fluctuate wildly

from one days" data to the next. The data from the first day were judged to be faulty and discarded.

A linear regression model was then found relating optical density to five input variables: drying air

temperature, paint specific gravity, wash water conductivity, drying air velocity, and Lehr oven gas

flow. The remaining seven input variables were found to be insignificant. 'JTiere was moderate to

strong intcrcorrclation in the data, making it impossible to find the sensitivity of optical density to

changes in any one input variable. Intercorrclation, limited range of some variables, possible

correlations to events on the line not measured (such as line stops), and possibly poor quality of data

mean that this model should be considered to be preliminary.

The study was of value in that some insight into the process was gained, and one variable, wash

water temperature, was found to be insignificant and to merit BO further investigation. On the basis

of this knowledge, a relation between optical density and some input variables was hypothesized. A

controlled experiment to test the hypothesis was designed which will eliminate inteitorrclation and

limited range. The experimental data would be collected with automatic instruments, assuring good

data and eliminating the need to use interpolated values, The hypothesis, experiment, and

instruments are described in Section 5,4*



61

5.3 .3 . Visual Defects

A set of discriminant functions was derived relating visual defects to the process input variables.

The input variables were then ranked according to their discriminating power. Based on this ranking

it was hypothesized that the occurrence of a visual defect is a function of certain of the input

variables. The hypothesis can be tested by a controlled experiment run concurrently with the optical

density experiment.

A set of classification functions were derived which correctly classify 92% of the study data from

which they were derived; new data would be needed to test their predictive validity. Because of

limited range and possible inaccuracy in the data, the discriminant and classification functions must

be regarded as preliminary.

5.4. The Controlled Experiment

The study was useful because it afforded an opportunity to become familiar with the coating

process and the computational tools used to build the statistical models. It also showed up the

shortcomings of a study in relation to a controlled experiment: limited range of variation and

intcrcorrelatcd data. The shortcomings of hand-gathered data were also made obvious: the need for

interpolated (and perhaps fictitious) values and the possibility of errors made by people doing a

tedious job in uncomfortable circumstances.

To overcome these problems a controlled experiment is proposed. The experiment would test the

following hypotheses:

1. Optical density is a function of the paint variables (specific gravity, pH, viscosity) and the
drying variables (air velocity, humidity, air temperature).

2, The occurrence of a visual defect is predicted by sulfur dioxide flow rate, paint viscosity,
drying air velocity, and paint specific gravity.

The experiment would use seven independent and two dependent variables. Three additional

variables would be fixed. A two treatment level, 32 observation fractional factorial design is

recommended. The experiment would be run without block randomization to reduce the effort

needed to control the variable values. For optical density, this design allows investigation of all

single-variable and most two-variable effects. Power terms may also be investigated if observations

are made at intermediate levels.
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An automatic data acquisition system should be used to perform the controlled experiment. Five

new input sensors, and two new output sensors would be required. The sensors must be precise

enough to resolve changes within the range of expected variable values and fast enough to record

changes that occur in the time required to make one tube, whenever possible.

5.5. Interpretation of the Results of the Controlled Experiment

Data gathered from the controlled experiment may be analyzed using the same methods used to

analyze the study data. A linear regression model can be built relating optical density to the input

variables. The discriminant analysis model would consist of a set of classification functions. Both

models should be tested against new data (from data set aside and not used to produce the models, or

from new observations) to test their predictive ability.

The results of the analysis will allow prediction of the value of optical density and the presence of

visual defects from input variable values. The relative contribution of each variable to the outcome

can be found. The models can be used to constrain the set-points for the input variables, reducing

the number of defective tubes produced.
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