
Subdimensional Expansion for Multirobot Path

Planning

Glenn Wagner∗, Howie Choset

Robotics Institute, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA

IThis work is supported by the MURI ANTIDOTE programs
∗Corresponding Author: Phone number +1 585-802-4541
Email addresses: gswagner@cmu.edu (Glenn Wagner), choset@cs.cmu.edu (Howie

Choset)

Preprint submitted to Artificial Intelligence May 11, 2015

Subdimensional Expansion for Multirobot Path

Planning

Glenn Wagner∗, Howie Choset

Robotics Institute, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA

Abstract

Planning optimal paths for large numbers of robots is computationally expen-
sive. In this paper, we introduce a new framework for multirobot path plan-
ning called subdimensional expansion, which initially plans for each robot
individually, and then coordinates motion among the robots as needed. More
specifically, subdimensional expansion initially creates a one-dimensional search
space embedded in the joint configuration space of the multirobot system.
When the search space is found to be blocked during planning by a robot-
robot collision, the dimensionality of the search space is locally increased to
ensure that an alternative path can be found. As a result, robots are only
coordinated when necessary, which reduces the computational cost of finding
a path. We present the M* algorithm, an implementation of subdimen-
sional expansion that adapts the A* planner to perform efficient multirobot
planning. M* is proven to be complete and to find minimal cost paths. Sim-
ulation results are presented that show that M* outperforms existing optimal
multirobot path planning algorithms.

Keywords: Motion and Path Planning, Multiagent System

1. Introduction

Multirobot systems offer flexibility, sensor coverage, and redundancy,
which makes them attractive for tasks such as surveillance, search and rescue,

IThis work is supported by the MURI ANTIDOTE programs
∗Corresponding Author: Phone number +1 585-802-4541
Email addresses: gswagner@cmu.edu (Glenn Wagner), choset@cs.cmu.edu (Howie

Choset)

Preprint submitted to Artificial Intelligence May 11, 2015

and warehouse automation. Exploiting the benefits of multirobot systems
requires addressing a multitude of issues including task assignment, com-
munication, synchronization of world models, and the coordination of large
numbers of robots, in addition to all the challenges that face single robot
systems.

In this paper, we focus on issues surrounding planning paths for large
numbers of robots. Such issues center on the fundamental trade-off between
path quality and computational cost. The trade-off is illustrated by the
differences between coupled and decoupled approaches to multirobot path
planning. Coupled approaches use the high-dimensional joint configuration
space of a multirobot system1 as the search space, and can find paths that are
collision-free and minimal cost, i.e. optimal, but at high computational cost
[1, 2]. For example, finding optimal paths for multirobot systems on graphs
is known to be NP-hard [3]. Decoupled algorithms explore a low dimensional
search space to coordinate the motion of robots on paths computed for each
robot individually; they can rapidly find paths for large numbers of robots,
but are not guaranteed to find a path for all solvable problems [4, 5, 6, 7, 8].

In this paper, we introduce a new approach that combines the advantages
of coupled and decoupled algorithms called subdimensional expansion. Sub-
dimensional expansion is not a specific algorithm, but rather a method for
manipulating the search spaces of existing search algorithms to decrease the
computational cost of solving multirobot path planning problems. Subdi-
mensional expansion starts by finding a path for each robot in its individual
configuration space. Combining the individual paths of each robot defines a
one-dimensional search space for the full multirobot system embedded in the
joint configuration space. When robots are found to collide in the multirobot
search space, subdimensional expansion locally grows the dimensionality of
the search space to allow an alternative path for the colliding robots to be
found with coupled planning. Although the search space may grow to cover
the entire joint configuration space in the worst case, for many problems
subdimensional expansion can construct a low dimensional search space that

1In a slight abuse of terminology, we define the configuration space of a multirobot
system as the Cartesian product of the free configuration spaces of the individual robots.
The free configuration space of a robot is the space of all positions that a robot can occupy
without colliding with itself or an obstacle. We use the term “joint” configuration space to
emphasize that we are referring to the configuration space of the entire system, not that
of a single robot.

3

allows for efficient computation of a high quality path.
This paper combines and extends results previously published in con-

ference papers [9, 10]. We describe an implementation of subdimensional
expansion for planning on arbitrary graphs called M* 2. M* uses A* [1] as
the underlying planner that both computes paths for individual robots to
guide the construction of the multirobot search space, and explores the mul-
tirobot search space to find a path for the entire system. M* is guaranteed to
find the optimal path. Several improved versions of M* are described which
further reduce the dimensionality of the search space and reduce the time
required to explore the search space. Simulation results are presented that
show that M* has better performance than existing optimal multirobot path
planning algorithms.

2. Prior Work

We place multirobot path planning algorithms on a continuum between
coupled and decoupled approaches. Coupled planning algorithms search the
joint configuration space of the multirobot system, guaranteeing that the
optimal path will be found. Decoupled approaches, on the other hand, com-
pute paths seperately for individual robots, then adjust the paths to avoid
collisions. Decoupled approaches generally can not guarantee that a path
will be found, much less the optimal path.

2.1. Coupled Multirobot Path Planning

A straightforward multirobot path planner could use standard A* [1] to
find a path for a multirobot system, resulting in a simple, coupled plan-
ner. However, the exponential growth in the number of possible joint actions
would render such an approach computationally infeasible as the number of
robots increases. Operator Decomposition (OD) [2] and Enhanced Partial
Expansion A* (EPEA*) [12, 13] are lazy variants of A* designed for multi-
robot path planning which delay enumerating paths that are expensive based
on a heuristic, thereby dramatically reducing the effective branching factor
of multirobot systems. Iterative Deepening A* (IDA*) is a general purpose
heuristic depth-first search algorithm, which can be applied to the problem of
finding optimal paths for systems of multiple robots. However, it is effective

2M* has previously been used as the name of an unrelated opponent modeling search
algorithm [11]

4

only when robots are packed densely enough that only a few robots can move
at any time [14].

Probabilistic planners were developed to find paths for robot mechanisms
with many internal degrees of freedom, for which deterministic planners such
as A* were unable to find paths in a reasonable amount of time. The suit-
ability of probabilistic planners for high-dimensional planning has led to the
development of coupled algorithms that use probabilistic planners directly to
explore the joint configuration space of multirobot systems [15, 16, 17, 18].
The shear size of the joint configuration space of multirobot systems lim-
its such approaches to relatively small numbers of robots. MA-RRT* [19],
dRRT [20], and sPRM [21] are probabilistic planning algorithms customized
for multirobot path planning that decouple planning to avoid robot-obstacle
and robot-robot collisions, resulting in substantial reductions in the compu-
tational cost of finding paths.

An alternate approach to coupled planning is to recast the multirobot
path planning problem as a Boolean Satisfiability (SAT) problem, for which
there are very efficient general-purpose solvers. The multirobot path planning
problem can be recast as a SAT problem by creating a set of Boolean variables
to track the location of each robot, and adding terms to the Boolean formula
to enforce collision avoidance, defining a logical formula for which the solver
tries to find a valid assignment of truth values [22, 23, 24, 25, 26]. SAT
planners have also been used to find shortcuts to reduce the cost of non-
optimal paths computed by rule-based planners [27, 28].

2.2. Decoupled Multirobot Path Planning

Decoupled approaches compute paths separately for individual robots,
then adjust the paths to avoid collisions. Because the search for both the indi-
vidual robot paths and the necessary adjustments to avoid collisions are per-
formed in low-dimensional search spaces, decoupled approaches can rapidly
find paths for systems containing many robots [6, 7]. Velocity planners fix
the paths that will be followed by each robot, then find a velocity schedule
along those paths that avoids collisions [5, 29, 30, 31, 32, 33, 34]. Priority
planners assign a priority to each robot, then plan for individual robots in
decreasing order of priority, treating higher priority robots as moving obsta-
cles [4, 35, 36, 37, 38, 39]. The choice of priority ordering is critical, leading
to a number of heuristics for choosing priority orders that are likely to lead
to a solution [38, 40, 41]. Turpin et al. [42, 43] showed that for permuta-
tion invariant multirobot path planning, where any robot can move to any

5

goal location, there is a polynomial time algorithm for choosing an assign-
ment of robots to goals and a priority order that is guaranteed to produce
a solution. The drawback of decoupled algorithms is that the search spaces
employed represent only a small portion of the joint configuration space, and
thus decoupled algorithms are not guaranteed to find a path for all solvable
problems [18], excepting permutation invariant multirobot path planning.

2.3. Intermediate Multirobot Path Planning

Several approaches have been developed that lie between coupled and
decoupled approaches: they allow for more rich robot-robot behaviors than
can be achieved with decoupled planners, while avoiding planning in the joint
configuration space.

Rule based approaches use a set of stereotyped behaviors to govern robot-
robot interactions, and can find paths in polynomial time. The existence of
polynomial time algorithms for non-optimal multirobot path planning was
first proved by Wilson [44] and Kornhauser et al. [45]. Gabriele and Helmert
[46] brought this early work back to the attention of the planning community,
and worked to adapt the proofs of Kornhauser et al. [45] into a practical plan-
ning algorithm. Several approaches to rule based path planning have been
developed. Warehousing approaches shift robots into configurations which
will not interfere with the motion of other robots [47, 48]. Push and Swap
[49, 50] Push and Rotate [51], and the Tree-Based Agent Swapping Strategy
algorithm [52] utilize behaviors that exchange the positions of two robots
without disturbing other robots. While these algorithms are guaranteed to
find paths in polynomial time, the stereotyped behaviors induced by the rules
can lead to low quality paths. In particular, only a few robots are typically
allowed to move at any given time. Parallel Push and Swap (PPAS) [53] is
a variant of Push and Swap which allows all robots to move simultaneously,
significantly reducing the typical makespan of plans, i.e. the time required
for the last robot to reach its goal.

An alternative approach followed by dynamically coupled algorithms is
to grow the search space during path planning, so that the search space
can initially be very small, then grow only where necessary. Al-Wahedi [54]
presented an approach in which paths are found separately for each robot,
followed by coupled planning in a window around conflicts, but does not
return optimal paths. The work of van den Berg et al. [55] shows how to
identify the minimal sets of robots which must execute a cooperative path
instead of sequentially executing single robot paths. The Increasing Cost

6

Tree Search (ICTS) [56] limits the cost that can be incurred by an individual
robot, then uses pairwise tests to determine for which robots the cost limits
must be raised. Conflict-Based Search (CBS) [57] constructs a set of con-
straints when planning for individual robots to find optimal solutions without
exploring higher-dimensional spaces. Enhanced CBS (ECBS) [58] is a variant
of CBS that can rapidly find near optimal solutions to problems involving
large numbers of robots. Independence Detection (ID) [2] and Meta-Agent
Conflict-Based Search (MA-CBS) [59] initially attempt to find a path using
decoupled planning approaches, but revert to coupled planning for subsets of
robots for which the decoupled planner cannot find paths. In the worst case,
the search spaces constructed by dynamically coupled algorithms may cover
the entire joint configuration space, but for most problems a substantially
smaller search space suffices.

3. Subdimensional Expansion

In multirobot path planning there is an inherent trade-off between path
quality and the computational cost of finding a path. However, in many
problem instances of interest, the multirobot path planning problem natu-
rally decomposes into small subproblems, which permits optimal paths3 to
be found at low computational cost. Specifically, if the interactions between
robots are sparse, the multirobot path planning problem can be split into two
parts: planning paths for individual robots and optimally resolving conflicts
between robots.

Subdimensional expansion is a framework for multirobot path planning
that exploits the aforementioned natural decomposition to find optimal paths
at low computational cost. Subdimensional expansion begins by computing
an individual policy for each robot. The individual policy specifies the in-
dividually optimal path from each point in the free configuration space of a
robot to its goal configuration, neglecting the presence of other robots. The
path of the multirobot system induced by each robot obeying its individ-
ual policy is termed the joint policy path. Robot-robot collisions are likely
present in the joint policy path.

Subdimensional expansion then uses the individual policies to guide the
construction of a search space of variable dimensionality, embedded in the

3An optimal path is a collision-free path which minimizes some cost function.

7

joint configuration space of the system, in which to coordinate the motion of
the multirobot system and resolve any conflicts. Subdimensional expansion
makes the optimistic assumption that the joint policy path is collision free
until there is evidence otherwise, and thus each robot is initially restricted to
obeying its individual policy. The resulting search space is one-dimensional,
as the only free parameter is for how long to follow the individual policies,
and planning is fully decoupled, i.e. each robot follows an independently
computed plan. An underlying planner, such as A*, is then employed to find
an optimal path in the search space. When the underlying planner encounters
a robot-robot collision, the involved robots are permitted to diverge from
their individual policies, locally increasing the dimensionality of the search
space. In the region of increased dimensionality, planning is conducted as
a search over the joint actions of the robots involved in the collision, i.e.
coupled planning for those robots.

Two constructs, the backpropagation set and the collision set, are em-
ployed to ensure that the search space is only expanded where and as much
as necessary. Subdimensional expansion only expands the search space when
the underlying planner finds a collision, but to ensure that a path can be
found the search space must be expanded along all paths explored by the un-
derlying planner that lead to the collision. The backpropagation set is used
to propagate information about a collision back along all explored paths lead-
ing to the collision. The backpropagation set of a point q in the search space
is the set of all points for which the underlying planner has considered q
as a possible successor. For instance, if the underlying planner is A*, when
a vertex is expanded it is added to the backpropagation set of each of its
out-neighbors, whereas if RRT is employed as the underlying planner the
backpropagation set of a configuration contains its parent in the search tree.

Subdimensional expansion uses the collision set to aggregate information
about collisions and to determine the local dimensionality of the search space.
The collision set C of a given point q in the search space is the set of robots
involved in a collision either at q or at some point on a path passing through
q that has been explored by the underlying planner. If a configuration has
not been visited by the underlying planner, its collision set is empty. The
collision set is computed using the backpropagation set. If the collision set Ck
of a configuration qk changes, including the first time the underlying planner
visits a configuration at which a robot-robot collision occurs, then the robots
in Ck are added to the collision set of each point in the backpropagation set
of qk. In addition, if a new configuration ql is added to the backpropagation

8

Figure 1: Geometric visualization of the search space as embedded in the joint configura-
tion space. The circle represents the goal configuration. The cube represents a region of
the search space in which the collision set contains three robots, while the square denotes
a region where the collision set contains two robots. The lines denote the joint paths for
the multirobot system induced by the individual policies, which connect configurations on
the periphery of the higher-dimensional regions of the search space to the goal.

set of qk, then the robots in Ck are added to Cl. Note that the above rules
imply that the collision set is a function of the current state of search, and
the collision set of any given point in the search space will only grow as the
search progresses.

Robots in the collision set are known to collide with other robots if re-
stricted to their individually optimal paths, but there is no evidence that
robots outside the collision set will collide while obeying their individual poli-
cies. Therefore to ensure that a collision-free path can be found, the search
space must include any possible joint action for the robots in the collision
set, while the robots not in the collision set obey their individual policies.
The result is a local increase in the dimensionality of the search space, but
the search space will likely still be of lower dimensionality than the joint con-
figuration space in which the search space is embedded. Because the search
space is embedded in the joint configuration space, each point in the search
space fully defines the configuration of the system, regardless of the local
dimensionality of the search space. A locally low dimensional search space
just restricts which paths of the system will be explored by the underlying
planner.

Although the search space constructed by subdimensional expansion is
embedded in a high-dimensional space and is thus hard to visualize, the
geometry of the search space can still be succinctly described, and provides
an alternate way of understanding subdimensional expansion. The search
space will have the appearance of a set of elongated “tubes” of decreasing

9

Figure 2: Example of the working of subdimensional expansion. Robots r1, r2, r3 start at
A1, C1, and A3 respectively, with goal configurations B2, B1 and C3.

(a) Policy for r1 (b) Policy for r2 (c) Policy for r3

Figure 3: Subdimensional expansion starts by computing a individual policy for each
robot. The optimal action for a robot at each configuration is indicated by arrows. The
loop at the goal state indicates that the robot should seek to remain at its goal.

dimensionality embedded in the joint configuration space, extending from the
initial configuration towards the goal (Figure 1). Each tube grows around an
explored path or set of paths that lead to a robot-robot collision, and thus
the interior of each tube consists of states with non-empty collision sets. The
surface of each tube are covered with one-dimensional “hairs” that extend
towards the goal. Each hair is the joint policy path leading from a state on
the surface of the tube with an empty collision set to the goal. The search
space starts as a single hair, which thickens and branches as robot-robot
collisions are found.

To better illustrate the workings of subdimensional expansion, we present
an example for multirobot path planning on graphs. Planning is done using
the M* algorithm, an implementation of subdimensional expansion that uses

10

A* as the underlying planner. M* will be described in detail in section 4, but
for the purposes of this example, M* can be described as being equivalent to
running A* on a small search graph which grows every time a robot-robot
collision is found.

Consider a team of three robots, r1, r2, r3, which move on a graph rep-
resenting a 4 connected grid. The X coordinates of the graph labeled with
letters, while the Y coordinates are labeled with numbers. Robot r1 starts at
the initial configuration v1

s = A1 and has the goal v1
f = B2. Robots r2 and

r3 have initial configurations v2
s = C1 and v3

s = A3, and goal configurations
v2
f = B2 and v3

f = C3 respectively (Figure 2). The initial configuration of
the multirobot system is denoted (A1, C1, A3), while the goal configuration is
(B2, B1, C3) The robots incur a cost of 1 for any action, including remaining
in place, but the robots can wait at their goal for zero cost.

Subdimensional expansion begins by computing an individual policy for
each robot (Figure 3). The choice of policies is not unique. For instance,
an alternate policy for r1 would be to move up from A1 rather than right.
Choice of individual policies is discussed in section 5.4.

Once the individual policies are computed, search for the multirobot sys-
tem can commence. M* maintains an open list of candidate nodes which are
explored in order of f-value, the sum the cost to reach a node and a heuris-
tic cost-to-go. When search begins the open list only contains the initial
configuration, with an empty collision set (Figure 4). An empty collision
set means that every robot obeys its individual policy. Therefore, when the
initial configuration is expanded, there is only one neighbor, (B1, B1, B3)
(Figure 4a). At (B1, B1, B3) robots r1 and r2 are in collision, which triggers
a collision set update. The initial configuration is in the backpropagation
set of (B1, B1, B3), (Figure 4b), so r1 and r2 are added to the collision set
of the initial configuration, which implicitly modifies the search graph. To
allow the modified search graph to be explored, the initial configuration is
added back to the open list (section 4.2).

In the second iteration of M*, the initial configuration is once more taken
from the open list, and expanded (Figure 5). This time, r1 and r2 are in the
collision set of the initial configuration, so only r3 is restricted to its individual
policy. As a result, the initial configuration now has nine neighbors (Figure
5a), including (B1, B1, B3). The backpropagation set of each neighbor con-
tains only the initial configuration, as the only paths that have been explored
lead from the initial configuration to one of its neighbors (Figure 5b). The ini-
tial configuration has an empty backpropagation set, because no paths have

11

Collision Set = ∅

Neighbors of Expanded State
(B1, B1, B3)

Post Expansion Open List
Coordinate f-value Collision set

(A1, C1, A3) 5 {1, 2}

(a) Configuration at Step 1

(b) Search tree after expansion.

Figure 4: (a) Example of the workings of subdimensional expansion. The robots start at
(A1, C1, A3) and have the goal (B2, A2, C3). The grid on the left shows the configuration
that is expanded by M* in step one. The arrows show the actions that M* considers for
each robot. The tables on the right enumerate the resulting neighboring configurations,
and the state of the open list after the expansion and collision set update are completed.

(b) In the search tree solid arrows point from a vertex to its successor states
while dashed lines point from a vertex to the elements of its backpropagation set. The
vertex expanded in step one is bolded.

12

Collision Set = {1, 2}

Neighbors of Expanded State
(B1, B1, B3),(A2, B1, B3),(A1, B1, B3)
(B1, C2, B3),(A2, C2, B3),(A1, C2, B3)
(B1, C1, B3),(A2, C1, B3),(A1, C1, B3)

Post Expansion Open List
Coordinate f-value Collision set

(A2, B1, B3) 5 ∅
(A1, B1, B3) 6 ∅
(B1, C1, B3) 6 ∅
(A2, C1, B3) 6 ∅
(B1, C2, B3) 7 ∅
(A2, C2, B3) 7 ∅
(A1, C1, B3) 7 ∅
(A1, C2, B3) 8 ∅

(a) Configuration at Step 2

(b) Search tree after expansion.

Figure 5: (a) Example of the workings of subdimensional expansion. The robots start at
(A1, C1, A3) and have the goal (B2, A2, C3). The grid on the left shows the configuration
that is expanded by M* in step two. The arrows show the actions that M* considers for
each robot. The tables on the right enumerate the resulting neighboring configurations,
and the state of the open list after the expansion and collision set update are completed.

(b) In the search tree solid arrows point from a vertex to its successor states
while dashed lines point from a vertex to the elements of its backpropagation set. The
vertex expanded in step two is bolded.

13

Collision Set = ∅

Neighbors of Expanded State
(A2, B1, C3)

Post Expansion Open List
Coordinate f-value Collision set

(B2, B1, C3) 5 ∅
(A1, B1, B3) 6 ∅
(B1, C1, B3) 6 ∅
(A2, C1, B3) 6 ∅
(B1, C2, B3) 7 ∅
(A2, C2, B3) 7 ∅
(A1, C1, B3) 7 ∅
(A1, C2, B3) 8 ∅

(a) Configuration at Step 3

(b) Search tree after expansion.

Figure 6: (a) Example of the workings of subdimensional expansion. The robots start at
(A1, C1, A3) and have the goal (B2, A2, C3). The grid on the left shows the configuration
that is expanded by M* in step three. The arrows show the actions that M* considers for
each robot. The tables on the right enumerate the resulting neighboring configurations,
and the state of the open list after the expansion and collision set update are completed.

(b) In the search tree solid arrows point from a vertex to its successor states
while dashed lines point from a vertex to the elements of its backpropagation set. The
vertex expanded in step three bolded.

14

Collision Set = ∅

Neighbors of Expanded State

Post Expansion Open List
Coordinate f-value Collision set

(A1, B1, B3) 6 ∅
(B1, C1, B3) 6 ∅
(A2, C1, B3) 6 ∅
(B1, C2, B3) 7 ∅
(A2, C2, B3) 7 ∅
(A1, C1, B3) 7 ∅
(A1, C2, B3) 8 ∅

(a) Configuration at Step 4

(b) Search tree after expansion.

Figure 7: (a) Example of the workings of subdimensional expansion. The robots start at
(A1, C1, A3) and have the goal (B2, A2, C3). The grid on the left shows the configuration
that is expanded by M* in step four. The arrows show the actions that M* considers for
each robot. The tables on the right enumerate the resulting neighboring configurations,
and the state of the open list after the expansion and collision set update are completed.

(b) In the search tree solid arrows point from a vertex to its successor states
while dashed lines point from a vertex to the elements of its backpropagation set. The
vertex expanded in step four is bolded.

15

been explored that lead to the initial configuration, and thus collisions at one
of the neighbors cannot be propagated to the collision set of a different neigh-
bor. The only robot-robot collision occurs at (B1, B1, B3), and the involved
robots have already been added to the collision set of the initial configura-
tion, the only state in the backpropagation set of (B1, B1, B3). Therefore,
no further modification of the collision sets is required. The collision-free
neighbors are then added to the open list and sorted by f-value.

In the third iteration, the most promising vertex is (A2, B1, B3) (Figure
6). (A2, B1, B3) was never previously expanded, and thus has an empty
collision set, and therefore a single neighbor (B2, B1, C3), the goal config-
uration. The goal configuration is collision free, and thus is added to open
list. Note that in the counterfactual case that the neighbor of (A2, B1, B3)
had contained a robot-robot collision, the involved robots would be added to
the collision sets of both (A2, B1, B3) and (A1, C1, A3).

In the fourth iteration, the goal configuration has the lowest f-value of
any vertex in the open list, and is thus expanded (Figure 7), which indicates
that the optimal path has been found.

4. M*

In this section the M* algorithm will be described in detail. M* is an
implementation of subdimensional expansion for multirobot path planning
when the configuration space of each robot can be described by a graph. M*
uses A* [1] as the underlying planner, because A* is optimal, meaning it finds
optimal paths, and complete, meaning that it will take finite time to either
find a path or determine that no path exists. M* will be shown to have the
same optimality and completeness properties as A*. The section will end
with a discussion of the performance of M*.

4.1. Problem Definition

Consider a system of n robots ri indexed by the set I = {1, . . . , n}.
Let the free configuration space of ri be represented by the directed graph
Gi = {V i, Ei}. V i is the set of vertices in Gi, each of which represents a
configuration of ri. Ei is the set of directed edges, each of which represents
an action that transitions ri from one configuration to another. Each edge
is associated with a positive cost. Each robot has an initial configuration
vis ∈ V i and a goal configuration vif ∈ V i.

16

Symbol Meaning

ri ith robot

Gi Graph representing configuration space of ri

vi Vertex in Gi representing a configuration of ri

vis Initial configuration of ri

vif Goal configuration of ri

G Graph representing joint configuration space of system

v Vertex in G representing a configuration of the multirobot system

vs Initial configuration of multirobot system

vf Goal configuration of multirobot system

vik Configuration of ri at joint configuration specified by vk

π(vk, vl) Path for the multirobot system connecting vk to vl

g(π(.)) Cost of specified path

Ψ(vk) Set of robots that collide at vk

Table 1: Symbol definitions for multirobot path planning on graphs

17

The joint configuration space which describes the state of the entire mul-
tirobot system is represented by the tensor product of the individual robot
graphs G = G1 × · · · × Gn, with vertex set V and edge set E. Recall that
the tensor product of two graphs, Gi ×Gj, has the vertex set V i × V j. Two
vertices (vik, v

j
k) and (vil , v

j
l) in V i×V j are connected by an edge in the prod-

uct graph if the edge eikl connecting vik to vil is present in Ei and the edge
ejkl connecting vjk to vjl is present in Ej. Note that G may contain vertices at
which robots collide.

Let Πi denote the set of all valid paths in Gi, where a valid path consists
of a sequence of vertices such that each vertex in the sequence is an out-
neighbor of its predecessor in Gi. Π = Π1 × · · · × Πn denotes the set of all
paths in G. Let πi(vk, vl) denote a path in Gi from vk to vl. The cost of a
single robot path gi : Πi 7→ R+ is the sum of the costs of the edges traversed
in the path. The cost g : Π 7→ R+ of a path π(vk, vl) in G is the sum of
the costs of the corresponding single robot paths πi(vik, v

i
l), where vik is the

position of ri at the joint configuration vk,

g(π(vk, vl)) =
∑
i∈I

gi(πi(vik, v
i
l)). (1)

The task of M* is to find an optimal, collision-free path from the joint
initial configuration vs = v1

s × · · · × vns to the joint goal configuration vf =
v1
f ×· · ·× vnf , denoted π∗(vs, vf). To determine where robots collide with one

another, we define a collision function Ψ : V → P(I) which returns the set
of robots in collision at a given vertex, with P(I) denoting the power set of
I which contains all subsets of I. What constitutes a collision depends on
the problem instance being solved, and may represent a physical collision,
a contention for a shared resource, or some other conflict. Note that Ψ(vk)
describes the robots which are locally in collision at vk, whereas Ck collects
all collisions occurring at a successor of vk on some path explored by the
underlying A* planner, thus Ψ(vk) ⊆ Ck. For the purpose of description,
only collisions at vertices will be considered, as collisions taking place during
the traversal of edges can be modeled by inserting additional vertices into
the graph.

The notation in this paper can get complex, due to the number of different
objects that the text must describe, and the number of different spaces in
which said objects may lie. To make the notation more comprehensible, a
standard format is employed. The symbol xyz refers to an object of type x,
where z is a label for the specific object instance, and y ⊂ I is robot or set

18

Symbol Meaning

φi Individual policy for ri

πiφ(vi, vif) Path for ri induced by its individual policy from vi to vif

πφ(v, vf) Path the for multirobot system induced by each robot obeying
its individual policy from v to vf

π∗(vk, vl) Minimal cost, collision-free path connecting vk to vl

Ck Collision set at vk

V nbh
k Limited neighbors of vk

h(vk) Heuristic cost-to-go from vk to vf

Table 2: Symbol definitions for M*

of robots which are described by x. For instance, vik refers to a vertex k
describing the configuration of robot ri. The symbols xik and xjk refer to the
components of xk describing robots i and j respectively. The symbols i, j, k
and l are reserved for short term indexing, and are reused throughout the
paper in different contexts. The definitions of symbols used in the problem
definition are summarized in Table 1.

4.2. Algorithmic Description

M* is broadly similar to A* [1] in implementation. The primary difference
is that M* restricts the set of possible successors of a vertex based on the
collision set. Only robots in the collision set are allowed to consider any
possible action; all other robots must obey their individual policies (Figures
4-7). A more detailed description follows.

M* is most easily described as a set of modifications to A*. Recall that
A* maintains an open list of vertices vk to explore. Each vertex represents
one point in the joint configuration space of the multirobot system, specifying
the configuration of every robot. These are sorted by f-value, which is the
sum of a g-value and a heuristic cost. The g-value is the cost of the cheapest
path to vk found thus far, and is therefore an upper bound on g(π∗(vs, vk)).
The heuristic cost, h(vk), is a lower bound on the cost of the optimal path
from vk to the goal, i.e. h(vk) ≤ g(π∗(vk, vf)). At each iteration, the vertex
vk with the smallest f-value in the open list is expanded. Each neighbor vl
of vk is added to the open list if the path reaching vl via vk is cheaper than

19

the current g-value of vl. The process continues until the goal vertex vf is
expanded, which indicates that an optimal path to the goal has been found
for the multirobot system.

Prior to planning for the multirobot system, M* computes the individual
policies φi : V i → V i for each robot, where φi(vi) is the successor of vi along
the minimal cost path to vif for robot ri, ignoring robot-robot interactions. φi

can be efficiently computed by Reverse Resumable A* [8]. The path induced
by φi from vi is denoted πiφ(vi, vif). The joint policy φ : V → V moves each
individual robot along its individual policy, with the joint policy path induced
by φ from v denoted πφ(v, vf). Computing the individual policies permits
the efficient computation of the highly informative Sum of Individual Costs
(SIC) heuristic, which is commonly employed for multirobot path planning
[14, 2, 12]. The SIC heuristic evaluated at vk is the sum of the costs of the
individually optimal paths of all robots

h(vk) = g(πφ(vk, vf)) ≤ g(π∗(vk, vf)). (2)

The primary difference in implementation between M* and A* lies in the
expansion step: while A* considers all neighbors of a vertex vk for addition
to the open list, M* only considers a subset of the neighbors of vk, denoted
the limited neighbors. The limited neighbors V nbh

k are the set of neighbors of
vk which can be reached from vk when each robot not in the collision set Ck
of vk moves according to its individual policy. A robot in the collision set of
vk is allowed to move to any neighboring state in the robots individual graph
Gi. More formally, the limited neighbors V nbh

k are the set of neighbors vl of vk
such that the i’th component of vl satisfies one of two properties: i) if i ∈ Ck
then vil is an out-neighbor of vik, or ii) if i 6∈ Ck then vil is the individually
optimal successor of vik according to φi. If there is a robot-robot collision at
vk then V nbh

k = ∅ to prevent paths from passing through collisions.

V nbh
k =

{
vl

∣∣∣{ eikl ∈ Ei, i ∈ Ck
vil = φi(vik), i /∈ Ck

}
(3)

The collision sets of each vertex must be updated whenever M* finds a new
path to a robot-robot collision. To this end, M* maintains a backpropagation
set for each vertex vk, which is the set of all vertices vl that were expanded
while vk was an element of V nbh

l . The backpropagation set is thus the set
of neighbors of vk through which the planner has explored a path to vk.

20

Algorithm 1 Pseudocode for collision set backpropagation

Require: vk, Cl, open
{vk- vertex in the backpropagation set of vl}
{Cl- the collision set of vl}
{open- the open list for M*}
if Cl 6⊆ Ck then
Ck ← Ck

⋃
Cl

if ¬(vk ∈ open) then
open.insert(vk) {If the collision set changed, vk must be re-expanded}

for vm ∈ vk.back set do
backprop(vm, Ck,open)

M* propagates information about a collision at vk by adding the robots in
Ψ(vk) to the collision set of each vertex vl in the backpropagation set of
vk. The robots in Cl are then added to the collision set of each vertex in
the backpropagation set of vl, with the process repeating recursively until
a vertex vm is reached with Ψ(vk) ⊆ Cm. Because V nbh

l is dependent on
Cl, changing Cl adds new paths through vl to the search space. To allow
these new paths to be explored, vl is added to the open list (Algorithm 1).
Pseudocode for M* is provided in Algorithm 2.

4.3. Completeness and Cost Optimality

In this section, M* will be shown to be both complete and optimal. The
description of M* given in 4.2 is well suited to implementation, but provides
only a local description of the operation of M*, which is not optimal for
proving global properties. In the following subsection, a global description
of M* is provided which is more suited to proving properties of the M*
algorithm, with a focus on the search space that is constructed by M*. M*
will be shown to be equivalent to alternating between running A* on a search
graph, and expanding the search graph based on collisions found by A*. As
a result, demonstrating that the construction of the search graph takes finite
time and that the search graph will eventually contain the optimal path, if
extant, is sufficient to prove that M* is complete and optimal.

4.3.1. Alternative Graph-Centric Description

M* differs from A* solely in the use of the limited neighbors when ex-
panding a vertex and the presence of the backprop function (Algorithm 1).

21

Algorithm 2 Pseudocode for M*

{Define default values for vertices}
for all vk ∈ V do
vk.cost ← MAXCOST
vk.back set ← ∅
Ck ← ∅
{Initialize search}
vs.cost ← 0
open ← {vs}
while open.empty() == False do
vk ← open.pop() {Get cheapest vertex}
if vk = vf then
{A solution has been found}
return back track(vk) {Reconstruct the optimal path by following
the back pointers}

for vl ∈ V nbh
k do

vl.back set.append(vk) {Add vk to the back propagation list}
Cl ← Cl

⋃
Ψ(vl)

{Update collision sets, and add vertices whose collision set changed
back to open}
backprop(vk, Cl,open)
if Ψ(vl) = ∅ and vk.cost+f(ekl) < vl.cost then
{vk is the cheapest route to vl}
vl.cost ← vk.cost+f(ekl)
vl.back ptr ← vk {Track the best path to vl}
open.insert(vl)

return No path exists

The backprop function does nothing unless a new path to a collision is found.
Therefore, between discoveries of new paths to collisions, M* behaves exactly
like A* running on a search graph Gsch which is a subgraph of the configu-
ration graph G that represents the joint configuration space.

The search graph Gsch consists of three subgraphs: the explored graph
Gexp, the neighbor graph Gnbh, and the policy graph Gφ (Table 3). Gexp is
the portion of G which has been searched by M*, Gnbh represents the limited
neighbors of the vertices in Gexp, and Gφ consists of the paths induced by
φ that connect vertices in Gnbh to vf . Only Gexp is explicitly constructed,

22

Symbol Name Meaning A* equivalent

G Configuration
graph

Joint configuration
space

Gsch Search graph Current search graph Graph that is being
searched

Gexp Explored graph Explicitly
constructed by M*

Vertices in the open
list

Gnbh Neighbor graph Gexp plus limited
neighbors

Vertices in the open
list plus their
out-neighbors

Gφ Policy graph Individually optimal
paths starting from
Gnbh \Gexp

Table 3: Search graph symbols

with Gnbh and Gφ being implicitly defined by Gexp and the collision sets of
the vertices in Gexp.

We now describe the explored graph Gexp, neighbor graph Gnbh, and
policy graph Gφ in greater detail. The vertex set of Gexp consists of all
vertices which have been added to the open list. When a vertex vk ∈ Gexp

is expanded, its limited neighbors V nbh
k are added to the open list, and thus

to the vertex set of Gexp. The edges connecting vk to each of its limited
neighbors are added to the edge set of Gexp.

The collision set of a vertex is a function of the paths that have been
explored by the underlying planner. Gexp contains all such paths, and there-
fore encodes all the information required to compute the collision set of any
vertex vk.

Ck =

Ψ(vk)
⋃
vl∈Vk

Ψ(vl) vk ∈ Gexp

∅ vk /∈ Gexp

(4)

where Vk = {vl | ∃π(vk, vl) ⊆ Gexp} is the set of vertices to which there exists
a path from vk in Gexp. If vk /∈ Gexp, then M* has never visited vk, and
thus vk has not been explicitly constructed and thus Ψ(vk) has not yet been

23

computed. In accordance to the optimistic assumption, vk is assumed to be
collision-free, and Ck is initialized as the empty set. Therefore, a path in
Gsch may contain a vertex vk in Gsch \Gexp at which robots collide. However,
vk must be added to the open list, and thus to Gexp, before any such path
could be returned. At that point, Ψ(vk) would be computed, leading to the
out-neighbors of vk being removed from Gsch, as per the definition of the
limited neighbors.

The neighbor graph Gnbh
k is the subgraph of the configuration graph

Gsch that represents the limited neighbors of vk ∈ Gexp. Gnbh
k contains vk,

V nbh
k , and the edges leading from vk to the vertices in V nbh

k . Let Gnbh =⋃
vk∈Gexp Gnbh

k , and therefore Gexp ⊂ Gnbh.
Because Ck = ∅ for all vk which are not in the explored graph Gexp,

search from vk ∈ Gnbh \ Gexp will proceed along πφ(vk, vf) until either vf or
a vertex in Gexp 4 is reached. The resulting path segment is denoted πφ(vk),

and is represented as a subgraph Gφ
k , whose vertex set is the set of vertices in

πφ(vk), and whose edge set contains each edge connecting a vertex in πφ(vk)

to its successor. Let the policy graph be defined as Gφ =
⋃
vk∈Gnbh\Gexp G

φ
k .

Gsch can now be defined as the union of Gexp, the subgraph explored by
M*; Gnbh, the limited neighbors of vertices in Gexp,;and Gφ, the individually
optimal paths connecting vertices in Gnbh \Gexp to vf . By the definitions of
Gexp, Gnbh and Gφ, vertices and edges shift from Gφ to Gnbh, and from Gnbh

to Gexp as search progresses. However, Gsch as a whole only changes when
the collision set of a vertex in Gsch changes. See Figure 8 for an illustration
of how the subgraphs change over time.

4.3.2. Proof of Optimality and Completeness

As demonstrated in the previous section, M* can be treated as alternating
between exploring the search graph Gsch with A* and modifying Gsch based
on the partial search results. Because A* is complete and optimal [1], M*
is complete and optimal if Gsch will contain π∗(vs, vf) and no cheaper path
after a finite number of modifications or, if π∗(vs, vf) does not exist, Gsch will
be modified at most a finite number of times.

4If πφ(vk, vf) encounters a vertex in the explored graph Gexp, then there may be some
vl ∈ πφ(vk, vf) such that Ψ(vl) 6= ∅, with vl ∈ Gexp. In such a case, πφ(vk, vf) is not

wholly within Gsch. For this reason, only the portion of πφ(vk, vf) prior to reaching a
vertex in Gexp is considered.

24

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: The above figures depict how the explored graph Gexp and the search graph
Gsch evolve in the configuration space. Vertices are represented as circles, with arrows
representing directed edges. Gexp is depicted by solid lines, while Gsch \Gexp is depicted
by dashed lines. G \Gsch is represented by dotted lines, with edges suppressed for clarity.
A vertex is given a bold outline when it is expanded, while filled circles represent vertices
with known robot-robot collisions. vs is in the upper left, while vf is in the bottom right.
In (a), (b), and (c), the most promising vertex in the open list is expanded, until a
collision is found. Gnbh is updated to reflect the new collision sets in (d). The policy
graph Gφ is updated in (e). In (f) a vertex is re-expanded, having been added back to
the open list when its collision set was changed. (g), (h), and (i) see the most promising
vertices in the open list expanded, until vf is expanded, indicating that a path has been
found.

25

We proceed by showing that if no solution exists, M* will terminate in
finite time without returning a path. We then show that M* will eventually
find the optimal path if one of two conditions always hold: Gsch contains the
optimal path, or Gsch contains an unexplored path containing a robot-robot
collision which costs no more than the optimal path. We complete the proof
by showing that at least one of the two conditions always holds.

Lemma 1. If no solution exists, M* will terminate in finite time without
returning a path.

Proof. Assume no solution exists. As part of M*, A* is run on the search
graph Gsch. A* will explore all of Gsch in finite time and conclude that no
solution exists, except if the A* search is interrupted by a modification of
Gsch. Gsch is only modified when the collision set of at least one vertex in
Gsch is changed. Each modification adds one or more robots to the collision
set, and thus each collision set can be modified at most n− 1 times; the first
modification must add at least two robots. Therefore, Gsch can be modified at
most (n−1)∗ |V | times. Thus if no solution exists, M* will always terminate
in finite time.

We now show that M* will never return an invalid path containing a
robot-robot collision. A vertex vk has out-neighbors only if it is collision
free, unless vk is not in the explored graph Gexp. Before M* will return a
path passing through vk, vk must be added to the open list, and thus to Gexp.
When vk which is not collision free is added to the open list, Gsch is modified
to remove all out-neighbors of vk, which removes any path passing through
vk from Gsch. Therefore, M* will never return a path passing through a state
at which robots collide. Thus, if no solution exists, M* will terminate in
finite time without returning a path .

Next, assume that an optimal collision-free path from vs to vf exists, i.e.
the configuration graph G contains an optimal path π∗(vs, vf).

Lemma 2. If an optimal path exists, M* will find the optimal path in finite
time if one of two cases always hold

Case 1: The search graph Gsch contains an optimal path, π∗(vs, vf)
Case 2: The search graph Gsch contains a path π(vs, vc) such that

g (π (vs, vc))+h(vc) ≤ g(π∗(vs, vf)), and ∃ vb ∈ π(vs, vc) such that Ψ(vc) 6⊆ Cb

Case 2 implies the existence of a path which has not been explored by M*
that leads to a robot-robot collision at vc, and which costs no more than

26

π∗(vs, vf). If the path had been explored, vb and vc would have been added
to the open list and thus to the explored graph Gexp. In this case, Cb would
include all robots involved in the collision at vc, i.e. the robots in Ψ(vc).

To prove lemma 2, we proceed by showing that if case 1 holds, the optimal
path will be found unless a cheaper path containing a collision exists in the
search graph Gsch, i.e., case 2 holds (Lemma 3). We then show that M* will
never explore a suboptimal path to the goal as long as case 2 holds (Lemma
4), and that case 2 will not hold after finite time (Lemma 5). We conclude
by proving that either case 1 or case 2 will always hold, demonstrating that
the optimal path will be found (Lemma 7).

Lemma 3. If the search graph Gsch contains an optimal path (i.e. case 1
holds), M* will find the optimal path, unless case 2 also holds.

Proof. If case 1 holds, running A* on Gsch will find π∗(vs, vf) in finite
time, unless there exists a cheaper path πcheaper(vs, vf) ⊆ Gsch, which we now
show would satisfies the conditions for case 2 to hold. Because π∗(vs, vf)
is a minimal cost collision-free path, πcheaper(vs, vf) must contain a robot-
robot collision. Therefore a vertex vk ∈ πcheaper(vs, vf) must exist such that
Ψ(vk) 6= ∅, and by (2) g(πcheaper(vs, vk))+h(vk) < g(π∗(vs, vf)). The existence
of a path through vk implies that vk /∈ Gexp, as a vertex containing robot-
robot collisions has its outneighbors removed when added to the explored
graph Gexp. Therefore, Ck = ∅ by (4). Since Ψ(vk) 6⊆ Ck, vk fulfills the roles
of both vb and vc in the definition of case 2. As a result, if case 1 holds, M*
will find π∗(vs, vf), unless case 2 also holds5 .

Lemma 4. If the search graph Gsch contains an unexplored path cheaper than
g(π∗(vs, vf)) (i.e. case 2 holds), M* will not return a suboptimal path.

Proof. If case 2 holds, then π(vs, vc) will be explored by A* and added to
the explored graph Gexp before A* finds any path to vf that costs more than
g(π∗(vs, vf)) [1]. Adding π(vs, vc) to Gexp will modify Cb. G

sch will then be
modified to reflect the new limited neighbors of vb and A* will be restarted.
Therefore, M* will never return a suboptimal path as long as case 2 holds .

5We note that if the equality g (π (vs, vc)) +h(vc) ≤ g(π∗(vs, vf)) holds for case 2, then
M* may find the optimal path while both case 1 and case 2 hold. We gloss over this point
in the main text, as it ultimately does not change the logic of the proof.

27

Lemma 5. The search graph Gsch will cease to contain any unexplored path
cheaper g(π∗(vs, vf)) (i.e. case 2 will cease to hold) after finite time.

Proof. For case 2 to hold, there must be at least one vertex vb such that Cb
is a strict subset of I. Gsch can be modified at most (n−1)∗|V | times before all
collision sets are equal to I. Therefore, after a finite number of modifications
of Gsch case 2 cannot hold. A* will fully explore any finite graph in finite
time, implying that the time between any two successive modifications of
Gsch is finite. Therefore, case 2 will not hold after finite time .

With these auxillary results in hand, the proof of lemma 2 is as follows.
If case 1 holds, then M* will find the optimal path in finite time, unless
case 2 also holds (Lemma 3). While case 2 holds, M* will not return a
suboptimal path (Lemma 4), and case 2 cannot hold after finite time (Lemma
5). Therefore, after finite time, only case 1 will hold, implying that M* will
find the optimal path in finite time.

To complete the proof of the completeness and optimality of M*, we
must show that case 1 or case 2 will always hold. To do so, we first need an
auxiliary result (Lemma 6) showing that the optimal path for some subset
of robots costs no more than the joint path taken by those robots in the
optimal, joint path for the entire set of robots. The auxiliary result is used
to demonstrate that an optimal path can be found by combining optimal
paths for disjoint subsets of robots.

Let π′Ω(vk, vf) be the path constructed by combining the optimal path for
a subset Ω ⊂ I of robots with the individually optimal paths for the robots
in I \ Ω.

Lemma 6. If the configuration graph contains an optimal path π∗(vk, vf),
then ∀Ω ⊂ I, g(π′Ω(vk, vf)) ≤ g(π∗(vk, vf). Furthermore, if Ω1 ⊂ Ω2, then
g(π′Ω1

(vk, vf)) ≤ g(π′Ω2
(vk, vf)).

Proof. If π∗(vk, vf) from an arbitrary vk to vf exists in G, then for any
subset of robots Ω there exists an optimal path πΩ

∗ (vΩ
k , v

Ω
f) which costs no

more than the path taken by those robots in π∗(vk, vf). Let Ω = I \ Ω

be the complement of Ω and πΩ
φ (vΩ

k , v
Ω
f) be the path for the robots in Ω

induced by each robot obeying its individual policy. πΩ
φ (vΩ

k , v
Ω
f) costs no more

than the paths taken by the robots in Ω in π∗(vk, vf) by the construction
of the individual policies. A path for all robots in I, π′Ω(vk, vf), is then

28

constructed by having each robot in Ω follow its path in πΩ
∗ (vΩ

k , v
Ω
f), while

each robot in Ω follows its path in πΩ
φ (vΩ

k , v
Ω
f). Since the individual path for

each robot in π′Ω(vk, vf) costs no more than the path for the same robot in
π∗(vk, vf), g(π′Ω(vk, vf)) ≤ g(π∗(vk, vf)). By the same logic, if Ω1 ⊆ Ω2, then
g(π′Ω1

(vk, vf)) ≤ g(π′Ω2
(vk, vf)) .

Lemma 7. The search graph Gsch will always contain an optimal path (i.e.
case 1 will hold) or an unexplored path which costs no more than the optimal
path (i.e. case 2 will hold) at all points in the execution of M*.

Proof. We proceed by showing that the limited neighbors of each vertex in
Gsch are sufficient to construct either the optimal path, or some unexplored,
no more expensive path. Consider the vertex vk ∈ Gsch with collision set
Ck. The successor of vk in π′Ck

(vk, vf), vl, is a limited neighbor of vk by
the definition of the limited neighbors (2). Since Cl ⊆ Ck by (4), Lemma 6
implies

g(π′Ck
(vk, vl)) + g(π′Cl

(vl, vf)) ≤
g(π′Ck

(vk, vf)) ≤ g(π∗(vk, vf))
(5)

We apply the above bound vertex by vertex from the initial vertex to show
that a path π′′(vs, vf) ∈ Gsch can be constructed which satisfies either case
1 or case 2. The successor of the m’th vertex vm in π′′(vs, vf) is the suc-
cessor of vm in π′Cm

(vm, vf). Applying (5) gives the bound g(π′′(vs, vf)) ≤
g(π′Cs

(vs, vf)) ≤ g(π∗(vs, vf)). If π′′(vs, vf) = π∗(vs, vf) then case 1 is satis-
fied. Otherwise, there is a vertex vc ∈ π′′(vs, vf) such that Ψ(vc) 6= ∅. Let
vb be the predecessor of vc, which implies that vc lies in π′Cb

(vb, vf). Then
Ψ(vc) 6⊆ Cb, because by construction the robots in Cb do not collide with
one another in π′Cb

(vb, vf). By (2), g(π′′(vs, vc)) + h(vc) ≤ g(π′′(vs, vf)) ≤
g(π∗(vs, vf)), which implies case 2 is satisfied.

There is an edge case which must be considered if case 1 does not hold. If
π′′(vs, vf) contains a vertex vk 6∈ Gexp with a successor vl ∈ Gexp, Cl may not
be a subset of Ck, because no path exists from vk to vl in the explored graph
Gexp, so the bound given by (5) does not apply. However, in this case the
path induced by φ from vl must terminate at some vertex vc with Ψ(vc) 6= ∅.
We construct a new path by following π′′(vs, vf) to vl, and then following
πφ(vl, vf) to vc. The sum of the cost of this path and h(vc) must be less than
g(π∗(vs, vf)), and Ψ(vc) 6⊆ Ck, so case 2 still holds .

29

Theorem 1. M* is complete and optimal.

Proof. If the configuration graph G does not contain an optimal path, then
M* will terminate in finite time without returning an invalid path (Lemma
1). If G does contain an optimal path, then the search graph must always
contain either the optimal path, or an unexplored path which costs no more
than the optimal path (Lemma 7), which implies that then M* will find
the optimal path in finite time (Lemma 2). M* will thus find the optimal
path in finite time, if one exists, or terminate in finite time if no path exists.
Therefore, M* is complete and optimal .

4.4. Performance Analysis

Consider M* running on a worst case problem where every robot interacts
with every other robot. Over time, the collision sets will grow until each
collision set contains every robot, at which point M* will reduce to A*. The
question is then how much additional overhead M* imposes in the most
difficult problem instances compared to A*. M* may expand each vertex
up to n times; once when the collision set is empty, and once when the
collision set contains 2, . . . , n robots, where n is the total number of robots.
The computational cost of expanding a vertex with a given collision set C is
proportional to the number of limited neighbors b|C|, where b is the number
of outneighbors of each vertex in the individual robot graphs. Normalized to
the cost of a single A* expansion, bn, the total cost of all M* expansions of
a given vertex is

n∑
i=0,i 6=1

(
1

b

)i
≤

n∑
i=0,

(
1

b

)i
=

1−
(

1
b

)n+1

1− 1
b

≤ b

b− 1
(6)

using rules for the sum of finite and infinite geometric series. Therefore,
repeated M* expansions of a given vertex do at most a constant factor more
work than a single A* expansion of the same vertex.

Updating the collision set of a vertex takes time linear in the number
robots, and the collision set of each vertex may be updated at most (n− 1)
times, and thus total complexity of maintaining the collision sets may be
O(n2|V |), where |V | is the total number of vertices in the configuration
graph. |V | is exponential in the number of robots. In practice the cost of
maintaining the collision set is not significant.

30

5. Variants of M*

Several variants of M* with improved performance have been developed.
Recursive M* (rM*) breaks the collision set into independent subsets of
robots that can be planned for separately, reducing the maximum dimen-
sionality of the search space. Inflated M* uses an inflated heuristic function
to reduce planning time, but returns a path costing up to a specified factor
more than the optimal path. ODM* and EPEA* replace A* with Opera-
tor Decomposition (OD) [2] and Enhanced Partial Expansion A* (EPEA*)
[12], variants of A* tuned for multirobot path planning. Recursive versions of
ODM* and EPEM* can be created, resulting in ODrM* and EPEM*, as well
as their inflated variants. Finally, the performance of M* is sensitive to choice
of individual policies. The Meta-Agent Conflict Based Search framework [59]
can be employed to optimize the individual policies using rapid, decoupled
planning for individual robots, before applying ODrM* or EPErM* to sets
of robots requiring coupled planning.

5.1. Recursive M*

The M* algorithm described in 4.2 performs coupled planning for all
robots in the collision set, even when the collision set consists of spatially
separated subsets of robots. rM* finds an optimal, collision-free path for each
such subset via a recursive call to rM*. Such paths constrain the motion for
each subset of robots in the same fashion that the individual policies constrain
the motion of individual robots. By separating the planning for independent
subsets of robots, the worst case computational cost of rM* is exponential
in the size of the largest set of mutually colliding robots, rather than in the
total number of robots found to collide with other robots.

Implementing recursive M* requires few modifications to basic M*. The
collision set for vk in rM* becomes a collection of the largest disjoint sets that
can be formed from the collisions reachable from vk in Gexp. For example, if
collisions involving the sets of robots {1, 2}, {2, 3}, and {4, 5} can be reached
from vk, then Ck = {{1, 2, 3}, {4, 5}}, instead of {1, 2, 3, 4, 5} as would be the
case in basic M*. If ri is not in any element of Ck then it obeys its individual
policy φi, as in M*. Otherwise, ri follows the optimal path for the subset
of robots in Ck to which it belongs, as computed by a recursive call to rM*.
The exception is if Ck = {I}, in which case V̂k is computed as usual for M*,
using I as the collision set. This functions as the base case of the recursive
calls to rM*.

31

Recursive M* retains the optimality and completeness properties of M*.
Each disjoint set of colliding robots can be thought of as a single, high-
dimensional meta-agent. The recursive calls to rM* then serve to compute
the individual policy for each meta-agent. With these concepts in place, the
proofs in section 4.3.2 apply to rM*.

5.2. Inflated M*

One problem with the basic M* implementation is that every time a new
robot is involved in a collision, it is added to the collision set of vs. Unless
g(π∗(vs, vf)) = g(πφ(vs, vf)), vs must then be re-expanded at a computational
cost that is exponential in the size of Cs. Inflating the heuristic by multiplying
the heuristic by some ε > 1 is known to significantly decrease the time A*
requires to find a solution in many cases [60, 61, 62, 63, 64]. Furthermore,
the resultant path will cost no more than ε · g(π∗(vs, vf)) [65]. The logic in
Section 4.3.2 can be extended to show that M* has the same sub-optimality
bound when used with an inflated heuristic.

An inflated heuristic benefits M* in two fashions. First of all, an inflated
heuristic biases the search towards the leaves of the search tree close to the
goal, where a solution is more likely to be found quickly, which is the source
of benefit in inflated A*. In addition, the vertices near the leaves of the search
tree will generally have smaller collision sets. Therefore, an inflated heuristic
will bias search to occur in a region of the search space of low dimensionality.

5.3. Replacements for A*

A* is fundamentally limited for multirobot path planning because the
number of out-neighbors of a single vertex increases exponentially with the
number of robots. A* adds all out-neighbors of a vertex to the open list, even
if many will never be expanded. As a result, A* will run out of memory when
dealing with systems containing even moderate numbers of robots. Operator
Decomposition (OD) [2] and Enhanced Partial Expansion A* (EPEA*) [12]
are variants of A* which delay instantiating expensive neighbors, thus reduc-
ing the effective branching factor of the graph. Replacing A* in M* with OD
and EPEA* results in the ODM* and EPEM* algorithms, respectively.

5.3.1. ODM*

In ODM*, A* is replaced as the underlying planner by Operator De-
composition, a variant of A* developed explicitly for multirobot path plan-
ning. OD mitigates the problem of growth in the number of out-neighbors

32

2

1

0

1 1 2

2

A B C
(a)

Robot 1

A1,C1
f=2

A2,C1
f=4

B1,C1
f=2

A0,C1
f=4

A1,C1
f=3

B1,C2
f=4

B1,C0
f=2

B1,C1
f=3 Robot 2

(b)

Figure 9: Operator Decomposition is used to solve a simple, 2 robot path planning problem
(a), where the robots move from vertices A1 and C1 to the goals B1 and C0. Initially, the
search tree contains a single, standard vertex {A1, C1} (b). When {A1, C1} is expanded,
four intermediate vertices, denoted by dashed lines, are generated to represent the possible
actions of the first robot. The intermediate vertex with the lowest f-value is selected for
expansion. Three vertices are created, representing the actions of robot 2 which do not
collide with the new position of robot 1. Since the new position of all robots has been
specified, these are standard nodes. The goal vertex {B1, C0} has the lowest remaining
f-value, and is expanded next, indicating that a path has been found. [56, adapted]

33

by procedurally generating the out-neighbors so that low cost neighbors are
generated first, and high-cost neighbors may never be instantiated. OD gen-
erates two types of search vertices; standard and intermediate. A standard
vertex represents the configuration of all robots in the system. When a stan-
dard vertex is expanded, OD generates intermediate vertices which specify
all possible actions for the first robot. The cost and heuristic cost-to-go of
the intermediate vertices are updated to reflect the new position of the first
robot; then the intermediate vertices are added to the open list. When an
intermediate vertex is expanded, additional intermediate vertices specifying
the action of the next robot are generated. Standard vertices are generated
once actions are assigned for the last robot. This procedure results in the
creation of standard vertices which represent heuristically promising actions,
such as each robot moving directly towards its goal, before instantiating any
less promising vertices. Typically fewer total vertices are created, reducing
the computational cost of finding a path.

Figure 9 illustrates the vertex expansion of operator decomposition for a
problem involving two robots. When coupled with an admissible heuristic,
operator decomposition is complete and optimal with respect to path cost.
Thus, ODM* is also guaranteed to find optimal paths.

5.3.2. EPEM*

In EPEM*, A* is replaced as the underlying planner by Enhanced Partial
Expansion A*, a variant of A* that has been applied to single- and multi-
agent planning [12]. EPEA* seeks to eliminate the generation of excess nodes,
which have a f-value larger than the cost of the optimal path and thus will
never be expanded.

EPEA* sorts the open list based on the sum of the f-value of a vertex
and an offset, ∆f(v), which is initially set to zero. When EPEA* expands a
vertex vk, it employs a domain specific Operator Selection Function (OSF) to
instantiate only those neighbors of vk whose f-value is equal to f(vk)+∆f(vk).
∆f(vk) is then incremented, and vk is added back to the open list. As a result,
no excess nodes will ever be generated.

For multirobot path planning, EPEA* uses an OSF which generates
neighbors of a vertex vk in a two step process: allocating costs to specific
robots and generating neighbors. The offset of vk can be interpreted as an
excess cost compared to the heuristically optimal neighbor of vk. In the
first step of expansion, EPEA* allocates individual robots a specific amount
of excess to incur. All neighbors of vk that match the allocation of excess

34

cost are then generated, and added to the open list. This is more efficient
than a direct search over all possible neighbors. Felner et. al. [12] report
that EPEA* outperforms A* and OD when solving dense multirobot path
planning problems.

5.4. Policy Optimization

The performance of M* is very sensitive to the choice of individual policies
when many optimal paths exist for each robot. One choice of individual
policies may result in few collisions, while another choice may result in a large
number of robots colliding at a single bottleneck, preventing a solution from
being found in reasonable time. Therefore, it may be desirable to optimize
the choice of individual policies prior to starting M* search.

Meta-Agent Conflict-Based Search (MA-CBS) [59] is a planning frame-
work introduced by Sharon et. al. based on their Conflict-Based Search
(CBS) planning algorithm [57], and generalizes the earlier Independence De-
tection (ID) algorithm by Standley [2]. Conflict-Based Search explores a
space of constraints on individual robots, rather than the joint configuration
space of the system. Each search node contains a set of constraints and the
optimal path for each robot subject to the constraints. The constraints pro-
hibit individual robots from occupying a specific position at a specific time
that would lead to interference with another robot.

At each step, the search node with the smallest total path cost is checked
for collisions between the constrained paths of the individual robots. If no
collisions are detected, then the optimal solution has been found. If a collision
is found between two robots at position q and time t, the search tree branches.
Two new nodes are created, each with an added constraint prohibiting one
of the involved robots from occupying q at time t. New paths are then
computed for each of the involved robots that obey the newly expanded set
of constraints. When planning for an individual robot, conflicts with paths
of other robots are used for tie breaking: i.e. paths which do not conflict
with the paths of other robots are preferred, but no additional cost will be
incurred to avoid such conflicts.

While the search space for constrained planning is of constant dimen-
sionality, the set of possible constraints grows exponentially. As a result,
CBS performs poorly when there are many alternate paths which require a
large number of constraints to cover. In such cases, it is more efficient to
use coupled search to find a path for the effected robots. MA-CBS [59] is an
extension of CBS in which robots are permanently merged into a meta-agent

35

when the number of mutual constraints generated exceeds a merge threshold
B. Within a meta-agent, planning is conducted using a coupled planning
algorithm respecting the constraints placed on the meta-agent. Internal con-
straints upon the constituent robots are removed when they are merged into
a meta-agent, although the new meta-agent inherits constraints that resulted
from collisions with agents not included in the meta-agent. MA-CBS with a
given merge threshold B is denoted as MA-CBS(B). Typically, smaller val-
ues of B work better in more open environments with many alternate paths,
resorting to coupled search earlier, while larger values of B work better in
more constrained environments. MA-CBS(0) is equivalent to ID [59].

Using ODrM* as the coupled planner for MA-CBS results in the MA-
CBS+ODrM* algorithm. The individual policies computed for ODrM* re-
spect the constraints imposed on the meta-agent, and attempt to minimize
conflicts with robots not in the meta-agent. In this fashion, the individual
policies are optimized to minimize robot-robot conflicts.

ODrM* and MA-CBS complement each other well. MA-CBS can mini-
mize the total number of collisions via rapid, decoupled search, and is effec-
tive in narrow bottlenecks which pose a problem for ODrM*, while ODrM*
is more suited to open regions than other coupled planners, as ODrM* will
reject alternate, low cost paths which cannot resolve collisions.

6. Comparison of M* and Similar Algorithms

M*, EPEA*, OD, ID and MA-CBS all exploit the same natural decom-
position of the multirobot path planning problem by exploring paths that
minimize the costs incurred by individual robots before considering more
expensive paths. As a result, there are a number of similarities in these algo-
rithms. This section will describe how M* differs from the other algorithms,
and where M* can show a performance improvement.

EPEA* and OD are both approaches that intelligently search the joint
configuration space. While EPEA* and OD can delay instantiating un-
promising vertices, they cannot identify and exclude unnecessary portions
of the joint configuration space. By tracking which robots collide where, M*
can construct a search space that excludes unnecessary regions of the joint
configuration space. Consider a 3 robot example, where r1 and r2 must swap
positions in a narrow corridor, while r3 is alone in an open room (Figure 10a).
Clearly, r2 needs to wait for r1 to enter the alcove, or vice versa. However,
such a path would have a greater f-value than the initial state. Therefore,

36

(a) Configuration (b) EPEA* Search Tree (c) M* Search Tree

Figure 10: Illustrative example of the computation benefit of M* compared with A*, OD,
or EPEA*. (a) Robots start at v1s , v

2
s , and v3s and move to v1f , v

2
f and v3f respectively.

(b) EPEA* must construct a search tree containing multiple alternate paths before it can
consider moving r1 into the alcove. (c) M* does not need to consider alternate paths for
r3 before M* can consider moving r1 into the alcove.

before OD or EPEA* could consider such a path, they must first examine all
optimal alternate paths for r3, even though none of those paths could possi-
bly resolve the conflict (Figure 10b). In the case of M*, r3 is not involved in
any collision, and thus will remain restricted to its individually optimal path
(Figure 10c). M* can therefore proceed immediately to considering alternate
paths for the robots involved in the collision, rather than waisting time on
alternate paths for r3.

MA-CBS, ID and rM* share a common purpose: splitting the multi-
robot system into independent subsets of robots. The approach rM* takes
to splitting the system is less sophisticated than that employed by ID and
MA-CBS. When rM* detects a collision between two robots, it immediately
merges them to form a meta-agent, instead of checking whether choosing a
different individual policy of one of the robots could avoid the collision, as
MA-CBS or ID would do. However, rM* has much more fine-grained con-
trol over the merging of robots. Once rM* resolves a collision between the
agents composing a meta-agent, it splits the meta-agent back into individ-
ual robots, whereas once MA-CBS or ID generates a meta-agent, it remains
merged. The local merging of rM* will typically not reduce the peak di-
mensionality of the search space, as vs accumulates all collisions and must
be re-expanded if g(π∗(vs, vf)) > f(vs). However, it will reduce the num-
ber of vertices at which the search space will have maximal dimensionality.
Furthermore, the fine-grained nature of rM* allows it to be used within the

37

Figure 11: A typical four-connected grid world with 32x32 cells for a test run including
40 robots. Colored circles represent the initial positions of the robots, while goal positions
are marked with colored stars. Unfilled circles represent the obstacles.

MA-CBS or ID frameworks as the coupled planner, thus gaining the benefit
of both the more sophisticated policy optimization performed by MA-CBS
and ID, and the local merging of agents that rM* provides.

7. M* Results

To validate the performance of M* on systems of up to 200 robots, we
turn to simulation. All simulations were implemented in python and run on
a computer with an Intel Core i5-2500 processor clocked at 3.30 GHz (Turbo
Boost disabled) with 8 GB of RAM. The test environment was a 32x32, four-
connected grid of cells, with a 20% probability of a given cell being marked as
an obstacle, as in [2] (Figure 11). Unique initial and goal positions for each
robot were chosen randomly within the same connected component of the
workspace. Any action by an individual robot, including waiting, incurred a
cost of one, although a robot could wait at its assigned goal with zero cost.
The existence of a wait action implies the presence of a self-loop for each
vertex vk ∈ Gi, so that vk is its own out-neighbor.

Each trial was given 5 minutes to find a solution. 100 random environ-
ments were tested for a given number of robots. We present the percentage

38

10 20 30 40 50 60
0

20

40

60

80

100

S
uc

ce
ss

R
at

e
(%

)

A*
OD

EPEA*
M*

ODM*
EPEM*

10 20 30 40 50 60
Number Robots

10−2

10−1

100

101

102

103

Ti
m

e
to

S
ol

ut
io

n
(s

)

(a) M* Variants
Max 60 Robots

10 20 30 40 50 60
0

20

40

60

80

100

S
uc

ce
ss

R
at

e
(%

)

rM* ODrM* EPErM*

10 20 30 40 50 60
Number Robots

10−2

10−1

100

101

102

103

Ti
m

e
to

S
ol

ut
io

n
(s

)

(b) rM* Variants
Max 60 Robots

Figure 12: Results for A*, OD,EPEA*, M*, ODM*, and EPEM* (a) and rM*, ODrM*,
and EPErM* (b). The plots on top illustrate the percentage of trials in which a solution
was found within 5 minutes, in a 32x32 four-connected grid world. The bottom graphs
the median time to solution.

of trials that were successful within 5 minutes as well as the median time
required to find solutions. Run time is plotted on a logarithmic scale.

7.1. M*, Operator Decomposition and rM*

We start by comparing A*, OD, EPEA*, M*, EPEM*, ODM*, rM*,
ODrM* and EPErM* (Figure 12). The plateauing of the median time to
solution plots is the result of at least 50% of trials reaching the 5 minute
time limit. Python’s CPU time function has a resolution of one millisecond,
resulting in solutions that take less than one millisecond being reported as
taking zero time, which cannot be represented on a logarithmic plot.

As expected, A* demonstrated the worst performance, being unable to
find solutions for problems of 10 or more robots. A* was limited by the ex-
ponential growth in the number of neighbors of a given vertex as the number

39

Algorithm Largest Collision Set
Largest Independent Subset

of the Collision Set

M* 9

ODM* 15

EPEM* 15

rM* 16 9

ODrM* 25 16

EPErM* 25 16

Table 4: Number of robots in the largest collision set encountered in a problem solved
by M*, ODM*, EPEM*, rM*, ODrM*, and EPErM* for systems of up to 40 robots in
a 32x32 grid world. For rM*, ODrM*, and EPErM* the size of the largest independent
subset of the collision set for which coupled planning was successfully performed is also
reported.

of robots increases. OD, EPEA*, M*, ODM* and EPEM* all show roughly
similar performance. M* solved the most problems with 15 robots, but de-
cayed in performance rapidly until it underperformed all other algorithms at
20 robots. OD generally underperformed EPEA*, M*, ODM*, and EPEM*,
while EPEA* unexpectedly showed the best performance for problems in-
volving 20 robots.

The recursive variants of M* showed noticeable improvement over the
non-recursive approaches, and solved twice as many problems involving 20
robots as EPEA* (Figure 12b). Recall that rM* uses A* as the underlying
planning algorithm, so that rM* typically expands more vertices than ODrM*
or EPErM*. Thus, we expected ODrM* to solve more instances within
the given time limit. ODrM* and EPErM* solved twice as many problems
involving 25 robots as basic rM*. The near identical performance of ODrM*
and EPErM* can be accounted for by the similarity in performance of OD
and EPEA*.

The degree to which M* and its variants can solve problems which involve
dense interactions between many robots can be measured by the maximum
size of the collision set of vs encountered during a successful trial (Table
4). Recall that the collision set of vs accumulates all robots found to collide
with another robot at any point in the search. However, if g(π∗(vs, vf) =
g(πφ(vs, vf) then vs may not be expanded with its largest collision set, de-

40

pending on how ties are broken when vertex f-values are compared. ODM*,
ODrM*, EPEM*, and EPErM* were able to handle larger collision sets than
M* and rM*, which is to be expected because OD and EPEA* could solve
problems involving more robots than A*.

The recursive implementations solved problems in which roughly twice as
many total robots were involved in collisions as the equivalent non-recursive
implementation. This is because the recursive implementations split the col-
lision set into independent subsets of robots, for which coupled planning is
performed separately. The largest independent subset of the collision set
in the recursive implementations were equivalent in size to the largest colli-
sion sets for which the non-recursive implementations found solutions. Thus,
while recursive implementations could solve problems involving more total
robots, the number of robots which could interact in a single region of the
workspace, and thus require coupled planning, was determined by the under-
lying planner.

7.2. Policy Optimization

We now present simulation results using the MA-CBS planning frame-
work, and demonstrate that integrating ODrM* or EPErM* provides state of
the art results for optimal multirobot path planning. MA-CBS is parametrized
by a merge threshold which must be tuned to a specific problem’s charac-
teristics. MA-CBS+OD, MA-CBS+EPEA*, MA-CBS+ODrM*, and MA-
CBS+EPErM* were tested with merge thresholds of 3, 10, 30, 100, 300,
1000 and 3000. MA-CBS+ODrM* and MA-CBS+EPErM* performed best
with a merge threshold of 1000, while MA-CBS+OD and MA-CBS+EPEA*
performed best with a merge threshold of 3000.

The planning results for CBS, equivalent to MA-CBS(∞), MA-
CBS(3000)+OD, MA-CBS(3000)+EPEA*, MA-CBS(1000)+ODrM*, and
MA-CBS(1000)+EPErM* are given in figure 13. CBS outperformed MA-
CBS(3000)+OD, MA-CBS(3000)+EPEA*, which is not surprising given
that the environment is very cluttered, which is where CBS is known
to perform best [59]. The greater planning power of M* allowed MA-
CBS(1000)+ODrM* and MA-CBS(1000)+EPErM* to substantially outper-
form CBS, while the performance of MA-CBS(1000)+ODrM* and MA-
CBS(1000)+EPErM* were nearly identical. We note that on 8-connected
grids, where there are more alternate paths, the performance benefit of MA-
CBS+ODrM* over CBS and MA-CBS+OD becomes even more substantial
[10].

41

10 20 30 40 50 60
0

20

40

60

80

100

S
uc

ce
ss

R
at

e
(%

)

CBS
MA-CBS(3000)+OD
MA-CBS(3000)+EPEA*

MA-CBS(1000)+ODrM*
MA-CBS(1000)+EPErM*

10 20 30 40 50 60
Number Robots

10−2

10−1

100

101

102

103

Ti
m

e
to

S
ol

ut
io

n
(s

)

Policy Optimization

Figure 13: Results for CBS, MA-CBS(10)+OD, MA-CBS(20)+ODrM*, and MA-
CBS(30)+EPErM*. The plot on top illustrate the percentage of trials in which a solution
was found within 5 minutes, in a 32x32 four-connected grid world. The bottom graphs
the median time to solution.

7.3. Inflated Heuristics

We tested A*, M*, EPEA* and variants of M* with a heuristic inflated
by a factor of 1.1 (Figure 14a). All algorithms were thus guaranteed to find
a path costing no more than 10% more than that of the optimal solution.
Inflated A* was still unable to find solutions for systems of 10 or more robots,
as each vertex has ten million neighbors. While the success rate for inflated
OD, inflated EPEA* and inflated M* all improved, M* benefited substan-
tially more from an inflated heuristic than OD or EPEA* did. Basic inflated
M* was held back by inefficient neighbor generation for larger collision sets,
and thus performed on par with inflated EPEA*, but inflated ODM* and
inflated EPEM* solved problems involving roughly twice as many robots.
The inflated heuristic concentrates search on the leaves of the search graph
nearest to the goal, providing a benefit to EPEA*, OD and M*. However,

42

10 20 30 40 50 60
0

20

40

60

80

100

S
uc

ce
ss

R
at

e
(%

)

A* (ε = 1.1)

OD (ε = 1.1)

EPEA* (ε = 1.1)

M* (ε = 1.1)

ODM* (ε = 1.1)

EPEM* (ε = 1.1)

10 20 30 40 50 60
Number Robots

10−2

10−1

100

101

102

103

Ti
m

e
to

S
ol

ut
io

n
(s

)

(a) M* variants with inflation

10 20 30 40 50 60
0

20

40

60

80

100

S
uc

ce
ss

R
at

e
(%

)

rM* (ε = 1.1)

ODrM* (ε = 1.1)

EPErM* (ε = 1.1)

10 20 30 40 50 60
Number Robots

10−2

10−1

100

101

102

103

Ti
m

e
to

S
ol

ut
io

n
(s

)

(b) rM* variants with inflation

Figure 14: Results for A*, OD, M*, ODM*, rM* and ODrM* with a heuristic inflated
by 10% (a) and extended results to 100 robots for inflated ODM*, inflated rM*, inflated
ODrM*, and MA-CBS+ODrM*(20) without an inflated heuristic (b). The plots on top
illustrate the percentage of trials in which a solution was found within 5 minutes, in a
32x32 four-connected grid world. The bottom graphs the median time to solution.

such leaves will also have smaller collision sets, reducing the dimensionality
of the search space for M*, and accounting for the greater reduction in com-
putation time for inflated ODM* and inflated EPEM* compared to inflated
OD or inflated EPEA*.

Inflated rM*, ODrM* and EPErM* show further improvements in perfor-
mance, as expected (Figure 14b). Inflated ODrM* and EPErM* were able
to find solutions more quickly, in more cases, and with a simpler implemen-
tation than MA-CBS(1000)+ODrM*, reflecting the computational benefits
of relaxing the requirement to find optimal cost paths, even if only slightly.

43

50 100 150 200
0

20

40

60

80

100

S
uc

ce
ss

R
at

e
(%

)

MA-CBS(1000)+EPErM*
EPErM* (ε = 1.1)

EPErM* (ε = 3)

EPErM* (ε = 10)

PPAS

50 100 150 200
Number Robots

10−2

10−1

100

101

102

103

Ti
m

e
to

S
ol

ut
io

n
(s

)

Comparison with Rule-Based Approches

Figure 15: Results for MA-CBS(1000)+EPErM*, inflated EPErM* with inflation factors
of 1.1, 3, and 10, and Parallel Push and Swap (PPAS). The plot on top illustrate the
percentage of trials in which a solution was found within 5 minutes, in a 32x32 four-
connected grid world. The bottom graphs the median time to solution. The failures of
PPAS were due to the implementation being tested crashing.

7.4. Comparison to Rule-Based Approaches

M* and inflated M* can find optimal or bounded suboptimal paths to
problems involving many robots, but in the worst case the computational
complexity of M* is still exponential in the number of robots. This raises the
question of what benefits M* conveys in practice in comparison to polynomial-
time, rule based approaches which do not provide bounds on path cost. To
this end, we compared variants of M* against a C++ implementation of Par-
allel Push and Swap (PPAS) graciously provided by Sajid et al. [53]. The
PPAS code was not optimized for performance or run time

Four variants of M* are used as points of comparison, MA-
CBS(1000)+EPErM*, which produces optimal paths, and inflated EPErM*
with inflation factors of 1.1, 3, and 10. The performance of inflated ODrM*
was essentially the same as EPErM*, so results for ODrM* are omitted. The

44

5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

M
ea

n
C

os
t

MA-CBS(1000)+EPErM*
EPErM* (ε = 1.1)

EPErM* (ε = 3)

EPErM* (ε = 10)

PPAS

5 10 15 20 25 30 35 40
Number Robots

35

40

45

50

55

60

65

M
ea

n
M

ak
es

pa
n

(a) Path cost comparison (≤40 robots)

0 50 100 150 200
0

2000

4000

6000

8000

10000

12000

14000

16000

M
ea

n
C

os
t

MA-CBS(1000)+EPErM*
EPErM* (ε = 1.1)

EPErM* (ε = 3)

EPErM* (ε = 10)

PPAS

0 50 100 150 200
Number Robots

20

40

60

80

100

120

140

160

180

200

M
ea

n
M

ak
es

pa
n

(b) Path cost comparison (≤200 robots)

Figure 16: Path costs for MA-CBS(1000)+EPErM*, inflated EPErM* with inflation fac-
tors of 1.1, 3, and 10, and Parallel Push and Swap (PPAS). The plot on top shows the
mean cost of the paths successfully found by the algorithms. The bottom plots show the
mean makespan (time until all robots reach their goal). (a) Results for trials of up to 40
robots. (b) Results for trials of up to 200 robots.

failures of PPAS were the result of the implementation tested crashing. While
PPAS has only been shown to be complete on trees, the observed failures are
most likely the result of bugs in the provided code. All successful runs of
PPAS terminated in under 6 seconds.

The mean path cost and mean makespan (time until all robots reach
their goals) of paths found by PPAS and M* variants are shown in figure 16.
PPAS consistently found paths of substantially greater cost than those found
by EPErM* variants, demonstrating the benefits of approaches which bound
path cost. Note that the cost bounds on inflated EPErM* are loose; while
EPErM* (ε = 10) could potentially find paths that cost ten times the minimal
cost, it generally finds substantially cheaper paths. The results are slightly
distorted by the fact that the mean cost and makespan are only computed

45

2 4 6 8 10 12 14
0

20

40

60

80

100

S
uc

ce
ss

R
at

e
(%

)

EPEM*
EPErM*
CBS

MA-CBS(1000)+EPEA*
MA-CBS(1000)+EPErM*
EPEA*

2 4 6 8 10 12 14
Number Robots

10−2

10−1

100

101

102

103

Ti
m

e
to

S
ol

ut
io

n
(s

)

(a) Optimal Coupled Results

2 4 6 8 10 12 14
0

20

40

60

80

100

S
uc

ce
ss

R
at

e
(%

)

EPErM* (ε = 10)

EPEA* (ε = 10)

EPEM* (ε = 10)

ODM* (ε = 10)

PPAS
OD (ε = 10)

2 4 6 8 10 12 14
Number Robots

10−2

10−1

100

101

102

103

Ti
m

e
to

S
ol

ut
io

n
(s

)

(b) Sub/Non-Optimal Coupled Results

Figure 17: Results for fully coupled tests on a 4-connected, 4x4 grid world, with (a)
optimal and (b) suboptimal and non-optimal algorithms. The plot on top illustrate the
percentage of trials in which a solution was found within 5 minutes, in a 32x32 four-
connected grid world. The bottom graphs the median time to solution.

for trials for which a given algorithm was able to find a solution. As a result,
the mean makespan for EPErM* (ε = 1.1) appears to decline for instances
involving more than 50 robots (Figure 16b), but this is an artifact of EPErM*
(ε = 1.1) only solving the easier instances of those problems. However, the
success rates of PPAS and EPErM* (ε = 10) are similar enough, especially
up to 150 robots, for the cost comparisons to be valid.

7.5. Fully Coupled Tests

In the previously discussed simulations, the environment was compara-
tively open, allowing a substantial degree of decoupling between robots. To
examine the performance of M* in fully coupled environments, a series of

46

tests were run in a 4x4 gird world with up to 15 robots, equivalent to the 15
puzzle.

Six optimal approaches were tested, EPEM*, EPErM*, CBS, MA-
CBS(1000)+EPErM*, EPEA*, and MA-CBS(1000)+EPEA*6 (Figure 17a).
There is a general trend that the more aggressively an algorithm exploits
decoupling between robots, the worse its performance. EPErM* is out per-
formed by EPEM*, and EPEA* outperforms both EPEM* and CBS. MA-
CBS(1000)+EPEA* does outperform EPEA* for 13 robots, which we inter-
pret as MA-CBS slightly simplifying some problems before falling back on
EPEA*.

Five bounded suboptimal methods were tested; inflated EPEA*, inflated
OD, inflated EPEM*, inflated EPErM*, all with an inflation factor of ε = 10.
The bounded suboptimal methods were tested against PPAS, a non-optimal,
rule based method. PPAS can find solutions much faster than any of the
bounded suboptimal methods, but fails on all of the 15 robot problems, be-
cause PPAS makes the assumption that there are always at least two free
vertices. The failures of PPAS at 10 robots were due to bugs in the imple-
mentation that was tested. Inflated EPErM* performed the worst of any of
the bounded suboptimal methods, due to the overhead of computing paths
for disjoint subsets of robots that were later invalidated due to collisions
with other robots. Inflated OD outperforms inflated EPEA*, which may be
surprising given the performance of those algorithms with a lower inflation
factor of ε = 1.1 (Figure 14a). However EPEA* generates all neighboring
vertices of a given f-value at once, while OD iteratively generates the neigh-
boring vertices. High inflation factors bias search towards the goal, causing
OD to behave in a more depth-first manner, effectively generating a single
neighbor for a given state at a time. Goldenberg et al. [66] described but
did not implement optimal-generation variants of EPEA* which may miti-
gate the reduced performance of EPEA* with large inflation factors. Inflated
ODM* and EPEM* are roughly a constant factor slower than inflated OD,
but have similar success rates. Note that even with a high inflation factor OD
substantially underperforms inflated EPErM* in less cluttered environments;
in the 32x32 grid environment inflated OD with ε = 10 performs roughly on
par with EPErM* ε = 1.1.

6The results for MA-CBS for fully coupled problems are insensitive to the merge thresh-
old chosen for MA-CBS

47

8. Conclusions and Further Work

In this paper, we presented subdimensional expansion, a method for con-
structing low-dimensional search spaces tailored to specific multirobot path
planning problems. We implemented subdimensional expansion using A* as
the underlying planning algorithm, resulting in the M* algorithm. While
the performance of M* and its variants are marginal on fully coupled prob-
lems, in the more expansive environments for which M* was designed, M*
provides considerable improvements in performance for finding minimal cost
paths for multirobot systems compared to the existing state of the art. Fur-
thermore, inflated M* can solve large problems involving 200 robots, and
produce paths that cost significantly less than those generated by existing
rule based planners which can also solve such large problems.

In our future work, we will consider several extensions of subdimensional
expansion. Barer et al. [58] recently published a bounded-suboptimal vari-
ant of CBS termed ECBS which can outperform inflated ODrM*/EPErM*
when small inflation factors are used. We believe that combining ECBS and
inflated EPErM* will result in further performance improvements, similar to
the improvements in optimal path planning seen in MA-CBS+ODrM*. Min-
imal cost paths for multirobot systems often feature robots passing very close
to one another. Minor errors in plan execution can thus result in collisions, or
time consuming reactive collision avoidance, which may invalidate the entire
plan. Subdimensional expansion can be extended to account for uncertainty
in plan execution by utilizing a collision function which treats each robot
as occupying a distribution of possible states. The collision sets would then
track the probability of a collision occurring, with the dimensionality of the
search space increased when the probability of a collision rises above some
threshold value.

While subdimensional expansion is currently formatted for multirobot
systems, we plan to extend the concept of subdimensional expansion to
other high-dimensional systems. There are some single robot systems with
high-dimensional configuration spaces which can be decomposed into semi-
independent subspaces in a similar manner to how multirobot systems can
be decomposed into individual robots. For instance, changing the motion of
joints of a robot arm distal to a collision cannot resolve said collision. The
challenge will lie in identifying how a decomposition into largely independent
subsystems can be performed for systems without the natural structure of
multirobot systems.

48

Acknowledgments

We would like to thank Cornelia Ferner for her assistance with policy
optimization. We would also like to thank Professor Bekris and Qandeel
Sajid for making their Parallel Push and Swap code available.

9. Vitae

Glenn Wagner received a BS in Mechanical Engineering from the Cal-
ifornia Institute of Technology in 2009. He is currently a PhD student in
Robotics at Carnegie Mellon University. His research focuses on planning
optimal paths for large numbers of robots and distributed control of swarms.

Howie Choset is an Associate Professor of Robotics at Carnegie Mellon
University, where he conducts research in path planning, motion planning,
estimation, mechanism design and hybrid controls. Much of this work has
two foci: snake robots for search and rescue and manufacturing and medical
robotics. He directs the Undergraduate Robotics Minor at Carnegie Mellon
University. His students have won Best Paper awards at the RIA in 1999
and ICRA in 2003, and he has won Best Paper at IEEE Bio Rob in 2006.

References

[1] P. Hart, N. Nilsson, B. Raphael, A Formal Basis for the Heuristic De-
termination of Minimum Cost Paths, IEEE Transactions on Systems
Science and Cybernetics 4 (2) (1968) 100–107.

[2] T. Standley, Finding Optimal Solutions to Cooperative Pathfinding
Problems, in: Proceedings of the 24th AAAI Conference on Artificial
Intelligence (AAAI), Atlanta, GA, USA, 173–178, 2010.

[3] D. Ratner, M. Warmuth, Finding a shortest solution for the N× N ex-
tension of the 15-puzzle is intractable, Journal of Symbolic Computation
10 (1990) 111–137.

[4] M. Erdmann, T. Lozano-Perez, On multiple moving objects, Algorith-
mica 2 (1) (1987) 477–521, ISSN 0178-4617.

[5] K. Kant, S. Zucker, Toward efficient trajectory planning: The path-
velocity decomposition, The International Journal of Robotics Research
5 (3) (1986) 72–89, ISSN 0278-3649.

49

[6] S. Leroy, J.-P. Laumond, T. Siméon, Multiple Path Coordination for
Mobile Robots: A Geometric Algorithm, in: Proceedings of the Six-
teenth International Joint Conference on Artificial Intelligence, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, ISBN 1-55860-613-
0, 1118–1123, 1999.

[7] M. Saha, P. Isto, Multi-Robot Motion Planning by Incremental Coordi-
nation, in: Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, Bejing, China, 5960–5963, 2006.

[8] D. Silver, Cooperative pathfinding, in: Proceedings of the 1st Confer-
ence on Artificial Intelligence and Interactive Digital Entertainment,
Marina del Rey, California, USA, 23–28, 2005.

[9] G. Wagner, H. Choset, M*: A Complete Multirobot Path Planning Al-
gorithm with Performance Bounds, in: Proceedings of the IEEE Inter-
national Conference on Intelligent Robots and Systems, San Francisco,
CA, USA, 3260–3267, 2011.

[10] C. Ferner, G. Wagner, H. Choset, ODrM*: Optimal Multirobot Path
Planning in Low Dimensional Search Spaces, in: Proceedings of the
IEEE/RSJ International Conference on Robotics and Automation, Karl-
sruhe, Germany, 2013.

[11] D. Carmel, S. Markovitch, Incorporating opponent models into adver-
sary search, in: AAAI/IAAI, Vol. 1, Portland OR, USA, 1996.

[12] A. Felner, M. Goldenberg, G. Sharon, R. Stern, T. Beja, N. Sturtevant,
J. Schaeffer, R. Holte, Partial-expansion A* with selective node genera-
tion, in: Proceedings of the AAAI Conference on Artificial Intelligence,
Toronto, Canada, 2012.

[13] M. Goldenberg, A. Felner, R. Stern, G. Sharon, N. Sturtevant, R. Holt,
J. Schaeffer, Enhanced Partial Expansion A*, Journal of Articial Intel-
ligence Research 50 (2014) 141–187, doi:10.1613/jair.4171.

[14] R. Korf, Depth-first iterative-deepening: An optimal admissible tree
search, Artificial intelligence 27 (1) (1985) 97–109, ISSN 00043702, doi:
10.1016/0004-3702(85)90084-0.

50

[15] S. Carpin, E. Pagello, On parallel RRTs for multi-robot systems, in:
Proceedings of the 8th Conference of the Italian Association for Artificial
Intelligence, Citeseer, 834–841, 2002.

[16] D. Ferguson, N. Kalra, A. Stentz, Replanning with RRTs, in: Proceed-
ings of the IEEE International Conference on Robotics and Automation,
Orlando, FL, USA, 1243–1248, 2006.

[17] G. Sánchez, J. Latombe, On delaying collision checking in PRM plan-
ning: Application to multi-robot coordination, The International Jour-
nal of Robotics Research 21 (1) (2002) 5.

[18] G. Sanchez, J. Latombe, Using a PRM planner to compare centralized
and decoupled planning for multi-robot systems, in: Proceedings of the
IEEE International Conference on Robotics and Automation, vol. 2,
Washington D.C., USA, 2112–2119, 2002.

[19] M. Cáp, P. Novák, J. Voḱınek, M. Pěchouček, Multi-agent RRT *:
Sampling-based Cooperative Pathfinding, in: Autonomous Robots and
Multirobot Systems Workshop at AAMAS 2013, 2013.

[20] K. Solovey, O. Salzman, D. Halperin, Finding a Needle in an Exponential
Haystack: Discrete RRT for Exploration of Implicit Roadmaps in Multi-
Robot Motion Planning, in: WAFR, 2014.

[21] G. Wagner, M. Kang, H. Choset, Probabilistic Path Planning for Mul-
tiple Robots with Subdimensional Expansion, in: Proceedings of the
IEEE/RSJ International Conference on Robotics and Automation, 2012.

[22] R. Huang, Y. Chen, W. Zhang, A Novel Transition Based Encoding
Scheme for Planning as Satisfiability., in: AAAI Conference on Artificial
Intelligence, 89–94, 2010.

[23] H. Kautz, B. Selman, Unifying SAT-based and graph-based planning,
in: IJCAI, 1999.

[24] P. Surynek, An SAT-Based Approach to Cooperative Path-Finding Us-
ing All-Different Constraints, in: Proceedings of Symposium on Combi-
natorial Search, 191–192, 2012.

51

[25] P. Surynek, Optimal Cooperative Path-Finding with Generalized Goals
in Difficult Cases, in: Tenth Symposium of Abstraction, Reformulation,
and Approximation, 119–122, 2013.

[26] E. Erdem, D. G. Kisa, U. Oztok, P. Schueller, A general formal frame-
work for pathfinding problems with multiple agents, in: AAAI Confer-
ence on Artificial Intelligence, 290–296, 2013.

[27] T. Balyo, R. Bartak, P. Surynek, Shortening Plans by Local Re-
planning, in: 24th International Conference on Tools with Artificial
Intelligence, Athens, Greece, 2012.

[28] P. Surynek, Solving Abstract Cooperative Path-Finding in Densely Pop-
ulated Environments, in: Computational Intelligence, vol. 00, 2012.

[29] R. Cui, B. Gao, J. Guo, Pareto-optimal coordination of multiple robots
with safety guarantees, Autonomous Robots 32 (3) (2011) 189–205, ISSN
0929-5593.

[30] J. Peng, S. Akella, Coordinating Multiple Robots with Kinodynamic
Constraints Along Specified Paths, International Journal of Robotics
Research 24 (4) (2005) 295–310, ISSN 0278-3649.

[31] S. LaValle, S. Hutchinson, Optimal Motion Planning for Multiple
Robots having Independent Goals, IEEE Transactions on Robotics and
Automation 14 (6) (1998) 912–925.

[32] S. Leroy, J.-P. Laumond, T. Siméon, Multiple Path Coordination for
Mobile Robots: A Geometric Algorithm, in: Proceedings of the Six-
teenth International Joint Conference on Artificial Intelligence, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, ISBN 1-55860-613-
0, 1118–1123, 1999.

[33] J. Peng, S. Akella, Coordinating Multiple Robots with Kinodynamic
Constraints Along Specified Paths, Int. J. Rob. Res. 24 (4) (2005) 295–
310, ISSN 0278-3649.

[34] T. Siméon, S. Leroy, J.-p. Laumond, Path Coordination for Multiple
Mobile Robots : A Resolution-Complete Algorithm, IEEE Transactions
on Robotics and Automation 18 (1) (2002) 42–49.

52

[35] M. Cáp, P. Novák, M. Selecký, J. Faigl, J. Voḱınek, Asynchronous De-
centralized Prioritized Planning for Coordination in Multi-Robot Sys-
tem, in: IEEE/RSJ International Conference on Intelligent Robots and
Systems, ISBN 9781467363587, 3822–3829, 2013.

[36] V. R. Desaraju, J. P. How, Decentralized path planning for multi-agent
teams with complex constraints, Autonomous Robots 32 (4) (2012) 385–
403, ISSN 0929-5593.

[37] R. Regele, P. Levi, Cooperative multi-robot path planning by heuristic
priority adjustment, in: IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, Ieee, ISBN 1-4244-0258-1, 5954–5959, 2006.

[38] J. van den Berg, M. Overmars, Prioritized Motion Planning for Multiple
Robots, in: Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, Edmonton, Alberta, Canada, 2217–
2222, 2005.

[39] A. Geramifard, P. Chubak, V. Bulitko, Biased Cost Pathfinding., in:
AAAI Conference on Artificial Intelligence and Interactive Digital En-
tertainment, Marina del Rey, California, ISBN 978-1-57735-235-8, 112–
114, 2006.

[40] S. Buckley, Fast motion planning for multiple moving robots, in: Pro-
ceedings of IEEE International Conference on Robotics and Automation,
vol. 1, 322–326, 1989.

[41] B. Maren, B. Wolfram, T. Sebastian, Constraint-based Optimization
of Priority Schemes for Decoupled Path Planning Techniques, KI 2001:
Advances in Artificial Intelligence (2001) 78—-93.

[42] M. Turpin, N. Michael, V. Kumar, Trajectory Planning and Assign-
ment in Multirobot Systems, in: International Workshop on Algorithmic
Foundations of Robotics (WAFR), 2012.

[43] M. Turpin, N. Michael, V. Kumar, Concurrent Assignment and Planning
of Trajectories for Large Teams of Interchangeable Robots, in: IEEE
International Conference on Robotics and Automation, Karlsruhe, Ger-
many, ISBN 9781467356428, 834–840, 2013.

53

[44] R. M. Wilson, Graph puzzles, homotopy, and the alternating group,
Journal of Combinatorial Theory, Series B (1974) 86–96.

[45] D. Kornhauser, G. Miller, P. Spirakis, Coordinating pebble motion on
graphs, the diameter of permutation groups, and applications, in: Pro-
ceedings of the 25th Symposium on Foundations of Computer Science
(FOCS), Singer Island, FL, USA, 241–250, 1984.

[46] R. Gabriele, M. Helmert, Non-Optimal Multi-Agent Pathnding Is Solved
(Since 1984), in: Symposium on Combinatorial Search, 173–174, 2012.

[47] M. Peasgood, J. McPhee, C. Clark, Complete and Scalable Multi-Robot
Planning in Tunnel Environments, in: Proceedings of the First IFAC
Workshop on Multivehicle Systems, Bahia, Brazil, 75–80, 2006.

[48] K. Wang, A. Botea, MAPP: A Scalable Multi-Agent Path Planning
Algorithm with Tractability and Completeness Guarantees, Journal of
Artificial Intelligence Research 42 (2011) 55–90.

[49] R. Luna, K. Bekris, Push and swap: Fast cooperative path-finding with
completeness guarantees, in: Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI), Barcelona, Spain, 294–300,
2011.

[50] A. Krontiris, R. Luna, K. E. Bekris, From Feasibility Tests to Path
Planners for Multi-Agent Pathfinding, in: Proceedings of the Sixth In-
ternational Symposium on Combinatorial Search, 114–122, 2013.

[51] B. de Wilde, A. W. ter Mors, C. Witteveen, Push and rotate: coopera-
tive multi-agent path planning, in: Proceedings of the 12th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS),
Saint Paul, Minnesota, 87–94, 2013.

[52] M. Khorshid, R. Holte, N. Sturtevant, A polynomial-time algorithm for
non-optimal multi-agent pathfinding, in: Proceedings of the Symposium
on Combinatorial Search, Barcelona, Spain, 76–83, 2011.

[53] Q. Sajid, R. Luna, K. E. Bekris, Multi-Agent Pathfinding with Simulta-
neous Execution of Single-Agent Primitives, in: Proceedigns of the Fifth
Annual Symposium on Combinatorial Search, 88–96, 2012.

54

[54] K. Al-Wahedi, A Hybrid Local-Global Motion Planner for Multi-Agent
Coordination, Master’s thesis, Case Western Reserve University, 2000.

[55] J. van den Berg, J. Snoeyink, M. Lin, D. Manocha, Centralized Path
Planning for Multiple Robots: Optimal Decoupling into Sequential
Plans, in: Proceedings of the Robotics: Science and Systems, vol. 2,
2009.

[56] G. Sharon, R. Stern, M. Goldenberg, A. Felner, The increasing cost
tree search for optimal multi-agent pathfinding, in: Proceedings of the
Twenty-Second International Joint Conference on Artificial Intelligence,
AAAI Press, San Francisco, CA, USA, 662–667, 2011.

[57] G. Sharon, R. Stern, A. Felner, N. Sturtevant, Conflict-based search for
optimal multi-agent path finding, in: Proceedings of the AAAI Confer-
ence on Artificial Intelligence, Toronto, Ontario, Canada, 2012.

[58] M. Barer, G. Sharon, R. Stern, A. Felner, Suboptimal Variants of the
Conflict-Based Search Algorithm for the Multi-Agent Pathfinding Prob-
lem, in: Proceedings of the Sixth International Symposium on Combi-
natorial Search, 2014.

[59] G. Sharon, R. Stern, A. Felner, N. Sturtevant, Meta-Agent Conflict-
Based Search For Optimal Multi-Agent Path Finding, in: Proceedings
of the Symposium on Combinatorial Search, Niagara Falls, Ontario,
Canada, 2012.

[60] I. Pohl, The avoidance of (relative) catastrophe, heuristic competence,
genuine dynamic weighting and computational issues in heuristic prob-
lem solving, in: Proceedings of the 3rd International Joint Conference
on Artificial Intelligence, 12–17, 1973.

[61] B. Bonet, H. Geffner, Planning as heuristic search, Artificial Intelligence
129 (1-2) (2001) 5 – 33, ISSN 0004-3702.

[62] R. Korf, Linear-space best-first search, Artificial Intelligence 62 (1)
(1993) 41 – 78, ISSN 0004-3702.

[63] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem
Solving, Addison-Welsley, 1984.

55

[64] J. Gaschnig, Performance measurement and analysis of certain search
algorithms, Ph.D. thesis, Carnegie-Mellon University, 1979.

[65] H. Davis, A. Bramanti-Gregor, J. Wang, The advantages of using depth
and breadth components in heuristic search, Methodologies for Intelli-
gent systems 3 (1989) 19–28.

[66] M. Goldenberg, A. Felner, N. Sturtevant, Optimal-Generation Variants
of EPEA*, in: Proceedings of the Sixth International Symposium on
Combinatorial Search, Leavenworth, Washington, USA, 89–97, 2013.

56

