Teaching procedural flow through dialog and demonstration

Kevin Yoon, Paul E. Rybski
School of Computer Science, Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA, 15213
{kmy,prybski } @cs.cmu.edu

Abstract— In order for robots to act as valuable assistants for
non-expert users, they need to be able to learn new abilities and
do so through natural methods of communication. Furthermore,
it is often desirable that tasks be learned quickly without
having to provide multiple demonstrations. Training should
also be conducted in such a way that the user has a clear
understanding of the manner in which environmental features
affect the behavior of the learned activity, so that execution
behavior is predictable.

We present an interactive framework for teaching a robot the
flow of an activity composed of elements from a set of prim-
itive behaviors and previously trained activities. Conditional
branching and looping, order-independent activity execution,
and contingency (or interrupt) actions can all be captured by
our activity structures. Additional convenience functionality to
aid in the training process is also provided.

By providing a natural method of communicating production
rules analogous to rigid programming structures, well-defined
tasks can be trained easily. We demonstrate our task training
procedure on a mobile robot.

I. INTRODUCTION

In the future, robots will inevitably be employed as assis-
tants or team partners. However, if such robots are ever to
gain widespread and long term acceptance, they will need to
be capable of not only learning new tasks, but also learning
them from non-expert users.

We have previously introduced a method for task training
via dialog and demonstration in [11]. Therein we described
a collaborative natural language procedure for constructing
tasks from a set of primitive behaviors and/or previously-
trained tasks, which in turn could be used to build other
tasks. This modular task architecture supports an expanding
repertoire of abilities. Different training modes enable differ-
ent features, such as the ability to attach locational context to
a given command, reducing the explanatory responsibilities
of the human trainer. Preconditions on task actions serve as
a failure-handling mechanism that appropriately directs task
flow should an action fail. The robot also engages the human
in a verification dialog to resolve ambiguities in task flow
and, in so doing, brings about mutual understanding of the
task representation.

This understanding can be desirable, sometimes essential,
in situations where the time or opportunity to provide multi-
ple demonstrations and/or make corrections through practice
trials is unavailable, and the chance of the robot exhibiting
unexpected behavior due to conditions unencountered during
training is unacceptable. The training dialog described herein
enables the human to quickly construct rigidly-formulated

tasks where the features that affect task flow must be explic-
itly conveyed and not inferred. Additionally, because tasks
are symbolically referenced with natural language labels,
they are transferable across heterogeneous robots that share
the same or a similar primitive behavior set.

In this paper, we present some enhancements and mod-
ifications to this task training technique that include the
ability to capture conditional looping so that repetitive, or
cyclic tasks, can be created. Interrupt events that may occur
at any point during a task can also be specified to trigger
contingency actions. Additionally, a new construct called a
todolist has been added, which permits order-independent
activity execution. Moreover, tasks can now be trained “on
the fly” — that is, while training another task that uses
it — to support a top-down design approach while still
permitting the bottom-up construction of tasks. Furthermore,
locational context is no longer inferred automatically as this
is not always desirable in some situations. However, location-
specific actions can still be specified explicitly with a simple
grounding utterance.

II. RELATED WORK

Robot task learning and programming-by-demonstration
(PBD) has been explored by several groups. In [1], [2],
and [12], robots learn actuator trajectories or control policies
from user task demonstrations. In [13], a task is built using
gestures by discerning which primitive actions, from a base
set of capabilities, can be combined to conduct the task
demonstrated.

Our method has the ability to discern, to a limited extent,
which primitive actions should be combined to execute a
given task by way of inferring locational context on actions.
‘We note, however, that this is not the main focus of our work,
nor is it meant for deriving low-level control strategies. It is
primarily a method by which the control flow of a task, using
primitive actions and previously learned tasks, can be com-
municated through a training procedure employing natural
interaction, thereby converging to mutual task understanding
for both robot and user.

Our work is largely inspired by [8] and [7]. In [8], a mobile
robot is joysticked through multiple demonstrations of a task
from which it generates a generalized task representation in
the form of a directed acyclic graph (DAG). The task is then
pruned down to a linear sequence through teacher feedback
in the form of verbal cues over multiple practice trials.
In [7], a stationary humanoid robot that understands some

speech, though it is also unable to speak itself, learns tasks
by communicating through gestures and facial expressions.
Our approach employs a similar turn-taking framework for
instruction and task refinement, but we endow the robot with
the capability of speech which we believe conveys more
directly the robot’s understanding of the task and guides the
human more effectively in resolving ambiguities. In this way,
we obviate the need to refine a learned task through practice.

Similar dialog-driven interaction mechanisms have been
developed in the area of plan recognition, though primarily
in the Human-Computer Interaction (HCI), as opposed to
Human-Robot Interaction (HRI), domain. A plan recognition
algorithm is introduced in [10] and [6] where characteristics
of the collaborative setting are exploited to reduce the amount
of input required of the user. This recognition strategy,
however, requires some prior knowledge in the form of
SharedPlans (or mutually-believed goals, actions, intentions)
and a set of recipes (or action plans for achieving goals). This
work differs from ours in that the goal is to help the user
accomplish tasks according to perceived intent whereas we
are striving to teach a robot new tasks. Our approach could
potentially be used instead to build the recipes necessary for
this plan recognition method to work.

In [9], an augmentation-based learning approach is de-
scribed. The task structure, including conditional branching
and looping, is inferred from user demonstration. Manual
edits can also be made to fix incorrect task structures and
constrain the induction procedure on subsequent demon-
strations. Again, this approach is explored in the software
application domain and there is no effort to conduct a
collaborative discourse with the user for natural interaction.
Additionally, in our work, branching and looping structures
are explicitly and quickly communicated by the user, rather
than being inferred over multiple demonstrations.

A multi-modal interface for programming tasks is de-
scribed in [4] that additionally allows the user to control task
priority during execution. Instruction-Based Learning [5] is
similar to our work in that it uses a base set of behaviors that
are associated with natural language symbolic labels and a
modular architecture for symbolic tasks.

None of these works, however, describe the ability to
convey branching or looping flow constructs within the task
structure that are conditioned on explicitly-communicated
features. Nor do they address the issue of structuring tasks
for activities that need not be executed in the order in which
they were communicated. This severely limits robustness and
the types of tasks that can be trained. Through speech one
can very compactly format instructions for execution based
on detectable environmental states. No intention beliefs are
maintained that may result in unexpected behavior during
execution, but rather, by engaging the user in a true spoken
dialog, we can quickly train tasks with clearly defined
execution flow that is necessarily understood by the user.

III. SYSTEM OVERVIEW

Figure 1 depicts a simple overview of the system architec-
ture we employ. Within the top-level behavior is an Activity

Selector that, upon parsing given speech commands, places
the appropriate activities in the Activity Repertoire onto the
Current Activity List for execution.

Top-level Behavior
Activity Selector

speech Activity
only Repertoire

status T

Current
Activity
/N! List
’ Execution command
Loop
Sensors

sensors |

Actuators

Fig. 1. CMAssist software architecture

An activity is the encompassing term for behaviors, tasks,
and todolists which are described in more detail in Section
IV. The Activity Repertoire is the collective map that asso-
ciates natural language symbolic labels to known activities.
For example, “Go to” in the phrase “Go to the door” maps
directly to the navigation behavior which would be put onto
the Current Activity List with the location parameter “door”.
An activity building behavior can also add new activities to
the Activity Repertoire as will be shown in Section V-A.

Though the various activity types have differing internal
structures, they are all executed by the same function form
where the inputs are the sensors and a command object,
and the outputs are an integer status flag and a new
command object.

(status, command) = Activity(sensors, command)

The sensors object gives an activity module access to
sensory data while command is an object that can be
modified by an activity to store actuator commands, such as
motor velocities or speech output. A single command object
is passed through each of the activities in the Current Activity
List so that commands requested by activities of lower prior-
ity are visible to higher priority activities. Activities can take
this information into account when actuator commands need
to be overridden. For example, when the obstacle avoidance
behavior needs to decide whether to veer left or right to
circumvent an obstacle, it can check the command object
to see in which direction the navigation behavior was trying
to drive the robot and choose to go in a similar direction.
The main execution loop then involves processing all of the
activities in the Current Activity List with the given sensory
data. When the last activity on the Current Activity List is
completed, status is routed back to the Activity Selector
which determines if behaviors need to be removed from the
Current Activity List. The command object is processed to
drive the actuators.

The Activity Selector is triggered on speech input and
is responsible for inserting commanded activities, removing
conflicting ones, and removing completed or failed activities.

IV. ACTIVITY STRUCTURES
A. Behaviors

A behavior maps low-level sensory data to actuator trajec-
tories in order to accomplish some high-level goal(s). The
robot is assumed to be preprogrammed with some basic set
of behaviors. For a mobile platform, these primitive skills
might include obstacle avoidance and high-level navigation
capabilities.

B. Tasks

The basic building block of a task is the task item
(Figure 2). A task item consists of three main components:
a (potentially empty) precondition list, an activity and a list
of execution parameters, and a pointer list to subsequent
task items. The precondition list contains the conditions that
must be satisfied before the action can be executed. There
are two types of preconditions: enabling and permanent.
Enabling preconditions are evaluated only once before the
task item’s activity is executed. Permanent preconditions are
monitored continuously for as long as the activity is being
executed. As previously mentioned, an activity can refer to a
behavior, a previously-trained task, or a todolist. Depending
on the completion status of the activity (i.e. success or fail),
the associated link is followed to the next task item to be
executed.

Task Item

Precondition List
Activity
Next Task Item Pointers

Fig. 2. Task item

A task then is a temporally ordered sequence of task items
captured in a directed graph structure. They can represent
simple linear sequences such as in Figure 3(a). Here, the
robot executes Task items 1 through N in order. Tasks can
also represent conditional branching as shown in Figure 3(b).
Depending on the evaluation of <condition>, either Task
item 2a or Task item 2b will be evaluated followed by
whichever tasks follow it until the branches reconnect at Task
item N. Cyclic tasks can be represented by loops as shown
in 3(c). For as long as <condition> is true, Task item 2
and the subsequent task items inside the loop are executed.
This is made possible by applying the while-condition as a
permanent precondition on all task items inside the loop.

For some tasks it may be necessary to execute contingency
activities, such as when some event occurs requiring special
action and the current task be put on hold. Rather than
inserting if and while statements throughout the task, the
user can optionally specify contingency event-action pairs
that are checked for the duration of the task execution. Unlike
the previous conditional constructs, a contingency plan is not
represented within the directed graph itself but is an attribute
of the task structure. Each task has an associative structure
that maps an interrupt event k to an action tuple (a,), where

If <condition>

Task item 1 Tru‘e/ False

While <condition>

True False

‘ Task item 2a ‘ ‘ Task item 2b ‘

’ Task item 2 ‘ ‘ Task item M ‘

Task item 2

:

(b) Conditional branching

see |
eee |

...

Task item N

(a) Linear (c) Conditional looping

Fig. 3. Task flow structures

a is the activity to execute when k is true and r is a boolean
value determining whether or not the original task should be
resumed when either k is no longer true or a has completed.

C. Todolists

Todolists are a special type of activity that allows the
user to specify a list of items that are to be executed in
no particular order. These todolist items, as with task items,
can refer to any activity: behaviors, tasks, and other todolists.
There is nothing unique about the structure of a todolist.
It is simply a list of disconnected activities that, unlike
tasks, cannot capture conditional branching and looping.
It is rather the manner in which a todolist is executed
that distinguishes it from the other activities enabling it to
accomplish unordered tasks as people do on a daily basis.

We currently employ a round-robin execution scheme
where we iteratively loop through the list and attempt each
item until it has either completed successfully or failed
maxNumTries times, where max NumT'ries is specified
during training.

Clearly, some optimal scheduling strategy to minimize
failed attempts could be applied here when taking into ac-
count information like estimated todolist item durations and
reasons for past failures. Item priority could be an additional
constraint that such a strategy might take into account. This
is beyond the scope of this work where we simply provide a
construct in which order-independent execution of activities
is made possible.

V. TRAINING

The basic method behind the training approach we employ
is allowing the user to convey production rules through the
primary method of speech. Each recognized user utterance is
mapped to one of three things: (1) an activity in the activity
repertoire that is to be appended to the current activity
structure, (2) a control structure that affects where and how
subsequent activities are appended to the current activity
structure, or (3) a “special” command, such as a question
that the user might ask during the training procedure.

Throughout the training procedure, the robot responds
with an affirmative “ok’ after every user utterance to indicate
understanding. The robot will also ask the user questions
about parameters that were not defined when the user has
finished training, thus guiding the user through dialog to-
wards a well-defined activity structure.

A. Training Tasks

Task training is itself a behavior that can be invoked in
one of two modes: dialog-only and dialog-and-observation
modes. The former is invoked with the keyphrase “When I
say T and the latter with “Let me show you what to do when
I say T, where T is the name of the task to be trained and
is typically an imperative statement. In dialog-only mode,
all commands must be issued to the robot verbally. In
dialog-and-observation mode, the robot invokes its following
behavior such that it is always in the vicinity of the human
trainer as he moves around the environment. In this manner,
the robot can interpret deictic utterances like “come here”. In
the previous work [11], this mode was used to automatically
attach locational context to each command given by the user.
In an effort to provide a framework for the training of more
general tasks — where it is not necessarily appropriate to
assume that actions should be executed where they were
demonstrated — locational contexts are no longer assumed
but can be easily and naturally anchored to subsequent
commands with the “come here” phrase.

Task flow control is communicated by keyphrases summa-
rized in Table I. An example of a user utterance that creates
a conditional branching structure (Figure 3(b)) is “If you see
Kevin, say ‘Hi Kevin’. Otherwise, say ‘Where is Kevin?’
before looking for Paul”. The resulting task would cause
the robot to say either “Hi Kevin” or “Where is Kevin”
depending on whether Kevin was detected. It would then
begin the activity called looking for Paul.

TABLE I
TASK FLOW COMMANDS

Command Description

“If Appends a conditional node to the task graph. Sub-

<condition>" | sequent commands are added to True branch.

“Otherwise” Causes subsequent commands to be added to the
False branch of the current if node.

“before” Connects True and False branches of current if node
with the following command. (Ends if block.)

“While Appends a conditional node to the task graph. Sub-

<condition>" | sequent commands are added to True branch and
preconditioned on <condition>.

“After that” Routes execution flow to the current while node and

appends subsequent commands to the False branch.
(Ends while loop.)
Adds a contingency event to the task object and maps

“Meanwhile if

<condition>" | it to the next activity command. If <condition>
becomes true at any point during task execution, the
specified activity is executed.

“Exit Task” Appends a node that exits task with success flag.

“The task has | Appends a node that exits task with fail flag.

failed”

Cyclic constructs (Figure 3(c)) can be specified with a
phrase like “While Kevin is around, do a dance. After that
charge batteries”. Executing the resulting task would make
the robot conduct the do a dance activity for as long as it
sees Kevin. If Kevin leaves, the loop is exited and the robot
begins the charge batteries activity.

Contingency event-action pairs are specified with the
“meanwhile” keyphrase. If we appended “Meanwhile if you
see Paul, sing a song” to the previous example, the robot

would begin the sing a song task if Paul was detected at
any time during the task (i.e. while dancing or charging
batteries) and would continue to do so until the sing a song
task completed or Paul became no longer visible. During
training, the robot also asks the user if it should resume the
original task after executing the contingency action.

Special utterances can be used to indicate that the task
should be exited. “Exit task™ and “The task has failed” create
task items that when executed will terminate the task, the first
with a success flag and the latter with a failure flag. (The
task exits with a success flag by default even when “Exit
task” is not said.) This is particularly useful when tasks are
used in a todolist where the return status indicates whether
a todolist item should be reattempted or not.

As can be seen, this approach to task training places
more of the design burden on the user than some of the
PBD techniques mentioned in Section II, but it comes with
the added benefit of increased mutual task understanding
between the user and robot and consequently more pre-
dictable execution behavior. Also, tasks cannot be overfit
to training set conditions because task flow depends on
explicitly specified features. Moreover, the natural interaction
framework allows for quick and easy construction of tasks.

Figure 4 shows a simple schematic for this Task-building
behavior where we can see the speech input being processed
by the Speech Parser. Therein, we first check if the utterance
is a special command, such as those shown in Table II. If it is
not, then we check if it is a flow control command and add
nodes or update pointers to the task under construction as
appropriate. If it is not that, then we check if it corresponds
to an activity that already exists in the Activity Repertoire.
If so, then we add a task item containing the activity to
the task under construction. Finally, if the user has ended
the task training sequence, the robot engages the human
in a verification dialog to confirm the task description by
reading it back to the human and to acquire any additional
information that might be necessary, such as what to do
when an if condition does not hold and the otherwise case
was not specified, before saving the task to the Activity
Repertoire. The command object passed out of the Speech
FParser contains speech output commands as well as any
motor commands set by the Follow behavior.

Follow
Behavior

TaskBuilder Behavior

Speech parser

Special
command?

Flow control
command?

Task

Known
activity?

Activity
Repertoire

Verify and
save

I
status l command

Fig. 4. Task builder

The constructs in Figure 3 can be combined and nested to
create activities that can richly capture task flow. It can also
be seen that activities can become arbitrarily complex. While
our task training approach is well-suited for composing
complex tasks from simpler subtask, the robot can provide
descriptive feedback and verify with the user the flow of the
trained task to minimize errors during a long and potentially
confusing training sequence. In Table II are some phrases
that can be understood by the robot to aid the user during
the training process.

TABLE I
TRAINING HELPER FUNCTIONS

Command Robot Function Description
(T = Training mode, E = Execution mode)
“Describe T T,E: Describes the task T’

“What did you say?”
“Can you repeat that?”’
“Where was 1?7

T,E: Repeats the last thing it said

T: Repeats the last two task item in the
current task

T: Asks if the user was referring to the name
of a new task to train, and starts a new task
training process if this is so.

E: Robot says that it did not understand and
asks the user to repeat himself.

Unrecognized/Misheard
utterance

Note that, in training mode, if the user says a phrase that
is unrecognized, the robot will give the user the option of
training a new task under the assumption that he may have
been referring to a task that has not yet been created. In this
way, the user can follow an ad-hoc, top-down approach and
train tasks “on the fly” as they are required without needing
to plan out all the required low-level subtasks ahead of time.

The user can say “Thank you” to simply end the training
process and the learned task is saved to the Activity Reper-
toire as is. Or, by asking “Is that understood?”, the robot
will dictate the task description and await confirmation from
the user. If the task is correct, the robot then attempts to
clarify ambiguities. Currently this involves asking the user
for instructions for unspecified “otherwise” cases. If the task
is incorrect, the task training procedure is restarted.

B. Training Todolists

The todolist training behavior is invoked with the
keyphrase “Let’s make a todolist called L”, where L is the
name of the todolist to be trained. The user then simply
lists the activities that are to be added. When finished, the
user says “Thank you” to end training or asks “Is that
understood?” to have the robot repeat the todolist items
dictated. If the user confirms that the todolist is correct, the
robot then asks the user for the number of times it should
attempt to repeat failed tasks.

Unlike tasks, todolists are learned exclusively through
dictation only, since todolist items themselves are typically
high-level actions that can be trained as tasks.

VI. SYSTEM IMPLEMENTATION

The task training procedure was evaluated on our CMAs-
sist! robot, pictured in Figure 5, that was expressly developed

Uhttp://www.cs.cmu.edu/~coral/cmassist/

Fig. 5.

The CMAssist robot interacts with a user.

as our research platform for human-robot interaction. An
earlier version of this task training work was demonstrated
at the Robocup@Home competition in June 2006 where our
team placed 2nd out of 11 teams.

The robot has modular hardware and software architec-
tures to enable rapid prototyping and integration of new
sensory, actuator, and computational components. An om-
nidirectional camera and stereo camera allow it to sense
the presence of people wearing color-coded shirts, while the
stereo camera and laser range finder together are used for
navigation and obstacle avoidance. The robot can also rec-
ognize a subset of natural English language speech and speak
through a Text-To-Speech (TTS) engine. These capabilities
equip the robot with sufficient spatial and environmental
information to execute our interactive training algorithm.

A list of relevant behaviors used by our robot is as follows:

o Goto(x,y)/Goto(name) Drives the robot to a location
specified either by global coordinates or a location label.

o Say(s)/Ask(s,p) Generates speech output from the TTS
engine. Say(s) causes the robot to speak an utterance s.
Ask(s,p) requires that the robot identify and speak the
utterance to a particular person p if present and wait for
a response.

o Follow(p) Causes the robot to follow person p while
maintaining a fixed distance of approximately 1m.

« StateChecker(a) Unique in that the useful output is the
status flag rather than the command object, which is
not modified at all. Uses sensors to calculate a status
flag indicating whether or not an assertion a is true
or false. Used by task items containing conditional
statements such as if and while nodes.

o TaskTrain(f) Invokes the task training procedure. The
Follow behavior is simultaneously executed if f is true
causing the robot to follow the teacher and learn the
task based on both the spoken utterances as well as the
locations of the teacher.

o TodolistTrain() Invokes the todolist training procedure.

In order for the locations in the environment to be se-

mantically meaningful as part of the training process, a map
of the environment is provided to the robot which contains

semantic information in the form of location labels. For
instance, the locations of named objects such as couch,
table, and television can be added to the map as well as
general locations of rooms such as lab or living room. This
a priori information is used to ground locations that are either
mentioned in the human’s speech or are visited as the human
walks about the environment.

VII. EXPERIMENTAL RESULTS

The robot was trained to conduct a series of tasks that
highlight the expanded capability of this task training frame-
work. We focus on capabilities not already described in
[11]. The first task is a security activity called Patrol the
lab. This example illustrates both conditional branching and
looping, makes use of an interrupt event, and demonstrates
the training of tasks “on the fly”.

The transcripts for the training procedure are shown below.
First, a task called Sound the alert (Figure 6) is trained,
which is then used as the contingency action triggered when
someone is detected by the robot in the Patrol the lab task
(Figure 7).

For brevity, the “ok” feedback from the robot after every
user utterance is omitted. Quoted phrases are those uttered by
the user while phrases in <> are those uttered by the robot.
Unquoted phrases describe what is physically happening in
the scene. The numbers on the left in the transcripts are
simply timestamps that denote where actions were executed
on the robot’s path depicted in the corresponding scenario vi-
sualizations. Figure 8 shows the visualization for the training
of Patrol the lab.

A. Patrol the lab

The training process for the Patrol the lab task is initiated
in dialog-and-observation mode. Kevin says “Drive around
the lab” which was not understood by the robot, so it begins
a new training process. Kevin then proceeds to teach it how
to drive around the lab by leading it to different locations and
saying “come here” which the robot automatically converts
into a Go to X command where X is the symbolic label
for the current location of the human as determined from a
given map. Kevin then asks “Is that understood?” to begin
a verification process after which he resumes training the
original Patrol the lab task. Having forgotten his place in
the task he asks “Where was [?7” and the robot reports the
last two tasks items that were added. Finally, Kevin adds
a contingency action, Sound the alert, in the event that the
robot sees someone.

“When I say sound the alert”

“If you see Kevin”

“say hi Kevin”

“Otherwise”

“say intruder alert”

“Thank you”

<Task training is complete. Thank you.>

Fig. 6. Training transcript for the Sound the alert task

0 “Let me show you what to do when

I say patrol the lab”

<Ok, let’s begin>
6 “While Kevin is not here”

“Drive around the lab”

<I don’t understand. Did you want to

teach me Drive around the lab?>

“Yes”

<Ok, please begin teaching me Drive around the lab>
41 Kevin walks to the door

“Come here”

63 Kevin walks to the QRIOs
“Come here”

81 Kevin walks to the AIBOs
“Come here”

“Is that understood?”

<Yes. You said go to the door. Go to the QRIOs.
Go to the AIBOs. Is this correct?>

“Yes”

<Thank you. Let’s continue training patrol the lab>
“Where was 177

<You previously said while Kevin is not here,
drive around the lab. What shall I do next?>
“Meanwhile if you see someone”

“sound the alert”

<Ok. When I'm finished with that shall

1 resume patrol the lab?>

“Yes”

Fig. 7. Training transcript for the Patrol the lab task

® @81 AIBOs
.

e
%

N
|63

ﬂ/‘l QRIOs
e

[
D 41§//
V—F—\

Door

Fig. 8. Patrol the lab task training. Door, QRIOs, and AIBOs denote map
locations.

By saying “Patrol the lab”, the task is invoked. Figure
9 shows the transcript of what happened and the scene is
depicted in Figure 10. The robot first enters the while loop
after determining that Kevin is not there - the robot cannot
see people when an obstacle obstructs its view - and travels
from the door, to the QRIOs, to the AIBOs, and back to
the door again (Figure 10(a)). As the robot travels from
the QRIOs to the AIBOs, Kevin walks in triggering the
interrupt condition “meanwhile if you see someone”. The
robot stops and executes Sound the alert causing the robot
to say <Hi Kevin> (Figure 10(b)). Kevin then leaves and
the robot continues with the patrol task and travels to the
AIBOs. As it travels towards the door, Paul steps into view
triggering the interrupt event once more. Paul is considered
to be an intruder (by virtue of not being Kevin) and the robot
says <Intruder alert> (Figure 10(c)). Paul then leaves and
the robot again continues with the patrol task (Figure 10(d)).

0 “Patrol the lab”
Goto door

13 Goto QRIOs

35 Goto AIBOs

52 Goto door

79 Goto QRIOs

103 Goto AIBOs

114 Kevin walks in. Robot stops.
<Hi kevin>
Kevin leaves

122 Goto door

136 Paul walks in. Robot stops.
<Intruder alert>
Paul leaves

152 Goto QRIOs
Continue drive around the lab task

Fig. 9. Execution transcript for the Patrol the lab task

® Robot — . % Robot = =
52 52
® Kevin | @ Kevin
@® Paul AIBOs P ® Paul AIBOs . A
L] ! ‘\] /’ 114
h
y 35 35
A e -E
" QRIOs QRIOs

0 =

-

W

(a) Execution: Drive around lab

1 -

(b) Execution: Interrupt (Kevin)

[] 1 -
b Robpt 53 B Robf)t 52
® Kevin 122 ® Kevin 122
® Paul AIBOs ® Paul AIBOs
] /\114] \114
2 3 136,
35
H 'LH tef f)l“ i/ B
~" QRIOs %& /,’ QRIOs

] R 135:/

(d) Execution: Drive around lab
(cont’d)

0. Hw

(c) Execution: Interrupt (Intruder)

Fig. 10. Patrol the lab task

B. Give the lab tour

The second task is Give the lab tour where the robot acts
as a tour guide by taking the visitors to each exhibit and then
asking a human expert to talk about it in more detail. The task
involves greeting visitors at the door, executing its subtasks
Give the QRIO tour and Give the AIBO tour, and then saying
goodbye at the center of the lab. The task is similar to the
one described in [11] but includes two main differences: (1)
the phrase “The task has failed” is used in the subtasks and
(2) the subtasks are contained in a todolist. This enables the
robot to recognize when a task on the todolist has failed and
to reattempt it at a later time. The transcript for the training
of the task Give the QRIO tour is shown in Figure 11. The
task Give the AIBO tour is trained similarly except that it
invokes the help of Paul, instead of Kevin, to talk about the
AIBOs. The training transcript for the todolist Talk about
the robots and the top-level task Give the lab tour is shown
in Figures 12 and 13, respectively. The visualization of the
Give the lab tour is shown in Figure 14.

The execution of the Give the lab tour task is transcribed

“Let me show you what to do when
I say give the QRIO tour”

<Ok, let’s begin>

Kevin goes to the QRIOs

“Come here”

“Say these are the QRIOs”

“If Kevin is there”

“ask Kevin to talk about the QRIOs”
“Otherwise”

“say unfortunately Kevin is not around to
talk about the QRIOs”

“The task has failed”

“before”

“say that concludes the QRIOs tour”

Fig. 11. Training transcript for the Give the QRIO tour task

“Let’s make a todolist called talk about the robots”
<Ok, let’s begin>

“Give the QRIO tour”

“Give the AIBO tour”

“Is that understood?”

<Yes, you said give the QRIO tour.

Give the AIBO tour. Is this correct?>

“Yes”

<How many times shall I attempt each

item before giving up?>

“Two”

<Ok. Todolist training is complete. Thank you.>

Fig. 12. Training transcript for the Talk about the robots task

0 “Let me show you what to do when i
say give the lab tour”
<Ok, let’s begin>

16 Kevin goes to the door
“Come here”

38 “Say welcome to the multi-robot lab”
“Talk about the robots”

50 Kevin goes to the lab center
“Come here”
“Say thank you for visiting”

Fig. 13. Training transcript for the Give the lab tour task

_'
SRI=AES }n
D’—F Door 1}‘

Fig. 14. Give the lab tour task training

AIBOs

QRIOs

in Figure 15 and visualized in Figure 16. After greeting the
visitors at the door, the robot begins the Talk about the robots
todolist and goes first to the QRIOs where it finds that Kevin
is not there and consequently the Give the QRIO tour task
fails (Figure 16(a)). It then travels to the AIBOs where it sees
Paul and requests that he speak about them (Figure 16(b)).
When done, Paul tells the robot he is finished and the robot

0 “Give the lab tour”
Goto the door
<Welcome to the multi-robot lab>
11 Goto the QRIOs
<These are the QRIOs. Unfortunately,
Kevin is not around to talk about them.>
33 Goto the AIBOs
49 <These are the AIBOs. Paul, could you please
talk about the AIBOs?>
Paul talks about the AIBOs and then tells the
robot that he is finished.
Goto the QRIOs
78 <These are the QRIOs. Kevin, could
you please talk about the QRIOs?>
Kevin talks about the QRIOs and then
tells the robot that he is finished.
Goto the lab center
106 <Thank you for visiting>

Fig. 15. Execution transcript for the Give the lab tour task

decides to retry the failed items in the todolist, i.e. Give the
QRIO tour. This time Kevin is there and the task is completed
successfully (Figure 16(c)). The tour is completed when the
robot goes to the lab center and thanks the visitors for coming
(Figure 16(d)).

> N I)
Robot 8

@ Kevin °
@® Paul A1BOS

® Robot
® Kevin ®
@® Paul AIBOs

L]

v 33
5 -
\ ~" QRIOs
kY ey

-

0 e

(a) Give QRIO tour failed. (No

\\ug
AN
N

L
® W
o /,/33
E| m\ ,*’/ QRIOs
L
] 114~
Door
|

(b) Giving AIBO tour

Kevin)
= Robot L AN # Robot]
® Kevin L a0 ® Kevin ° a9
® Paul AIBOs AIBOs
oY @ Paul \\
L] \% pe L] A

B y

HHe A2 B
'ii {///QRIOS E\ /.// QRIOs

0 =

(c) Giving QRIO tour. (Kevin is
there now)

(d) “Thank you for visiting”

Fig. 16. Give the lab tour task execution

VIII. SUMMARY AND FUTURE WORK

We have presented an enhanced task training procedure
that permits the user to easily communicate a rich set of task
flow structures. Through dialog and observation of the user as
he moves around, this framework allows for natural methods
of conveying rigid production rules to construct these flow
structures when training a task.

There still remains some avenues to explore in giving our
robot system true utility as a personal assistant. Indeed, our
work is complementary to much of the work described in

Section II and could potentially be augmented with trajectory
learning and task generalization techniques described therein.

Learning of new objects, people, and locations, which
was investigated to some extent in [3], would be a ca-
pability worth integrating into our system so that tasks
can be conditioned on new features. This would involve
improved spatial reasoning and deictic expression compre-
hension which would be useful in enhancing the dialog-and-
observation mode of training. It would also be appropriate
to symbolically parameterize tasks so that they are more
generalized. The task Give the AIBO tour then could use
the same code as the Give the QRIO tour task, only it would
use and be conditioned on different feature parameters. This
would not only decrease training times, but would require
fewer resources due to code sharing.

REFERENCES

[1] D. Bentivegna, C. Atkeson, and G. Cheng. Learning from observation
and practice at the action generation level. In IEEE International
Conference on Humanoid Robots, Karlsruhe and Munich, Germany,
September/October 2003.

[2] S. Calinon and A. Billard. Incremental learning of gestures by
imitation in a humanoid robot. In Proceedings of the 2007 ACM/IEEE
International Conference on Human-Robot Interaction, Washington,
D.C., March 2007.

[3] A. Haasch, S. Hohenner, S. Huewel, M. Kleinehagenbrock, S. Lang,
I. Toptsis, G.A. Fink, J. Fritsch, B. Wrede, and G. Sagerer. Biron
— the bielefeld robot companion. In Proceedings of International
Workshop on Advances in Service Robotics, pages 27-32, Stuttgart,
Germany, May 2004.

[4] S.Iba, C.].J. Paredis, and P. K. Khosla. Interactive multi-modal robot
programming. In Proceedings of IEEE International Conference on
Robotics and Automation, Washington D.C., May 2002.

[5] S. Lauria, G. Bugmann, T. Kyriacou, and E. Klein.
programming using natural language.
Systems, 38(3—4):171-181, 2002.

[6] N. Lesh, C. Rich, and C. Sidner. Using plan recognition in human-
computer collaboration. In Proceedings of the Seventh International
Conference on User Modelling, Banff, Canada, June 1999.

[71 A. Lockerd and C. Brezeal. Tutelage and socially guided robot

learning. In Proceedings of IEEE/RSJ International Conference on

Intelligent Robots and Systems, Sendai, Japan, September 2004.

M. Nicolescu and M. Matari¢. Natural methods for robot task learning:

Instructive demonstration, generalization and practice. In Proceedings

of the Second International Joint Conference on Autonomous Agents

and Multi-Agent Systems, Melbourne, Australia, July 2003.

D. Oblinger, V. Castelli, , and L. Bergman. Augmentation-based

learning: combining observations and user edits for programming

by demonstration. In Proceedings of the International Conference
on Intelligent User Interfaces, pages 202-209, Sydney, Australia,

January-February 2006.

[10] C. Rich, C. Sidner, and N. Lesh. Collagen: Applying collaborative
discourse theory to human-computer interaction. In Al Magazine,
Special Issue on Intelligent User Interfaces, November 2001.

[11] P. E. Rybski, K. Yoon, J. Stolarz, and M. Veloso. Interactive robot task
training through dialog and demonstration. In Proceedings of the 2007
ACM/IEEE International Conference on Human-Robot Interaction,
Washington D.C., March 2007.

[12] J. Saunders, C. L. Nehaniv, and K. Dautenhahn. Teaching robots by
moulding behavior and scaffolding the environment. In Human-Robot
Interaction, Salt Lake City, Utah, March 2006.

[13] R. M. Voyles, J. D. Morrow, and P. K. Khosla. Towards gesture-based
programming: Shape from motion primoridal learning of sensorimotor
primitives. Robotics and Autonomous Systems, 22:361-375, November
1997.

Mobile robot
Robotics and Autonomous

[8

[t

[9

—

