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Abstract

Many problems in robot motion planning involve collision-testing a set of local paths. In this
paper, we propose a novel solution to this problem by exploiting the structure of paths and the
outcome of previous collision tests. Our approach circumvents expensive collision tests on a given
path by detecting that the entire geometry of the path has effectively already been tested on a
combination of other paths. We define a homotopy-like equivalence relation among local paths
to detect this condition, and we provide algorithms that (1) classify paths based on equivalence,
and (2) circumvent collision testing on up to 90% of them. We then prove both correctness and
completeness of these algorithms and provide experimental results demonstrating a performance
increase up to 300% on the rate of path tests. Additionally, we apply our equivalence relation
to the navigation problem in a planning algorithm that takes advantage of information gained
from equivalence relationships among collision-free paths. Finally, we explore applications of
path equivalence to several other mechanisms, including kinematic chains and medical steerable
needles.

1 Introduction

Planning bounded-curvature paths for mobile robots is an NP-hard problem (Reif and Wang, 1998).
Many nonholonomic mobile robots thus rely on hierarchical planning architectures (Allen et al.,
2007; Kelly et al., 2006; Knepper and Mason, 2008; Marder-Eppstein et al., 2010), which decompose
the problem into at least two layers: a slow global planner and fast local planner (Figure 1). We
focus on the local planner (Algorithm 1 and Algorithm 2), which iterates in a tight loop searching
through a set of paths and selecting the best path among them for execution. Within each loop,
the planner tests many paths before making an informed decision. The bottleneck in path testing is
collision checking (Sánchez and Latombe, 2002). In this paper, we introduce a novel approach that
delivers a significant increase in path set collision-testing performance by exploiting the fundamental
geometric structure of paths.

We introduce an equivalence relation intuitively resembling the topological notion of homotopy.
Two paths are path homotopic if a continuous, collision-free deformation with fixed start and
end points exists between them (Munkres, 2000). Like any path equivalence relation, homotopy
partitions paths into equivalence classes. Different homotopy classes make fundamentally different
choices about their route amongst obstacles. However, two constraints imposed by mobile robots
translate poorly into homotopy theory: limited sensing and constrained action.

The robot may lack a complete workspace map, which it must instead construct incrementally
from sensor data. Since robot perception is limited by range and occlusion, a robot’s understand-
ing of obstacles blocking its movement evolves as it moves. A variety of sensor-based planning
algorithms have been developed to handle such partial information. Obstacle avoidance methods,
such as potential fields (Khatib, 1985), vector field histograms (Borenstein and Koren, 1991), and
the curvature-velocity method (Simmons, 1996), are purely reactive. The bug algorithm (Lumelsky
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Figure 1: An example hierarchical planning scenario. The local planner’s path set expands from the robot,
at center, and feeds commands to the robot based on the best path that avoids obstacles (black squares).
The chosen local path and corresponding global path (lower left) combine to form a proposed path to the
goal.

and Stepanov, 1987), which generates a path to the goal using only a contact sensor, is complete
in two dimensional spaces. A planner using the hierarchical generalized Voronoi graph, a roadmap
with global line-of-sight accessibility (Choset and Burdick, 1995) achieves completeness in higher
dimensions using range readings of the environment. Yu and Gupta (2000) propose a planner that
iteratively constructs a probabilistic roadmap in response to partial sensed information about the
world. Actions are selected on the basis of maximizing information gain for future plan steps. Our
local planner resembles these algorithms in that it reacts to local obstacles while receiving global
guidance about the direction to the goal.

If a robot is tasked to perform long-range navigation, then it must plan a path through unsensed
regions. A low-fidelity global planner (i.e. one ignoring constraints) generates this path because
we prefer to avoid significant investment in this plan, which will likely be invalidated later. Path
homotopy, in the strictest sense, requires global knowledge of obstacles because homotopy equivalent
paths must connect fixed start and goal points.

Relaxing the endpoint requirement of homotopy avoids reasoning about the existence of far-
away, unsensed obstacles. In naively relaxing a fixed endpoint, our paths might be permitted to
freely deform around obstacles, making all paths equivalent. To restore meaningful equivalence
classes, we propose an alternate constraint based on path shape. Such path shape constraints stem
from the nonholonomic motion constraints inherent to many mobile robots. Laumond (1986) first
highlighted the importance of nonholonomic constraints and showed that feasible paths exist for a
mobile robot with such constraints. Barraquand and Latombe (1993) created a grid-based planner
that innately captures these constraints. LaValle and Kuffner (2001) proposed the first planner
to incorporate both kinodynamic constraints and random sampling. In contrast to nonholonomic
constraints, true homotopy forbids restrictions on path shape; two paths are equivalent if any path
deformation exists between them. By restricting our paths to bounded curvature, we represent
only feasible motions while limiting paths’ ability to deform around obstacles. The resulting set
of path equivalence classes is of immediate importance to the planner (Figure 2). The number of
choices represented by these local equivalence classes relates to Farber’s topological complexity of
motion planning (2003).

Various planners have employed equivalence classes to reduce the size of the search space. In
task planning, recent work has shown that equivalence classes of actions can be used to elimi-
nate redundant search (Gardiol and Kaelbling, 2007). In motion planning, path equivalence often
employs homotopy. A recent paper by Bhattacharya et al. (2010) provides a technique based on
complex analysis for detecting homotopic equivalence among paths in 2D. Two papers employing
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Figure 2: left: Paths from a few distinct homotopy classes between the robot and the goal. The dis-
tinctions between some classes require information that the robot has not yet sensed (the gray area is out
of range or occluded). middle: With paths restricted to the sensed area, they may freely deform around
visible obstacles. right: After restricting path shape to conform to motion constraints, we get a handful of
equivalence classes that are immediately applicable to the robot.

equivalence classes to build probabilistic roadmaps (Kavraki et al., 1996) are by Schmitzberger
et al. (2002) and Jaillet and Simeon (2008). The latter paper proposes the visibility deformation,
a departure from true homotopic equivalence that restricts continuous deformation to line-of-sight
visibility between paths. We propose here a different variation on homotopy. Not only do we
restrict continuous deformation between paths, but we also fix path length to create a purely local
path equivalence relation.

Our key insights are twofold: first, that this local path equivalence reveals shared outcomes
among a set of paths; and second, that this relation enables a planner to reason collectively about
such path sets instead of considering each path in isolation. These insights are based on the
observation that two equivalent neighboring paths represent swept volumes of the robot that cover
some common ground in the workspace. Between them lies a continuum of paths whose swept
volumes are covered by the two bounding paths.

This paper makes several contributions relating to local path equivalence. We develop the
mathematical foundations to detect equivalence relations among all local paths based on a finite
precomputed path set. We utilize these tools to devise an efficient algorithm for detecting equiva-
lence among a discretely sampled path set. By mapping local equivalence of discrete paths to the
underlying continuum, we give an algorithm for implicitly collision-testing local paths, thus cir-
cumventing the usual expensive test. Furthermore, we propose a navigation algorithm for mobile
robots that utilizes local path equivalence to improve overall execution success rates by understand-
ing route alternatives and selecting routes most likely to permit safe execution.

1.1 Outline

The remainder of the paper is organized as follows. We provide an implementation of the basic
classification algorithm in Section 2 and present the fast collision-testing technique. Next, Section 3
explores implications of local path equivalence to improving mobile robot navigation performance.
Section 4 then delves into the theoretical foundations of our path equivalence relation. Section 5
provides some experimental results. Finally, Section 6 briefly explores several promising applications
to other robotic systems, including kinematic chains such as manipulator arms, and steerable
needles used in medical procedures.

2 Path Classification and Safety Algorithms

In this section, we present two new algorithms for path classification and implicit path collision-
testing. We also borrow a path set generation routine from prior work. All of the algorithms
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presented here run in polynomial time with respect to path count. Throughout this paper, we use
p to refer to a path and P to refer to a set of paths.

Definition 1 (path space). The path space is a metric space (P, µ) in which the metric µ is used
to measure the distance between a pair of paths in P. Paths may vary in shape and length.

2.1 Path Set Generation

We use the greedy path set construction technique of Green and Kelly (2007). The algorithm
iteratively builds a path set sequence {P1,P2, . . . ,PN} by drawing paths from a densely-sampled
source path set, PN ⊂ X . X , the continuum path space, is the set of all output paths corresponding
to all possible control inputs. This set is never explicitly represented.

Instead, we compute the set PN , which can be created for any continuous system by finely
discretizing the input parameters and varying them in combination. The requisite granularity of
input discretization depends on characteristics of the particular system’s mapping between input
parameters and output paths. Note that in the construction of path set PN , no care need be
given to uniformity of sampling among path shapes; with sufficient initial density, the Green-Kelly
algorithm will provide approximate uniformity (based on some metric µ) at a range of sampling
resolutions.

At step i, the Green-Kelly algorithm selects the path p ∈ PN that minimizes the dispersion of
Pi = Pi−1 ∪ {p}. Borrowing from Niederreiter (1992):

Definition 2 (dispersion). Given a bounded metric space (X , µ) and a set P = {x1, . . . , xn} ∈ X ,
the dispersion of P in X is defined by

δ(P,X ) = sup
x∈X

min
p∈P

µ(x, p) . (1)

The dispersion of P in X equals the radius of the biggest open ball in X containing no points
in P. By minimizing dispersion, we ensure that there are no large voids in path space. Thus,
dispersion reveals the quality of P as an “approximation” of X because it guarantees that for any
x ∈ X , there is some point p ∈ P such that µ(x, p) ≤ δ(P,X ). Note that all paths in X are of fixed
length and share a start state. This condition is sufficient to assure that X is bounded for a wide
variety of path metrics.

The Green-Kelly algorithm generates a sequence of path sets Pi, for i ∈ {1, . . . , N}, that has
monotonically decreasing dispersion. In seeking a path to execute, the local planner algorithm
(Algorithm 1) searches paths in this order, thus permitting early termination while ensuring that
a low-dispersion set of paths is collision tested. Note that although the source set PN is of finite
size—providing a lower bound on dispersion at runtime—it can be chosen with arbitrarily low
dispersion in X a priori.

2.2 Path Classification

We next present Algorithm 3, which classifies collision-free members of a path set. The Hausdorff
metric is central to the algorithm. Intuitively, this metric returns the largest amount of separation
between two paths in the workspace. From Munkres (2000):

µH(pi, pj) = inf
ε
{pi ⊂ (pj)ε and pj ⊂ (pi)ε}, (2)
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Algorithm 1 Local Planner Algorithm(w, x, h, P)

Input: w – a costmap object;
x – initial state;
h – a heuristic function for selecting a path to execute;
P – a fixed set of paths

Output: Moves the robot to the goal if possible
1: while not at goal and time not expired do
2: Pfree ← Test All Paths(w, x,P)
3: j ← h.Best Path(x,Pfree)
4: Execute Path On Robot(j)
5: x← Predict Next State(x, j)
6: end while

Algorithm 2 Pfree ←Test All Paths(w, P)

Input: w – a costmap object;
P – a fixed set of paths

Output: Pfree, the set of paths that passed collision test
1: Pfree ← ∅
2: while time not expired and untested paths remain do
3: p← Get Next Path(P)
4: collision← w.Test Path(p) // collision is Boolean
5: if not collision then
6: Pfree ← Pfree ∪ {p} // non-colliding path set
7: end if
8: end while
9: return Pfree

where (p)r denotes dilation of p by r: {t ∈ R2 : ‖tp − t‖L2 ≤ r for some tp ∈ p}. Note that µH
satisfies all properties of a metric (Henrikson, 1999). We similarly define a normalized Hausdorff
metric as

µH(pi, pj , d) = inf
ε
{pi ⊂ (pj)εd and pj ⊂ (pi)εd}. (3)

These two Hausdorff metric notations are equivalent for now, but we exploit the normalized format
in Section 6, where we replace the constant d with a function of path length. For our fixed path
set generated by Green-Kelly and a given d, we precompute each pairwise path metric value of (3)
and store them in a lookup table for rapid online access.

Algorithm 3 performs path classification on a set of paths that have already tested collision-free
at runtime. We form an equivalence graph G = (V,E) in which node vi ∈ V corresponds to path
pi. Edge eij ∈ E exists, joining nodes vi and vj , when this relation holds:

µH(pi, pj , d) ≤ 1, (4)

where d is the diameter of the robot. This condition is true when two paths are separated by at
most one robot diameter. Taking the transitive closure of this relation, two paths pa and pb are
equivalent if nodes va and vb are in the same connected component of G (Figure 3).

In effect, this algorithm constructs a probabilistic roadmap (PRM) in the path space instead of
the conventional configuration space. A query into this PRM tells whether two paths are equivalent.
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Figure 3: A simple path set, in which obstacles (black) eliminate colliding paths. The collision-free path
set has three equivalence classes (red, green, and blue). In the corresponding graph representation, at right,
adjacent nodes represent proximal paths. Connected components indicate equivalence classes of paths.

As with any PRM, a query is performed by adding two new graph nodes vs and vg corresponding
to the two paths. We attempt to join these nodes to other nodes in the graph based on (4). The
existence of a path connecting vs to vg indicates path equivalence.

2.3 Implicit Path Safety Test

There is an incessant need in motion planning to accelerate collision-testing, which may take up to
99% of total CPU time (Sánchez and Latombe, 2002). During collision-testing, the planner must
verify that a given swath is free of obstacles.

Definition 3 (swath). A swath is the workspace area of ground or volume of space swept out as
the robot traverses a path.

Definition 4 (safe). A path is safe if its swath contains no obstacles.

In testing many swaths of a robot passing through space, most planners effectively test the
free workspace many times by testing overlapping swaths. We may test a path implicitly at
significant computational savings by recalling recent collision-testing outcomes and circumventing
new collision tests whenever possible. We formalize the idea in Algorithm 4, which is designed to
be invoked from Algorithm 2, line 4 in lieu of the standard path test routine.

The implicit collision-test condition resembles the neighbor condition (4) used by Algorithm 3,
but it has an additional “Is Between” check, which indicates that the swath of the path under test
is fully covered by two collision-free neighboring swaths. The betweenness trait can be precomputed
and stored in a lookup table. Given a set of safe paths, we can quickly discover whether any pair
covers the path under test. By precomputing eligible paths in the path set and efficiently tracking
collision-free paths, the planner promises to realize significant performance gains, producing several
times as many paths per second as conventional collision-test algorithms.

3 Route Selection

Thus far, we have shown that local path equivalence can produce significantly more collision-free
paths per unit time than traditional collision testing. However, an earlier result (Knepper and
Mason, 2008) found surprisingly that if a planner is given additional safe paths, its performance
could actually decline. Given a coarsely-sampled path set C and a densely-sampled path set D, we
believe this effect is due to the fact that D is expected to contain a more optimal path than C that
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Algorithm 3 D ←Equivalence Classes(Pfree, d)

Input: Pfree – a set of safe, appropriate paths; d – the diameter of the robot
Output: D – a partition of Pfree into equivalence classes (a set of path sets)
1: Let G = (V,E)← (∅, ∅)
2: D ← ∅ // Partition of paths into classes (represented by a set of sets)
3: for all pi ∈ Pfree do // This loop discovers adjacency
4: V.add(pi) // Add a graph node corresponding to path pi
5: for all pj ∈ V \ {pi} do
6: if µH(pi, pj , d) ≤ 1 then
7: E.add(i, j) // Connect nodes i and j with an unweighted edge
8: end if
9: end for

10: end for
11: S ← Pfree // Unclassified paths
12: while S 6= ∅ do // This loop finds the connected components
13: C ← ∅ // Next connected component
14: p← a member of S
15: L ← {p} // List of nodes to be expanded in this class
16: while L 6= ∅ do
17: p← a member of L
18: C ← C ∪ {p} // Commit p to class
19: S ← S \ {p}
20: L ← (L ∪ V.neighbors(p)) ∩ S
21: end while
22: D ← D ∪ {C}
23: end while
24: return D

approaches closer to obstacles. In particular, D is likely to find risky narrow corridors that C might
miss entirely. Therefore, we must establish that the additional safe paths can in fact be put to use
in increasing navigation performance. We use path equivalence to help achieve this goal.

Since the local planner has a limited horizon, the resulting planned route is a concatenation
of paths from the local and global planners. Only the local paths are feasible to execute directly
on the robot, so the local planner must replan at regular intervals to allow continued progress.
Thus, Algorithm 1 outputs a sequence of paths, the concatenation of which forms the true route.
At the end of each replan cycle, the planner executes the beginning of the route representing the
or least cost to the goal, a heuristic known as Best Path. Using this heuristic, traditional hierar-
chical planners produce strongly goal-directed behavior that comes with two drawbacks: temporal
incoherence and excessive obstacle proximity.

3.1 The Temporal Incoherence Problem

Temporal incoherence occurs because Best Path does not generate consistent behavior between
replan cycles, meaning that there is no deliberate process to maintain certain decisions throughout
navigation. Often in hierarchical planning (Allen et al., 2007; Kelly et al., 2006), the ultimate route
executed by the local planner algorithm is an emergent behavior because the planner lacks any con-
tinuity of intent between consecutive replan cycles. We propose local path equivalence as a means
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Algorithm 4 b←Test Path Implicit(p, w, S, d)

Input: p is a path to be tested
Input: w is a costmap object // used as a backup when path cannot be implicitly tested
Input: S is the set of safe paths found so far
Input: d is the diameter of the robot
Output: b – Boolean indicating whether path is safe
1: for all pi, pj ∈ S such that µH(pi, pj , d) ≤ 1 do
2: if p.Is Between(pi, pj) then // p’s swath has been tested previously
3: sf ← p.Get End Point()
4: collision← w.Test Point(sf ) // endpoint may not be covered by swaths
5: return collision
6: end if
7: end for
8: return w.Test Path(p) // Fall back to explicit path test

of representing such continuity. In choosing a sequence of local paths, local planners implicitly also
select a sequence of equivalence classes. This observation provides another perspective in which
to view local path equivalence: based on information available to the local planner within a given
replan cycle, the planned routes of all equivalent paths are homotopic. We propose a new algorithm
to improve navigation performance by explicitly considering continuity within each replan cycle.

In general, we would like each replan cycle to select a new path that closely resembles the
previous path, but such is not always the case. In prior work (Knepper and Mason, 2009), we
proposed increasing the chance of such an outcome with the Best Path heuristic by preserving the
unexecuted remainder of the previous path as a continuation, which is considered along with the
ordinary path set within subsequent cycles. Even so, on some occasions, consecutive replan cycles
may switch equivalence classes, thus selecting a new planned route. Best Path does not distinguish
between classes, so such switches may happen arbitrarily often. Frequent switching is typically
associated with perception noise. In especially noisy systems or where two planned routes are
about equally costly, the planner may rapidly alternate between routes, thus effectively following
an unplanned and undesirable path directly towards the obstacle separating the two routes.

3.2 The Obstacle Proximity Problem

Obstacle proximity, the second drawback incurred by Best Path, risks the safety of the robot in
cases of outside disturbance or internal prediction error. From a planning perspective, nearby
obstacles also substantially reduce the quantity and diversity of safe paths available in subsequent
replan cycles.

Two related approaches to the problem of decreasing robot proximity to obstacles have been in
use for many years. The first approach involves “growing” the obstacles using a hard buffer (Buh-
mann et al., 1995), which runs the risk of closing off narrow openings. This problem is partially
ameliorated by making the obstacle growth-radius vary in proportion to robot speed.

The second approach involves placing a soft buffer around each obstacle in the form of a gradient
of elevated cost (Thorpe, 1984), such that cost varies inversely with obstacle proximity. Although
this approach does not eliminate options from consideration, it is difficult to predict how a given
cost function will affect decisions between corridors.

The drawback of both approaches is that they couple two distinct decisions: which route (equiv-
alence class) to follow, and how to proceed (which path in the class) along that route. These de-
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Figure 4: A navigating robot faces both discrete decisions (left) about which corridor to follow and con-
tinuous optimization (right) over where in the corridor to drive. A planner or controller should be able to
consider these choices separately.

cisions are of qualitatively different character because continual fine-tuning is possible throughout
the traverse of a corridor, but the choice of corridor to be traversed requires a discrete decision that
soon becomes irreversible (Figure 4).

We introduce a new multi-stage path selection algorithm that separates these two decisions,
thus allowing them to be weighed individually and traded off against one another. This process
in turn improves planning and control flexibility, increasing continuity of plans, and retaining
goal-directedness. Through application of a set of rules based on path equivalence (applied both
within and across replan time steps), the algorithm selects paths for execution that guide the robot
sufficiently far from obstacles while moving consistently towards the goal.

3.3 Logical Succession Path Relation

Having already demonstrated the value of path equivalence in a single replan cycle, we now in-
troduce a relation on path equivalence classes to detect logical succession across multiple replan
cycles.

Definition 5 (logical succession). Logical succession is a strict partial ordering among equiva-
lence classes ABB such that some paths pA ∈ A and pB ∈ B exist for which µH(pA, pB, d) ≤ 1 and
A was generated in an earlier replan time step than B.

This definition establishes that two paths covering largely the same terrain but produced by
different replan cycles can be said to follow the same route. The definition assumes a small time
increment between replan cycles, such that little ground is covered in the interim. For larger steps,
the definition would instead need to compare the end of pA to the start of pB. Of course, the
pairwise logical succession property can be precomputed for our fixed path set in order to optimize
performance.

In considering a new path for execution, logical succession provides a powerful tool for a planner
to distinguish between paths that represent major and minor alterations to the prior plan. Suppose
the planner just executed path pi at time step t− 1. We may initially choose to consider at time t
only those paths pj such that [pi]B [pj ], where [p] describes the equivalence class containing p. This
restriction provides continuity of plan. Often, each equivalence class has only one logical successor
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Figure 5: Between replan cycles, safe paths are associated by a logical succession of equivalence classes.
This strict partial ordering relation is represented by a directed acyclic graph. Graph edges represent the
relationship P1 B P2. Graph node colors (and matching equivalence class path colors) are conserved in
consecutive replan cycles only for the largest logical successor class. Between cycles, we may detect a
termination, split, merge, or continuation of the previous equivalence classes. By preferring the logical
successor to the previously-commanded path, subsequent path selections give better performance.

at the following replan time step. However, merges and splits may occur at critical points along the
robot’s traverse (Figure 5). When the planner detects a split, it is important to select the branch
that maximizes success, given the locally-available information.

3.4 Multistage Path Selection Algorithm

We introduce the multistage local planner algorithm (Algorithm 7) to make principled path selec-
tions that trade off among the issues of logical succession, safety, and estimated path length to the
goal. At a high level, the algorithm consists of two stages. Stage one selects for consideration a
subset of Pfree comprising one or more equivalence classes in order to ensure progress, safety, and
consistency. Stage two selects from among the chosen subset one path for execution that trades off
safety and cost of the path, while retaining goal-directedness.

3.4.1 Stage One: Solving the Decision Problem

In generally preferring to execute a new path that is a logical successor to the previously chosen
equivalence class, we largely eliminate sensitivity to noisy perception data. Two exceptions arise
in which the algorithm will not execute a logical successor path. First, if a non-successor equiva-
lence class predicts a significantly lower cost to the goal, then the planner switches classes on the
assumption that the magnitude of the change exceeds that of likely perception noise. Second, we
allow the algorithm to consider broader alternatives—whether more or less costly—if all logical
successor classes terminate or become narrow.

Definition 6 (narrow, wide). A narrow equivalence class contains few paths. We employ path
count as a proxy for the measure of a corridor in path space. Thus, a low path count indicates little
space to maneuver the robot through a narrow corridor. Non-narrow classes are called wide.
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narrow,
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Figure 6: These four equivalence classes are annotated as to whether each is narrow or wide and progressing
or non-progressing. Width is measured by the number of paths in the class as a fraction of all surviving
paths, whereas progressivity describes whether its paths make progress towards the goal at left.

We define a constant fraction, MIN PATH THRESH, which adaptively selects the cutoff in
corridor width as a percent of the number of paths in Pfree. Thus, the more densely we sample the
space of paths, proportionately more paths are required to constitute a wide corridor. Even when
densely sampling the path space, a highly cluttered environment may eliminate all but a few paths
through collision with obstacles. In such a case, a passage containing relatively few paths may still
be to be considered “wide” in comparison to others with fewer paths.

This concept of wide and narrow corridors closely resembles that of Borenstein and Koren (1991).
Their vector field histogram represents obstacle density projected down to one dimension corre-
sponding to heading. Sparse regions of the histogram indicate corridors, but due to the projection,
only the component of corridor width perpendicular to that projection is recorded. Our approach
to corridor detection and width estimation is more general since it closely approximates the full
capabilities of the robot and is not limited to a particular obstacle configuration or observational
perspective.

Although Algorithm 7 displays a preference for wide logical successor classes, it strictly selects
only progressing paths within a class for consideration.

Definition 7 (progressing). A progressing path is one for which both of the following two points
are nearer to the goal than is the current robot position, according to the global planner:

1. the point one replan time step in the future, and

2. the end point of the local path.

Figure 6 illustrates equivalences classes that are wide, narrow, progressing, and non-progressing.
The progressing property is often shared by all paths in an equivalence class, but certain large
classes in the absence of clutter can have mixed progressivity. By executing only progressing
paths, we ensure that the robot monotonically approaches the goal, thus guaranteeing termination.
Furthermore, by eliminating non-progressing paths during stage one, we are free to ignore goal-
directedness in stage two while still guaranteeing progress.

When testing progressivity in a real implementation, it may be preferable to consider only
criterion 2, a path’s endpoint, and ignore the next step. Recognizing that curvature-constrained
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Algorithm 5 (W,N )←Divide Wide Narrow(C, t)

Input: C – candidate set of classes; t – threshold size of class
Output: W – set of paths in wide classes; N – set of paths in narrow classes
1: W ← ∅
2: N ← ∅
3: for all C ∈ C do
4: if |C| > t then
5: W ←W ∪ C // Paths in wide classes
6: else
7: N ← N ∪ C // Paths in narrow classes
8: end if
9: end for

10: W ← Cull Nonprogressing Paths(W) // Omit paths that move robot away from the goal
11: N ← Cull Nonprogressing Paths(N )
12: return (W,N )

local paths need more space to maneuver than global grid paths, this relaxation provides the
planner additional safety and flexibility when navigating around sharp corners, at the expense of
termination guarantees.

In our implementation, Algorithm 5 is used to eliminate nonprogressing paths and divide the rest
according to the narrow/wide dichotomy. Algorithm 7 uses it as a helper function in establishing
an order of preference in selecting S, the set of paths for consideration. The net order of preference
is:

1. All wide, progressing, logical successor classes

2. Any wide, progressing class

3. All narrow, progressing, logical successor classes

4. Any narrow, progressing class

5. Return failure

After choosing a preliminary S, we must check if the planner has found a highly suboptimal subset
of paths; the algorithm compares the best path in S against the best path in Pfree. A difference
above a certain SCORE THRESH provokes a mid-course correction. Such a switch of equivalence
class should be a rare event.

Note that we are making a choice with global implications based on unreliable information
from a low-fidelity global planner. Lacking detailed knowledge of the complete path to the goal, we
instead consider a calculation based solely on the statistics of this environment’s average obstacle
density, which predict that a narrow corridor “pinch point” should occur periodically at some
frequency during traversal. Given a distance remaining to reach the goal, we can estimate an
expected number of risky narrow corridors remaining. SCORE THRESH should be chosen so that
the decreased risk (stemming from the shorter path length) of getting stuck in a future narrow
corridor outweighs the immediate risk involved in the current route change, which may itself jump
to a narrower corridor.
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Algorithm 6 p←Optimize Path(x, h, e, p)

Input: x – initial state;
h – a heuristic function for selecting a path to execute;
e – equivalence object
p – seed path for optimization

Output: Return a path similar to p but safer
1: repeat
2: N ← e.Get Neighbors(p) ∪ {p}
3: p← h.Farthest Obstacle Path(x,N ) // Select path in set farthest from nearest obstacle
4: until p converges or p.obstacle proximity > 3

2 robot diameter
5: return p

3.4.2 Stage Two: Solving the Optimization Problem

After establishing a final set of candidate paths S, the algorithm moves on to stage two, which
selects a single path for execution. Initially, it finds the greedy Best Path option in S, but this path
may come unsafely close to an obstacle. Within the equivalence class containing the shortest path,
the subroutine Optimize Path performs a local, gradient-descent-type optimization in path space
by traversing the equivalence graph. This optimization, which generates a soft safety buffer around
obstacles, seeks to maximize the distance to the one nearest obstacle as described in Algorithm 6.

In especially wide corridors, the robot should be free to follow a reasonably short path, so
the obstacle proximity penalty decays to zero beyond 1.5 robot diameters. The proximity penalty
function is only defined with respect to the one nearest obstacle, so in a narrow corridor the penalty
is locally minimized by the path most nearly following the center of the corridor, thus maximizing
both safety and future planning options. Note that the algorithm will follow even an extremely
narrow corridor, provided that the route represents the best means to progress towards the goal.

Ultimately, the algorithm we describe here improves on the original local planner algorithm by
executing an action that is safe, maximizes future planning/control options, and remains consistent
across replan cycles, all while retaining goal-directedness.

4 Foundations

In this section, we establish the foundations of an equivalence relation on path space based on
continuous deformations between paths. We then provide correctness proofs for our algorithms for
classification and implicit collision-testing.

We are given a kinematic description of paths. All paths are parametrized by a common initial
pose, common fixed length, and individual curvature function. Let κi(s) describe the curvature
of path i as a function of arc length, with max0≤s≤sf |κi(s)| ≤ κmax. Typical expressions for κi
include polynomials, piecewise constant functions, and piecewise linear functions. The robot motion
produced by control i is a feasible path given by θ̇i

ẋi
ẏi

 =

 κi
cos θi
sin θi

 . (5)

Definition 8 (feasible). A feasible path has bounded curvature (implying at least C1 continuity)
and fixed length. The set F(sf , κmax) contains all feasible paths of length sf and curvature |κ(s)| ≤
κmax.
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Algorithm 7 (p,L)←Multistage Local Planner Algorithm(w, x, h, e, P, L)

Input: w – a costmap object;
x – initial state;
h – a heuristic function for selecting a path to execute;
e – equivalence object;
P – a fixed set of paths;
L – equivalence class of path selected in prior call (initially ∅)

Output: p – a path progressing safely toward the goal;
L – equivalence class of p

1: Pfree ← Test All Paths(w, x,P) // May invoke implicit path test
2: b← h.Best Path(x,Pfree) // Greedy shortest path

// Stage 1: select equivalence classes for consideration; trade off succession and corridor width
3: if L 6= ∅ then // Compute successor path candidates
4: C ← e.Get Logical Successor Classes(L) // Returns a set of classes
5: (Ws,Ns)← Select Classes(C,MIN PATH THRESH× |Pfree|)
6: else
7: (Ws,Ns)← (∅, ∅)
8: end if
9: E ← e.Compute Equivalence Classes(Pfree)

10: (W,N )← Select Classes(E,MIN PATH THRESH× |Pfree|) // Non-successor classes
11: if Ws 6= ∅ then
12: S ← Ws // Consider the set of wide successor classes if some exist
13: else if W 6= ∅ then
14: S ← W // Prefer any wide, progressing class over a narrow successor
15: else if Ns 6= ∅ then
16: S ← Ns // Narrow successors are better than other narrow classes
17: else if N 6= ∅ then
18: S ← N // Last resort: take any path
19: else
20: return failure
21: end if
22: p← h.Best Path(x,S)
23: if p.score− b.score > SCORE THRESH then
24: S ← Pfree // Jump equivalence classes to a significantly shorter route
25: end if //

// Stage 2: Select one path from the set, trading off path length with safety
26: p← h.Best Path(x,S)
27: p← Optimize Path(x, h, e, p) // Find safe enough path in selected path set
28: L ← e.Class Of(p)
29: return (p,L)
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As an aside, one may also consider piecewise C1 continuous paths, such as paths with cusps
following by the motion model of Reeds and Shepp (1990). Such paths may be equivalent provided
that each follows the same sequence of forward and backward motions. Then, a conservative means
of testing equivalence of the whole path is to perform pairwise tests on each C1-continuous path
segment. Thus, the following proofs may assume full C1 continuity.

4.1 Properties of Paths

In this section, we establish a small set of conditions under which we can quickly determine that
two paths are equivalent. We constrain path shape through two dimensionless ratios relating three
physical parameters. We may then detect equivalence through a simple test on pairs of paths using
the Hausdorff metric.

These constraints ensure a continuous deformation between neighboring paths while permitting
a range of useful actions. Many important classes of action sets obey these general constraints,
including the line segments common in RRT (LaValle and Kuffner, 2001) and PRM (Kavraki et al.,
1996) planners, as well as constant curvature arcs. Figure 1 illustrates a more expressive action
set (Knepper and Mason, 2008) that adheres to our constraints.

The three related physical parameters are: d, the diameter of the robot; sf , the length of each
path; and rmin, the minimum radius of curvature allowed for any path. Note that 1/rmin = κmax,
the upper bound on curvature. For non-circular robots, d reflects the minimal cross-section of the
robot’s swath sweeping along a path. We express relationships among the three physical quantities
by two dimensionless parameters:

v =
d

rmin
w =

sf
2πrmin

.

We only compare paths with like values of v and w. Figure 7 provides some intuition on the effect
of these parameters on path shape. Due to the geometry of paths, only certain choices of v and w
are appropriate.

Definition 9 (appropriate path). An appropriate path is a feasible path conforming to appro-
priate values of v and w from the proof of Lemma 2. Figure 7 previews the permissible values.

When the condition in (4) is met, the two paths’ swaths overlap, resulting in a continuum
of coverage between the paths. This coverage, in turn, ensures the existence of a continuous
deformation, as we show in Theorem 1, but first we formally define a continuous deformation
between paths.

Definition 10 (continuous deformation). A continuous deformation between two safe, feasible
paths pi and pj in F(sf , κmax) is a continuous function f : [0, 1] → F(s−f , κ

+
max), with s−f slightly

less than sf and κ+max slightly more than κmax. f(0) is the initial interval of pi, and f(1) is the
initial interval of pj, both of length s−f .

Definition 11 (equivalent). We write pi ∼ pj to indicate that a continuous deformation exists
between paths pi and pj, and they are therefore equivalent.

The length s−f depends on v and w, but for typical values, s−f is fully 95–98% of sf . For many
applications, this is sufficient, but an application can quickly test the remaining path length if
necessary. Nearly all paths f(c) are bounded by curvature κmax, but it turns out that in certain
geometric circumstances, the maximum curvature through a continuous deformation is up to κ+max =
4
3κmax.
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Figure 7: At top: several example paths combining different values of v and w. Each path pair obeys (4).
The value of v affects the “curviness” allowed in paths, whereas w affects their length.
At bottom: this plot, generated numerically, approximates the set of appropriate choices for v and w. The
gray region at top right must be avoided, as we show in Lemma 2. Such choices would permit an obstacle
to occur between two safe paths that obey (4). A path whose values fall in the white region is called an
appropriate path.

Definition 12 (guard paths). Two safe, feasible paths that define a continuous deformation are
called guard paths because they protect the intermediate paths.

In the presence of obstacles, it is not trivial to determine whether a continuous deformation
is safe, thus maintaining equivalency. Rather than trying to find a deformation between arbitrary
paths, we propose a particular condition under which we show that a bounded-curvature, fixed-
length, continuous path deformation exists,

µH(p1, p2, d) ≤ 1 =⇒ p1 ∼ p2. (6)

This statement, which we prove in the next section, is the basis for Algorithm 3 and Algorithm 4.
The overlapping swaths of appropriate paths p1 and p2 cover a continuum of intermediate swaths
between the two paths. The equivalence relation, of which (6) detects local instances, is a proper
equivalence relation because it possesses each of three properties:

• reflexivity. µH(p, p, d) = 0; p is trivially deformable to itself.

• symmetry. The Hausdorff metric is symmetric.

• transitivity. Given µH(p1, p2, d) ≤ 1 and µH(p2, p3, d) ≤ 1, a continuous deformation can
be constructed from p1 to p3 passing through p2.

4.2 Equivalence Relation

We now prove (6); that is, we show that shape constraints indicated by v and w combined with
Hausdorff distance constraints are sufficient to ensure the existence of a continuous deformation
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I I pe
pi
pj

Figure 8: Paths pi, pj , and pe form boundary B. Its interior, I, contains all paths in the continuous
deformation from pi to pj . The set of paths in I illustrates the betweenness trait described in Section 2.3.

between two neighboring paths. Our approach to the proof will be to first describe a feasible
continuous deformation, then show that paths along this deformation are safe.

Given appropriate guard paths pi and pj with common origin, let pe be the shortest curve in the
workspace connecting their endpoints without crossing either path (pe may pass through obstacles).
The closed path B = pi+pe+pj creates one or more closed loops (the paths may cross each other).
By the Jordan curve theorem (Munkres, 2000), each loop partitions R2 into two sets, only one of
which is compact. Let I, the interior, be the union of these compact sets with B, as in Figure 8.

Definition 13 (between). A path pc is between paths pi and pj if pc ⊂ I.

Lemma 1. Given appropriate paths pi, pj ⊂ F(sf , κmax) with µH(pi, pj , d) ≤ 1, a path sequence
exists in the form of a feasible continuous deformation between pi and pj.

Proof. We provide the form of a continuous deformation from pi to pj such that each intermediate
path is between them. With t a workspace point and p a path, let

γ(t, p) = inf
ε
t ∈ (p)ε (7)

g(t) =

{
[0, 1] if γ(t, pi) = γ(t, pj) = 0{

γ(t,pi)
γ(t,pi)+γ(t,pj)

}
otherwise,

(8)

where g(t) is a set-valued function to accommodate intersecting paths. Each level set g(t) = c for
c ∈ [0, 1] defines a weighted generalized Voronoi diagram (GVD) forming a path as in Figure 9.
We give the form of a continuous deformation using level sets g−1(c); each path is parametrized
starting at the origin and extending for a length s−f in the direction of pe.

Let us now pin down the value of s−f , the length of intermediate paths pc. Every point ti on pi
forms a line segment projecting it to its nearest neighbor tj on pj (and vice versa). Their collective
area is shown in Figure 10. Equation (4) bounds each segment’s length at d. s−f is the greatest value

such that no intermediate path of length s−f departs from the region covered by these projections.

For general-shaped generators in R2, the GVD forms a set of curves meeting at branching
points (Sampl, 2001). In this case, no GVD cusps or branching points occur in any intermediate
path. Since d < rmin, no center of curvature along either guard path can fall in I (Blum, 1967).
Therefore, each level set defines a unique path through the origin.

Each path’s curvature function is piecewise continuous and everywhere bounded. A small
neighborhood of either guard path approximates constant curvature. A GVD curve generated by
two constant-curvature sets forms a conic section (Yap, 1987). Table 1 reflects that the curvature
of pc is everywhere bounded with the maximum possible curvature being bounded by 4

3κmax. For
the full proofs, see (Knepper et al., 2010a). Thus, each intermediate path pc is a feasible path.

Lemma 2. Given safe, appropriate guard paths pi, pj ∈ F(sf , κmax) separated by µH(pi, pj , d) ≤ 1,
any path pc ⊂ F(s−f ,

4
3κmax) between them is safe.
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point of maximum curvature

Figure 9: In a continuous deformation between paths pi and pj , as defined by the level sets of (8), each
path takes the form of a weighted GVD. Upper bounds on curvature vary along the deformation, with the
maximum bound of 4

3κmax occurring at the medial axis of the two paths.

pepc

p
i

p
j

Figure 10: Hausdorff coverage (overlapping shapes in center) is a conservative approximation of swath
coverage (gray). The Hausdorff distance between paths pi and pj is equal to the maximum-length projection
from any point on either path to the closest point on the opposite path. Each projection implies a line
segment. The set of projections from the top line and bottom line each cover a solid region between the
paths. These areas, in turn, cover a slightly shorter intermediate path pc, in white, with its light-colored
swath. This path’s length, s−f is as great as possible while remaining safe, with its swath inside the gray
area.

Proof. We prove this lemma by contradiction. Assume an obstacle lies between pi and pj . We show
that this assumption imposes lower bounds on v and w. We then conclude that for lesser values of
v and w, no such obstacle can exist.

Let sl(p, d) = {t ∈ R2, tp = nn(t, p) : tpt ⊥ p and ‖t− tp‖L2 ≤ d
2} define a conservative approxi-

mation of a swath, obtained by sweeping a line segment of length d with its center along the path.
tpt is the line segment joining tp to t and nn(t, p) is the nearest neighbor of point t on path p. The
two swaths form a safe region, U = sl(pi, d) ∪ sl(pj , d).

Suppose that U contains a hole, denoted by the set h, which might contain an obstacle. Now,
consider the shape of the paths that could produce such a hole. Beginning with equal position and
heading, they must diverge widely enough to separate by more than d. To close the loop in U , the
paths must then bend back towards each other. Since the paths separate by more than d, there
exist two open intervals phi ⊂ pi and phj ⊂ pj surrounding the hole on each path such that (at this

point) phi 6⊂ (pj)d and phj 6⊂ (pi)d. To satisfy (4), there must exist later intervals pei ⊂ pi such that

phj ⊂ (pei )d and likewise pej ⊂ pj such that phi ⊂ (pej)d, as in Figure 11a.
How long must a path be to satisfy this condition? Consider the minimum length solution to

this problem under bounded curvature. For each point t ∈ phj , the interval pei must intersect the

open disc D = int((t)d), as in Figure 11b. Since phj grows with the width of h, and pei must intersect
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Table 1: Conic sections form the weighted Voronoi diagram. κ1 and κ2 represent the curvatures of the
two guard paths, with κ1 the lesser magnitude. Let κm = max(|κ1|, |κ2|). For details, see (Knepper et al.,
2010a).

Type Occurrence Curvature bounds of intermediate paths

line κ1 = −κ2 |κ| ≤ κm
parabola κ1 = 0, κ2 6= 0 |κ| ≤ κm
hyperbola κ1κ2 < 0, κ1 6= −κ2 |κ| ≤ κm
ellipse κ1κ2 > 0 |κ| < 4

3κm

(a)

p
i
h pj

h

pj
e p

i
e

h

(b)

pj
h

p
i
e

hs

D

Figure 11: (a) With bounded curvature, there is a lower bound on path lengths that permit a hole, h,
while satisfying (4), indicated by pei , the blue highlight. Shorter path lengths ensure the existence of a safe
continuous deformation between paths. (b) We compute the maximal path length that prevents a hole using
Vendittelli’s solution to the shortest path for a Dubins car. Starting from the dot marked s, we find the
shortest path intersecting the circle D of radius rmin. The interval pei illustrates path lengths permitting a
hole to exist. Shorter paths leave some part of phj uncovered.

all of these open neighborhoods D, the path becomes longer with larger holes. We will therefore
consider the minimal small-hole case.

Vendittelli et al. (1999) solve the shortest path problem for a Dubins car to reach a line segment.
We may approximate the circular boundary of D by a set of arbitrarily small line segments. One
may show from this work that given the position and slope of points along any such circle, the
shortest path to reach its boundary (and thus its interior) is a constant-curvature arc of radius
rmin. In the limit, as v approaches one and the size of h approaches zero, the length of arc needed
to satisfy (4) approaches π/2 from above, resulting in the condition that w > 0.48. Thus, for
w ≤ 0.48 and v ∈ [0, 1), pc is safe. For smaller values of v, D shrinks relative to rmin, requiring
longer paths to reach, thus allowing larger values of w as shown in the plot in Figure 7.

We have shown that there exist appropriate choices for v and w such that (4) implies that U
contains no holes. Since U contains the origin, any path pc ∈ I emanating from the origin passes
through U and is safe.

Theorem 1. Given safe, appropriate guard paths pi, pj ∈ F(sf , κmax), and given µH(pi, pj , d) ≤ 1,
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a safe continuous deformation exists between pi and pj.

Proof. Lemma 1 shows that (8) gives a continuous deformation between paths pi and pj such that
each intermediate path pc ⊂ I is feasible. Lemma 2 shows that any such path is safe. Therefore, a
continuous deformation exists between pi and pj . This proves the validity of the Hausdorff metric
as a test for path equivalence.

By chaining together continuous deformations between neighboring paths, we can demonstrate
that a continuous deformation exists between any pair of paths within an equivalence class by
following the correct sequence of edges of the equivalence graph. This property holds for any
paths in our discretely sampled set. It also applies for any other pair of paths satisfying the shape
constraints, provided that the discrete sampling is sufficiently dense. The existence of a sufficiently
dense path sampling is the subject of the next section.

4.3 Resolution Completeness of Path Classifier

In this section, we show that Algorithm 3 is resolution complete. Resolution completeness com-
monly shows that there exists a sufficiently high discretization of each dimension of the search space
such that the planner finds a path exactly when one exists in the continuum space. We instead
show that there exists a sufficiently low dispersion sampling in the infinite-dimensional path space
such that the approximation given by Algorithm 3 has the same connectivity as the continuum
safe, feasible path space.

Let F be the continuum feasible path space and Ffree ⊂ F be the set of safe, feasible paths.
Using the Green-Kelly algorithm, we sample offline from F a path sequence PN of size N . At
runtime, using Algorithm 2, we test members of PN in order to discover a set Pfree ⊂ PN of safe
paths.

The following lemma is based on the work of LaValle et al. (2004), who prove resolution com-
pleteness of deterministic roadmap (DRM) planners, which are PRM planners that draw samples
from a low-dispersion, deterministic source. Since we use a deterministic sequence provided by
Green-Kelly, the combination of Algorithm 2 and Algorithm 3 generates a DRM in path space.

Lemma 3. For any given configuration of obstacles and any path set PN generated by the Green-
Kelly algorithm, there exists a sufficiently large N such that any two paths pi, pj ∈ Pfree are in the
same connected component of Ffree if and only if Algorithm 3 reports that pi ∼ pj.

Proof. LaValle et al. (2004) show that by increasing N , a sufficiently low dispersion can be achieved
to make a DRM complete in any given C-Space. By an identical argument, given a continuum
connected component C ⊂ Ffree, all sampled paths in C ∩PN are in a single partition of Pfree. If q
is the radius of the narrowest corridor in C, then for dispersion δN < q, our discrete approximation
exactly replicates the connectivity of the continuum freespace.

Lemma 4. Under the same conditions as in Lemma 3, there exists a sufficiently large N such that
for any continuum connected component C ⊂ Ffree, Algorithm 2 returns a Pfree such that Pfree ∩
C 6= ∅. That is, every component in Ffree has a corresponding partition returned by Algorithm 3.

Proof. Let Br be the largest open ball of radius r in C. When δN < r, Br must contain some
sample p ∈ PN . Since C is entirely collision-free, p ∈ Pfree. Thus, for dispersion less than r, Pfree
contains a path in C.

There exists a sufficiently large N such that after N samples, PN has achieved dispersion
δN < min(q, r), where q and r are the dispersion required by Lemmas 3 and 4, respectively. Under
such conditions, a bijection exists between the connected components of Pfree and Ffree.
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Theorem 2. Let D = {D1| . . . |Dm} be a partition of Pfree as defined by Algorithm 3. Let
C = {C1| . . . |Cm} be a finite partition of the continuum safe, feasible path space into connected
components. A bijection f : D → C exists such that Di ⊂ f(Di).

Proof. Lemma 3 establishes that f is one-to-one, whereas Lemma 4 establishes that f is onto.
Therefore, f is bijective. This shows that by sampling at sufficiently high density, we can achieve
an arbitrarily good approximation of the connectedness of the continuum set of collision-free paths
in any environment.

Finally, we move on to show that we can detect path safety while circumventing a collision test.

Theorem 3. A path interval pc may be implicitly tested safe if it is between paths pi and pj such
that µH(pi, pj , d) ≤ 1 and a small region at the end of pc has been explicitly tested.

Proof. By Lemma 2, the initial interval of pc is safe because its swath is covered by the swaths of
the guard paths. Since the small interval at the end of pc has been explicitly tested, the whole of
pc is collision-free.

5 Evaluation

We present some experimental results involving equivalence class detection and implicit path col-
lision testing. All tests were performed in simulation on planning problems of the type described
in previous work (Knepper and Mason, 2008). Briefly, planning problems consist of a combination
of an environment and planning query. Environments were randomly generated within a room
measuring twenty meters on a side, in which 10 cm diameter obstacles were randomly positioned
until reaching the desired workspace obstacle coverage fraction. A planning query asks the 0.412 m
diameter Nomad Scout robot to navigate from a start to a goal configuration, each chosen randomly
so as to be separated by 14 m. Finally, candidate problems were rejected if a 10 cm resolution
8-connected grid planner was unable to solve the planning problem. Note that this grid planner also
serves as global guidance to the local planner. Unless otherwise stated, the local planner receives
0.1 sec per replan cycle. Each reported result is an average over 100 runs on a fixed set of different
planning problems.

During navigation, the local planner is permitted to run for a fixed amount of time within each
replan cycle before executing its chosen path. A variable number of paths will be tested each cycle
depending on factors such as obstacle clutter and implicit path testing. In some experiments, we
vary the planning time allotted, whereas other experiments explore the effects of obstacle density.

5.1 Classification Performance Overhead

Path classification imposes a computational overhead due to the cost of searching for neighboring
collision-free paths. Collision rate in turn relates to the density of obstacles in the environment.
Figure 12 shows that the computational overhead of our classification implementation is nearly 20%
in an empty environment but drops to 0.3% in dense clutter. It is in precisely such high-clutter
environments that the usefulness of classification is maximized since two arbitrary paths are less
likely to be equivalent amongst many obstacles. We now proceed to weigh these and other benefits
of path classification against its costs.
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Figure 12: Path classification overhead is minimized in exactly those densely-cluttered problems where its
contribution is most valuable. In this plot, a constant time of 0.1 secs is allotted to collision test and classify
paths at a range of obstacle densities. Note that with such a fixed deadline, the planner finds more safe
paths in lower-density scenarios. If a fixed quantity of safe paths must be generated regardless of elapsed
time, this curve becomes significantly flatter.

5.2 Collision Testing

Regardless of obstacle density, implicit collision-testing more than compensates for the overhead
of path classification. In comparing collision test algorithms, the baseline collision tester is among
the most efficient for a rigid body moving along a path. The algorithm performs successive static
collision tests at positions along the path. In order to determine the interval between tests, the
algorithm computes the distance to the nearest obstacle and moves that distance (or less) along
the path. The algorithm thus simultaneously guarantees correctness (never missing a collision) and
efficient performance (computing a small number of static collision tests). Note that this same idea
can also be extended to multibody kinematic chains (Schwarzer et al., 2004).

Figure 13 shows the effect of implicit path testing on total paths tested in the absence of
obstacles. We compare the implicit collision-tester of Algorithm 4 against traditional explicit
collision-testing. As the time allotment for testing paths increases, the number of paths collision-
tested under the traditional algorithm increases linearly at a rate of 8,300 paths per second. With
implicit testing, the initial test rate over small time allotments (thus small path set sizes) is over
22,500 paths per second. The marginal rate declines over time due to the aforementioned overhead,
but implicit path testing still maintains its speed advantage until the entire 2,401-member path set
is collision-tested. Note that this result occurs in the empty world case, where overhead is most
severe.

Figure 14 presents implicit collision-testing performance in the presence of clutter. As obstacle
density increases, we expect overhead to drop, but it simultaneously becomes more difficult to satisfy
the necessary conditions for implicitly testing a path. Fixing the replan rate at an intermediate
value of 10 Hz, we see that implicit path evaluation maintains an expected advantage across all
navigable obstacle densities. In high clutter, this advantage is statistically less clear, yet implicit
path testing still outperforms explicit path testing with over 90% confidence at the maximum tested
obstacle density.
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Figure 13: Paths tested per time-limited replan step in an obstacle-free environment. Path testing per-
formance improves by up to 3x with the algorithms we present here. Note that an artificial ceiling curtails
performance at the high end due to a maximum path set of size 2,401.
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Figure 14: Paths tested per 0.1 second time step at varying obstacle densities. Implicit collision-testing
allows significantly more paths to be tested per unit time. Even in extremely dense clutter, implicit path
testing considers an extra six paths on average. The right edge of the graph represents the maximum density
at which environments remain navigable. Error bars indicate 95% confidence.
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Figure 15: Improvement in planner success rate at solving queries. In high clutter, Algorithm 7 performs
significantly better than Algorithm 1 at successfully completing navigation tasks.
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Figure 16: Ratio of Best Path cost to multistage local planner algorithm cost. Lower is better. The cost
of an individual path from either planner represents the path integral of the reciprocal of obstacle proximity.
The overall mean cost improvement (solid line) is about a factor of two, meaning that during navigation
the robot stays twice as far from obstacles, on average. The scatter plot (blue crosses) shows the individual
results for the 1838 experiments in which both planners successfully reached the goal.

5.3 Route Selection

We tested the multistage local planner algorithm (Algorithm 7) over a variety of environments at
a range of obstacle densities in order to evaluate the effects on planner performance of awareness
of local equivalence classes. Experimental setup was the same as in Section 5, except that here we
tested the planner on 500 different planning problems for each obstacle density. Replan cycle times
for these experiments is 0.1 sec.

Figure 15 shows success rate for the local planner algorithm (greedy) and multistage local
planner algorithm (equivalence aware). The latter produces a statistically significant improvement
of 7.6% at solving planning problems in dense clutter. Path length increases only negligibly, and
despite the extra path length, we find a decreased path cost, expressed as

c(p) =

∫
p

ds

od(p(s))
, (9)
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Figure 17: Two paths of a spherical robot (gray) in a 3D workspace are insufficient to establish equivalence.
The bottom figure depicts a cross-sectional slice through the swept volumes of the paths. Although two
paths may be separated by less than one robot diameter, obstacles (black) may still prevent a continuous
deformation between the paths.

where od(s) is the distance to the nearest obstacle from the given point along the path. Figure 16
shows the change in cost between the two planners. The overall mean change, shown with the solid
line, indicates that the robot stays about twice as far from obstacles. We compared performance
on each test problem separately so the individual data-points (shown with blue crosses) represent
cost improvement normalized to the difficulty of the problem.

In contrast to the overall trend, a small fraction of the experiments showed cost worsening.
In roughly 2% of cases, skewed heavily towards the less dense environments, obstacle proximity
increased with the equivalence-aware planner. We attribute this phenomenon to the interplay
between choice and lookahead distance. In more open environments, the increased choice makes it
more tempting to stray from a coherent plan. At a different lookahead distance, the planner may
have understood its choices better, but there are of course significant costs to increased lookahead.
Making this tradeoff dynamically presents an interesting opportunity for future work.

6 Extensions and Future Work

Having thus far examined our equivalence relation in the case of a mobile robot in the plane, we
now briefly turn to more complex systems and applications. Each system considered in this section
has at least one of two attributes: motion in three dimensions, and internal articulation (i.e. it can
change shape).

6.1 A Rigid Body in 3D

First, we address a rigid body in a 3D workspace, such as an aircraft or spacecraft. Let us suppose
this rigid body takes the form of a sphere (or can be approximated as one). Two different paths,
no matter how close together, are never sufficient to establish path equivalence, as they are in two
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Figure 18: Three paths are required to establish path equivalence in 3D. The swept volumes of the three
paths are shown. To establish equivalence, we require that the Hausdorff distance between each pair of
paths must not exceed the robot’s radius. Given such proximity, one path may be continuously deformed to
another by following the dotted lines, without risk of intersecting the black obstacles. Upon inspection, one
might think that a looser bound could be found because the radius-circles do not meet perpendicularly in
this condition. In the limiting case as depicted, the path point and radius-circle intersections are collinear.
Any relaxation of the inter-path distance would result in a case where the obstacles could squeeze into the
corners at the intersection points and prevent a continuous deformation from occurring. Implicit collision
testing may be performed on any fourth path discovered to be entirely inside the gray star-shaped region at
center.
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Figure 19: Mobile robot paths with variable radius. The nearest point on the opposite path depends on
both the position and radius of each point along the path.

dimensions. Figure 17 illustrates this fact.
In three dimensions, three paths are equivalent if each of their pairwise Hausdorff separations

is not more than the radius of the robot. Figure 18 depicts such a configuration of three paths and
also shows how to construct a continuous deformation between any pair. As in the 2D case, with
three paths in 3D we can perform implicit collision testing on a variety of paths. The region in
which a fourth path must reside to implicitly declare it collision-free is shown in Figure 18.

One who is familiar with topology might question the value of path equivalence in three dimen-
sions because ordinary bounded obstacles do not induce additional homotopy classes. However,
this is where local path equivalence really shines. Since the planner has only local knowledge, it
cannot distinguish between a finite, long, skinny obstacle and an infinite, skinny obstacle. For all
practical purposes, the finite obstacle might as well be infinite. Given that the hierarchical planner
has no knowledge of paths that perform an end-run around the object, such choices are sufficiently
costly that the partition of local paths into separate classes represents a more accurate depiction
of the available choices than the single class supplied by a true homotopy relation.

In the application of local path equivalence to 3D problems, one concern arises in the relatively
uncluttered nature of most 3D environments. Such environments put the classification algorithm
at the left end of the graph in Figure 12—a high-overhead situation. However, the situation is not
as bad as it first appears. The data in that figure was gathered with a very efficient 2D collision
tester. By comparison, collision testing in 3D is significantly more complex and costly, whereas the
complexity of the classification algorithm increases slightly. Classification becomes proportionately
much more efficient in three dimensions, thus the gain from avoiding explicit path tests in 2D
(Figure 13 and Figure 14) becomes more dramatic in 3D.

6.2 Variable-Size Robots in 2D

We begin by introducing a variant of the basic 2D mobile robot in which the robot’s size—still
approximated as a disc—varies as a function of path length. This scenario occurs in the mobile
manipulation problem, in which a mounted manipulator arm may extend out beyond the robot’s
own footprint. For example, the elastic strips of Brock and Khatib (2002), when projected onto
the floor, closely resemble this variable-width robot. A radius function ri(`) expresses the robot’s
radius with respect to point pi(`) along path pi. We introduce the concept of proportional dilation,
in which the path width grows in accordance with its radius function:

(p)ri = {t ∈ R2 : ‖p(`)− t‖L2 ≤ ri(`) for some ` ∈ IL}, (10)

where IL = [0, L], with L the path length. Now a pair of nearby points on two neighboring paths
may possess distinct diameters, as in Figure 19, thus giving rise to a new normalized Hausdorff
metric,
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µvH(pi, pj , ri, rj) = max(argmin
ε

(∀`a ∈ IL, ∃`b ∈ IL : (pi(`a))εri(`a) ∩ (pj(`b))εrj(`b) 6= ∅),

argmin
ε

(∀`a ∈ IL, ∃`b ∈ IL : (pj(`a))εrj(`a) ∩ (pi(`b))εri(`b) 6= ∅)). (11)

Intuitively, this variant of the Hausdorff metric finds the minimal scale factor for the two paths’
radius functions such that no gap remains between the two paths following proportional dilation.
Following dilation, each point on either path is replaced by a disc. In order to ensure the above
condition, each disc on one path must intersect some disc on the opposite path.

Given some appropriate constraints on the shape of paths as well as their radius functions,
the equivalence relation on paths of variably-sized mobile robots then follows directly from the
fixed-diameter case:

µvH(p1, p2, r1, r2) ≤ 1 =⇒ p1 ∼ p2. (12)

Here, curvature bounds must apply to the boundary of the variable-diameter robot swath in addition
to the path itself. However, in the case of a mobile manipulator, where the reach of an arm is on
the same order of magnitude as the mobile base diameter, this distinction is rarely critical.

6.3 Articulated Robots

We also apply path classification to the trajectories of manipulator arms in 3D. At a high level, the
situation closely parallels the 2D mobile robot case we present in Section 2. Two paths, separated
by at most the diameter of the arm, are equivalent under certain shape and proximity constraints.
In contrast to a 2D rigid body, the medial axis of the arm sweeps out a 2D manifold or sheet
in the workspace (Figure 20 and Figure 21), so points along our path are now parametrized by
(s, `), where s ∈ IS = [0, sf ], a distance along the arm’s motion in the configuration space, and
` ∈ IL = [0, L], a distance along the axis of the arm from base to end-effector. Thus, p(s, `)
corresponds to a particular workspace location along the arm’s axis while the arm is in a certain
configuration.

A function r(`) describes the radius of a disc circumscribing a cross-section of the arm at a
point along its length. Note that radius is now a function of arm length rather than trajectory
position. Note also that the disc is now normal to the arm axis, whereas in the 2D shape-changing
robot, it is coplanar with the path. Though nearly identical to (10), we define proportional dilation
in the context of a two-parameter path function,

(p)ri = {t ∈ R2 : ‖p(s, `)− t‖L2 ≤ ri(`) for some s ∈ Is and ` ∈ IL}. (13)

As in Section 6.2, we define a variant of the Hausdorff distance in the context of arm paths,

µaH(pi, pj , ri, rj) = max(argmin
ε

(∀(sal`a),∃(sb, `b) : (pi(sa, `a))εri(`a) ∩ (pj(sb, `b))εrj(`b) 6= ∅),

argmin
ε

(∀(sa, `a), ∃(sb, `b) : (pj(sa, `a))εrj(`a) ∩ (pi(sb, `b))εri(`b) 6= ∅)),

where sa, sb ∈ IS and `a, `b ∈ IL. Note that this is a conservative expression for the distance
separating two arm trajectories.

In considering the possibility that an obstacle divides two arm trajectories, the semantics of the
application come into play. For example, objects in human spaces do not levitate, so in the absence
of highly dynamic objects such as a thrown ball, we may relax the tight constraints imposed by by
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Figure 20: A kinematic chain such as a robot arm (gray) can be likened to a mobile robot path with
varying radius as in Figure 19. When executing a trajectory, the arm’s medial axis (black) sweeps out a two-
dimensional sheet with varying radius in the spatial dimension and fixed radius in the temporal dimension.

(a) (b)

Figure 21: When moving an arm between two configurations, many trajectories are possible. Each trajec-
tory traces a unique path through the workspace. (a) For two different trajectories represented by solid and
dotted lines, the paths of the elbow and wrist are shown. (b) Two sheets correspond to two distinct arm
trajectories. These 2D manifolds embedded in a 3D workspace share many properties with the 1D mobile
robot paths embedded in a 2D workspace discussed earlier.
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µaH . Instead, the two arm trajectories need only to completely surround a pocket of space, meaning
that their end-effector trajectories and end states overlap.

Next, we address constraints on arm path shape and length. Such concepts are inherently much
more nebulous than their mobile-robot equivalents due to the arm’s articulation—especially for
arms with revolute joints. It is difficult to pin down general, meaningful constraints on arm path
length and shape.

In principle, a useful measure of path length could be obtained by computing swept volume
of the arm. After all, in the case of a rigid body mobile robot, all swaths of a given length that
do not cross over themselves have equal length. In the case of manipulator arms (especially those
with revolute joints), many useful motions do involve swept volumes that “cross over themselves,”
so an alternate formulation of path length is needed. Just as the length of a mobile robot path
is found by integrating velocity, the length of an arm path may be found by integrating a form
of velocity as well. Given an arm path pi executed with unit C-Space speed, let vi(t, `) be the
workspace velocity of point pi(t, `) along the axis of the arm at time t. We propose two alternative
path length measures:

Lmean(i) =
1

L

∫ L

0

∫ sf

0
vi(s, `) ds d` (14)

Lmax(i) =

∫ sf

0
max
`∈IL

vi(s, `) ds (15)

In the case of a rigid body under arbitrary motion in R3, the mean and max path length are always
related by a factor between one and two. For an articulated chain, the factor may be greater.

We now move on to address path shape constraints for an arm. This issue is both complex and
mechanism-dependent. In previous work (Knepper et al., 2010b), we utilized path sets comprising
straight lines in C-Space. Of course, such “straight” trajectories can involve arbitrarily high curva-
ture of some point on the arm within the workspace. Given a sampling of such paths dense enough
to establish path equivalence, it is not clear that the planner would often discover multiple equiv-
alence classes. It would therefore be left to a given manipulation application to further constrain
path sampling to a set of tasks useful for a given problem.

A few approaches worth exploring further include bounding the energy consumed in executing
a given path (after subtracting out torques associated with gravity compensation), and retraction-
based approaches. In the latter case, we propose to compare paths by utilizing retraction-like
reductions in dimensionality of a search space, such as those proposed by Choset and Burdick
(1995); Sun and Lumelsky (1991). Under this reduction, any given path in the free configuration
space maps to a path in a one-dimensional set, which is the deformation retract of the freespace. We
can then employ such retracts as a graph-like roadmap and compare only paths whose corresponding
graph paths are similar. For general articulated systems, this approach raises some challenges of
its own, such as the fact that in three or more dimensions, these one-dimensional retracts are
necessarily either not connected or have extra loops not corresponding to topological features of
the original freespace (Choset and Rizzi, 2005).

Despite these challenges, our path equivalence relation holds promise in the domain of motion
planning for articulated robots, such as manipulator arms. For instance, even lacking constraints
on path shape, it is possible to utilize µaH to accelerate collision testing. Although arms pose greater
challenges for satisfying the necessary conditions on proximity and betweenness, the cost of each
collision test is significantly higher for articulated robots than it is for rigid bodies, so the gains
remain potentially significant.
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6.4 Steerable Needles

Steerable needles are long, flexible, hollow needles with a bevel tip. Such needles can be used in
medical procedures to reach soft tissue anatomical features that would otherwise be inaccessible due
to obstructing anatomy of a hard (bone) or delicate (nerve, artery) nature. During insertion, the
bevel tip causes the needle to follow a constant curvature path. Steerable needles are interesting
from a motion planning perspective because they are underactuated, having only two velocity
controls. One may vary the rate of insertion and the rate of rotation about the axis of the needle.
This twisting motion alters the plane in which the needle bends (Webster III et al., 2006).

During needle motion, uncertainty is introduced to the path primarily in the form of a random
variable added to the needle’s curvature. This uncertainty derives from the complexities of inter-
action with human tissue. Instantaneously, the uncertainty in position increases in the direction
of the vector normal to the needle within the plane of curvature. Meanwhile, the instantaneous
control inputs act primarily in vectors along the needle and normal to the plane of curvature. By
duty-cycling the needle, steering control can be applied to cancel out errors in curvature, thus the
needle can track arbitrary paths of bounded curvature (Minhas et al., 2007).

Planners have been proposed for needle steering to account for uncertainty in both motion (Al-
terovitz et al., 2008) and localization (van den Berg et al., 2010). It should be possible to extend
many steerable needle planners using path equivalence. The equivalence algorithms in this paper
assume that any path under consideration may be chosen deterministically. Thus, the distribution
of paths is purely a function of control inputs. In the steerable needles context, the distribution
among paths is generated by a combination of control and uncertainty. Consequently, we must
find equivalence between entire groups of paths across a probability distribution instead of between
individual paths. Thus, steerable needles constitute both a theoretical extension and a promising
application for future work.

7 Conclusion

In this paper, we propose an equivalence relation on local paths based on the following constraints:
fixed start position and heading, fixed length, and bounded curvature. We describe an algorithm
for easily classifying paths using the Hausdorff distance between them. Path classification is a tool
that permits collective reasoning about paths, leading to more efficient collision-testing.

We present a variety of applications for local path equivalence, including implicit path testing
to accelerate collision testing. In this area, we demonstrate performance increases of over 300% in
paths collision-tested per unit time. In addition to the strict implicit path-testing formalism we
present, many generalizations are possible such as implicitly testing paths of varying length.

Of course, we must be able to make use of all those additional paths, so our second application
is in the area of navigation. Equivalence classes are a powerful tool to distinguish between discrete
decision problems and continuous optimization problems and to balance choices between the two.
In navigation, we show an increase in navigation success of up to 7.6% for one class of long-
range planning problem. Meanwhile, our navigation algorithm reduces by half the cost of obstacle
proximity, indicating that these paths are significantly safer.

Finally, we explore some extensions and real-world applications. Local path equivalence, when
applied to three-dimensional planning problems, is actually more meaningful in a hierarchical plan-
ning context than is true homotopy because it reflects choices that are locally discernible. We
discuss the strengths and weaknesses of local path equivalence applied to three-dimensional kine-
matic chains. The path equivalence formulation seems particularly well-suited to the bevel-tipped
steerable needle problem, since that mechanism is naturally curvature-constrained.
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Surveying these applications, we conclude that local path equivalence is a formalism that pro-
vides valuable tools to address motion planning problems involving hierarchical planning, collision
testing, and navigation for a variety of two- and three-dimensional systems.
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