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Using Bayesian Optimization to Guide Probing of a Flexible
Environment for Simultaneous Registration and Stiffness Mapping
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Abstract—One of the goals of computer-aided surgery is
to match intraoperative data to preoperative images of the
anatomy and add complementary information that can facilitate
the task of surgical navigation. In this context, mechanical
palpation can reveal critical anatomical features such as arteries
and cancerous lumps which are stiffer that the surrounding tis-
sue. This work uses position and force measurements obtained
during mechanical palpation for registration and stiffness
mapping. Prior approaches, including our own, exhaustively
palpated the entire organ to achieve this goal. To overcome the
costly palpation of the entire organ, a Bayesian optimization
framework is introduced to guide the end effector to palpate
stiff regions while simultaneously updating the registration
of the end effector to an a priori geometric model of the
organ, hence enabling the fusion of intraoperative data into the
a priori model obtained through imaging. This new framework
uses Gaussian processes to model the stiffness distribution
and Bayesian optimization to direct where to sample next
for maximum information gain. The proposed method was
evaluated with experimental data obtained using a Cartesian
robot interacting with a silicone organ model and an ex vivo
porcine liver.

I. INTRODUCTION

Surgeons performing minimally invasive surgery (MIS)
offer their patients a shorter recovery time and reduced
pain at a cost of increased technical difficulty. One of the
drawbacks of MIS is the loss of direct sensory feedback.
This loss can impede the detection and use of surface
and stiffness features which can help the surgeon find
correspondence between the intraoperative scene and the
preoperative imaging data. Computer-aided surgery (CAS)
was introduced to provide surgeons performing MIS
with functional and geometric information that can aid
intraoperative navigation and execution of the preoperative
plans. Mechanical exploration by palpation and tissue
manipulation can provide complementary information about
geometric constraints [1], [2], tissue characteristics [3]
and variation in stiffness throughout the organ [4], thus
augmenting the information obtained through conventional
image-based CAS. In this paper, we introduce tools for
efficient information-guided exploration of an organ using
mechanical palpation and integration of information, such
as stiffness, to an a priori model through registration.
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Mechanical palpation can facilitate the localization of
arteries and other anatomically critical features which
visually cannot be detected [5]-[7]. Several groups
previously proposed heuristic algorithms for autonomous
exploration [8] and segmentation of stiff features in
compliant environments using classifiers [9]. These
methods rely on the robot visiting all locations on
a discretized grid on the organ’s surface. Grid maps
comes with the assumption of independence between
the grid points ignoring the structural dependency in the
environment. Accurate registration of the surgical tool to
the coordinate frame of the preoperative model is one
of the primary goals in incorporating intraoperative data,
such as stiffness, into an a priori geometric model of the
anatomy. Aforementioned previous works on palpation
and exploration are not concerned with incorporating the
stiffness information into the preoperative geometric data,
a task that can help the surgeon in correlating preoperative
models, like CT scans, with the current intraoperative scene.

To avoid the costly palpation of the entire organ and
enable fusion of the stiffness information into an a priori
geometric model of the anatomy, we introduce a method
based on Bayesian optimization that minimizes the amount
of probing required to reveal stiff features and registers
the tool to the a priori model. The proposed algorithm
is advantageous because it only visits regions that bring
information gain, contrary to searching a discretized grid on
the entire surface of the organ to find stiff features.

In the Bayesian formulation, a Gaussian process (GP) [10]
is used to define a prior over the unknown stiffness
distribution. Gaussian Processes provide a probabilistic
description of the stiffness map and captures the variance
of the stiffness distribution which helps guide the probing
towards unexplored regions. The stiff regions correspond
to regions near local maxima of the stiffness distribution
and the Bayesian optimization finds the maxima of this
unknown stiffness distribution by directing the probing to
points that would result in maximum information gain in
predicting the stiff regions. In a complementary effort, our
collaborators at Johns Hopkins University are exploring
different GP formulations to concurrently estimate surface
geometry and stiffness for model reconstruction, using
continuous palpation motion.

We first introduce GP and Bayesian optimization in Sec-
tion |lI} followed by the description of simultaneous registra-



tion and stiffness estimation. The experimental evaluations
and results are given in Section [III}

II. BACKGROUND
A. Gaussian Processes

A stochastic process is a collection of random variables,
{Y : 2 € X}, indexed by elements from a set X', known as
the index set. A Gaussian process is a stochastic process
such that any finite subcollection of random variables has
a multivariate Gaussian distribution [11]. A GP , f ~
GP(u, k), is fully specified by its mean function p : X — R
and a covariance function k : X x X — R™.

Intuitively, we can think of GP as a distribution over func-
tions. Each random variable, Y;, in a GP’s collection is the
distribution of function values at a point z; € X. Gaussian
processes can be used for regression and to make predictions
at a new point z* € X by defining a prior over functions.
Given a set of n observed inputs * = [z1,22,...,2,]7
and corresponding outputs Y = [Y1,Ys,...,Y,]T, the
random variables Y are Gaussian distributed with mean
[(x1), mu(z2), ..., u(x,)]T and covariance matrix K whose
elements are defined by a covariance function, k(z;,z;)
where i, j € [1,...n], that defines the covariance between Y;
and Y. A commonly used covariance function is the squared
exponential kernel defined as
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k(x;,z;) = opexp (%2 (1)
where o is the variance of the process used as a scaling
factor and / is the length-scale of the kernel.

If we want to make predictions at a new set of m points
a*, the joint distribution is given as
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In machine learning literature, « is called the training set and
a* is called the prediction or test set [10]. For simplicity, the
prior mean function is generally assumed to be zero mean.
The conditional (predictive) distribution Y * can be computed
using the conditioning rule of multivariate Gaussian distri-
butions

p(Y.]Y)~N(K.K'Y,K., - K,K'KT). (3

where K, is the m X n training-prediction set covariance
K(x*,x) and K., is the m x m prediction set covariance
matrix K (x*, x*).

We employ GP to model the stiffness distribution of the
organ. The values of Y are the stiffness values associated
with the probed points. The position of the points which are
probed form the prediction set, &, while * is the prediction
grid which spans the surface of the organ. Note that GP
is continuous and the prediction grid is only used to plot
the stiffness distribution for visualization. By using GP, we
assume the stiffness distribution changes smoothly across
the organ and this smoothness is defined by the choice
of the covariance function. In our formulation, we use a

local deformation model for stiffness estimation. Therefore,
a kernel with a fixed length-scale that is on the same order
of the size of the palpation tool’s tip is an effective choice.
We use the squared exponential kernel with oy = 1 and
¢ = 3mm. The length-scale, ¢, determines how close two
points have to be for the observation at those points to be
correlated.

TABLE I
NOTATION

Symbol Description

Coordinates of the probed points in the training set
Coordinates of the grid points in the prediction set
The output at probed points x

The predicted output at x*

Mean and variance of the predictive distribution
Entity expressed in tool’s reference frame

Entity expressed in CAD model’s reference frame
Initial value of the entity

Homogeneous transformation matrix

Normal vector

Coordinates of sensed position

Magnitude of sensed normal force

Stiffness at the probed point =

CAD model with triangle faces and vertices
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B. Exploration and Exploitation with Bayesian Optimization

Bayesian optimization is a powerful framework for global
optimization of black-box functions [12]. It is most beneficial
when the function does not have a closed-form expression
and obtaining observations from the function is expensive.
Bayesian optimization allows for prior beliefs about an
unknown function to be updated via a posterior. Stiffness
distribution of an organ can be thought of the unknown
function we want to optimize whose maxima correspond
to the stiff features. In the Bayesian framework, we use
GP to define a prior over the stiffness distribution. The
sequential nature of the Bayesian optimization can help guide
the sampling of the continuous search space. Sequential sam-
pling requires selecting an acquisition function, also known
as the utility function [13]. Acquisition functions use the
mean, y(x), and variance, o (), of the predictive distribution
posterior to compute a function which shows the most likely
locations of the global maximum.Acquisition functions such
as probability of improvement [14], expectation improvement
(EI) [12], and upper-confidence based methods [15] have
been developed to find the global maximum and to balance
exploration with exploitation. EI provides global exploration
of the search space and local exploitation. The EI acquisition
function can be evaluated analytically and is given as [12]:
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Y+ is the output at = which is the current maximum of
the sampled points. ¢(.) and ®(.) are the PDF and CDF of
the standard normal distribution respectively.

Fig. [T] illustrates an expected improvement scenario for a
1D example. Expectation improvement is generally used to
find the global maximum of the unknown function and the
search is terminated once a desired improvement is achieved.
Note that after finding the global maximum, the algorithm
still continues exploring other local maxima in the next
iterations in an effort to reduce uncertainty and to find stiff
features. In addition to using EI, we do pure exploration
after every 5 samples and select a random point that has 90%
uncertainty. Such exploration is advantageous when there are
multiple stiff features and the initial samples do not include
points near stiff regions. Preoperative information such as the
size of the tumor or the width of the artery is useful to decide
on the density of the samples in the initial set, however this
is not the explored in this work. Interested readers can refer
to [16] for discussions on the effect of the initial sample
size in GP predictions.

n=4

true function
posterior mean p(x)

observation

posterior uncertainty o(x)
expectation improvement

new observation (x,)

>

Fig. 1. A 1-D example that starts with an initial training set of 4 points.
Red triangle shows the maximum of the EI acquisition function which is
the point that should be probed next.
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Fig. 2. Two examples that show the advantage of using EI as a sampling
strategy: (a) and (b) show the ground truth stiffness map for a simulated data
with an artery and simulated data with multiple stiff features, respectively;
(c) and (d) show the maps obtained using uniformly sampling with 100
points; (e) and (f) show the corresponding maps obtained using EI with
100 samples.

Fig. 2] demonstrates the stiffness map obtained using
uniform sampling in comparison with the map sampled
using EI for two different cases. With EI we can acquire
useful information about the stiffness distribution compared
to uniformly sampling the surface of the organ for the
examples shown.

C. Registration and Stiffness Estimation

Our group has previously developed a method for simulta-
neously estimating the registration and stiffness distribution
over the surface of a flexible environment using a Kalman
filtering approach called CARE [17] and a more recent
model update method, called Complementary Model Update
(CMU), that decouples stiffness estimation from registration,
resulting in a more robust implementation. Similar to CARE,
the CMU uses the force and position information obtained
by interaction of the surgical tool with the organ to estimate
the local stiffness and to register the organ to its preoperative
model. It is assumed that the local surface deformations are
only due to physical interaction of the surgical tool with the
organ. We also assume that the surface of the organ is smooth
and frictionless, thus the applied force is along the surface
normal and increases with depth. Registration is performed
by finding the transformation that takes the probed points
defined in the tool frame to the corresponding points on the
preoperative model of the anatomy. The preoperative model
is a computer-aided design (CAD) model in the form of a
triangular mesh.

The stiffness at a probed point is estimated using a best
line fit between the relative sensed deformation depths and
sensed forces:

@), (Fp)i — (7)) (©)

where ¢; is the stiffness of the i*" probed point, (pg)i and
(pg')i are the coordinates of two distinct sensed positions
expressed in the tool reference frame, R, corresponding to the

" probed point on the surface of the organ and (Fp);, (F,);
are the corresponding magnitude of sensed forces. The
registration estimate is obtained using the estimated stiffness,
sensed position and magnitude of the sensed force:

ci =1 (H(Pg)t -

n
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where T' € SE(3) is the homogeneous transformation that is
to be estimated, p¢ is the location of the probed point in the
model’s reference frame, given by C, and the surface normal
at the probed point is denoted by m C More information
about the CMU is provided in Appendlx.

III. EXPERIMENTS AND RESULTS
A. Experimental setup

A Cartesian robot with an open architecture controller
was used to evaluate the framework proposed in this paper
as shown in Fig. 3(a)] The robot is equipped with an ATI
Nano43 6-axis force sensor at the robot end-effector (EE)
and is capable of executing the hybrid motion/force tasks
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tool frame, R, is located at the end effector,(b) Contact location and surface
norm estimation

(a) Experimental setup used for ex vivo organ experiments. The

described in Khatib [18]. We assume that the robot end
effector has been positioned above the organ. We do not
assume any prior knowledge of the local surface normal.

Experiments were conducted with a silicon phantom organ

and an ex vivo porcine liver. In the silicon phantom exper-
iment the top surface of the organ was lubricated and in
the ex vivo experiment the organ surface was hydrated to
reduce friction during probing. In both experiments, a target
region was defined by the user. This region was then used
as a reference to generate a uniformly distributed grid map
with uniform spacing in the x-y plane of the tool’s reference
frame, R. For a particular reference probing location, the
following procedures were repeated automatically to obtain
the force/deformation profile data.

1) Making high force contact: The robot controller is given
a desired probing location x, and a force magnitude
of 0.5N. The hybrid force/motion controller decouples
the combined commands into compatible (orthogonal)
force/motion commands that direct the robot to achieve
a desired position in the x-y plane and a stable contact
force with the environment along the z axis.

2) Estimating surface norm: The contact location and
surface normal estimation is shown in Fig. [3(b)] The
surface normal, n, is computed using the force sensed
from the environment, n = f;/||f;||, assuming the
surface friction is negligible.

3) Finding low force surface contact point: In this step,
the robot first retreats swiftly away from the surface
and then moves towards the surface, along the surface
normal this time, to find the zero force intersection.
An offset is applied from the robot EE to obtain the
estimated contact point as Xcon = Xgg — N7 Where 7 is
the radius of the robot end effector ball. A 9mm radius
probe was used in the silicon examples and a 6.3mm
radius probe was used in the ex vivo organ experiment.

4) Probing and recording: The robot is commanded in po-
sition control mode along the estimated surface normal
direction with 0.3mm increments until 3mm probing
depth. Hence, there are 10 position measurements, p,
and 10 force measurements, F', for each point we probe.

B. Bayesian Optimization Guided Probing

To evaluate Bayesian optimization guided probing, we
simulated experiments using the experimentally collected

data. A block diagram description of the probing method is
shown in Fig.[d] Prediction of the stiffness distribution is car-
ried out in the tool frame, R. Initially, the actual registration
is unknown, hence we do not know where the probed points
correspond to in the preoperative CAD model. We assume
palpation is carried out inside a region of interest (ROI). It is
assumed that the initial set of samples, o, include points
on the boundary of the ROI as well as uniformly distributed
points inside the ROI. The training set consists of previously
probed points, z;%, where i = 1,2,...,n. We use gridfit
function [19] to interpolate the previously probed points to
form a dense grid inside the ROI, :c;fR where 7 = 1,2,...m,
to make predictions using GP. This grid is used to estimate
the stiffness distribution for visualization. The stiffness value
at a probed point, ¢;, is estimated, in our case by the
CMU, and corresponds to YiR at ;™ in the GP formulation.
Based on the posterior of the predictive distribution given
by 1 and o the point at which the expectation improvement
takes a maximum value is selected to be the next palpation
point, xf&_l. As a new point is palpated, it is added to
the training set and the prediction grid is regenerated. We
use the updated registration estimate, 7, to transform the
probed points and their associated stiffness values to the
corresponding points on the CAD model. This procedure
enables displaying experimentally collected stiffness data on
the preoperative CAD model.

R
»| Expectation | ! @
Improvement |
2254 :- ------- R
1 GP e Ml nitial
A4 set of samples
21| 3D grid for
visualization
Fig. 4. Block diagram description of the Bayesian optimization guided
probing

C. Evaluation

The proposed method was evaluated with various stiffness
distributions and in the presence of measurement noise. We
test the algorithm for four different scenarios:

1. Simulated data of an organ with a multimodal stiffness
distribution.

2. Simulated data of an organ with a perturbed multimodal
stiffness distribution and sensor noise.

3. Silicon phantom organ with an embedded mock artery.

4. Ex vivo porcine liver with a stiff inclusion.

The goal of Example 1 is to demonstrate that expectation
improvement is effective in finding all the local maxima and
not just the global maximum. We start with an initial set
of 19 samples and terminate the palpation after 100 points.
Fig.[(a) shows where we think the position of all the probed
points are based on the initial registration guess and their
registered position estimated by the CMU algorithm. The



registered position of the probed points (deformed points) lie
below the surface of the CAD model as expected; validating
that the registration estimate is accurate. Fig. Ekb) and (c)
show the ground truth stiffness map and the predicted stiff-
ness map, respectively. The predicted stiffness map captures
the stiff features present in the ground truth stiffness map.
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Fig. 5. The algorithm starts with an initial set of of 19 points: 4 corners
and 15 uniformly spaced points. The results are shown for 119 probed
points. Example 1: (a) Registration results, (b) Ground truth stiffness map,
(c) Estimated stiffness map

Example 2 shows the effect of noisy sensor measurements
in the prediction of the stiffness distribution. The ground
truth stiffness map of Example 2 was obtained by perturbing
the stiffness distribution for Example 1. An artificial sensor
noise with (pg,0x) = (0, 0.3mm) was added to the sensed
position and (up,or) = (0, 0.1N) was added to the sensed
force to simulate a more realistic scenario. Fig. [f(a) shows
the registration results. Fig. [6{b) and (c) show the ground
truth stiffness map and the predicted stiffness map, respec-
tively. In the presence of noisy sensor measurements, the
algorithm still reveals the stiff features and the registration
parameters converge to the correct values.

The silicon organ used in Example 3 and the ex vivo
organ used in Example 4 are shown in Fig. [7(a) and (b),
correspondingly. The ground truth stiffness distribution for
Example 3 and for the ROI in Example 4 were obtained
by interpolating the experimental data at the grid locations
shown in Fig. [7(c) and (d) and are shown in Fig. [/(e) and
(f), respectively. We emphasize that the organ was discretized
only to palpate each grid point with the robot for the purpose
of generating a ground truth stiffness map of the organ
to test our algorithm. Fig. [B(b) shows that sensed force is
proportional to the depth of probing for the three locations
shown on the CAD model of the liver in Fig. [§[a), validating
that the linear stiffness is a valid assumption for 3mm
probing depth.

Fig. 0] shows the successful registration and the estimated
stiffness map that reveals the mock artery in the silicon
organ. Fig. [T0] shows the registration result and the position
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Fig. 6. Example 2: (a) Registration results, (b) Ground truth stiffness map,
(c) Estimated stiffness map. The algorithm starts with an initial set of 19
points: 4 corners and 15 uniformly spaced points. The results are shown for
119 probed points.
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Fig. 7. (a) Silicon phantom organ (b) ex vivo porcine liver with an inclusion
sutured inside the organ, (c) 619 points were probed on the organ to generate
a ground truth for the silicon organ, (d) 196 points were probed on the
ex vivo organ to generate a ground truth stiffness map, (e) Stiffness map
used as the ground truth for the silicon organ, (f) Stiffness map used as the
ground truth for the ex vivo organ
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Fig. 8. (a) CAD model of the organ showing three locations with a square,

star and a circle, (b) Force vs probing depth for the three locations shown
on the CAD model.



of the embedded triangle overlayed on the estimated stiffness
map of the ex vivo porcine liver. The actual registration
parameters, the estimated registration parameters and the root
mean square (RMS) error between the estimated location of
all the probed points and their true positions are shown in
Table [I] for all Examples.

* probed points
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Fig. 9. (a) Registration results for Example 3, (b) Estimated stiffness map
for Example 3 with 119 probed points. The algorithm starts with an initial
grid of 19 points: 4 corners and 15 uniformly spaced points.
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Fig. 10. (a) Registration results for Example 4, (b) Estimated stiffness map
for Example 4 with 79 probed points. The initial set for Example 4 consists
of 7 samples that define the boundary of ROI and 12 uniformly distributed
samples inside the ROIL.

TABLE I
REGISTRATION RESULTS

Example x(mm) y(mm) z(mm) 0. (deg) 0,(deg) 0.(deg) RMS(mm)

Actual 1-3 5 10 -15 1146 -1146 5.73 -
Guess 1-3 0 0 0 0 0 0 -
CMU 1 451 956 -15.03 1257 -1142 5.53 0.91
CMU 2 431 955 -1497 1253 -1142 5.53 1.04
CMU 3 456 924 -1497 1258 -11.27 5.69 1.14
Actual 4 5 7 -13 1145 -572  8.59 -
Guess 4 0 0 0 0 0 0 -
CMU 4 578 64 -13.04 11.84 -550 8.66 0.74

IV. CONCLUSIONS

This work introduced a probabilistic estimation of the stiff-
ness distribution of the organ using Gaussian processes and
Bayesian optimization to direct the probing for maximum
information gain. We believe fusing intraoperative data into
the preoporative model is important to alleviate the limited
situational awareness in MIS. The performance of the method
was demonstrated by a number of examples and the results
show that information-guided probing can avoid probing the
entire organ and successfully reveal the stiff regions while
registering the tool to the a priori geometric model of the
organ.

There are several directions for future work. We used a
simple experimental setup and an unconstrained environ-
ment to evaluate our method to avoid additional sources
of error such as workspace limitation and deflection of the
robot. In our future work, we will demonstrate the proposed
method in real-time using a continuum robot [20] and the
da Vinci Research Kit. Another extension of this work is
the intraoperative reconstruction of the organ surface and
stiffness features as the organ goes through changes during
the surgical procedure. We envision that the information-
guided probing will enable generation of an updated model of
the visible anatomy and reduce the time it takes to reconstruct
the intraoperative scene.

APPENDIX
A. Complementary Model Update for CARE

The CMU method is briefly described here for com-
pleteness. The various steps involved in the CMU can be
described as follows:

1) Collection: In the collection step, pairs of force-position

measurements which satisfy the following conditions
are grouped together in the same set:

i) The force magnitudes are different.
ii) The position measurements are spatially close by.
iii) The normal directions are the same or similar up
to a threshold.
In the experiments described in Section [[II-A] we as-
sume that the surface is smooth and frictionless, thus the
applied force is along the surface normal and increases
with depth. The three conditions stated above imply that
distinct measurements that lie on the surface normal
experience different force, and form a compatible set.
The magnitude of the sensed normal forces are denoted
by Fy € R, and ka € R? are the coordinates of the
sensed points, where [ ]® denotes that the entity is
in the tool’s reference frame. Given the measurements
(pl*, Fy), k = 1,2,...,0 obtained so far, we collect
compatible sets, {pf,Fj}i,i =1,2,...,n, where n is
the total number of distinct sets obtained and j €
N; where N; is the set that contains the indices of
measurements belonging to the i*" set.
2) Stiffness estimation: For each set ¢ that has at least one
pair of force-position measurements, we estimate the
local stiffness c¢;, assuming a linear stiffness model.

ci = L([ef): — @l (Fp)i = (F))  ®

where (8,7) € N;, 8 # ~. In Eq. [8| L(depth,force) is
the function that returns the slope of the best line that
fits the variation of force with deformation depth.
Correspondence: The sensed points (pg)i are trans-
formed to the CAD frame using the best registration es-
timate, T. Then, we find (p{’, n{’) = M (T(pg)i7 ¢),
where b = M (a®, ¢) is the rule that finds the
closest point b € ¢ to a® and the corresponding
normal n®, where [ | denotes entities represented in
the preoperative CAD model’s reference frame.

3)



4) Minimization: The following objective function is min-
imized using Arun’s method [21]

C(F
p n i
c (Fp)

— T (p%);
S (p,@)

)]

n
T = argmin E
T

i=1

5) Upon obtaining T, we loop between the Correspon-
dence and Minimization step until convergence or up
to a fixed number of iterations.

The minimization step can return a local minima when
Arun’s method [21] or update step of a Kalman filter [22]
is used. Therefore, we seed the algorithm with multiple
initial guesses to overcome the problem of local minima. The
detailed derivation of the algorithm is described in [23].
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