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PRÉCIS 

Cyber attacks are becoming common and threaten national security. Understanding of 

how defender behaviors influence accurate and timely detection of cyber attacks is important. 

We present a computational model based on the Instance-Based Learning Theory, to help predict 

the influence of adversarial behaviors on a simulated defender's cyber attack detection. 

ABSTRACT 

Objective: To determine the effects of an adversary’s behavior on the defender’s 

accurate and timely detection of network threats. 

Background: Cyber attacks cause major work disruption. It is important to understand 

how a defender's behavior (experience and tolerance to threats), as well as adversarial behavior 

(attack strategy), might impact the detection of threats. In this paper, we use cognitive modeling 

to make predictions regarding these factors. 

Method: Different model types representing a defender, based on Instance-Based 

Learning Theory (IBLT), faced different adversarial behaviors. A defender’s model was defined 

by experience of threats: threat-prone (90% threats and 10% non-threats) and nonthreat-prone 

(10% threats and 90% non-threats); and different tolerance levels to threats: risk-averse (model 

declares a cyber attack after perceiving one threat out of eight total) and risk-seeking (model 

declares a cyber attack after perceiving seven threats out of eight total). Adversarial behavior is 

simulated by considering different attack strategies: patient (threats occur late) and impatient 

(threats occur early).  
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Results: For an impatient strategy, risk-averse models with threat-prone experiences 

show improved detection compared with risk-seeking models with nonthreat-prone experiences; 

however, the same is not true for a patient strategy. 

Conclusions: Based upon model predictions, a defender’s prior threat experiences and 

her tolerance to threats are likely to predict detection accuracy; but considering the nature of 

adversarial behavior is also important.  

Application: Decision-support tools that consider the role of a defender's experience and 

tolerance to threats along with the nature of adversarial behavior are likely to improve a 

defender's overall threat detection.    
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Cyber attacks are the disruption in the normal functioning of computers and the loss of 

private information in a network due to malicious network events (threats), and they are 

becoming widespread. In the United Kingdom, organizers of the London 2012 Olympic Games 

believe that there is an increased danger of cyber attacks that could seriously undermine the 

technical network supporting everything, from recording world records to relaying results to 

commentators at the Games (Gibson, 2011). With the prevalence of “Anonymous” and 

“LulzSec” hacking groups and other threats to corporate and national security, guarding against 

cyber attacks is becoming a significant part of IT governance, especially because most 

government agencies and private companies have moved to online systems (Sideman, 2011). 

Recently, President Barack Obama declared that the “cyber threat is one of the most serious 

economic and national security challenges we face as a nation” (White House, 2011). According 

to his office, the nation’s cyber-security strategy is twofold: (1) to improve our resilience to 

cyber incidents; and (2) to reduce the cyber threat. To meet these goals, the role of the security 

analyst (called “defender” onwards), a human decision maker who is in charge of protecting the 

online infrastructure of a corporate network from random or organized cyber attacks, is 

indispensable (Jajodia, Liu, Swarup, & Wang, 2010). The defender protects a corporate network 

by identifying, as early and accurately as possible, threats and non-threats during cyber attacks.  

In this paper, we derive predictions about the influence of a simulated defender’s 

experience and her tolerance to threats on threat detection accuracy for different simulated 

adversarial behaviors using a computational model. Adversarial behaviors are exhibited through 

different simulated attack strategies that differ in the timing of threat occurrence in a sequence of 

network events. We simulate a defender’s awareness process through a computational model of 

dynamic decision making based on the Instance-Based Learning Theory (IBLT) (Gonzalez, 
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Lerch & Lebiere, 2003), and derive predictions on the accuracy and timing of threat detection in 

a computer network (i.e., cyber situation awareness or cyberSA).  

Generally, situation awareness (SA) is the perception of environmental elements with 

respect to time and/or space, the comprehension of their meaning, and the projection of their 

status after some variable has changed, such as time (Endsley, 1995). CyberSA is the virtual 

version of SA and includes situation recognition: the perception of the type of cyber attack, 

source (who, what) of the attack, and target of the attack; situation comprehension: 

understanding why and how the current situation is caused and what is its impact; and situation 

projection: determining the expectations of a future attack, its location, and its impact (Jajodia et 

al., 2010; Tadda, Salerno, Boulware, Hinman, & Gorton, 2006). 

During a cyber attack, there could be both malicious network events (threats) and benign 

network events (non-threats) occurring in a sequence. Threats are generated by attackers, while 

non-threats are generated by friendly users of the network. In order to accurately and timely 

detect cyber attacks, a defender relies on highly sophisticated technologies that aid in the 

detection of threats (Jajodia et al., 2010). One of these cyber technologies is called an intrusion 

detection system (IDS), a program that alerts defenders of possible network threats. The IDS is 

not a perfect technology, however, and its predictions have both false positives and false 

negatives (PSU, 2011). Although there is ample current research on developing these 

technologies, and on evaluating and improving their efficiency, the role of the defender behavior, 

such as the defender’s experience and tolerance to threats, is under-studied in the cyber-security 

literature (Gardner, 1987; Johnson-Laird, 2006; PSU, 2011). In addition, it is likely that the 

nature of adversarial behavior also influences the defender's cyberSA (Gonzalez, 2012). One 

characteristic of adversarial behavior is the attacker’s strategy regarding the timing of threats 
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during a cyber attack: An impatient attacker might inject all threats in the beginning of a 

sequence of network events; however, a patient attacker is likely to delay this injection to the 

very end of a sequence (Jajodia et al., 2010). For both these strategies, there is prevailing 

uncertainty in terms of exactly when threats might appear in a cyber attack. Thus, it is important 

for the defender to develop a timely and accurate threat perception to be able to detect a cyber 

attack. Thus, both the nature of the defender’s and adversary’s behaviors may greatly influence 

the defender’s cyberSA. 

Due to the high demand for defenders, their lack of availability for laboratory 

experiments, and the difficulty of studying real-world cyber-security events, an important 

alternative used to study cyberSA is computational cognitive modeling. A cognitive model is a 

representation of the cognitive processes and mechanisms involved in performing a task. An 

important advantage of computational cognitive modeling is to generate predictions about human 

behavior in different tasks without first spending time and resources in running large laboratory 

experiments involving participants. Of course, the model used would need to be validated against 

human data to generate accurate predictions with high confidence. The cognitive model of 

cyberSA that we present here relies on the Instance-based Learning Theory (IBLT), a theory of 

decisions from experience in dynamic environments that has demonstrated to be comprehensive 

and robust across multiple decision making tasks (Gonzalez et al., 2003; Gonzalez & Dutt, 2011; 

Lejarraga, Dutt, & Gonzalez, 2011; Gonzalez, Dutt, & Lejarraga, 2011).  

In the next section, we explain the role that a defender’s experience and tolerance to 

threats, and the role that the nature of adversarial behavior might play in determining a defender's 

cyberSA. Then, we present IBLT and the particular implementation of a cognitive model of 

cyberSA. This presentation is followed by a simulation experiment where the model’s 
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experience, tolerance, and the exposure to different adversarial behaviors were manipulated. 

Using the model, we predict two measures of cyberSA: timing and accuracy. Finally, we 

conclude with the discussion of the results and their implications to the design of training and 

decision-support tools for improving a defender’s detection of cyber attacks. 

ROLE OF EXPERIENCE, TOLERANCE, AND ADVERSARIAL BEHAVIOR  

A defender's cyberSA is likely to be influenced by at least three factors: The mix of threat 

and non-threat experiences stored in memory; the defender’s tolerance to threats, i.e., how many 

network events a defender perceives as threats before deciding that these events represent a cyber 

attack; and the adversarial behavior (i.e., an attacker’s strategy). The adversarial behavior is 

different from the first two factors. First, actions from the attacker are external or outside of the 

defender's control. Second, previously encountered adversarial behaviors might influence the 

defender’s current experiences and tolerance to threats. 

Prior research indicates that the defender’s cyberSA is likely a function of experience 

with cyber attacks (Dutt, Ahn, & Gonzalez, 2011; Jajodia et al., 2010) and tolerance to threats 

(Dutt & Gonzalez, in press; McCumber, 2004; Salter, Saydjari, Schneier, & Wallner, 1998). For 

example, Dutt et al. (2011) and Dutt and Gonzalez (in press) have provided initial predictions 

about a simulated defender’s cyber SA according to its experience and tolerance. Dutt and 

Gonzalez (in press) created a cognitive model of a defender's cyberSA based upon IBLT and 

populated the model’s memory with threat and non-threat experiences. The model’s tolerance 

was determined by the number of events perceived as threats before it declared the sequence of 

network events to be a cyber attack. Accordingly, a model with a greater proportion of threat 

experiences is likely to be more accurate and timely in detecting threats compared with one with 
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a smaller proportion of such experiences. That is because, according to IBLT, possessing recent 

and frequent past experiences of network threats also increases the model’s opportunity to 

remember and recall these threats with ease in novel situations. However, it is still not clear how 

results in Dutt and Gonzalez (in press) were impacted by different adversarial behaviors.  

Furthermore, recent research in judgment and decision making has discussed how 

experiencing outcomes, gained by sampling alternatives in a decision environment, determines 

our real decision choices after sampling (Gonzalez & Dutt, 2011; Hertwig, Barron, Weber, & 

Erev, 2004; Lejarraga et al., in press). For example, having a greater proportion of negative 

experiences or outcomes in memory for an activity (e.g., about threats) makes a decision maker 

(e.g., defender) cautious about said activity (e.g., cautious about threats) (Hertwig et al., 2004; 

Lejarraga et al., in press).  

Prior research has also predicted that a defender’s tolerance to threats is likely to 

influence her cyberSA. For example, Salter et al. (1998) highlighted the importance of 

understanding both the attacker and the defender's tolerance, and according to Dutt and Gonzalez 

(in press), a defender is likely to be more accurate when her tolerance is low rather than high. 

That is because possessing a low tolerance is likely to cause the defender to declare cyber attacks 

very early on, which may make a defender more timely and accurate in situations actually 

involving early threats. Although possessing low tolerance might be perceived as costly to an 

organization’s productivity, it is expected to boost the organization’s productivity.       

The studies discussed above provided interesting predictions about a simulated 

defender’s experience and tolerance.  However, these studies did not consider the role of 

adversarial behavior (i.e., attacker’s strategies), and the interactions between a defender’s 
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behavior and an adversary’s behavior. Depending upon adversarial behavior, threats within a 

network might occur at different times and their timing is likely to be uncertain (Jajodia et al., 

2010). For example, an impatient attacker could execute all threats very early on in a cyber 

attack; whereas, a patient attacker might decide to delay the attack and thus threats would appear 

late in the sequence of network events. There is evidence that the recency of information in an 

observed sequence influences people’s decisions when they encounter this information at 

different times (early or late) in the sequence (Hogarth & Einhorn, 1992; Dutt, Yu, & Gonzalez, 

2011). The influence of recency is likely to be driven by people’s limited working memory 

capacity (Cowan, 2001), especially when making decisions from experience in emergency 

situations (Dutt et al., 2011; Dutt, Cassenti, & Gonzalez, 2011; Gonzalez, 2012). Given the 

influence of recency, we expect a defender with a greater proportion of threat experiences and a 

low tolerance to be more accurate and timely against an impatient attack strategy compared with 

a defender with a fewer threat experiences and a high tolerance. However, we do not expect that 

to be the case for a patient attack strategy. That is because according to IBLT, a model 

(representing a defender) will make detection decisions by recalling similar experiences from 

memory. When the model has a greater proportion of threat experiences in memory, it is more 

likely to recall these experiences early on, making it accurate if threats occur early in an attack 

(i.e., generated by an impatient strategy). The activated threat experiences would be recalled 

faster from memory and would also increase the likelihood that the accumulation of evidence for 

threats exceeds the model’s low tolerance. By the same logic, when threats occur late in cyber 

attacks (i.e., generated by a patient strategy), the situation becomes detrimental to the accuracy 

and timeliness of a model that possesses many threat experiences in memory and has a low 

tolerance. In summary, a model’s experience of threats, its tolerance to threats, and an attack 
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strategy may limit or enhance the model’s cyberSA. These model predictions generate insights 

for the expected behavior of a defender in such situations. 

CYBER INFRASTRUCTURE AND CYBER ATTACKS 

The cyber infrastructure in a corporate network may consist of different types of servers 

and multiple layers of firewalls. We used a simplified network configuration consisting of a 

webserver, a fileserver, and two firewalls (Ou, Boyer, & McQueen, 2006; Xie, Li, Ou, & Levy, 

2010). An external firewall (‘firewall 1’ in Figure 1) controls the traffic between the Internet and 

the Demilitarized zone (DMZ; a sub-network that separates the Internet from the company’s 

internal LAN network). Another firewall (‘firewall 2’ in Figure 1) controls the flow of traffic 

between the webserver and the fileserver (i.e., the company’s internal LAN network). The 

webserver resides behind the first firewall in the DMZ (see Figure 1). It handles outside 

customer interactions on a company’s website. The fileserver resides behind the second firewall 

and serves as repository accessed by workstations used by corporate employees (internal users) 

to do their daily operations. These operations are made possible by enabling workstations to run 

executable files from the fileserver.  

Generally, an attacker is identified as a computer on the Internet that is trying to gain 

access to the internal corporate servers. For this cyber-infrastructure, attackers follow a pattern of 

“island-hopping” attack (Jajodia et al., 2010; pp. 30), where the webserver is compromised first, 

and then it is used to originate attacks on the fileserver and other company workstations. 

-------------------------INSERT FIGURE 1 ABOUT HERE----------------------------------- 

A model of the defender, based upon IBLT, is exposed to different island-hopping attack 

sequences (depending upon the two adversarial timing strategies). Each attack sequence is 
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composed of 25 network events (a combination of both threats and non-threats), whose nature 

(threat or non-threat) is not known to the model. However, the model is able to observe alerts 

that correspond to some network events (that are regarded as threats) generated from the 

intrusion-detection system (IDS) (Jajodia et al., 2010). Out of 25 events, there are 8 predefined 

threats that are initiated by an attacker (the rest of the events are initiated by benign users). The 

model does not know which events are generated by the attacker and which are generated by 

corporate employees. By perceiving network events in a sequence as threats or non-threats, the 

model needs to identify, as early and accurately as possible, whether the sequence constitutes a 

cyber attack. In this cyber-infrastructure, we represented adversarial behavior by presenting 

event sequences with different timings for the 8 threats: an impatient strategy, where the eight 

threats occur at the beginning of the sequence; and a patient strategy, where the eight threats 

occur at the end of the sequence. 

INSTANCE-BASED LEARNING MODEL OF DEFENDER’S CYBER SA 

IBLT is a theory of how people make decisions from experience in dynamic 

environments (Gonzalez et al., 2003). Computational models based on IBLT have been shown to 

generate accurate predictions of human behavior in many dynamic decision-making situations 

similar to those faced by defenders (Gonzalez & Dutt, 2011; Gonzalez et al., 2011; Dutt, Ahn et 

al., 2011; Dutt, Cassenti et al., 2011; Dutt & Gonzalez, in press). IBLT proposes that every 

decision situation is represented as an experience called an instance that is stored in memory. 

Each instance in memory is composed of two parts: situation (S) (the knowledge of attributes 

that describe an event), a Decision (D) (the action taken in such situation), and utility (U) (a 

measure of expected result of a decision that is to be made for an event). For a situation 

involving securing a network from threats, the situation attributes are those that can discriminate 
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between threat and non-threat events: the IP address of a computer (webserver, fileserver, or 

workstation, etc.) where the event occurred, the directory location in which the event occurred, 

whether the IDS raised an alert corresponding to the event, and whether the operation carried out 

as part of the event (e.g., a file execution) by a user of the network (which could be an attacker) 

succeeded or failed. In the IBL model of a defender, an instance’s S part refers to the situation 

attributes defined above; and the U slot refers to the expectation in memory that a network event 

is a threat or not. For example, an instance could be defined as [webserver, c:\, malicious code, 

success; threat], where “webserver,” “c:\,” “malicious code,” and “success” constitute the 

instance’s S part; and “threat” is the instance’s U part (the decision being binary: threat or not, is 

not included in this model). 

IBLT proposes that a decision maker’s mental process is composed of five mental 

phases: recognition, judgment, choice, execution, and feedback. These five decision phases 

represent a complete learning cycle where the theory explains how knowledge in instances is 

acquired, reused, and reinforced by human decision makers. Because the focus of this paper is on 

cyberSA rather than on decision making, we will only focus on the recognition, judgment, and 

choice phases in IBLT (not the execution and feedback phases). Among these, the IBLT’s 

recognition and judgment phases accomplish the recognition and comprehension stages in 

cyberSA, and IBLT’s choice phase is used to make a decision in different situations after 

recognition and comprehension has occurred. To calculate the decision, the theory relies on 

memory mechanisms such as frequency and recency.  The formulation of these mechanisms have 

been taken from a popular cognitive architecture, ACT-R (Anderson & Lebiere, 1998, 2003) (the 

model reported here uses a simplified version of the Activation equation in ACT-R).  
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Figure 2 shows an example of the processing of network events through the three phases 

in IBLT. The IBLT’s process starts with the recognition phase in search for decision alternatives 

to classify a sequence of network events as a cyber attack or not. During recognition, an instance 

with the highest activation and closest similarity to the network event is retrieved from memory 

and is used to make this classification. For example, the first instance in memory matches the 

first network event because it is most similar to the event, and thus it is retrieved from memory 

for further processing. Next, in the judgment phase, the retrieved instance is used to evaluate 

whether the network event currently being evaluated is perceived as a threat or not. As seen in 

Figure 2, this evaluation is based upon the U part of the retrieved instance (as described above, 

the instance’s U part indicates the expectation whether the network event is a “threat” or “non-

threat”). Based upon the U part, a “threat-evidence” counter is incremented by one unit if the 

network event is classified as a threat; otherwise not. The threat-evidence counter represents the 

accumulation of evidence for threats and in a new network scenario, it starts at 0. For the first 

network event in Figure 2, the retrieved instance’s U part indicates a non-threat, so the threat-

evidence counter is not incremented and remains at 0. For the second network event, however, 

the retrieved instance’s U part indicates a threat, so the counter is incremented by 1.  

In the choice phase, the model decides whether to classify a set of previously evaluated 

network events in the sequence as part of a cyber attack, or to keep accumulating more evidence 

by further observing network events. In IBLT, this classification is determined by the “necessity 

level,” which represents a satisficing mechanism used to stop search of the environment and be 

“satisfied” with the current evidence (e.g., the satisficing strategy, Simon & March, 1958). This 

necessity level is the mechanism used to simulate defenders of different tolerance levels. 

Tolerance is a free parameter that represents the number of network events perceived as threats 
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before the model classifies the sequence as a cyber-attack. Therefore, when the threat-evidence 

counter becomes equal to the tolerance parameter’s value, the model classifies the sequence as a 

cyber attack. For example, for the first network event in Figure 2, the threat-evidence counter (= 

0) is less than the Tolerance (= 1) and the model continues to evaluate the next network event. 

For the second network event, however, the threat-evidence counter (= 1) becomes equal to the 

Tolerance (= 1) and the model stops and classifies the entire sequence of events as a cyber attack. 

Translated to actual network environments, the convergence of the threat-evidence counter with 

Tolerance would mean stopping online operations in the company. Otherwise, the model will 

keep observing more events and let the online operations continue undisrupted if it has not 

classified a sequence as a cyber attack. 

-------------------------INSERT FIGURE 2 ABOUT HERE----------------------------------- 

An instance is retrieved in the recognition phase from memory according to an activation 

mechanism (Gonzalez et al., 2003; Lejarraga et al., in press). The activation of an instance i in 

memory is defined using a simplified version of ACT-R’s activation equation:  

௜ܣ ൌ ௜ܤ ൅ ܵ݅݉௜ ൅ ௜ 
(1) 

where i refers to the ith instance that is pre-populated in memory, and i = 1, 2, … 

constitutes the total number of pre-populated instances in memory; Bi is the base-level learning 

mechanism and reflects both the recency and frequency of use for the ith instance since the time it 

was created; and ௜  is the noise value that is computed and added to an instance i’s activation at 

the time of its retrieval attempt from memory. 

The Bi equation is given by: 
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௜ܤ ൌ ݈݊ ቌ ෍ ሺݐ െ ௜ሻିௗݐ

௧೔אሼଵ,…,௧ିଵሽ

ቍ 
(2) 

In this equation, the frequency effect is provided by ݐ െ 1, the number of retrievals of the 

ith instance from memory in the past. The recency effect is provided by ݐ െ  ௜, the time since theݐ

 th past retrieval of the ith instance (in equation 2, t denotes the current event number in theݐ

scenario). The d is the decay parameter and has a default value of 0.5 in the ACT-R architecture, 

and this is the value we assume for the IBL model.  

ܵ݅݉௜ refers to the similarity between the attributes of the situation and the attributes of 

the ith instance. ܵ݅݉௜ is defined as,    

Sim୧ ൌ ∑ P୪ כ M୪୧
୩
୪ୀଵ                 

(3) 

 The ∑ ௟ܲ כ ௟௜ܯ
௞
௟ୀଵ  is the similarity component and represents the mismatch between a 

situation's attributes and the situation (S) part of an instance i in memory. The k is the total 

number of attributes for a situation event that are used to retrieve the instance i from memory. 

The value of k = 4 as there are 4 attributes that characterize a situation in the network. As 

mentioned above, these attributes are IP, directory, alert, and operation in an event. The match 

scale ( ௟ܲ) reflects the amount of weighting given to the similarity between an instance i’s 

situation part l and the corresponding situation event’s attribute. ௟ܲ is generally a negative integer 

with a common value of -1.0 for all situation slots k of an instance i, and we assume this value 

for the ௟ܲ. The ܯ௟௜ or match similarities represents the similarity between the value l of a 

situation event’s attribute and the value in the corresponding situation part of an instance i in 

memory. Typically, ܯ௟௜ is defined using a squared distance between the situation event’s 
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attributes and the corresponding instance's situation slots (Shepard, 1962). Thus, ܯ௟௜ is equal to 

the sum of squared differences between a situation event’s attributes and the corresponding 

instance's S part. In order to find the sum of these squared differences, the situation events’ 

attributes and the values in the corresponding S part of instances in memory were coded using 

numeric codes. Table 1 shows the codes assigned to the S part of instances and the situation 

events’ attributes. 

-----------------------INSERT TABLE 1 ABOUT HERE-------------------------------- 

The noise value ௜  (Anderson & Lebiere, 1998; Lejarraga et al., in press) is defined as  

୧ ൌ s ൈ ln ቀଵି஗౟

஗౟
ቁ 

  (4) 

where, ߟ௜ is a random draw from a uniform distribution bounded in [0, 1] for an instance i 

in memory. We set the parameter s in an IBL model to make it a part of the activation equation 

(equation 1). The s parameter has a default value of 0.25 in the ACT-R architecture, and we 

assume this default value in the IBL model. We use default values of d and s parameters. 

EXECUTION AND RESULTS OF THE IBL MODEL 

The IBL model representing a simulated defender was created using Matlab. The model 

runs over different network event sequences that represent the different timing strategies of 

attack as described above. All sequences contained 25 network events. The model’s memory was 

pre-populated with instances representing defenders with different experiences, and the model 

used different levels of tolerance. The IBL model used equations 1, 2, and 3 to retrieve an 

instance with the highest activation and made a decision about whether an event is a threat or 
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non-threat. The proportion of threat and non-threat instances in the model’s pre-populated 

memory classified it into two kinds: threat-prone model, whose memory consisted of 90% of 

threat instances and 10% of non-threat instances for each network event in the sequence; and 

nonthreat-prone model, whose memory consisted of 10% of threat instances and 90% of non-

threat instances for each situation event in the sequence. Although we assumed that the 90% and 

10% classification for threat-prone and nonthreat-prone models as extreme values, one could 

readily change this assumption to other intermediate values (between 90% and 10%) in the 

model.    

After an instance was retrieved from memory, a decision was made to classify a sequence 

as a cyber attack or not depending upon the tolerance and the value of the threat-evidence 

counter. The tolerance level would classify the model into two kinds: risk-averse (model declares 

a cyber attack after perceiving one threat); and risk-seeking (model declares a cyber attack after 

perceiving seven threats). Based upon the above manipulations, we created four simulated model 

types: nonthreat-prone and risk-seeking; nonthreat-prone and risk-averse; threat-prone and risk-

seeking; and threat-prone and risk-averse. Furthermore, adversarial behavior was simulated by 

considering different attack strategies about the timing of threats: patient (the last eight events in 

an event sequence were actual threats) and impatient (the first eight events in an event sequence 

were actual threats).  

We had initially assumed 1,500 simulations in the model; however, we found that by 

reducing the number of simulations to 1/3rd (=500) of that, there was a miniscule change in 

values of our dependent variables. Thus, we decided to use only 500 simulations of the model as 

they were sufficient for generating stable model results. We ran 500 simulations (each simulation 

consisting of 25 network events) and the model’s cyberSA was evaluated using its accuracy and 



CYBER SA, ATTACKER, AND DEFENDER  18 
 

detection timing in eight groups defined by: Experience (threat-prone and nonthreat-prone), 

Tolerance (risk-averse and risk-seeking), and Attacker's Strategy (impatient and patient). 

Accuracy was evaluated by computing the d’ (= Z(hit rate) – Z(false-alarm rate)), hit rate (= 

hits/(hits + misses)), and false-alarm rate (= false-alarms/(false-alarms + correct-rejections) 

(Wickens, 2001) over the course of 25 network events and averaged across the 500 simulations. 

The model’s decision for each network event was marked as a hit if an instance with its U slot 

indicating a threat was retrieved from memory for an actual threat event in the sequence. 

Similarly, the model’s decision was marked as a false-alarm if an instance with its U slot 

indicating a threat was retrieved from memory for an actual non-threat event in the sequence. 

Hits and false-alarms were calculated for all events that the model observed before it declared a 

cyber attack and stopped, or when all the 25 events had occurred (whichever came first). In 

addition to the hit rate, false-alarm rate, and d’, we also calculated the model’s accuracy of 

stopping in different simulations of the scenario. Across the 500 simulations of the scenario, the  

simulation accuracy was defined as Number of scenarios with a hit/(Number of scenarios with a 

hit + Number of scenarios with a miss). The model’s decision for each simulated scenario (out of 

500) was marked as a “scenario with a hit” if the model stopped before observing all the 25 

events; otherwise, if the model observed all the 25 events in the scenario, its decision was 

marked as a “scenario with a miss.” As both the patient and impatient scenarios were only attack 

scenarios where an attacker attacked the network, we were only able to compute the  simulation 

accuracy in terms of scenarios with a hit or a miss.  Furthermore, detection timing was calculated 

in each simulation as the “proportion of attack steps,” defined as the percentage of threat events 

out of a total 8 that have occurred after which the model classifies the event sequence as a cyber 

attack and stops. Therefore, higher percentages of attacks steps would indicate the model to be 
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less timely in detecting cyber attacks. Again, we expected a threat-prone and risk-averse model 

to be more accurate and timely against an impatient attack strategy compared with a nonthreat-

prone and risk-seeking model; however, we don’t expect that to be the case for a patient attack 

strategy.  

RESULTS 

Accuracy 

As expected, the attack strategy interacted with the model’s type (experience and 

tolerance) to influence its accuracy.  This interaction is illustrated in Figure 3 that shows 

averages of d’, hit rate and false-alarm rate, across the 500 simulated participants in each of the 

eight groups. For an impatient strategy, the d’ was higher for threat-prone models than the 

nonthreat-prone models, regardless of the risk tolerance (threat-prone risk-seeking: M = 2.26, SE 

= .05; threat-prone risk-averse: M = 2.71, SE = .05; nonthreat-prone risk-seeking: M = -0.06, SE 

= .05; nonthreat-prone risk-averse: M = 0.33, SE = .05). However, for the patient strategy the d' 

was higher for the nonthreat-prone models than for the threat-prone models, again regardless of 

the risk tolerance (threat-prone risk-seeking: M = -2.63, SE = .05; threat-prone risk-averse: M = -

2.63, SE = .05; nonthreat-prone risk-seeking: M = -0.29, SE = .05; nonthreat-prone risk-averse: 

M = -0.35, SE = .05). These results suggest that the nonthreat-prone model is unable to recognize 

threats from non-threats for both patient and impatient attack strategies. In all cases of the 

nonthreat-prone models, the hit rates and false-alarm rates are very low. Similarly, in the patient 

strategy, the accuracy (d') is very low. The models show very high false alarm rates and very low 

hit rates. Also, as expected it is only when the attack strategy is impatient and the model has a 

threat-prone and risk-averse disposition that the d’ is the highest.  
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---------------------INSERT FIGURE 3 ABOUT HERE----------------------------------- 

 Furthermore, we compared the effect of model type and attack strategy on the model’s  

simulation accuracy of stopping. The simulation accuracy was higher for the impatient strategy 

(M = 60.70%, SE = .01) compared with the patient strategy (M = 50.60%, SE = .01). Also, the 

simulation accuracy was higher was for threat-prone models (96.95%) compared to nonthreat-

prone models (16.75%) and risk-averse models (59.55%) compared to risk-seeking models 

(54.15%). However, the attack strategy did not interact with the model type to influence the 

simulation accuracy. Thus, irrespective of the attack strategy (patient or impatient), the threat-

prone and risk-averse models performed more accurately compared to nonthreat-prone and risk-

seeking models. 

Timing 

Again as expected, the attack strategy interacted with the model type (experience and 

tolerance) to influence the proportion of attack steps. Figure 4 shows the nature of this 

interaction across 500 simulated participants in each of the eight groups. For the impatient 

strategy, it mattered whether models were threat- or nonthreat- prone, as well as whether they 

were risk-averse or risk-seeking; whereas, for the patient strategy, it only mattered whether the 

models were threat- or nonthreat-prone, irrespective of whether they were risk-seeking or risk-

averse. For the impatient strategy, the proportions of attack steps needed by threat-prone models 

(53.15%) were much less than those needed by nonthreat-prone models (92.60%). Also, for the 

impatient strategy, the proportions of attack steps needed by risk-averse models (50.90%) were 

much less compared with risk-seeking models (94.85%). For the patient strategy, however, 

although the proportion of attack steps needed by threat-prone models (10.10%) were much less 
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than nonthreat-prone models (88.80%), there was no differences in the proportion of attack steps 

between risk-averse (48.80%) and risk-seeking (50.10%) models. In general, as expected, the 

threat-prone and risk-averse model used the least proportion of attack steps irrespective of the 

attack strategy, patient or impatient.   

----------------------------INSERT FIGURE 4 ABOUT HERE----------------------------------- 

DISCUSSION 

Cyber attacks are becoming increasingly common and they might cause major disruption 

of work and the loss of important information. Therefore, it is important to investigate defender 

and adversarial behaviors that influence the accurate and timely detection of network threats. In 

this endeavor, Instance-Based Learning Theory (IBLT) predicts that both defender and adversary 

behaviors are likely to influence the defender’s accurate and timely detection of threats (i.e., 

cyberSA). Results from an IBL model predict that defender's cognitive abilities, namely 

experience and tolerance; and, the attacker's strategy about timing of threats, together, impact a 

defender’s cyberSA.  

First, we found that the model’s accuracy (d’) is positive only when the attack strategy is 

impatient and the model has a threat-prone disposition regardless of the model's tolerance. This 

result is explained given the influence of recency of information on decisions in the model (Dutt, 

Ahn et al., 2011; Gonzalez & Dutt, 2011). That is because an impatient strategy’s early threats 

would increase the activation of threat instances in the threat-prone model’s memory early on, 

and the early threats are also likely to increase the chances that the accumulation of evidence for 

threats would exceed the model’s tolerance level, irrespective of whether it is risk-seeking or 

risk-averse. Therefore, both factors are likely to make the model perform more accurately against 



CYBER SA, ATTACKER, AND DEFENDER  22 
 

an impatient strategy when its cognitive disposition is threat-prone, irrespective of its risk 

tolerance.  

Second, we found that the proportion of attack steps was influenced by both memory and 

tolerance against the impatient strategy; whereas, only the memory seemed to influence the 

proportion of attack steps against the patient strategy. We believe the likely reason for this 

observation is the fact that when threats occur early, the accumulation of evidence builds up 

towards the tolerance level and it influences the timing of detection; however, when threats occur 

late, the accumulation of evidence might have already reached the tolerance level causing the 

model to stop much before encountering these late occurring threats. This observation is 

supported by increased number of false-alarms, as well as the model needing lesser proportion of 

attack steps against the patient strategy (i.e., when the threats occurred late). 

Also, we found an interaction between different attack strategies and the model’s type: 

For an impatient attack strategy, possessing threat-prone experiences helped the model’s 

accuracy (due to high hit rates); whereas, possessing threat-prone experiences hurt the model’s 

accuracy against a patient strategy (due to high false-alarm rates). This result is expected given 

that when threats occur early, possessing a majority of threat instances in the model increases the 

likelihood of detecting these threats early on. Moreover, based upon the same reasoning, 

increasing the likelihood of detecting threats causes the model to detect these threats earlier, 

which hurts the accuracy when these threats actually occur late in the attack.  

Another important observation is that the model possessing nonthreat-prone experiences 

seemed to show a close to zero d’ irrespective of the attack strategy. A probable reason for this 

observation is the following: Having lesser proportion of threat experiences in memory would 
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make it difficult for the model to retrieve these experiences whether the attack occurs early or 

late. Thus, the overall effect would be a decrease in ability to detect threats from non-threats 

when the proportion of threat experiences in memory is low. Indeed we find that the hit rate in 

the model possessing nonthreat-prone experiences is very low. 

 Our results are clear in the one way to improve defenders’ performance: it is important to 

train defenders with cases involving multiple threats that would results in a threat-prone memory 

and prepare them for impatient attackers.  Furthermore, it is important to determine the 

defender's tolerance to risk, as that will determine how timely the defenders address an attack 

from impatient attackers. Unfortunately, as our results show, these two requirements would not 

be sufficient to prepare defenders for patient attacker strategies. Because the model’s predicted 

accuracy (d’) is low in all cases in which the attacker follows a patient strategy we would need to 

determine better ways to improve accuracy in these cases. Being trained with a threat-prone 

memory would not be enough in this case, given the high number of false alarms produced in 

this type of training, although fortunately only a small number of steps would be needed to 

determine an attack in these cases.  

Although in our experimental manipulations, we have simulated defenders with 

characteristics of memory and tolerance that varied at two opposite ends of the spectrum of 

several possibilities, one could easily modify our defender characteristics in the model to 

intermediate values. Thus, for example, the threat-prone and nonthreat-prone defenders could 

each have a 60%-40% and 40%-60% mix of threat and non-threat instances in memory rather 

than the currently assumed 90%-10% and 10%-90% mix. Even if one changes this mix to 

intermediate values, we believe the direction of results obtained would agree with our current 

results. Second, recent research in cyber security has led to develop methods for correlating 
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alerts generated by IDS sensors into attack scenarios and these method seem to greatly simplify 

security defenders’ job functions (Albanese, Jajodia, Pugliese, & Subrahmanian, 2011; Debar & 

Wespi, 2001; Ning, Cui, & Reeves, 2002). In future work, we plan to consider analyzing an 

defender’s behavior with respect to these newer tools. Third, given the low d’ values we could 

attempt to improve the model's performance by using feedback for the decisions made. Feedback 

was not provided because defenders in the real-world do not get this feedback during a real-time 

cyber attack (and might only learn about the attack after it has occurred). However, we do use a 

squared similarity assumption in the model and this assumption enables the model to observe the 

different attributes of network events. We believe that this similarity mechanism allows the 

model to produce some differences between hit and false-alarm rates on account of the memory 

and tolerance manipulations.   

If our model’s predictions on defender behavior (experiences and tolerance) are correct 

and the model is able to represent the cyberSA of human defenders, then it would have 

significant potential to contribute towards the design of training and decision-support tools for 

analysts. Based upon our model predictions, it might be better to devise training and decision-

support tools that prime analysts to experience more threats in a network. Moreover, our model’s 

cyberSA was also impacted by how risk-seeking it was to the perception of threats. Therefore, 

companies recruiting analysts for network-monitoring operations would benefit by evaluating the 

defender’s risk-seeking/risk-aversion tendencies by using risk measures like BART (Lejuez et 

al., 2002) or DOSPERT (Blais & Weber, 2006). Furthermore, although risk-orientation may be a 

person's characteristic (like personality), there might be training manipulations that could make 

defenders conscious of their risk-orientation or alter it in some ways.  
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At present, we know that predictions generated from the model in this paper need to be 

validated against real human data; however, it is difficult to study real-world cyber-attack events 

because these occurrences are uncertain, and many attacks occur on proprietary networks where 

getting the data after they have occurred raises ownership issues (Dutt, Ahn et al., 2011).  Yet, as 

part of future research, we plan to run simulated laboratory studies assessing human behavior in 

situations involving different adversarial strategies that differ in the timing of threats. An 

experimental approach involving human participants (even if not real defenders) will allow us to 

validate our model’s predictions, and improve its relevance and the default assumptions made 

with its free parameters. In these studies, we believe that some of the interesting factors to 

manipulate would include the threat/non-threat experiences stored in memory. One method is to 

provide training to participants on scenarios that present them with a greater or smaller 

proportion of threats before they actually participate in detecting threats in island-hopping 

attacks (i.e., priming memory of participants with more or less threat instances as we did in the 

model). Also, we plan to record the participants' risk-seeking and risk-averse behavior using 

popular measures involving gambles to control for their tolerance level (typically a risk-seeking 

person is more tolerant to risks compared with a risk-averse person). Thus, our next goal in this 

research program will be to validate our model’s predictions.   
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KEY POINTS 

 Due to most corporate operations becoming online, the threat of cyber attacks is growing; 

a key element in keeping online operations safe is the cyber security awareness 

(cyberSA) of a defender, who is in charge of monitoring online operations. 

 The defender’s cyberSA is measured by his accurate and timely detection of cyber 

attacks before they affect online operations. It is likely influenced by the defender’s 

behavior (experience and tolerance level) and adversary’s behavior (strategies about 

different timing of threats). 

 Defenders who are risk-averse and possess prior threat experiences are likely to improve 

their detection performance in situations involving impatient attackers; however, not in 

situations involving patient attackers. 

 A cognitive model based on the Instance-Based Learning (IBL) theory represents a 

simulated defender. The model is simulated 500 times each for the different combination 

of the adversary’s and defender’s behaviors. This experiment generates predictions about 

the effects of those behaviors on the defender’s cyberSA. 

 Application of our results include the design of training tools that increase defenders' 

competency, and the development of decision-support tools that improve their on-job 

performance in detecting cyber attacks. 
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TABLES 

Table 1.  The coded values in the S part of instances in memory and attributes of a situation 
event. 

Attributes Values Codes 
IP  Webserver 1 

Fileserver 2 
 Workstation 3 

Directory  Missing value -1001 
File X 1 

Alert Present 1 
Absent 0 

Operation Successful 1 
Unsuccessful 0 

 

Note: 1When the value of an attribute was missing, then the attribute was not included in 

the calculation of similarity. 
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FIGURE CAPTIONS 

Figure 1.  A typical cyber-infrastructure in a corporate network. The attacker uses a 

computer on the Internet and tries to gain access to the company’s workstations through the 

company’s webserver and fileserver. Source: Xie et al. (2010) 

Figure 2.  The processing of network events by the IBL model. The model uses 

recognition, judgment, and choice phases for each observed event in the network and it decides 

to stop when the threat-evidence counter equals the Tolerance parameter.   

Figure 3.  The influence of model type and the attack strategy on model’s accuracy. 

Figure 4.  The influence of model type and the attack strategy on proportion of attack 

steps. 
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