
Technical Report

CMU/SEI-88-TR-019
ESD-TR-88-20

Generalized Image Library:
A Durra Application Example

Mario R. Barbacci
Dennis L. Doubleday

July 1988

Technical Report
CMU/SEI-88-TR-019

ESD-TR-88-020
July 1988

Generalized Image Library:
A Durra Application Example

AB
Mario R. Barbacci

Dennis L. Doubleday
Software for Heterogeneous Machines Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl Shingler SIGNATURE ON FILE
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright  1988 Carnegie Mellon University

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Services. For information on ordering,
please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this handbook is not intended in any way to infringe on the rights of the trademark holder.

Generalized Image Library: A Durra Application Example
Abstract: Durra is a language designed to support the construction of distributed
applications using concurrent, coarse-grain tasks running on networks of hetero-
geneous processors. An application written in Durra describes the tasks to be
instantiated and executed as concurrent processes, the types of data to be ex-
changed by the processes, and the intermediate queues required to store the data
as they move from producer to consumer processes.

This report describes an experiment in writing task descriptions and type declara-
tions for a subset of the Generalized Image Library, a collection of utilities devel-
oped at the Department of Computer Science at Carnegie Mellon University. The
experiment illustrates the development of a ‘‘typical’’ Durra application. This is a
three step process: first, a collection of tasks (programs) is designed and imple-
mented (these are the GIL programs); second, a collection of task descriptions
corresponding to the task implementations is written in Durra, compiled, and
stored in a library; and finally, an application description is written in Durra and
compiled, resulting in a set of resource allocation and scheduling commands to be
interpreted at runtime. A few sample application descriptions were developed as
part of the experiment and are also reported in this document.

1. Introduction to Durra

Durra [1, 2] is a language designed to support the construction of distributed applications
using concurrent, coarse-grain tasks running on networks of heterogeneous processors. An
application written in Durra selects and reuses task descriptions and type declarations
stored in a library. The application describes the tasks to be instantiated and executed as
concurrent processes, the types of data to be exchanged by the processes, and the interme-
diate queues required to store the data as they move from producer to consumer processes.

Because tasks are the primary building blocks, we refer to Durra as a task-level description
language. We use the term ‘‘description language’’ rather than ‘‘programming language’’ to
emphasize that a Durra application is not translated into object code in some kind of ex-
ecutable (conventional) ‘‘machine language.’’ Instead, a Durra application is a description of
the structure and behavior of a logical machine to be synthesized into resource allocation
and scheduling directives that are then interpreted by a combination of software, firmware,
and hardware in each of the processors and buffers of a heterogeneous machine. This is
the translation process depicted in Figure 1-1.a.

We see three distinct phases in the process of developing an application using Durra: the
creation of a library of tasks, the creation of an application using library tasks, and the ex-
ecution of the application. These three phases are illustrated in Figure 1-1.b.

During the first phase, the developer writes descriptions of the components tasks and
declarations of the data types. The type declarations specify the kinds of data that will be
produced and consumed by the tasks in the application. The task descriptions specify the
properties of the task implementations (programs). For a given task, there may be many

CMU/SEI-88-TR-19 1

Allocate queue
Start task

Schedule

....

Test port
Get/Put data

Terminate task

Messages

SchedulerCompiler

Conectivity

....
Shutdown

Status and Task requests

Transformations
....

Task names

a -- Compilation of an Application Description

Compiler
Durra

Description
Application

Descriptions
(Durra)

Library of Task

"program"
Scheduler

(C,Lisp,Ada,etc.)
Implementations
Library of Task

Heterogeneous
Machine

b -- Developing an Application

Figure 1-1: Scenario for Developing an Application in Durra

2 CMU/SEI-88-TR-19

implementations, differing in programming language (e.g., C or assembly language), proces-
sor type (e.g., Motorola 68020 or IBM 1401), performance characteristics, or other attri-
butes. For each implementation of a task, a description must be written in Durra, compiled,
and entered in the library.

During the second phase, the user writes an application description. Syntactically, an appli-
cation description is a single task description and could be stored in the library as a new
task. This allows writing of hierarchical application descriptions. When the application de-
scription is compiled, the compiler generates a set of resource allocation and scheduling
commands or instructions to be interpreted by the scheduler.

During the last phase, the scheduler loads the task implementations (i.e., programs cor-
responding to the component tasks) into the processors and issues the appropriate com-
mands to execute the programs.

The data types transmitted between the tasks are declared independently of the tasks. In
Durra, these data type declarations specify scalars (of possible variable length), arrays,
simple record types, or unions of other types, as shown in Figure 1-2.

type packet is size 128 to 1024;
-- Packets are of variable length.

type tails is array (5 10) of packet;
-- Tails are 5 by 10 arrays of packets.

type rec is record (rows: integer, columns: integer, data: packet);
-- Rec data consists of two integers and a packet.

type mix is union (heads, tails);
-- Mix data could be heads or tails.

Figure 1-2: Durra Type Declarations

Task descriptions are the building blocks for applications. Task descriptions include the fol-
lowing information (see Figure 1-3): (1) its interface to other tasks (ports) and to the
scheduler (signals); (2) its attributes; (3) its functional and timing behavior; and (4) its in-
ternal structure, thereby allowing for hierarchical task descriptions. For the purposes of this
report, the relevant components of a task description are the behavioral specifications.

CMU/SEI-88-TR-19 3

task task_name
ports -- Communication between a process and a queue

port_declarations
signals -- Communication between a process and the scheduler

signal_declarations
attributes -- Miscellaneous properties of the task

attribute_value_pairs
behavior -- Functional and timing behavior of the task

requires predicate -- Precondition on input data
ensures predicate -- Postcondition on output data
timing timing expression -- Ordering of port operations

structure -- Used to describe the internal structure of the task
process_declarations -- Declaration of internal processes
bind_declarations -- Mapping of internal ports to this task’s ports
queue_declarations -- Links between internal ports
reconfiguration_statements -- Dynamic modifications to the structure

end task_name

Figure 1-3: A Template for Task Descriptions

4 CMU/SEI-88-TR-19

2. Introduction to the Generalized Image Library

The Generalized Image Library [4, 5] is a collection of programs that can be used to manip-
ulate a variety of image representations produced by different image devices and stored in
different disk formats. The Generalized Image Library (GIL) programs can be invoked di-
rectly by a user (via UNIX Shell commands) or by programs (via C procedure calls). For the
purposes of this report, we describe GIL from a user’s point of view, rather than from a
programmer’s point of view. The former is closer to the Durra development paradigm in
which individual tasks are treated as black boxes, executing concurrently, and communi-
cating via typed messages.

The user manipulates images by invoking the appropriate programs (i.e., image operations)
together with a list of image names (i.e., input and output images). An image name encodes
information about the format, in addition to a file name, or a physical device name. The
most general format for images in the GIL is called GIF (Generalized Image Format). A GIF
image is stored as a matrix of pixels, where a pixel can be an integer (signed or unsigned)
or a floating-point number of arbitrary precision.

For example, a user could invoke the GIL add command:

add elms.gif oaks.gif forest.gif

to add the corresponding pixels of the ‘‘elms’’ and ‘‘oaks’’ images and produce the ‘‘forest’’
image.

Constant images, denoted by the keyword constant are virtual input images of unspecified
dimensions, filled with a constant value for all pixels (i.e., all fetch operations return the
same constant value):

add elms.gif constant:100 bright_elms.gif

Each pixel of ‘‘elms’’ will be increased by 100, storing the results in the new image
‘‘bright_elms.’’

The keyword display denotes the display device appropriate for the machine in which the
GIL is used (this is obviously site dependent). For instance, the following command copies
an image to the display device where it can be viewed on a monitor:

imgcp tree.gif display

The simplest kind of image name is just a file name of the form name.ext where ext is an
identifier that indicates the image format (e.g., ‘‘gif’’ for images in Generalized Image
Format). This default can be overruled by specifying the format as a keyword preceding the
file name: format_keyword:file_name, as in

gif:some_file_name

GIL programs take advantage of the UNIX operating system, and in particular, of the UNIX

pipeline mechanism, to enhance program composition by combining sequences of simple
programs in a single shell command line. Users of GIL can pipeline images between GIL

CMU/SEI-88-TR-19 5

programs via the standard UNIX streams (input, output, and error). For example ([4], page
3), the following shell command uses the smooth program to low-pass filter an image. It
then sends the resulting low-pass image into subimg, where it is subtracted from the orig-
inal image to produce a high-pass image:

smooth gauss -5 original.img - | subimg original - highpass.img

The keywords unsigned:, signed:, and float: used as a prefix to an image name may be
used to select the pixel characteristics of a new image being created by a program. If the
pixel characteristics are not specified in an image name, each program assumes some de-
fault pixel type. The keyword is followed by an integer number that indicates the number of
bits allocated for each pixel:

unsigned:12:some_image.img

A number of simple image operations can be specified directly as prefixes to the image
names used as parameters to the GIL programs. There are a large number of these
‘‘prefix’’ operations, but the following list should convey the general idea:

shift:rows,cols:image_name
This operation is used to shift the coordinates of an image.

crop:init_row,end_row,init_col,end_col:image_name
This operation is used to select a portion of an image.

divide:H_divisions,V_Divisions,portion_number:display
This operation is used to access a piece of a display image. The
parameters specify the number of horizontal and vertical divisions and
the index of the piece to be accessed (pieces are numbered starting at
the upper-left corner, ending at the bottom-right corner).

extend:fill_value:init_row,end_row,init_col,end_colimage_name
This operation is the opposite of crop:. Instead of reducing the size of
an image, extend increases the image size by filling around the image
with a constant value or with replicated pixels.

tee:image_name_1,image_name_2
This operation is useful for putting an output image in two places at
once.

magnify:H_factor,V_factor:image_name
This operation is used to magnify or reduce an image.

In the remainder of this report, we will illustrate the use of Durra to build ‘‘applications’’ con-
sisting of collections of GIL tasks (programs) connected through queues, and transmitting
images as messages.

Before proceeding, however, it is important to clarify the intent of the examples. If all the
tasks used in an application were restricted to having exactly one input and one output port,
the advantages of using Durra might not seem obvious. That is, besides having some
flexibility in the selection of tasks from the library, the structure declarations would look
rather verbose compared with the UNIX shell syntax. However, as soon as we need to use
tasks with multiple streams, the advantages of using Durra are clear. We are no longer

6 CMU/SEI-88-TR-19

limited to single pipelines connecting input and output streams. Rather, we can build ar-
bitrary graph-like configurations of tasks, each sending and receiving images through multi-
ple ports. We took the Generalized Image Library as a starting point because their tasks
and types are reasonably easy to describe and then we ‘‘extended’’ the library by assuming
the existence of complex, multi-ported tasks and applications. In all fairness, there is noth-
ing to prevent the development of multi-ported tasks in GIL. It is just that they would not fit
very well within the UNIX pipelining paradigm and would be restricted to run separately,
using image files as input and output parameters.

CMU/SEI-88-TR-19 7

8 CMU/SEI-88-TR-19

3. Type Declaration and Task Description Examples

In this section, we illustrate a number of Durra type declarations and task descriptions repre-
sentative of the those that would be found in a GIL application.

3.1. Scalar Types

type integer is size 32;

type float is size 32;

type unsigned_8 is size 8;

type unsigned_16 is size 16;

type unsigned_32 is size 32;

Figure 3-1: Scalar Types

The declarations in Figure 3-1 illustrate scalar types in Durra. Types ‘‘integer’’ and ‘‘float’’
are declared to be 32 bits long. The unsigned types come in various sizes. Durra type
sizes reflect the characteristics of the data produced by the various tasks in an application.
The type size information is used by the Durra runtime environment [[3]] to allocate storage
for the queues. The format of the data (e.g., sign, mantissa, and exponent fields), on the
other hand, is of no concern to the Durra compiler or its runtime system.

3.2. Array Types

type integer_image is array of integer;

type float_image is array of float;

type unsigned_8_image is array of unsigned_8;

type unsigned_16_image is array of unsigned_16;

type unsigned_32_image is array of unsigned_32;

Figure 3-2: Array Types

The declarations in Figure 3-2 illustrate array types in Durra. The language allows for the
specification of arrays of fixed dimensions as well as arrays of unspecified dimensions, like
those in the examples above. For example, type ‘‘unsigned_08_image’’ is an array of un-
specified size whose elements are of type ‘‘unsigned_08.’’ Of course, this is not adequate

CMU/SEI-88-TR-19 9

for transmitting images between programs. The programs need to know the actual dimen-
sions of the images, and these can be provided using Durra record types, as shown below.

3.3. Record Types

type rec_float_image is record
(rows: integer, columns: integer, data: float_image);

type rec_integer_image is record
(rows: integer, columns: integer, data: integer_image);

type rec_unsigned_8_image is record
(rows: integer, columns: integer, data: unsigned_8_image);

type rec_unsigned_16_image is record
(rows: integer, columns: integer, data: unsigned_16_image);

type rec_unsigned_32_image is record
(rows: integer, columns: integer, data: unsigned_32_image);

type rectangle is record
(first_row: integer, last_row: integer,
first_col: integer, last_col: integer);

Figure 3-3: Record Types

The declarations in Figure 3-3 illustrate record types in Durra. The language allows for the
specification of simple records, without Ada- or Pascal-style variants. Each field of a record
is denoted by a field name and a field type. These examples declare records containing
images of the types described before. These record types carry the right information so that
programs can now pass images around.

The first five declarations in Figure 3-3 illustrate basic image types. For the sake of future
examples, we have also declared a record type (the last declaration in the figure) that can
be used to specify the position of a rectangle within an image array. Its use will become
clear momentarily.

3.4. A Simple Task Description

To illustrate the use of the image type declarations introduced so far, let’s assume that a
program exists that can crop or select a portion of an image. The task description for this
program is shown in Figure 3-4.

The example describes a task that crops an input image by selecting a portion of the image
contained within some rectangle. The task has one input port, ‘‘in_image,’’ that receives
images of type ‘‘rec_floating_image’’ (i.e., images whose pixels are 32-bit floating-point

10 CMU/SEI-88-TR-19

task crop_image
ports
in_image : in rec_float_image;
parameters: in rectangle;
out_image : out rec_float_image;

behavior
timing
loop

((in_image || parameters)
-- get input image and rectangle description

delay[0.1, 0.3] -- compute cropped image
out_image); -- put cropped image

attributes
implementation = "crop";
processor = vax;
author = "brahms";

end crop_image;

Figure 3-4: Task Description for a Cropping Task

numbers) and one output port, ‘‘out_image,’’ that sends images of the same type. In addi-
tion, it has a second input port, ‘‘parameters,’’ used to receive various parameters that con-
trol the task operation. The behavior of the task is described by the timing expression. It
indicates that the task first reads an input image and a rectangle definition, then generates a
cropped image (taking between 0.1 and 0.3 seconds for the operation), and finally writes the
output image. The keyword loop indicates that this behavior is repeated continuously.

The attributes of the task description provide additional information about the task. These
include the name of the task implementation (i.e., the actual executable program), the name
of the processor on which this implementation can execute, and the name of the author of
this implementation of the task.

3.5. A Simple Application Description

To illustrate the use of the type declarations and task descriptions introduced so far, let’s
assume that we want to build a small application consisting of three tasks. The application
would take an image from some input device (task 1), crop it (task 2), and send it to some
output device (task 3).

The task introduced in Section 3.4 will serve as our ‘‘cropping’’ program. We also need task
descriptions for the input and output devices, and these are illustrated in Figure 3-5.

The behavior of the input device task indicates that it loops continuously, generating and
sending images of type rec_float_image through its single output port. The behavior of the
output device task indicates that it loops continuously, consuming images of type
rec_float_image from its single input port. This task also has one output port, which the task

CMU/SEI-88-TR-19 11

task input_device
ports
out_image: out rec_float_image;

behavior
timing loop (delay[0.2, 0.2] out_image);

attributes
implementation = "scanner";
processor = vax;

end input_device;

a -- Task Description for the Input Device

task output_device
ports
in_image : in rec_float_image;
parameters: out rectangle;

behavior
timing loop (parameters in_image);

attributes
implementation = "display";
processor = vax;

end output_device;

b -- Task Description for the Output Device

Figure 3-5: Input and Output Device Tasks

uses to send parameters specifying the cropping to be done to the original images before
they can be displayed by the output device.

The application we want to build is a three-stage pipeline where images are passed from
stage 1 (the input device) to stage 2 (the cropping task) to stage 3 (the output device). In
addition, stage 3 sends the appropriate cropping parameters to stage 2. A picture of the
pipeline and the Durra application description are illustrated in Figure 3-6.

The application description instantiates three processes (‘‘p1,’’ ‘‘p2,’’ and ‘‘p3’’) and three
queues (‘‘q1,’’ ‘‘q2,’’ and ‘‘q3’’) that connect the processes’ ports in the obvious manner.
The process declarations specify not only the name of the task we want to instantiate, but
also the type and direction of its ports. This is usually required if an application library con-
tains ‘‘families’’ of tasks, i.e., tasks that have the same name but that differ in other
properties. In this particular example, we need to specify the port types because we could
have device and cropping tasks that operate on images with integer pixels or with unsigned
pixels of different lengths.

Although this application description is complete and correct, it suggests a deficiency in the
task implementations, namely, that they only operate on images of exactly one type of pixel.
This is not necessarily wrong. If we are dealing with some complicated operation, each
implementation could use some carefully coded algorithm, optimized for each image type.

12 CMU/SEI-88-TR-19

outputinput
tasktask task

imageimage

parameters

crop

task crop_pipeline
structure
process
p1: task input_device

port
out1: out rec_float_image;

end input_device;
p2: task crop_image

port
in1: in rec_float_image;
in2: in rectangle;
out1: out rec_float_image;

end crop_image;
p3: task output_device

port
in1: in rec_float_image;
out1: out rectangle;

end output_device;
queue
q1: p1.out1 >> p2.in1;
q2: p2.out1 >> p3.in1;
q3: p3.out1 >> p2.in2;

end crop_pipeline;

Figure 3-6: Application Description

For our simple cropping operation, on the other hand, it makes more sense to implement a
general-purpose cropping task that operates on arbitrary image types. This can be
achieved by using union types, as described below.

3.6. Union Types

To describe tasks that can transmit more than one type of data through the same port, Durra
allows the specification of union types, whereby an object of a union type could be of any of
a number of types specified in a union type declaration. For example, we could introduce
the most general kind of image type via the declaration in Figure 3-7.a.

CMU/SEI-88-TR-19 13

It is up to the sender and receiver tasks to agree on an interpretation of the image data.
This can be achieved by, for instance, augmenting the image-carrying records with a field
identifying the pixel type, as shown in Figure 3-7.b, and by using the convention that the
value of the ‘‘pixel_type’’ field ranges between 0 (‘‘float_image’’) and 4
(‘‘unsigned_32_image’’).

type general_image is union
(float_image, integer_image,
unsigned_8_image, unsigned_16_image, unsigned_32_image);

a -- Union Type Description

type rec_general_image is record
(rows: integer, columns: integer,
pixel_type: integer, data: general_image);

b -- Augmented Record Type Description

Figure 3-7: Images of Arbitrary Pixel Types

The tasks described in Section 3.5 can now be reimplemented to handle images of this gen-
eral type. The corresponding task and application descriptions are shown in Figure 3-8.

Observe that in the new version of the application description the process declarations are
simpler than in the previous version. There is no need to specify the port types since, by
replacing all the type-specific tasks with one task that operates on arbitrary image types, the
task name is now sufficient to uniquely identify the task in the library.

14 CMU/SEI-88-TR-19

task input_device
ports
out_image: out rec_general_image;

behavior
timing loop (delay[0.2, 0.2] out_image);

attributes
implementation = "scanner";
processor = vax;

end input_device;

a -- Task Description for the Input Device

task output_device
ports
in_image : in rec_general_image;
parameters: out rectangle;

behavior
timing loop (parameters in_image);

attributes
implementation = "display";
processor = vax;

end output_device;

b -- Task Description for the Output Device

task crop_image
ports
in_image : in rec_general_image;
parameters: in rectangle;
out_image : out rec_general_image;

attributes
implementation = "crop";
processor = vax;
version = 12;

end crop_image;

c -- Task Description for the Cropping Task

task crop_pipeline
structure

process
p1: task input_device;
p2: task crop_image;
p3: task output_device;

queue
q1: p1.out_image >> p2.in_image;
q2: p2.out_image >> p3.in_image;
q3: p3.parameters >> p2.parameters;

end crop_pipeline;

d -- Application Description

Figure 3-8: Operating on Arbitrary Image Types

CMU/SEI-88-TR-19 15

16 CMU/SEI-88-TR-19

4. Task Selection Examples

The previous examples illustrated two ways of identifying a library task in a process decla-
ration. The task selection could be based just on a task name (Figure 3-8.d), or based on
the number, direction, and type of its ports (Figure 3-6). The language supports a rather
elaborate set of task selection features as illustrated by the examples below.

4.1. Rules for Matching Task Selections with Task Descriptions

If a task selection contains port declarations, the port names provided in the task selection
override the port names provided in the task declaration (that is, queue declarations would
have to refer to the port names used in the task selection, and not to the port names used in
the task description). The port declaration lists must otherwise be identical, i.e., the number,
the order, the directions, and the types must be identical.

If a task selection provides a signal declaration clause, the signal declaration list must be
identical to that provided in the task description, i.e., the names, number, and directions
must be identical.

If a task selection provides a functional behavior predicate or a timing expression, the cor-
responding predicate or timing expression in the task description must imply that of the task
selection. Currently there are no facilities to check these implications and timing expres-
sions, so for the time being the behavioral information part of a task description is treated as
commentary information.

If a task selection specifies an attribute not present in a task description, no match occurs,
i.e., the compiler skips this description and continues searching for a candidate. If a task
description provides an attribute not specified in a task selection, the attribute is ignored.

If a task selection provides a predicate (a disjunction) for an attribute, a matching task de-
scription must provide values that satisfy the predicate, i.e., the disjunction yields true when
evaluated in the context of the values declared for the attribute.

4.2. Multiple Implementations of the Same Task

To continue with the cropping task introduced before, let’s assume the we have several im-
plementations of a cropping task. For each of these task implementations, we need to write
a task description. A collection of these task descriptions appears in Figure 4-1. These task
descriptions have the same interface and exhibit similar behavior. In addition, all of them
have ‘‘implementation’’ and ‘‘processor’’ attributes (the ‘‘implementation’’ attribute values
are, of course, different). They exhibit more variability in their other attributes or attribute
values.

CMU/SEI-88-TR-19 17

task crop_image
ports
in_image : in rec_general_image;
parameters: in rectangle;
out_image : out rec_general_image;

attributes
implementation = "crop";
processor = vax;
version = 12;

end crop_image;

a -- Implementation 1

task crop_image
ports
in_image : in rec_general_image;
parameters: in rectangle;
out_image : out rec_general_image;

attributes
processor = vax;
implementation = "crop_1";
author = "brahms";

end crop_image;

b -- Implementation 2

task crop_image
ports
in_image : in rec_general_image;
parameters: in rectangle;
out_image : out rec_general_image;

attributes
processor = vax;
implementation = "crop_2";
author = "rachmaninoff";
date = "2/22/88";

end crop_image;

c -- Implementation 3

task crop_image
ports
in_image : in rec_general_image;
parameters: in rectangle;
out_image : out rec_general_image;

attributes
processor = vax;
implementation = "crop_3";
author = "mahler";
date = "2/25/88";

end crop_image;

d -- Implementation 4

Figure 4-1: A Collection of Cropping Task Descriptions

18 CMU/SEI-88-TR-19

The first task description in Figure 4-1 has a ‘‘version’’ attribute (with value ‘‘12’’). The sec-
ond task description has no ‘‘version’’ attribute, instead it has an ‘‘author’’ attribute (with
value ‘‘brahms’’). The third task description has an ‘‘author’’ attribute (with value
‘‘rachmaninoff’’) and a new attribute, ‘‘date’’ (with value ‘‘3/22/88’’). Finally, the fourth task
description is similar to the previous one in that it has both ‘‘author’’ and ‘‘date’’ attributes but
with different values (‘‘mahler’’ and ‘‘2/25/88,’’ respectively).
We can now use this collection of task descriptions to build different versions of the same
application.

4.3. Constrained Task Selections

If we have multiple task descriptions for the image cropping task, the simple pipeline appli-
cation description of Section 3.6 and Figure 3-8 will not compile properly. The Durra com-
piler will complain that there is an ambiguity: Multiple library entries match the task selection
used to declare process p2. This is because there are a number of candidate task descrip-
tions with the same name (‘‘crop_image’’). A task selection must now include additional
information to resolve the ambiguity.

Figure 4-2 shows several alternative descriptions for the pipeline application. Each of these
application descriptions selects a different version of the cropping task by specifying a differ-
ent attribute expression in the task selections.

The language allows for more elaborate attribute matching patterns than just value equality,
as the previous examples illustrate. A task selection can specify an arbitrary attribute ex-
pression. In this case, the expression is evaluated in terms of the attribute values given in
the task description. A match occurs if the value of the expression used as a task selection
attribute value is satisfied (TRUE). The example in Figure 4-3 illustrates this feature. The
task selection specifies a library task whose value for the ‘‘author’’ attribute is either ‘‘bach’’
or ‘‘mahler.’’

The name of an attribute can appear in any context in which its value can appear. For
instance, if the application developer defines an attribute ‘‘Queue_Size’’ with an integer
value, then ‘‘Queue_Size’’ can appear anywhere an integer value is expected. This permits
the developer to name, say, a queue size and use the name to declare queues with identical
size in a number of task descriptions. Another use is to instantiate ‘‘families’’ of tasks, i.e.,
tasks that share the same value for some attribute. For instance, the example in Figure 4-4
specifies that the task to be selected from the library must be a task description whose
‘‘author’’ attribute value must be the same as that of the ‘‘author’’ attribute of the task se-
lected for the input device task, whatever that is. This is achieved by not giving a specific
value as the ‘‘author’’ attribute value for the task selected for process p2 but giving the
global name for the ‘‘author’’ attribute of the input device task, ‘‘p1.author.’’

CMU/SEI-88-TR-19 19

task crop_pipeline
structure
process
p1: task input_device;
p2: task crop_image attributes version = 12; end crop_image;
p3: task output_device;

queue
q1: p1.out_image >> p2.in_image;
q2: p2.out_image >> p3.in_image;
q3: p3.parameters >> p2.parameters;

end crop_pipeline;

a -- Implementation 1

task crop_pipeline
structure
process
p1: task input_device;
p2: task crop_image attributes author = "brahms"; end crop_image;
p3: task output_device;

queue
q1: p1.out_image >> p2.in_image;
q2: p2.out_image >> p3.in_image;
q3: p3.parameters >> p2.parameters;

end crop_pipeline;

b -- Implementation 2

task crop_pipeline
structure
process
p1: task input_device;
p2: task crop_image attributes date = "2/22/88"; end crop_image;
p3: task output_device;

queue
q1: p1.out_image >> p2.in_image;
q2: p2.out_image >> p3.in_image;
q3: p3.parameters >> p2.parameters;

end crop_pipeline;

c -- Implementation 1

task crop_pipeline
structure
process
p1: task input_device;
p2: task crop_image attributes author = "mahler"; end crop_image;
p3: task output_device;

queue
q1: p1.out_image >> p2.in_image;
q2: p2.out_image >> p3.in_image;
q3: p3.parameters >> p2.parameters;

end crop_pipeline;

d -- Implementation 1

Figure 4-2: Simple Attribute Matching

20 CMU/SEI-88-TR-19

task crop_pipeline
structure
process
p1: task input_device;
p2: task crop_image

attributes
author = "bach" or author = "mahler";

end crop_image;
p3: task output_device;

queue
q1: p1.out_image >> p2.in_image;
q2: p2.out_image >> p3.in_image;
q3: p3.parameters >> p2.parameters;

end crop_pipeline;

Figure 4-3: Expression Attribute Matching

task crop_pipeline
structure
process
p1: task input_device;
p2: task crop_image

attributes
author = p1.author;

end crop_image;
p3: task output_device;

queue
q1: p1.out_image >> p2.in_image;
q2: p2.out_image >> p3.in_image;
q3: p3.parameters >> p2.parameters;

end crop_pipeline;

Figure 4-4: Global Attribute Matching

4.4. Summary of Task Selection Features

Task selections are templates used to identify and retrieve task descriptions from the library.

A given task, e.g., edge-detection in a vision application, might have a number of implemen-
tations that differ along dimensions such as algorithm used, code version, performance, or
processor type. To select among a number of alternative implementations, the application
developer provides a task selection as part of a process declaration. This task selection
lists the desirable features of a suitable implementation.

Syntactically, a task selection looks somewhat like a task description without the structure
part, and in which all other components are optional. For example, while a task declaration

CMU/SEI-88-TR-19 21

requires the declarations of the ports, in a task selection the declaration of the ports is op-
tional.

The name of a task is the minimal part of a task selection. Local, port names can be intro-
duced by providing a port declaration, provided that the number, direction, and data types of
the ports specified in the task selection are identical to those specified in the task descrip-
tion. If the port declarations are left out of the task selection, the original names used in the
task description are used instead.

A task can be identified and selected from the library just by its name (if the name is unique
in the library), by its interface properties (e.g., port types), by its attributes (e.g., version
number), by its functional or timing behavior (e.g., a pre-condition), or by any combination of
all of these. This degree of flexibility in the specification of the properties of a task is a step
in the direction of development of software reuse as a methodology for the development of
complex, distributed software systems.

22 CMU/SEI-88-TR-19

	1. Introduction to Durra
	2. Introduction to the Generalized Image Library
	3. Type Declaration and Task Description Examples
	4. Task Selection Examples

