
Model-Driven Performance Analysis

Gabriel A. Moreno and Paulo Merson

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, PA, USA
{gmoreno,pfm}@sei.cmu.edu

Abstract. Model-Driven Engineering (MDE) is an approach to develop
software systems by creating models and applying automated transfor-
mations to them to ultimately generate the implementation for a target
platform. Although the main focus of MDE is on the generation of code,
it is also necessary to support the analysis of the designs with respect
to quality attributes such as performance. To complement the model-to-
implementation path of MDE approaches, an MDE tool infrastructure
should provide what we call model-driven analysis. This paper describes
an approach to model-driven analysis based on reasoning frameworks.
In particular, it describes a performance reasoning framework that can
transform a design into a model suitable for analysis of real-time per-
formance properties with different evaluation procedures including rate
monotonic analysis and simulation. The concepts presented in this pa-
per have been implemented in the PACC Starter Kit, a development
environment that supports code generation and analysis from the same
models.

1 Introduction

Model-Driven Engineering (MDE) is an approach to create software systems
that involves creating models and applying automated transformations to them.
The models are expressed in modeling languages (e.g., UML) that describe the
structure and behavior of the system. MDE tools successively apply pre-defined
transformations to the input model created by the developer and ultimately gen-
erate as output the source code for the application. MDE tools typically impose
domain-specific constraints and generate output that maps onto specific middle-
ware platforms and frameworks [1]. MDE is often indistinctively associated to
OMG’s Model-Driven Architecture and Model-Driven Development.

The ability to create a software design and apply automated transformations
to generate the implementation helps to avoid the complexity of today’s im-
plementation platforms, component technologies and frameworks. Many MDE
solutions focus on the generation of code that partially or entirely implements
the functional requirements. However, these solutions often overlook runtime
quality attribute requirements, such as performance or reliability. Fixing quality
attribute problems once the implementation is in place has a high cost and often
requires structural changes and refactoring. Avoiding these problems is the main



motivation to perform analysis early in the design process. To complement the
model-to-implementation path of MDE approaches, an MDE tool infrastructure
should provide what we call model-driven analysis. The model to code path and
the model-driven analysis path are notionally represented in Figure 1. The goal
of model-driven analysis is to verify the ability of the input design model to meet
quality requirements.

Fig. 1. Model-Driven Engineering and Model-Driven Analysis

The Software Engineering Institute has developed an MDE tool infrastruc-
ture that offers code generation along with various analytic capabilities. This
tool infrastructure is called the PACC Starter Kit (PSK) [2]. It uses the concept
of reasoning frameworks [3] to implement analytic capabilities. Several reasoning
frameworks have been developed and applied to industry problems. This paper
focuses on our performance reasoning framework, which analyzes timing proper-
ties of component-based real-time systems. The paper describes the model-driven
approach used in the implementation of the reasoning framework.

The remainder of the paper is organized as follows. Section 2 introduces the
concept of a reasoning framework and then describes the elements of our perfor-
mance reasoning framework. Section 3 describes the intermediate constructive
model, which is the first model created when analyzing an input design. Section 4
explains the performance model and how it is generated from the intermediate
constructive model through a transformation called interpretation. Section 5
briefly describes how the performance model is used by different evaluation pro-
cedures to generate performance predictions. Section 6 shows an example of the
application of the concepts described in the paper. Section 7 discusses related
work and Section 8 has our concluding remarks.

2 Performance Reasoning Framework

A reasoning framework provides the ability to reason about a specific quality
attribute property of a system’s design [3]. Figure 2 shows the basic elements of
a reasoning framework. The input is an architecture description of the system,
which consists of structural and behavior information expressed in a modeling



language or any formally defined design language. Reasoning frameworks can-
not analyze any arbitrary design. Furthermore, there is a tradeoff between the
analytic power of a reasoning framework and the space of designs it can analyze.
Reasoning frameworks restrict that space by imposing analytic constraints on
the input architecture description. The analytic constraints restrict the design
in different ways (e.g., topological constraints) and also specify what properties
of elements and relations are required in the design.

Fig. 2. Basic elements of a generic reasoning framework

The architecture description is submitted to a transformation called inter-
pretation. If the architecture description is well-formed with respect to the con-
straints and hence analyzable, the interpretation generates an analytic model
representation. This model is an abstraction of the system capturing only the
information relevant to the analysis being performed. The types of elements, re-
lations and properties found in an analytic model are specific to each reasoning
framework. The analytic model is the input to an evaluation procedure, which
is a computable algorithm implemented based on a sound analytic theory. The
implementation of the evaluation procedure may be purely analytic, simulation-
based or a combination of both.

Figure 3 shows the basic elements of our performance reasoning framework.
Comparing to Figure 2, we see an additional step that translates the architecture
description to a data representation called ICM. ICM stands for intermediate
constructive model and it is a simplified version of the system’s original design.
The ICM is described in Section 3. The analytic model seen in Figure 2 corre-
sponds to the performance model in Figure 3, which will be described in Sec-
tion 4. The evaluation procedure box in Figure 2 corresponds to the performance
analysis box in Figure 3, which is carried out by analytic and simulation-based
predictors created based on rate monotonic analysis (RMA) [4] and queuing
theory [5]. As described in Section 5, the predictors can estimate average and



worst-case latency of concurrent tasks in a system that runs on a fixed priority
scheduling environment.

Fig. 3. Performance Reasoning Framework

The performance reasoning framework is packaged and independently de-
ployed as an Eclipse plug-in [6]. Thus any Eclipsed-based tool used to model
software systems in a parseable design notation could benefit from the perfor-
mance reasoning framework by exporting their designs to ICM. Examples of such
tools include: IBM Rational Software Architect, OSATE tool for the AADL lan-
guage, Eclipse Model Development Tools (MDT) UML2, and AcmeStudio. When
adding the performance reasoning framework plug-in to a modeling tool, the only
thing one has to do is to create a class that implements the following method:

AssemblyInstance translateDesignToIcm(IFile designFile);

As expected, the implementation of this method is entirely specific to the design
language representation used by the tool. We have implemented this method for
the CCL design language [7] that is used in the PSK. An explanation of CCL or
how to translate it to ICM is beyond the scope of this paper. But we should note
that the design language used as input for the performance reasoning framework
shall support the following elements and relations:

– components with input and output ports1. If the design language were UML,
for example, UML components with required and provided interfaces could
be used.

– special components called environment services (or simply services) that rep-
resent external elements of the runtime environment that the system inter-
acts with. Clocks, keyboards, consoles, and network interfaces are examples

1 In CCL, an input port is called “sink pin” and an output port is called “source
pin”—these are the terms used in this paper.



of services. Like regular components, services may have sink and source pins.
In UML, they could be represented as stereotyped UML components.

– a way to wire the components together, that is, to connect a source pin to a
sink pin. In UML, a simple UML assembly connector could be used.

– a way to differentiate between synchronous and asynchronous interactions,
as well as threaded and unthreaded interactions. In UML, stereotypes could
be used to indicate these characteristics.

– a way to annotate any element with specific pairs of key and value. These an-
notations are used for properties required by the reasoning framework (e.g.,
the performance reasoning framework requires the priority of each compo-
nent to be specified). In UML, annotations could be done with tagged values.

3 Intermediate Constructive Model

The architecture description that is the input to a reasoning framework (see
Figure 2) is itself a constructive model of the system. However, it often contains
many details that are not used in the performance analysis. For example, the
state machine of a component may be used for code generation but is not needed
by the performance reasoning framework. To remove details specific to the input
design language and hence simplify the interpretation translation, we created
the intermediate constructive model (ICM). The design-to-ICM translation (see
Figure 3) abstracts the elements of the architecture description that are relevant
to performance analysis to create the ICM.

Figure 4 shows the ICM metamodel. A complete description of the elements,
properties and associations in the ICM metamodel is beyond the objectives of
this paper. Here, we present the information pieces that are key to the perfor-
mance analysis discussion in subsequent sections. The entry point to navigate an
ICM is AssemblyInstance, which is the return type of the translateDesignToIcm
method mentioned earlier. The system being analyzed is an assembly of com-
ponents. In the ICM metamodel, a component is generically called ElementIn-

stance. The use of the suffix “instance” avoids confusion when the input design
language allows the definition of types of components. For example, in CCL
one can define a component type called AxisController. Then a given assembly
may contain two components (e.g., axisX and axisY ) that are instances of that
component type. The ICM for that assembly would show two ElementInstance

objects with the same type (AxisController) but different names.
An ElementInstance object (i.e., a component) has zero or more pins (PinIn-

stance objects in the metamodel). Each pin is either a SinkPinInstance or a
SourcePinInstance object. A sink pin is an input port and when it is activated
it performs some computation. The performance analysis is oblivious to most
details of that computation. However, it is necessary to know what source pins
(output ports) are triggered during the computation and in what order—that is
given by the reactSources association between SinkPinInstance and SourcePinIn-

stance. It is also necessary to specify the priority that the sink pin computation
will have at runtime. Another important property of a sink pin is the execution



time for the corresponding computation, which is shown in the ICM metamodel
as the execTimeDistribution association between SinkPinInstance and Distribu-

tion. A sink pin can be synchronous or asynchronous. If it is synchronous, it
may allow concurrent invocations (reentrant code) or enforce mutual exclusion
on the sink pin’s computation.

Real-time systems, especially ones with aperiodic threads, sometimes exhibit
different behavior depending on certain conditions of the environment or differ-
ent pre-set configurations. For example, a system can be operating with limited
capacity due to a failure condition, or a system can have optional “pluggable”
components. These kinds of variability are represented in the ICM as Scenario

objects. A scenario can be represented in the architecture description as anno-
tations to the assembly and the sink pins that are active under that scenario.

Once the ICM for a given architecture description is created, the performance
reasoning framework can perform the interpretation translation to generate the
performance model, which is used as input to the performance analysis. These
steps are described in the following sections.

4 Performance Model Generation

An important component of a reasoning framework is the interpretation process
that transforms an architecture description into an analytic model. Section 2
showed that the architecture description is translated to an intermediate rep-
resentation (ICM) in our performance reasoning framework. In this reasoning
framework, interpretation starts with an ICM model and produces a perfor-
mance model that can then be analyzed by different evaluation procedures.

4.1 Performance Metamodel

The performance metamodel (Figure 5) is based on the method for analyzing
the schedulability of tasks with varying priority developed by Gonzalez Harbour
et al. [8]. In this method, a task is a unit of concurrency such as a process or
a thread. Tasks are decomposed into a sequence of serially executed subtasks,
each of which has a specific priority level and execution time.

The root element of a performance model in our reasoning framework is
PerformanceModel, which contains one or more Tasks. Unlike in the method by
Gonzalez Habour et al., where all tasks are periodic, in our metamodel a task is
either a PeriodicTask or an AperiodicTask. Periodic tasks are characterized by
a period and an offset that is used to model different task phasings at startup.
Aperiodic tasks, on the other hand, are tasks that respond to events that do not
have a periodic nature. For that reason, they have an interarrivalDistribution

to describe the event arrival distribution. For example, the events may follow
an exponential distribution where the mean interarrival interval is 10ms. The
SSTask models aperiodic tasks scheduled using the sporadic server algorithm [9],
which allows scheduling aperiodic tasks at a given priority while limiting their
impact on the schedulability of other tasks.



Fig. 4. ICM metamodel (notation: UML)

Tasks do not have an explicit execution time attribute because their compu-
tation is carried out by the subtasks they contain. Thus, each Subtask has an
execution time and a priority level. The metamodel supports both constant and
random execution times by providing different kinds of Distribution. The task
is the unit of concurrency. That is, tasks execute in parallel—subject to a fixed
priority scheduling policy—and within a task there is no concurrency.

4.2 From ICM to Performance Model

As depicted in Figure 2, the interpretation that generates the analysis model
can only be carried out if the analytic constraints of the reasoning framework
are satisfied by the design. The assumptions and analytic constraints of the
performance reasoning framework are the following.

1. The application being analyzed executes in a single processing unit (i.e., in
one single-core CPU or in one core of a multi-core CPU).



Fig. 5. Performance metamodel (notation: UML)

2. The runtime environment uses fixed-priority preemptive scheduling.

3. Components perform their computation first and then interact with other
components.

4. Each sink pin in a component reacts with all the source pins in the reaction.

5. No two subtasks (or equivalently, sink pins) within a response can be ready
to execute at the same time with the same priority level.

6. Priority of mutex sink pins is assigned according to the highest locker pro-
tocol.

7. Components do not suspend themselves during their execution.

Even though some of these constraints may seem too restrictive, they are the re-
sult of a process called co-refinement [10], a process that evaluates the tradeoffs
between constraints imposed on the developers, the cost of applying the tech-
nology, and the accuracy of the resulting predictions. For example, constraint 3
makes the interpretation simpler because it does not require looking into the
state diagram of the component, and also makes the use of the technology sim-
pler because it requires fewer annotations to be provided by the developer.

The ICM and the performance model are different in several aspects. For
example, the ICM can model a complicated network of computational elements,
while the performance model only supports seemingly isolated sequences of them.
The rest of this section describes the concepts guiding the transformation from
ICM to performance model.



An event is an occurrence the system has to respond to. The tick of an internal
clock and the arrival of a data packet are examples of events. A response is the
computational work that must be carried out upon the arrival of an event [4].
The main goal of the performance reasoning framework is to predict the latency
of the response to an event, taking into account the preemption and blocking
effects of other tasks. In an ICM, a source of events is represented as a source
pin in a service (i.e., a ServiceSourcePinIcm). Therefore, the goal translates
into predicting the latency of all the components that are connected directly or
indirectly to that service source pin. Since the response to an event is modeled as
a task in the performance model, it follows that for each ServiceSourcePinIcm

in the ICM, a Task needs to be created. Depending on the event interarrival
distribution of the service source pin, the task will be a PeriodicTask or an
AperiodicTask.

The next step, and the most complex one, is transforming a possibly multi-
threaded response involving several components into a sequence of serially ex-
ecuted subtasks. This transformation deals with two main issues: the internal
concurrency within a response, and the blocking effects between responses.

Concurrency within a Response. Figure 6 shows an example of a response with
concurrency. Component A asynchronously activates components B and C. Since
B and C can execute concurrently, it seems they cannot be serialized as a se-
quence of subtasks. However, because they have different priorities, they will
actually execute serially,2 first the high priority component C and then the low
priority component B, even when they are ready to execute at the same time.
Thus, it is possible to determine the sequence of subtasks that represents the
actual execution pattern. In order to do that, the design has to satisfy one an-
alytic constraint: each threaded component has to be assigned a unique priority

within the response. This is a sufficient but not necessary constraint because
two components can have the same priority as long as they are never ready to
execute at the same time. The interpretation algorithm flags situations where
priority level sharing is not allowed.

Blocking between Responses. In Figure 7 there are two responses that use a
shared component. Since this component is not reentrant, the responses can
potentially block each other. This blocking is addressed in the performance model
by using the highest locker protocol [4]. The shared component is assigned a
priority higher than the priority of all the components using it. In addition, the
component must not suspend itself during its execution. The benefit of these
analytic constraints is twofold. First, they make the behavior more predictable
because calling components are blocked at most once and priority inversion is
bounded. Second, the non-reentrant component can be modeled as a subtask in
each of the responses. There is no need to have special synchronization elements

2 The analysis assumes the application runs in one processing unit (constraint 1).
Therefore, threads that are logically concurrent are executed serially by the proces-
sor.



Fig. 6. Response with concurrency

in the model because the highest locker protocol and the fixed-priority scheduling
provide the necessary synchronization.

Fig. 7. Blocking between responses

Interpretation is a model transformation that translates from the ICM meta-
model to the performance metamodel. This transformation has been imple-
mented both using a direct-manipulation approach with Java and the Eclipse
Modeling Framework (EMF), as well as with the ATL model transformation lan-
guage [11]. Details of both implementations are beyond the scope of this paper.

5 Performance Analysis

The performance model produced by interpretation can be analyzed with a va-
riety of evaluation procedures ranging from sound performance theories, such
as RMA to efficient discrete-event simulators. The reason for this flexibility is



twofold. First, the evaluation procedures need neither be able to handle asyn-
chronous calls nor keep track of call stacks because interpretation translates
responses involving both into a sequence of serially executed subtasks. Second,
evaluation procedures do not need an explicit notion of synchronization between
tasks other than that resulting by virtue of the fixed priority scheduling.

Depending on its characteristics, a given performance model can be ana-
lyzed by some evaluation procedures and not by others. For example, models
with unbounded execution or interarrival time distributions can be handled by
a simulation-based evaluation, but not by worst-case analysis like RMA. For
this reason, different evaluation procedures may dictate adhering to additional
analytic constraints. In most cases, this is not a limiting constraint, but rather
an enabler for predictability. For instance, when developing a system with hard
real-time requirements where RMA will be used to predict worst-case response
time, one should avoid designing responses with unbounded execution time.

The rest of this section describes the different evaluation procedures used in
our performance reasoning framework. Some of them are third-party tools and
have their own input format. In such cases, the performance model is translated
to the particular format before it is fed to the tool for evaluation.

5.1 Worst-case Analysis

Worst-case analysis predicts the worst-case response time to an event in the
system by considering the maximum execution time of the components and the
worst preemption and blocking effects. Worst-case analysis in the performance
reasoning framework is carried out with MAST, a modeling and analysis suite for
real-time applications [12]. Among other techniques, MAST implements RMA
with varying priorities [8].

5.2 Average-case Analysis

Average-case analysis computes the average response time to an event. Although
this is achieved by discrete-event simulation in most cases, the performance
reasoning framework also includes an analytic average-case analysis.

Simulation-based average-case analyses simulate the execution of a system
taking into account the statistical distribution of interarrival and execution
times. By collecting the simulated response time to thousands of arrivals, they
can compute the average response time. In addition, they keep track of the best
and worst cases observed during the simulation.

The performance reasoning framework supports three different simulation-
based average case latency predictions. One of them is with Extend, a commercial
general-purpose simulation tool that supports discrete-event simulation [13]. The
simulation model is built out of custom blocks for Extend that represent the
concepts in the performance model (i.e., tasks, subtasks, etc.). The Extend-based
simulation can model several interarrival distributions and is able to simulate
sporadic server tasks. Another simulation analysis is based on a discrete-event
simulator called qsim. Being a special-purpose simulator, qsim is very efficient



and is able to run much longer simulations in less time. The last of the simulation-
based analyses uses Sim MAST, a simulator that is part of the MAST suite.
Sim MAST can simulate a performance model providing statistical information
about the response time to different events.

The analytic average case analysis in the performance reasoning framework
uses queuing and renewal theory to compute the average latency of a task sched-
uled by a sporadic server [5]. Although this method requires specific constraints
such as exponential interarrival distribution, it provides an envelope for the av-
erage latency without the need to run long simulations.

6 Example

Figure 8 shows a screenshot of the PSK showing the CCL design diagram for a
simple robot controller. The controller has two main components that execute
periodically. The trajectory planner executes every 450ms and takes work orders
for the robot. Using information from the position monitor, it plans a trajectory,
translating the orders into subwork orders that are put into the repository. The
movement planner, on a 150ms period, takes orders from the repository and
converts them into movement commands for the two axes. The responses to
these two periodic events have hard deadlines at the end of their period.

Fig. 8. Component and connector diagram for controller



When the performance reasoning framework is called, the user selects the
desired evaluation procedure and enters some analysis parameters. After that,
the design model is transformed to a performance model, which is then eval-
uated. Figure 9 shows the performance model created from the design of the
robot controller. As previously described, the performance model does not have
concurrency within the responses to the different events, and it does not involve
explicit synchronization between the responses. Figure 10 shows the results of
a worst-case latency analysis using MAST. In this particular case, the result
viewer indicates that the response to the 450ms clock is not schedulable because
it has a worst-case execution time that overruns its period.

Fig. 9. Generated performance model for controller

7 Related Work

There has been recent work in integrating performance analysis into model-
driven development approaches [14–16]. Here we describe the similarities and
differences with some of them. Woodside et al. [17] and Grassi et al. [14] have
proposed intermediate models—CSM and KLAPER respectively—to reduce the



Fig. 10. Analysis results for the controller

semantic gap between the design models and the analysis models and enable the
use of analysis tools with different design languages. In that regard, ICM has
the same intent. However, ICM is only one element in our reasoning framework,
serving as an input meta-model for one of the key elements in the reasoning
framework, namely, the interpretation that transforms the design into a perfor-
mance model. Since our approach uses two meta-models, they are respectively
closer to the start and end of the model-driven analysis process. For instance,
ICM is closer to the component and connector view of the architecture than
CSM and KLAPER. And the performance meta-model we use is close to the
input needed by evaluation procedures based on RMA. An important contri-
bution of our reasoning framework is the interpretation, which transforms the
intermediate model into a performance model with simple semantics that can be
analyzed by different procedures, including those that do not directly support
rich semantics such as forking, joining, and locking.

D’Ambrogio [15] describes a framework to automate the building of perfor-
mance models from UML design models. The approach uses meta-models to
represent the abstract syntax of source and target models and then describe the
transformation from one to the other using a model transformation language.
This approach does not use intermediate models to reduce the semantic distance
between source and target models.

Gilmore and Kloul [18] do performance modeling and prediction from UML
models that include performance information in the transition labels of the state
diagrams. They use performance evaluation process algebra (PEPA) [19] as an
intermediate representation of the model. A key difference with our work is
that our reasoning framework focuses on fixed-priority preemptive scheduling,
making it suitable to analyze hard real-time systems. PEPA, on the other hand,



assumes activities with exponentially distributed duration, whose memoryless
property allows to treat preemption-resume scenarios as preemption-restart with
resampling [20]. This approach is not suitable for real-time systems where more
determinism is required.

Becker et al. [21] use the Palladio Component Model (PCM) to model component-
based architectures including the information necessary for performance predic-
tion. PCM is much more detailed than the ICM. For instance, component inter-
faces are first-class elements of the metamodel because they are used to check
whether the connections between components through required and provided in-
terfaces are valid. The elements closest to interfaces in ICM are sink and source
pins. They are not associated with a type or service signature because it is as-
sumed that the validity of the connection has already been established at the
architecture description level–the CCL specification in our case. PCM also allows
modeling the behavior of the component as far as necessary–an approach called
gray-box–to determine the way required services and resources are used. This
includes modeling parameter dependencies, loops, and branching probabilities.
In ICM all the required services are assumed to be used exactly once for every in-
vocation of the component. Certainly, compared to ICM, PCM allows modeling
more details, that in turn means making fewer assumptions. However, to the best
of our knowledge, the complete details in PCM models cannot be automatically
generated and PCM models can only be evaluated by simulation. In contrast
ICM models are automatically generated from architecture descriptions and can
be analyzed not only by simulation but also by a sound performance theory
for worst-case response time and schedulability. Also, the simulation framework
used with PCM does not support priority-based preemptive scheduling.

Analytic constraints play an important role in our approach because they
define the space of designs that are analyzable by the reasoning framework. This
characteristic is also present in the work of Gherbi and Khendek [16] where OCL
is used to specify the constraints and assumptions of the schedulability analysis.

8 Conclusions

We began to work in the performance reasoning framework circa 2001. The
initial versions had limited analysis capability, but successful validation of the
predictions revealed great potential. More recently, we have expanded the space
of analyzable systems by incorporating and adapting performance theories and
diversifying the set of tools used in the evaluation procedure. In this process
we found that creating metamodels and model transformations greatly reduced
complexity in the reasoning framework implementation.

The performance reasoning framework has been applied successfully in sev-
eral industry scenarios [22–24] and has proven to be very useful for early adopters
of this technology. In maintenance scenarios, model-driven analysis is also useful.
The performance annotations of the components in the architecture description
can be changed to reflect the intended modifications and a new run of the anal-
ysis can verify whether the modifications will yield the required performance.



The performance reasoning framework is packaged as an Eclipse plug-in and
can be used with different design languages thanks to the ICM metamodel and
design-to-ICM adapters. A simple architecture description with structural infor-
mation (wiring of components and connectors through synchronous and asyn-
chronous ports) and performance annotations (e.g., priority, execution time) is
the input for performance analysis. ArchE [25], an architecture expert tool, is
an example of an Eclipse-based tool that has been adapted to use the reasoning
framework. The PSK is a fully automated solution that includes the perfor-
mance reasoning framework and uses CCL as the design language, providing a
comprehensive MDE solution: the same architecture description enhanced with
behavior information can also be used as input for code generation. An impor-
tant consequence is that conformance between the code, the architecture and
the analysis results is maintained.

Architecture description languages that have explicitly considered the charac-
teristics of an application domain or the business needs of adopting organizations
have been more successful [26]. The CCL language was designed to support the
development of component-based safety-critical real-time systems, and its se-
mantics are close to the target runtime environment. As a result, annotations
that express the properties of components and connectors are simpler—by con-
trast, a UML generic component or assembly connector would require extensive
stereotyping and far more annotations to express the same things.

The performance reasoning framework continues to evolve. Working with
academic and industry collaborators, we plan to extend the space of analyzable
systems by relaxing some of the current analytic constraints. Integration with
other performance analysis tools is also a goal. A limitation of our performance
reasoning framework is that execution time variations caused by branching are
only represented by the resulting execution time distributions. Since CCL and
other design languages can express the behavior inside components, future work
intends to overcome that limitation by having the interpretation look inside the
state machine of the components, perhaps using a gray-box approach as in PCM,
but trying not to hinder the automation or ability to analyze the model by means
other than simulation.

References

1. Schmidt, D.: Model-driven engineering. IEEE Computer Magazine 39(2) (2006)
2. Ivers, J., Moreno, G.A.: Model-driven development with predictable quality. In:

Companion to the OOPSLA’07 Conference. (2007)
3. Bass, L., Ivers, J., Klein, M., Merson, P.: Reasoning frameworks. Technical Report

CMU/SEI-2005-TR-007, Software Engineering Institute (2005)
4. Klein, M.H., Ralya, T., Pollak, B., Obenza, R., Gonzalez Harbour, M.: A practi-

tioner’s handbook for real-time analysis. Kluwer Academic Publishers (1993)
5. Hissam, S., Klein, M., Lehoczky, J., Merson, P., Moreno, G., Wallnau, K.: Per-

formance property theories for predictable assembly from certifiable components
(PACC). Technical Report CMU/SEI-2004-TR-017, Software Engineering Insti-
tute (2004)



6. Gamma, E., Beck, K.: Contributing to Eclipse: Principles, Patterns, and Plug-Ins.
Addison Wesley (2003)

7. Wallnau, K., Ivers, J.: Snapshot of CCL: A language for predictable assembly.
Technical Note CMU/SEI-2003-TN-025, Software Engineering Institute (2003)

8. Gonzalez Harbour, M., Klein, M., Lehoczky, J.: Timing analysis for fixed-priority
scheduling of hard real-time systems. IEEE Trans. Softw. Eng. 20(1) (1994)

9. Sprunt, B., Sha, L., Lehoczky, J.: Aperiodic task scheduling for hard real-time
systems. Real-Time Systems 1(1) (1989)

10. Hissam, S., Moreno, G., Stafford, J., Wallnau, K.: Enabling predictable assembly.
Journal of Systems and Software 65(3) (2003) 185–198

11. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Proceedings of the
Model Transformations in Practice Workshop at MoDELS 2005. (2005)

12. Gonzalez Harbour, M., Gutierrez Garcia, J.J., Palencia Gutierrez, J.C.,
Drake Moyano, J.M.: MAST: Modeling and analysis suite for real time appli-
cations. In: The 13th Euromicro Conference on Real-Time Systems. (2001)

13. Krahl, D.: Extend: the Extend simulation environment. In: WSC ’02: Proceedings
of the 34th Winter Simulation Conference. (2002)

14. Grassi, V., Mirandola, R., Sabetta, A.: From design to analysis models: a kernel
language for performance and reliability analysis of component-based systems. In:
5th International Workshop on Software and Performance. (2005)

15. D’Ambrogio, A.: A model transformation framework for the automated building
of performance models from UML models. In: 5th International Workshop on
Software and Performance. (2005)

16. Gherbi, A., Khendek, F.: From UML/SPT models to schedulability analysis: a
metamodel-based transformation. In: Ninth IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing. (2006)

17. Woodside, M., Petriu, D., Petriu, D., Shen, H., Israr, T., Merseguer, J.: Perfor-
mance by unified model analysis (PUMA). In: 5th International Workshop on
Software and Performance. (2005)

18. Gilmore, S., Leila, K.: A unified tool for performance modelling and prediction.
Reliability Engineering and System Safety 89(1) (Jan 2005) 17–32

19. Hillston, J.: Tuning systems: From composition to performance. The Computer
Journal 48(4) (May 2005) 385–400 The Needham Lecture paper.

20. Gilmore, S., Hillston, J.: The PEPA Workbench: A Tool to Support a Process
Algebra-based Approach to Performance Modelling. In: Proceedings of the Sev-
enth International Conference on Modelling Techniques and Tools for Computer
Performance Evaluation. Number 794 in Lecture Notes in Computer Science, Vi-
enna, Springer-Verlag (May 1994) 353–368

21. Becker, S., Koziolek, H., Reussner, R.: Model-based performance prediction with
the palladio component model. In: WOSP ’07: Proceedings of the 6th International
Workshop on Software and Performance, New York, NY, USA, ACM (2007) 54–65

22. Hissam, S., Hudak, J., Ivers, J., Klein, M., Larsson, M., Moreno, G., Northrop,
L., Plakosh, D., Stafford, J., Wallnau, K., Wood, W.: Predictable assembly of
substation automation systems: An experiment report, second edition. Technical
Report CMU/SEI-2002-TR-031, Software Engineering Institute (2003)

23. Larsson, M., Wall, A., Wallnau, K.: Predictable assembly: The crystal ball to
software. ABB Review (2) (2005) 49–54

24. Hissam, S., Moreno, G.A., Plakosh, D., Savo, I., Stelmarczyk, M.: Predicting the
behavior of a highly configurable component based real- time system. In: ECRTS
’08: Proceedings of the 20th Euromicro Conference on Real-Time Systems, IEEE
Computer Society (2008)



25. Bachmann, F., Bass, L.J., Klein, M., Shelton, C.P.: Experience using an expert sys-
tem to assist an architect in designing for modifiability. In: 4th Working IEEE/IFIP
Conference on Software Architecture (WICSA). (2004)

26. Medvidovic, N.: Moving architectural description from under the technology lamp-
post. In: 32nd Euromicro Conference on Software Engineering and Advanced Ap-
plications. (2006)


