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Abstract 

Component technologies are gaining acceptance in the software community as effective tools 
to quickly assemble increasingly complex systems from components. Most of the current 
component technologies, however, fail to help developers predict important software qualities 
like performance, safety, and reliability. A prediction-enabled component technology (PECT) 
augments the capabilities of a component technology with one or more reasoning frameworks 
that package quality-specific analyses and the means to apply them to component-based 
systems. Model checking is an automated approach for exhaustively analyzing whether 
systems satisfy specific behavioral claims that can be used to characterize safety and 
reliability requirements. This technical note describes ComFoRT, a reasoning framework that 
packages the effectiveness of state-of-the-art model checking in a form that enables users to 
apply the analysis technique without being experts in its use, and its incorporation in a PECT. 
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1 Introduction  

Across the software industry, projects are challenged to produce software that meets 
ubiquitous demands for increased functionality, better quality, and reduced time to market 
while simultaneously satisfying performance, safety, or security requirements. While the use 
of component technologies addresses the first set of demands, current processes and 
technologies fail to help developers predict the qualities of a system of components, resulting 
in expensive integration and testing efforts. 

Early architectural decisions have a large impact on software qualities [Bass 03] but are 
rarely analyzed by component technology tools, which are better suited to traditional, 
syntactic integration problems like those checked by compilers and linkers. Though theories 
and tools for analyzing software qualities exist, many require theory-specific expertise to use 
effectively, and few (if any) are included in the suite of tools accompanying most component 
technologies. 

The Predictable Assembly from Certifiable Components (PACC) Initiative at the Carnegie 
Mellon Software Engineering Institute develops technologies and methods for bringing the 
benefits of quality-specific analyses to component technologies. Doing so provides a means 
to reliably predict the runtime qualities (e.g., performance or reliability) of assemblies of 
components from their certifiable properties (e.g., execution time or behavioral descriptions). 
Such predictions augment the quick-assembly capability of component technologies with an 
ability to determine whether a particular design will satisfy its quality requirements. 

One of the analysis techniques we are applying is formal verification by model checking. 
Model checking is an automated algorithmic approach for exhaustively analyzing whether 
concurrent finite-state models satisfy specific behavioral claims. The types of claims 
evaluated are temporal expressions over system execution—for example, checking whether a 
system can ever fail to answer a message while in a normal mode of operation or deadlock. 
Checking these types of claims allows developers to determine whether systems will respond 
correctly and satisfy specific safety and reliability requirements. 

While model checking has been successfully applied to software, model checking successes 
are far more common in hardware industry applications and in research settings than in 
industrial software development. Two reasons for the dearth of software successes are the 
theoretical problems limiting successful application to software (e.g., state space explosion) 
and the fact that commercial developers typically lack the expertise needed to apply model 

                                                 
  Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon 

University.  
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checking. Our approach to addressing these problems is to incorporate state-of-the-art model 
checking into a prediction-enabled component technology (PECT). 

A PECT packages the complexities of an analysis technology (e.g., model checking) in a 
reasoning framework that is combined with a component technology in a way that allows 
developers to predict the behavior of their component-based systems without having to 
become experts in the analysis technology. Reasoning frameworks also exploit a component 
technology’s features and constraints to scope the class of designs that must be considered, 
which can alleviate theoretical problems and improve applicability. In this document, we 
describe how a particular model checking approach is incorporated into a PECT by the 
creation of the model checking reasoning framework ComFoRT (Component Formal 
Reasoning Technology). 

Section 2 describes how a PECT integrates a component technology and a reasoning 
framework to ensure that component-based designs will be predictable with respect to one or 
more qualities of interest.  

Section 3 provides more information on model checking, the types of claims it can analyze, 
and the current state of the research and practice of model checking.  

Section 4 describes ComFoRT, the model checking reasoning framework that we are 
developing, and some of the technical challenges involved.  

Section 5 summarizes the current state of ComFoRT and discusses next steps. 
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2 Prediction-Enabled Component Technology (PECT) 

As shown in Figure 1, a PECT extends the notion of a component technology with one or 
more reasoning frameworks providing the analyses needed to predict specific runtime 
qualities of assemblies of components (or simply “assemblies”) [Wallnau 03a].  

PECT

Component 
Technology

Reasoning 
Framework

interpretations

PECT

Component 
Technology

Reasoning 
Framework
Reasoning 
Framework

interpretationsinterpretations

 

Figure 1: Simple View of a PECT 

A component technology consists of a component model and a runtime environment 
[Bachmann 00]. The component model specifies allowable component types, interaction 
mechanisms, and services, and constrains how these features can be used together. A runtime 
environment is an execution environment that enforces aspects of the component model. A 
runtime environment plays a role analogous to that of an operating system—serving as the 
context in which components execute and providing implementations of interaction 
mechanisms (e.g., synchronous and asynchronous communication) and services. 

Each reasoning framework embodies the concepts and theories needed to analyze, and hence 
predict, specific emergent qualities of an assembly. In practice, different reasoning 
frameworks are needed to predict different runtime qualities (e.g., performance, reliability, 
security, or safety), use different component properties1 as inputs, and impose different 
constraints on what constitutes an analyzable design. 

The mechanics of extending a component technology with a reasoning framework are a little 
more complicated than shown in Figure 1. Since the goal is to predict the behavior of 
assemblies, not the component technology or its runtime, the box labeled “Component 
Technology” must be understood to represent the set of assemblies that can be constructed 
using the component technology.  

                                                 
1.  A property is a descriptive characteristic of an element (e.g., the priority of a thread is a property of 

the thread). Syntactically, a property has a name and a value. 
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Developers use the construction framework of a PECT to describe these assemblies. The 
construction framework includes a language for describing components and their 
assemblies—the construction and composition language (CCL) [Wallnau 03b]—and tools for 
designing, developing, and deploying components and their assemblies based on their CCL 
specifications [Hissam 02].  

One of many important tasks performed by these tools is constraint checking; each CCL 
specification is checked to ensure that it satisfies constraints imposed by the component 
technology and the reasoning framework. This step ensures that any system that can be built 
using the PECT can also be analyzed—leading to systems that are predictable by 
construction. 

Each reasoning framework is applied to assembly specifications by means of a formal 
interpretation that generates reasoning framework specific models from CCL specifications. 
While a particular interpretation often requires reasoning framework specific information 
(e.g., execution time or thread priority) that is captured in CCL as property annotations, much 
of the information in a CCL specification (e.g., topological information and the choice of 
interaction mechanisms) is used by most reasoning frameworks’ interpretations. 

Packaging analysis techniques in reasoning frameworks that include an automated 
interpretation is primarily a way of packaging complexity and expertise. The intent is to 
allow PECT users (software architects or developers) to gain the benefit of state-of-the-art 
analyses without having to become experts in the underlying theories and tools.  

PECT users design components and assemblies using CCL as their design language and add 
property annotations as needed to enable specific predictions (i.e., to satisfy specific 
reasoning framework constraints). PECT automation handles the rest: it generates reasoning 
framework specific models by interpretation, uses a reasoning framework to compute 
predicted behavior, and translates the results back into concepts from the original CCL 
specifications. 
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3 Model Checking 

It is becoming increasingly important that software systems be more robust and reliable. As 
the complexity of such systems grows, conventional testing methods are increasingly 
inadequate to ensure reliability because testing cannot practically achieve complete coverage. 
A more complete approach, which is gaining acceptance in industry, is to use formal methods 
to reason about system correctness (witness the active projects at AMD [Russinoff 98], 
Cadence [Barakatain 01], IBM [Ben-David 03, Ziv 03, IBM 04], Intel [Gerth 01], Lucent 
[Godefroid 97, Chandra 02], Microsoft [Ball 04], Motorola [Abadir 03], NASA [Havelund 
00, Nelson 03, Lindsey 04], National Semiconductors Corp. [0-In 03], etc.). 

In formal verification, a system is modeled mathematically, and its specification (also called a 
claim in model checking) is described in a formal language. When the behavior in a system 
model does not violate the behavior specified in a claim, the model satisfies the specification. 
Model checking [Clarke 82] is a fully automated form of formal verification that uses 
algorithms that check whether a system satisfies a desired claim through an exhaustive search 
of all possible executions of the system. The exhaustive nature of model checking renders the 
typical testing question of adequate coverage unnecessary. 

Model checking is a technique for verifying finite-state concurrent systems.2 One benefit of 
restricting ourselves to finite-state systems is that verification can be performed 
automatically. Given sufficient resources, model checking always terminates with a yes or no 
answer. Moreover, it can be implemented by algorithms that have reasonable efficiency and 
that can be run on moderate-sized machines.  

Although the restriction to finite-state systems may seem to be a major disadvantage, model 
checking is applicable to several very important classes of systems [Clarke 99].  Hardware 
controllers are finite-state systems, as are many communication protocols.  Software, which 
is not finite-state, may still be verified if variables are assumed to be defined over finite 
domains. However, this assumption does not restrict the applicability of model checking 
since many interesting behaviors of the software systems can be specified with finite-state 
models. For example, systems with unbounded message queues can be verified by restricting 
the size of the queues to a small number like two or three.  

                                                 
2. The word system is used to refer to an artifact that describes the behavior of a software or hardware 

system. The kinds of artifacts typically verified using model checking include software designs 
(e.g., Unified Modeling Language (UML) statecharts), software implementations (e.g., C or Java 
source code), and hardware designs (e.g., Verilog code). 
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In classical model checking, systems are modeled mathematically as state transition systems 
and claims are specified using temporal logic [Pnueli 77, Clarke 86]. Temporal logic is used 
to define formulas that describe system behavior over time, where the propositions of the 
logic are behaviors of interest involving state information (current state or values of 
variables) or events. Temporal logic formulas combine such propositions with temporal 
operators to describe interesting patterns of propositions over time, such as 

• Whenever X is greater than Y, Z must also be greater than Y. 

• Some invariant (e.g., mutual exclusion with respect to some resource) always holds once 
initialization is complete. 

• A component can only issue requests during an allowed interval (as bounded by events 
granting and taking away permission). 

Temporal logic model checking is extremely useful in verifying the behavior of systems that 
are composed of concurrent processes or interacting nondeterministic sequential tasks. 
Concurrency errors (as well as errors caused by the nondeterministic execution of actions) are 
among the most difficult to find by testing since they tend to be nonreproducible. 

3.1 The Process of Model Checking 
To model check a system, the following steps are performed: 

1. The system is modeled using the description language of a model checker, producing a 
model Μ. 

2. The claim to check is defined using the specification language of the model checker, 
producing a temporal logic formula ϕ. 

3. The model checker automatically checks whether Μ satisfies ϕ. 

The model checker checks all system executions captured by the model and outputs the 
answer yes if the claim holds in the model (Μ J ϕ) and no otherwise. When a claim is not 

satisfied, most model checkers produce a counterexample of system behavior that causes the 
failure. A counterexample defines an execution trace that violates the claim. Counterexamples 
are one of the most useful features of model checking, as they allow users to quickly 
understand why a claim is not satisfied. 

3.2 Software Model Checking Challenges 
Model checking is efficient in hardware verification, but applying it to software is 
complicated by several factors, ranging from the difficulty of modeling computer systems—
due to the complexity of programming languages as compared to hardware description 
languages—to difficulties in specifying meaningful claims for software using the usual 
temporal logical formalisms of model checking. The most significant limitation, however, is 
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the state space explosion problem (which applies to both hardware and software), whereby 
the complexity of model checking becomes prohibitive. 

State space explosion results from the fact that the size of the state transition system is 
exponential in the number of variables and concurrent units in the system. When the system 
is composed of several concurrent units, its combined description may lead to an exponential 
blowup as well. The state space explosion problem is the subject of most model checking 
research. 

Another significant limitation in model checking software stems from the limited 
expressiveness of classical temporal logics. When verifying concurrent software, one needs to 
specify both state information (e.g., program counter location or memory contents) and 
communication among concurrent units. For example, the Bluetooth L2CAP specification3 
asserts that “when an L2CAP_ConnectRsp event is received in a 
W4_L2CAP_CONNECT_RSP state, within one time unit, an L2CAP process may send out an 
L2CAP_ConnectInd event, disable the RTX timer, and move to state CONFIG.” As this 
example shows, both states (W4_L2CAP_CONNECT_RSP and CONFIG) and events 
(L2CAP_ConnectRsp and L2CAP_ConnectInd) are required to properly capture the 
desired L2CAP behavior. 

Generally, in concurrent software, communication among concurrency units occurs via 
actions (events) that can represent function calls, requests, acknowledgments, and so forth. 
These communications can be data dependent and carry data on their channels. Existing 
model checking techniques typically use either state-based or event-based formalisms to 
represent finite-state models of software. In principle, the frameworks are interchangeable: an 
event can be encoded as a change in state variables, or different events can be used with a 
state to reflect different values of the software’s internal variables. Neither approach on its 
own is practical, however, when it comes to the specification of data-dependent 
communication claims: considerable domain expertise is then required to annotate the model 
and to specify proper specifications in a temporal logic. 

3.3 Current Research in Software Model Checking 
The ComFoRT reasoning framework exploits current research efforts in the model checking 
community. Specifically, it focuses on resolving software verification limitations outlined in 
the previous section.  

Ameliorating state space explosion is the major research problem. There are three main 
approaches to handling this problem: 

                                                 
3. Haartsen, J. Bluetooth Baseband Specification, Version 1.0. Published in 2003. 
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1.  Compositional reasoning. Verification is partitioned into checks of individual modules 
while the global correctness of the composed system is established by constructing a 
proof outline that exploits the modular structure of the system. 

2.  Abstraction. A smaller abstract system is constructed such that the claim holds for the 
original system if it holds for the abstract system. 

3.  Counterexample-guided abstraction refinement. Abstracted systems are refined 
iteratively using information extracted from counterexamples until an error is found or it 
is proven that the system satisfies the verification claim. 

3.3.1 Compositional Reasoning 

Since model checking was created for verifying hardware systems and since most hardware 
designs have a natural division into modules, one extension of model checking to larger 
designs was accomplished by taking a “divide and conquer” approach. Under the approach, a 
verification claim for a system is decomposed into a set of local claims for the system 
modules, and then each is verified separately [Clarke 92].  

The compositional approach establishes whether a system composed of modules M1, M2 
satisfies a claim ϕ (written M1 ò M2 J ϕ). A naïve compositional approach executes (1) M1 J ϕ 

and (2) M2 J ϕ and concludes by proving that (3) M1 ò M2 J ϕ. Unfortunately, this naïve 

approach is not sound when both M1 and M2 satisfy ϕ only in a suitable constraining 
environment. To solve this problem, the compositional principle is usually strengthened to an 
assume-guarantee principle: it executes (1) M1 ò ϕ2  J ϕ1 and (2) M2 ò ϕ1  J ϕ2 and concludes by 

proving that (3) M  J ϕ [Abadi 95, Alur 96, Clarke 89, Kurshan 94, McMillan 97, McMillan 

98, Misra 81, Pnueli 85, Stark 85]. This obligation uses the local claims ϕ1, ϕ2 as the 
constraining environments (assumptions) with regard to the behavior of M2, M1 taken in 
isolation from M1, M2 respectively. 

In general, for a system composed of multiple modules, assume-guarantee reasoning 
succeeds as long as it can be shown that each system module Mi satisfies a corresponding 
local claim ϕi under a suitable constraining environment. The assume-guarantee reasoning 
approach has been successful in verifying large hardware systems, but there are some major 
difficulties in its application to software systems, most notably in (1) decomposing the 
system and (2) identifying suitable environment assumptions. Moreover, in some cases the 
complex dependencies among modules make it impossible to decompose claims into local 
claims of modules. 

3.3.2 Abstraction 

Abstraction is one of the principal complexity reduction techniques [Ball 01a, Clarke 92, 
Dams 94, Kesten 00, Kurshan 94, Loiseaux 95]. Abstraction techniques reduce the state 
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space by mapping the concrete set of states of the actual system to an abstract set of states 
that preserve the actual system’s behavior. Abstractions are usually performed in an informal, 
manual manner and require considerable expertise.  Predicate abstraction [Graf 97] is one of 
the most popular and widely applied methods for the systematic abstraction of systems.  It 
maps concrete data types to abstract data types through predicates over the concrete data.  
However, the computational cost of the predicate abstraction procedure may be too high, 
making generation of a full set of predicates for a large system infeasible.  

In practice, the number of computed predicates is bounded, and model checking is guaranteed 
to deliver sound results within this bound. The bound limit is increased once errors (if any) 
are found within the bound and fixed.  Under this approach, software systems are rendered 
finite by restricting variables to finite domains. As mentioned earlier, bounded model 
checking does not seriously restrict the applicability of model checking since many 
interesting behaviors of software systems can be specified using bounded finite-state models.  

Though conservative abstraction procedures—which ensure that if a claim holds for the 
abstract system, it also holds for the original system—are typically used, any form of 
abstraction may introduce behaviors not found in the concrete system. Counterexamples from 
model checking the abstract system are often used to detect unrealistic behaviors and refine 
the system. Repeatedly refining the abstractions, however, may introduce additional 
behaviors that result in state space explosion during the model checking phase. These 
drawbacks—coupled with the potential effectiveness of abstraction methods—motivate 
research into targeted abstractions (i.e., control abstraction, loop abstraction, and so forth) 
which can result in more accurate abstract systems. 

3.3.3 Counterexample-Guided Abstraction Refinement 

Effective model checking of realistic systems generally requires a combination of various 
state space reduction techniques. One of the most promising is counterexample-guided 
abstraction refinement (CEGAR) [Kurshan 94]. It uses automated abstraction procedures and 
has been used successfully to verify industrial hardware [Clarke 00] and software [Ball 01b] 
systems. 
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Figure 2: The Counterexample-Guided Abstraction Refinement Framework  
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The CEGAR framework is shown in Figure 2. It iteratively computes more and more precise 
abstractions of a system (a C program) until a valid counterexample is found or the claim is 
found to be correct. Initially, a very coarse but conservative abstraction is generated. The 
conservative abstraction ensures that if model checking shows that the claim holds for the 
abstract system, it also holds on the original system, at which point model checking 
terminates. If the claim does not hold for the abstract system, the model checker provides an 
abstract counterexample. This counterexample is then checked against the original, concrete 
system. If the check succeeds, the counterexample is valid, and the claim is false. If not, the 
counterexample is spurious and used to refine the abstraction, and the process starts over. 
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4 The ComFoRT Reasoning Framework 

The objective of the ComFoRT reasoning framework is twofold: (1) to use model checking to 
predict whether assemblies will meet specific safety and reliability requirements and (2) to 
allow developers to apply model checking without having to become experts in model 
checking theory or tools. To achieve these goals, we developed a model checking engine for 
ComFoRT that uses state-of-the-art model checking algorithms for software verification. The 
model checking engine is derived from MAGIC,4 a tool developed by the model checking 
group at Carnegie Mellon University (CMU).   

Figure 3 shows one effective way to use ComFoRT. 
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Figure 3: Applying the ComFoRT Reasoning Framework 

 

1. PECT users model their components and assemblies in CCL and specify the claims to be 
checked. 

2. An automated interpretation generates an input program for the model checking engine 
from the CCL specifications. 

3. The model checking engine checks whether the provided models satisfy the specified 
claims and generates counterexamples for those claims not satisfied. 

4. An automated reverse interpretation expresses the model checking results in terms of the 
CCL specifications, where the results (predictions) are recorded as property annotations. 

PECT users evaluate the predictions to decide how the design needs to be changed to satisfy 
any unsatisfied claims. The following sections describe how the first four steps are supported 
by ComFoRT. Section 4.1 describes the model checking engine (used in Step 3). Sections 4.2 

                                                 
4. Chaki, S.; Clarke, E.; Groce, A.; Ouaknine, J.; Strichman, D.; & Yorav, K. “Efficient Verification of 

Sequential and Concurrent C Programs.” To be published in the journal Formal Methods in System 
Design. 
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to 4.4 describe the tools and concepts that are used to package the model checking engine in a 
reasoning framework and that are applied in the remaining steps (1, 2, and 4). 

4.1 Model Checking Engine 
An important goal of ComFoRT is to achieve scalable verification of component-based 
software systems. Consequently, support for the time-proven techniques of abstraction and 
compositional reasoning—key factors in scaling model checking to software verification—
guided our development of a model checking engine. We were able to use the state-of-the-art 
software verification tool MAGIC as a starting point because of its support for these 
techniques. 

ComFoRT uses automated predicate abstraction techniques from MAGIC to create finite-
state models of software. Counterexample validation and abstraction refinement procedures 
from MAGIC are used within a fully automated CEGAR loop to reduce verification 
complexity. These techniques are elaborated on in Sections 4.1.1 and 4.1.2. The model 
checking engine in ComFoRT provides new verification techniques described in Sections 
4.1.3 and 4.1.4 that, when used in combination with MAGIC abstractions and CEGAR 
algorithms, improve the model checking suitability for analyzing component-based software 
designs. 

The input to the ComFoRT model checking engine is a program expressed in combinations of 
C code, FSP expressions,5 and auxiliary statements. For simplicity, we refer to such programs 
as CFA (C, FSP and auxiliary) programs. The ComFoRT interpretation generates a system 
description in which system behavior is divided into communicating, concurrent modules (or 
processes6) described in CFA. Most behavior is described in C, while FSP expressions are 
used to describe the manner in which processes communicate with each other via events.  

The ComFoRT model checking engine has been used to verify a number of real systems 
[Chaki 04b].7 It was used to discover a bug in Micro-C OS version 2.00, a real-time operating 
system for embedded software consisting of about 3,000 lines of American National 
Standards Institute (ANSI) C code. It has also been used to verify an extensive set of claims 
against the OpenSSL implementation, an open source implementation of the Secure Socket 
Layer protocol used to exchange information over the Internet.  

                                                 
5. Finite-sequential processes (FSP) is a process algebra used to concisely describe state machines 

composed primarily of patterns of events (i.e., with little persistent state information) [Magee 01]. 
6. The word process is used here with the process algebra meaning—a unit of concurrency—and not 

to indicate any particular implementation of concurrency, such as a thread or operating-system 
process. 

7. This work was originally implemented and reported with respect to MAGIC. 
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For simplicity, we will no longer distinguish between what was originally part of MAGIC 
and what was introduced for the ComFoRT reasoning framework. Both will be considered as 
part of the resulting ComFoRT model checking engine. 

4.1.1 Abstraction-Based Verification Approach  

The core feature of ComFoRT that enables it to verify software is the abstraction-based 
approach to finite-state model extraction. Additionally, ComFoRT has several other important 
features that make it particularly useful for verifying software: 

• It extracts finite-state models from concurrent, message-passing C programs and refines 
these models using a CEGAR framework.  

• Predicate abstraction, counterexample validation, and model refinement are all performed 
compositionally (i.e., one concurrent unit at a time) [Chaki 03b]. 

• It uses numerous optimization algorithms that greatly reduce the sizes of the finite-state 
models that it produces [Chaki 03a]. 

Given a program made up of a number of concurrent modules (processes) C1…Cn, a set of 
predicates on program variables, and a claim ϕ, ComFoRT automatically extracts abstract 
models M1…Mn, respectively, and checks whether the parallel composition of these models 
satisfies ϕ. It then uses the results obtained from this verification to refine the models, if 
necessary, as described below.  

Finite-state model extraction. Model extraction uses predicate abstraction to transform 
infinite-state (or very large) CFA programs into finite-state models that are amenable to 
model checking. Given a set of predicates defined over the state variables of a system, 
predicate abstraction constructs an abstract model that describes the behaviors of the original 
system in terms of these predicates. For example, if x, s, and t are integer variables of our C 
program, the expressions P := “x < 5” and Q := “s+t = 3” are two possible Boolean-valued 
predicates on these variables—that is, each of these predicates can take only two possible 
values, True or False. Therefore, the model obtained from predicate abstraction with 
predicates P and Q has a finite number of states, whereas the original system has an 
unbounded number of states since it operates on integer variables. 

Once a finite set of predicates is chosen, the states of the corresponding abstract model are 
simply valuations of the predicates. Using the previous example, there would be four 
different states corresponding to the different combinations of truth assignments to P and Q. 
Each abstract state A symbolically represents the set of all the states of the original C 
program that agree with A on the valuations of the predicates. For example, the abstract state 
A := <P=True,Q=False> corresponds to all the C program states where variable x is less than 
5, and the sum of s and t is not 3. 
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The transition relation of the abstract system is defined existentially: we postulate a transition 
from abstract state A to abstract state B if there are concrete states a and b, associated to A 
and B respectively, with a transition from a to b. Figure 4 illustrates these ideas.  
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Figure 4: Model Extraction Through Predicate Abstraction 

The left-hand side shows the control flow graph (CFG) of a simple C program with two 
integer variables x and t. If we define a single predicate P := “t = 0,” two abstract states 
correspond to each control location: P can either be True or False. The right-hand side of 
Figure 4 shows the model that we obtain via predicate abstraction. Transitions are labeled 
with actions that can represent synchronization events (absent here), the return values of 
procedure calls, and internal actions (τ). Models are composed by synchronizing on shared 
events and interleaving on other (local or internal) actions. Note that certain abstract states 
are unreachable (e.g., the state corresponding to location C and valuation True for P). 
Intuitively, this is true because the program can never take the else branch of the if 
statement in location B when t is equal to zero. 

The initial set of predicates can be obtained in many ways. The most common way is to 
collect formulas appearing in conditional expressions as well as in the claim to be checked. 
The user can also specify predicates of interest, perhaps based on some deeper understanding 
of the system. New predicates are generated, if needed, in the model refinement phase, which 
is described next.  

Model refinement using CEGAR. The model constructed by predicate abstraction is 
guaranteed to be a conservative abstraction of the original system, meaning that each 
behavior in the original system is represented by some behavior in the model, although the 
model may contain more behaviors. As a result, if the model satisfies the claim, so does the 
original system [Clarke 94]. However, a counterexample obtained by verifying the model 
may be spurious. The model checking engine analyzes the counterexample and, if it is 
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spurious, uses this information to derive additional predicates and construct a new, finer 
abstraction of the system. The new predicates, which rule out the counterexample in the new 
model, are obtained automatically using a theorem prover. In choosing the new predicates, 
algorithms are used that attempt to keep the size of the corresponding abstract model as small 
as possible. The verification is then repeated with the refined model.  

4.1.2 Compositional Verification Approach 

In addition to automated abstraction procedures, the model checking engine applies 
compositional reasoning within the CEGAR framework to further reduce verification 
complexity. Assume that a program C consists of modules C1 … Cn executing concurrently. 
The algorithms that check whether a claim ϕ holds for C use the following three-step iterative 
process. 

1. Abstract. Create an abstract model M = M1 || … || Mn. Note that the construction of the 
Mis can be done one module at a time without constructing the full state space of C. 
Further, it can be shown that if C has an error, so does M. 

2. Verify. Check if a claim ϕ  holds for M. If it does, report success and exit. Otherwise, let 
CE be a counterexample that indicates where ϕ  fails in M. 

3. Refine. Check whether CE is a valid counterexample with respect to C. Once again, this 
is done one module at a time. If CE corresponds to a real behavior, the algorithm reports 
a failure and a fragment of each Mi that shows why ¬(C J ϕ). If CE is spurious, refine M 

using CE to obtain a more precise abstract model and repeat from Step 1. 

Note that only the verification stage (Step 2) requires the explicit composition of modules, 
though this composition always involves only the abstract models. All other stages can be 
performed compositionally (i.e., one module at a time). 

This abstract-verify-refine loop continues until a real counterexample is obtained, or the 
system is verified to be correct. In theory, the CEGAR loop is not guaranteed to terminate 
when verifying arbitrary CFA programs. In practice, however, it has been quite effective 
[Clarke 99]. 

4.1.3 State/Event-Based Formalism 

The limited expressiveness of classical temporal logics (discussed in Section 3.2) is 
particularly restrictive when verifying component-based systems; useful claims often involve 
patterns of communication among components that are dependent on the state of the 
participants. To increase the usability of model checking for verification of software designs, 
new specification and verification techniques were designed and implemented in the 
ComFoRT model checking engine. One of those techniques is a formalism in which both 
state-based and event-based claims could be expressed, combined, and verified [Chaki 04b]. 
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The formalism consists of special state transition systems called labeled Kripke structures 
(LKS), which extend the type of finite-state models described in Section 4.1.1. An LKS is a 
directed graph in which states are labeled with atomic propositions and transitions are labeled 
with actions (where an event is a particular kind of action). The claim logic that was 
developed is a state/event derivative of Linear Temporal Logic (LTL). The state/event LTL 
directly represents both software models and claims without any annotations or privileged 
insights into system execution. Experiments show that standard, efficient LTL model 
checking algorithms can be applied, at no extra cost in space or time, to help reason about 
state/event-based systems. Earlier noted experiments with OpenSSL and Micro-C OS show 
that this new approach not only simplifies writing claims, but also displays important gains in 
space and time during verification. In certain cases, claims were encountered that could not 
be verified using traditional approaches that were purely event or state based due to state 
space explosion. These same claims were tractable within the state/event framework.  

The state/event-based formalism is suitable for sequential and concurrent systems and 
preserves the ability to use modular abstraction refinement procedures that are embedded 
within a CEGAR framework. 

4.1.4 Deadlock Detection 

Verifying the absence of deadlock in a composed system is a common requirement that must 
be satisfied before a system can be deployed. This is especially true for safety-critical 
systems, such as embedded systems or plant controllers, that are always expected to be 
responsive to external stimuli or service requests within a fixed deadline. Moreover, 
whenever deadlock is detected, it is highly desirable to be able to provide system designers 
and developers with feedback showing what caused the deadlock.  

However, despite significant efforts, validating the absence of deadlock in systems of realistic 
complexity remains a major challenge. The problem is especially acute for concurrent 
processes that communicate via mechanisms with blocking semantics (e.g., synchronous 
message-passing and semaphores). The primary obstacle is the well-known state space 
explosion problem. Both abstraction and compositional reasoning, though successful during 
verification of other claims [Grumberg 94, Clarke 94, Henzinger 00], are less useful in 
detecting deadlock. This is because deadlock is inherently noncompositional, and its absence 
is not preserved by standard abstractions. 

The ComFoRT reasoning framework uses a model checking approach for deadlock detection 
[Chaki 04a]. To detect deadlocks, the ComFoRT model checking engine extends the 
compositional CEGAR framework (described in Section 3.3.3) with a notion of abstract 
refusals to either detect a deadlock or to prove that no deadlock exists. The extensions are 
grounded in standard process-algebraic theory [Hoare 85]. The resulting CEGAR approach 
for deadlock detection is completely automated and provides a counterexample whenever a 
deadlock is detected. 
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4.2 CCL Designs 
Developers describe their components and assemblies using CCL [Wallnau 03b], which 
captures architectural information in terms of component and interaction mechanism types 
using behavioral descriptions, topological descriptions of assemblies, and property 
annotations. How behavior is described in CCL is particularly important to model checking.  

In CCL, behavior is described by statecharts based on UML statecharts [OMG 02]. Figure 5 
shows a graphical depiction of a CCL statechart for a simple component.  
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Figure 5: Graphical Depiction of a CCL Statechart 

CCL statecharts enrich UML statecharts with modeling conventions that describe how 
components interact (e.g., the use of ^ and $ in event names to indicate the initiation and 
completion, respectively, of interactions) and restrict the use of some UML statechart 
constructs (e.g., hierarchy and history states). Additionally, CCL supplies a C-based action 
language that defines state and transition actions, much like the action language in xUML 
[Mellor 02]. CCL fills in the gaps of UML statechart semantics by assigning specific meaning 
to semantic variation points left open in the UML standard (e.g., whether a statechart’s 
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implicit event queue is FIFO or priority based), resulting in precise semantics that enable 
sound translation during interpretation. 

Retaining UML statechart semantics enables developers who are already familiar with UML 
to quickly learn and apply CCL.8  Using a single design language (CCL), rather than a 
different language for each reasoning framework, also has benefits. 

• The same CCL specification is used as the source of all PECT reasoning frameworks, so 
developers do not have to learn multiple languages and write and maintain multiple 
specifications. 

• Different model checking reasoning frameworks could be applied to the same CCL 
specification without requiring any developer intervention or changes (e.g., if different 
model checkers were more effective for different types of claims). 

While CCL statecharts are the primary inputs for the ComFoRT interpretation to CFA 
programs, the interpretation also translates the claims to be checked by the model checking 
engine. These claims are captured in CCL as property annotations that can be attached to 
components or assemblies. 

CCL specifications can describe an assembly in various levels of detail—from structural 
(topological) information only, to coarse designs in which only basic control and 
communication decisions have been made, and finally to rich descriptions in which enough 
information is present to generate complete component implementations. Developers can use 
ComFoRT to understand the consequences of however many decisions have been captured in 
a CCL specification, but ComFoRT is most useful when applied to specifications containing 
large amounts of concurrency and coordination among components—the consequences of 
which are difficult to understand for all possible executions. 

Applying ComFoRT to design specifications, rather than complete implementations, is 
preferred. Economically, applying ComFoRT to designs allows errors or inconsistencies to be 
identified and eliminated prior to implementation or integration, with the inherent cost 
savings that earlier error detection yields. Technically, applying ComFoRT to designs—which 
typically abstracts away many details like routine error checking, logging, and data 
marshalling/unmarshalling—greatly reduces model checking complexity. While such details 
are needed in robust implementations, their contribution to state space explosion is not 
commensurate with the benefit, as these details often are not relevant to the architectural 
issues being analyzed. 

                                                 
8. Using UML statecharts was a natural choice given their expressiveness and widespread use. But we 

are obligated to avoid semantic surprises—users should never wonder whether a particular symbol 
has the same meaning in CCL as it has in UML. CCL meets this obligation by not redefining the 
semantics of statechart constructs. 
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While one of the objectives of PECT is to impose constraints that guarantee the analyzability 
of all constructible designs (i.e., all CCL specifications that satisfy the constraints of the 
component technology and the reasoning framework), we can only guarantee that analysis 
models can be generated by interpretation from all constructible designs. We cannot 
guarantee the tractability of the analysis, particularly in the case of model checking and the 
state space explosion problem. We can, however, impose additional constraints that improve 
the likelihood that analysis of constructible designs will be tractable. For example, we could 
impose the constraint that designs may not share variables among threads because shared 
variables accelerate state space growth.9 

4.3 Automated Interpretation 
Automated interpretation generates CFA programs that correspond to CCL specifications of 
components and their assemblies. As CCL and CFA are used to describe software at different 
levels of abstraction, this is a nontrivial task that involves reconciling many similar, but 
slightly divergent, concepts between CCL and CFA. 

In CCL, the architectural units of description are components, interfaces, assemblies, and 
interaction mechanisms. A component is an independently deployable unit of implementation 
that may consist of a number of reactions, each of which models some behavior of a system 
that always executes in the same thread of control (e.g., an actual thread or the body of a 
function call). Each reaction, as well as each type of interaction mechanism, has an associated 
statechart description. 

In ComFoRT, the units of description are much lower level and much simpler—a program 
consists of a number of concurrent processes, each of which has its own state machine 
description expressed in terms of C and FSP. Processes communicate by synchronizing on 
occurrences of shared events. CCL concepts like components and interaction mechanism 
types have no explicit representation in CFA programs, but are instead represented explicitly 
in terms of more primitive modeling elements. 

Bridging the gap between a CCL specification and a CFA program involves resolving a lot of 
little issues. Many of the issues are easy to resolve and can be resolved many ways. However, 
many of the decisions impact the choices that are available for resolving other issues, and 
resolving the issues consistently turns out to be a harder problem. The remainder of this 
section summarizes a variety of the issues handled by the ComFoRT interpretation. It 
includes three categories of significant issues and miscellaneous simpler issues. The 
significant issues are 

                                                 
9. This constraint is not currently imposed because it is too limiting for the types of systems we 

currently work with—reactive, real-time controllers. However, it is an excellent example of the 
type of constraints that could be imposed to improve tractability. 
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1. supplying ComFoRT-relevant information that PECT users are not required to provide 

2. determining the right set of processes to model in CFA to represent the concurrency 
found in a collection of reaction and interaction mechanism specifications in CCL 

3. determining how to translate from CCL statecharts to CFA programs 

While all of these decisions could be solved without a PECT, formalizing them in an 
automated interpretation has several benefits. All decisions are made once by the experts 
developing the reasoning framework for the PECT who best understand the subtleties 
involved. Users do not have to ponder the issues and can focus on what they care about—
their components and assemblies. Automated interpretation prevents human errors in 
application and can be proven once, rather than for each CFA program produced.  

4.3.1 Supplying Relevant Information 

Some information that is relevant to the execution of the software assembly does not depend 
on the system components. The interaction mechanisms and services provided by the 
component technology’s runtime environment are good examples. Interaction mechanism 
semantics—for example, queuing and blocking policies—certainly affect how an assembly 
behaves, though the mechanisms are not developed by PECT users and, hence, are not 
something users should be expected to know well enough to model formally. 

However, the interpretation requires specifications for all behaviors contributing to assembly 
behavior, which includes interaction mechanisms and services. Rather than passing this 
requirement on to users, the construction framework of the PECT includes a library of 
specifications for the types of interaction mechanisms and services provided by its 
component technology. These specifications are incorporated and specialized automatically 
as part of the ComFoRT interpretation. The specializations range from the simple (e.g., name 
matching) to the complex (e.g., modifying interaction mechanism statecharts at well-defined 
variation points to account for a component’s use of multiple, related interaction 
mechanisms). 

4.3.2 Determining Processes 

Deciding how to map reactions and interactions to processes in a CFA program is relatively 
straightforward because there is a convenient benchmark for comparison—the executing 
software. To correctly model implementation concurrency, each process in the generated CFA 
program should correspond, one to one, with a thread of execution in the implementation. 
Correct modeling of implementation concurrency is crucial since incorrect modeling can 
cause model checking to produce incorrect results. 

Overapproximating a model’s implementation concurrency (i.e., allocating behavior that 
cannot execute concurrently to multiple processes) leads to spurious counterexamples that 
cannot occur in the executing system. Deciding whether any given counterexample is 
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spurious can be a time-consuming task and is particularly wasteful when a counterexample is 
found to be spurious. Underapproximating a model’s implementation concurrency (i.e., 
allocating behavior that can execute concurrently to the same process) is more insidious, 
since it prevents the discovery of counterexamples that can occur in the executing system. 

To eliminate one source of overapproximation and underapproximation, the ComFoRT 
interpretation determines the implementation concurrency from information in the CCL 
specifications and knowledge of the PECT’s component technology. The interpretation then 
composes reaction and interaction statecharts into a set of processes corresponding to the 
implementation concurrency. Roughly, this composition involves the following steps: 

1. Sequentially compose a copy of each nonthreaded reaction with every reaction that 
initiates an interaction with it (recursively through the assembly). 

2. Remove all original nonthreaded reactions. 

3. Compose the remaining reactions, which correspond to threads of execution in the 
implementation, in parallel. 

4. Compose the interactions (for those interaction types requiring separate statecharts) in 
parallel with the remaining reactions. 

The result is a CFA program that includes one process for each thread of control along with 
one process for each interaction (for specific types of interactions). An example is shown in 
Figure 6 and Figure 7.  

 

Figure 6: Graphical Depiction of a CCL Assembly and Its Reactions 

Figure 6 shows a graphical depiction of a CCL specification in which boxes are components, 
arrow ends are interfaces, thick lines are interactions between components via the connected 
interfaces, and ovals are reactions (solid lines for threaded reactions, dashed lines for 
nonthreaded). 
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R3 + R5 + R7

R1 + R7 R4 + R7intR4

R2 + R7 R6intR6

 
Figure 7: Graphical Depiction of Processes in the Generated CFA Program  

 

Figure 7 shows the processes in the corresponding generated CFA program. Each process 
labeled with some combination of reaction names (e.g., R1 + R7) represents a thread of 
control in the executing system and the set of reactions that execute within that thread of 
control. The remaining processes (e.g., intR4) are those introduced to capture the behavior of 
interaction types requiring statecharts (e.g., intR4 models the message queue for messages 
sent to R4). 

This composition process almost achieves our goal of correctly modeling the implementation 
concurrency; the manner in which interaction behavior is currently incorporated (as 
additional processes) violates our goal of having each process in a CFA program correspond, 
one to one, with a thread of execution in the implementation. 

While behavioral specifications are needed for the interaction mechanisms and modeling 
each as an independent process in a CFA program is convenient, interaction mechanisms are 
not realized by separate threads of control in many runtime environments. Therefore, they 
should not always be modeled as separate processes. The consequence of the current solution 
is an overapproximation of concurrency, which does not prevent the discovery of 
counterexamples but may introduce spurious ones. Alternative solutions, as well as a better 
understanding of the consequences of the current solution, are an open area of investigation. 

For more details on this approach to systematically compose reactions and correctly model 
implementation concurrency, see the work of Ivers and Wallnau [Ivers 03]. 

4.3.3 CCL Statechart – CFA Program Translation 

Of all the issues involved in automated interpretation, translating a CCL statechart to a CFA 
program, as specified in C and FSP, is the most difficult task. Both languages represent state 
transition systems, but they have different syntactic elements and sometimes assign different 
semantics to syntactic elements with the same name. While a full explanation of all the 
differences and the details of the translation are beyond the scope of this report, the following 
sections describe some of the more important translation issues. 
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Communication semantics. The first (and perhaps biggest) difference is the semantics of 
communication between state machines. While both computational models are state machines 
that communicate by exchanging events, their mechanisms are quite different.  

• Statechart semantics allow the sending and receiving of an event to be independent 
activities. That is, when a state machine sends an event to another state machine, that 
event is queued for later delivery to the second state machine, and the first state machine 
is allowed to proceed independently of the eventual delivery of the event.  

• The communication semantics of CFA, based largely on FSP semantics,10 require the 
sending and receiving of an event to be simultaneous activities. That is, a sender can only 
send an event when the receiver is prepared to accept that event, and a receiver can only 
receive an event when it is sent by a sender—that is, event exchange is a synchronized 
activity in which two processes engage in an event at the same time. 

Consequently, CFA programs must be generated that capture statechart semantics. Statecharts 
have an implicit event queue for each state machine that effectively decouples sender and 
receiver progress and defines semantics for a receiver with multiple queued inputs (e.g., in 
terms of order of delivery).  

An implicit event queue is represented explicitly in the generated CFA programs by a process 
that is always ready to accept an event from a sender without immediately involving the 
receiver. This allows senders in CFA programs to synchronize with an intermediary without 
delay (i.e., without receiver involvement), modeling the looser restrictions on senders in 
statecharts. Interaction mechanism specifications, which describe the mediation of inter-
component communication, model this behavior in most cases.11 Further, generated reaction 
and interaction models use a particular event synchronization protocol to complete statechart 
communication semantics—ensuring that reactions receive events only at appropriate states. 

Shared data. A second, related difference is that statecharts provide forms of communication 
that are not currently available in the model checking engine. In statecharts, two concurrent 
state machines can communicate via shared data. Since the model checking engine does not 
support shared data, such communication must be modeled by means that it does support—
event communication. The current means to model this using CFA (though not the most 
efficient approach) is to model shared data in a separate process always ready to accept 
events representing read or write operations. Data accesses from statecharts are translated as 
read and write events in CFA programs that communicate with the shared data process. Such 
conceptual transformations are performed by the interpretation as needed. 

                                                 
10.  Communication semantics for FSP are, in turn, based on the communication semantics of CSP 

[Hoare 85]. 
11.  There are some cases where topological knowledge eliminates the need for such an explicit queue. 

Unthreaded reaction models, due to our composition algorithm, never accept events from more 
than one reaction and always block the sender until processing is complete. As a result, this can be 
modeled accurately using the communication semantics of CFA without an explicit queue. 
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Unconstrained events. A third issue involves the different way in which statecharts and CFA 
treat unconstrained events. In a CFA program, a process that engages in an event that is not 
shared with any other process with which it is composed is unconstrained with respect to that 
event and may engage in the event at any time. In statecharts, a state machine that consumes 
an event that is not generated by any other state machine with which it is composed will 
never receive that event. Consequently, the interpretation looks for unconstrained events in 
the statecharts, particularly interface events representing component behaviors not used in a 
particular assembly, and models the statechart semantics by excluding the events (and the 
behavior they trigger) from the generated CFA programs. 

Event names. A fourth issue involves the uniqueness of event names. In CCL, multiple 
reactions of the same component can initiate interactions on the same interface, representing 
the ability to use the same resource independently.12 To model this, the statechart for each 
reaction independently sends an event with the same name to the same receiver. In a CFA 
program, however, when multiple processes can engage in the same event, each time any one 
of them engages in the event, they must all engage in the event.  

This imposes a very different meaning—for example, if one reaction tries to call a function 
that another reaction can call, they must call it together, using the same parameters and 
getting the same result. To retain the statechart meaning, events are renamed during 
interpretation such that no two processes can send the same event and interactions are written 
to accept several different events, each of which has the same logical meaning. 

Generating equivalent control structures. The last issue is deciding how to generate a CFA 
program with a control structure that is equivalent to a CCL statechart. Since C is the central 
portion of the CFA input language, we take hints from existing techniques used to generate 
code from state machines. Each process in the CFA program is structured as follows: 

• A C function is generated for each process (as shown by the store_S function in Figure 
8).  

• Each function has an integer variable recording the current state, where the values 
correspond to the states in the CCL statechart (as shown by the currState variable 
and the #define statements in Figure 8). 

• Each function is organized around a while loop containing a switch statement in 
which each case corresponds to one of the states in the CCL statechart (as shown in 
Figure 8). 

• State changes (transitions) are represented as assignments to the state variable, followed 
by leaving the switch, reentering the loop, and then reevaluating the switch to enter 
the case for the new state (as shown in Figure 9). 

                                                 
12.  At least, independently from the perspective of the sending reactions’ component. Interactions 

with a common receiving reaction are still subject to any coordination provided by the interaction 
mechanism, such as mutually exclusive access. 
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Figure 8: Fragment of a CCL Specification (Left) and a CFA Program (Right) 
Illustrating Equivalent Control Structures 

 

 

Figure 9: Fragment of a CCL Specification (Left) and a CFA Program (Right) 
Illustrating Equivalent Control Structures with an Emphasis on Transitions 

While the translation of action statements (like comparisons and arithmetic operations) is 
straightforward (as shown in Figure 10), the treatment of communication events is not. The C 
language does not include events as syntactic elements; therefore, the model checking engine 
delegates event handling to FSP expressions related to the C code by C functions with the 
same names. Calling one of these functions in the C code instructs the model checking engine 
to use the corresponding FSP expression at that location when combining the models to 
generate an underlying state transition system representation (more precisely, an LKS). 

component store() { 
   ... 
   threaded react S(init,incr,decr) { 
      ... 
      three -> two {trigger ^init();} 
      three -> four {trigger ^incr();}
      three -> five {trigger ^decr();}
      ... 
   } // end of react S 
   ... 
} // end of component store 

 

#define START  0
#define _one_ 1 
#define _two_ 2 
#define _three_ 3 
#define _four_ 4 
#define _five_ 5 
 
void store_S() { 
   int currState; 
   ... 
   currState = 1; 
 
   while(1) { 
      switch(currState) { 
      case _one_:  
         ... 
      case _two_:  
         ... 
      case _three_:  
         ... 
      case _four_:  
         ... 
      case _five_:  
         ... 
      } // switch (currState)  
   } // while (1)  
}

component store() { 
   ... 
   threaded react S(init,incr,decr) { 
      state two { // init 
      ... 
      } 
 
      state four { // incr 
      ... 
      } 
 
      state five { // decr 
      ... 
      } 
 
      start -> one {} 
      one -> two {trigger ^init();} 
      two -> three {action $init();} 
      three -> two {trigger ^init();} 
      three -> four {trigger ^incr();}
      four -> three {action $incr();} 
      three -> five {trigger ^decr();}
      five -> three {action $decr();} 
   } // end of react S 
} // end of component store 
 

void store S() {
   ... 
   while(1) { 
      switch(currState) { 
      ... 
      case _three_:  
         ... 
         nextEvent = 
fsp_S_externalChoice(); 
         switch (nextEvent) { 
         case __decr__: 
            currState = _five_; 
            break; // case __decr__ 
         case __incr__: 
            currState = _four_; 
            break; // case __incr__ 
         case __init__: 
            currState = _two_; 
            break; // case __init__ 
         } // switch (nextEvent)  
         break; // case _three_  
      ... 
      } // switch (currState)  
   } // while (1)  
} 
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Figure 10: Fragment of a CCL Specification (Left) and a CFA Program (Right) 
Illustrating Equivalent Control Structures with an Emphasis on Actions 

A statechart uses events in two ways: as transition triggers (i.e., communication that is 
received) and as actions (i.e., communication that is sent). A sent event is translated as a 
function call bound to an FSP expression that sends the appropriate event. A received event, 
however, cannot always be translated in isolation. Often, a statechart can transition from a 
state by one of multiple transitions, each of which may have a different event as a trigger. 
This behavior is translated as a function call bound to an FSP expression that allows a choice 
of events and returns information to the C program indicating which event occurred (see the 
CFA text in Figure 11 that corresponds to the CCL specification fragment from Figure 9). 

 

Figure 11: Fragment of a CFA Program Illustrating How C (Left) and FSP (Right) Are 
Combined (Through fsp_S_externalChoice) to Represent Receiving 
Events 

component store() { 
   ... 
   threaded react S(init,incr,decr) { 
      ... 
      state four { // incr 
         entry { 
            if (data < max) { 
               data = data + 1; 
            } else { 
               data = 0; 
            } 
         } 
      } 
      ... 
   } // end of react S 
   ... 
} // end of component store 

void store S() {
   ...  
   while(1) { 
      switch(currState) { 
      ... 
      case _four_:  
         if (store_data < store_max) { 
            store_data = store_data + 
1; 
         } else { 
            store_data =  0; 
         } 
         ... 
         break; // case _four_  
      ... 
      } // switch (currState)  
   } // while (1)  
}

// ---------- Sink Pin (Event) Defines
#define __decr__ 0 
#define __incr__ 1 
#define __init__ 2 
 
void store_S() { 
   ... 
   while(1) { 
      switch(currState) { 
      ... 
      case _three_:  
         ... 
         nextEvent = 
fsp_S_externalChoice(); 
         switch (nextEvent) { 
         case __decr__: 
            currState = _five_; 
            break; // case __decr__ 
         case __incr__: 
            currState = _four_; 
            break; // case __incr__ 
         case __init__: 
            currState = _two_; 
            break; // case __init__ 
         } // switch (nextEvent)  
         break; // case _three_  
      ... 
      } // switch (currState)  
   } // while (1)  
} 

cproc fsp S externalChoice {  
   abstract {abs, 1, S_ExtChoice}; 
} 
S_ExtChoice=( 
   begin_decr -> return {$0 == 0} -> 
STOP | 
   begin_incr -> return {$0 == 1} -> 
STOP | 
   begin_init -> return {$0 == 2} -> 
STOP). 
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While this approach to modeling a statechart in C and FSP is not the most efficient, it is 
easily verified and allows us to make progress on the broader range of issues involved in 
interpretation while we consider more efficient alternatives. A complete example is found in 
Appendix A. 

4.3.4 Miscellaneous Issues 

Miscellaneous and comparatively mundane issues are also handled by automated 
interpretation in ComFoRT. 

Scoping rules. CCL and CFA have different scoping rules. In CCL, components and 
reactions have their own related namespaces, allowing a reaction and its component to 
declare variables with the same name. Both variables are visible within the inner scope (the 
reaction), and syntactic means are provided to unambiguously refer to one or the other. CFA, 
however, has a single, flat namespace for each process. Therefore, the interpretation performs 
simple name mangling to avoid name collisions in CFA programs. 

Translating claims. Claims to be checked also appear in CCL and must be translated for use 
with the model checking engine. Claims are written in a temporal logic and refer to event and 
variable names as they appear in the CCL specifications. However, events and variables are 
renamed during interpretation, and the same renaming scheme is applied to claims. While 
largely straightforward, handling events requires more than just renaming. When event 
renaming introduces multiple distinct names in CFA programs for the same statechart event, 
claims must be rewritten to allow a choice among the renamed events. 

Determining seed predicates. The interpretation determines the set of seed predicates that 
should be included in the CFA program to guide the model checking engine’s automated 
predicate abstraction algorithms and reduce abstraction costs. Currently, a useful but not 
terribly sophisticated strategy is implemented. The predicates used are extracted from the 
control points in the generated CFA program that represent the structure of the state machine 
(e.g., the possible values of the current state variable and other variables controlling transition 
among states). 

Selecting options. The interpretation determines which set of options should be used when 
invoking the model checking engine in ComFoRT to check each claim. A claim may be 
checked more or less efficiently based on the characteristics of the model and the claim and 
the choice of algorithms applied during model checking. The model checking engine allows 
some algorithm choices and parameters affecting the algorithms to be given as command line 
options. For each claim to be checked, the interpretation supplies a suitable set of options to 
be used during model checking. 
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4.4 Reverse Interpretation 
The claims to be checked are recorded in CCL as the names of property annotations. Until the 
claim has been checked, however, these annotations have no value. The automated reverse 
interpretation takes the model checking results and stores the corresponding CCL 
representation as the value of the annotation. Model checking results for a claim always take 
one of following three forms: 

1. The claim is true. 

2. The claim is false and a counterexample under which it is false is provided. 

3. The claim cannot be evaluated due to state space explosion. 

The first and third options are easy to translate for use as CCL property annotations. The 
second option is the most interesting one. 

A counterexample is a sequence of execution steps needed to reach a state in which a claim is 
false. In ComFoRT, this is a list of statements from the CFA program written in C and FSP, 
each of which represents an event or action in one (or more in the case of event 
communication) of the CFA program’s processes. Reading a counterexample is much like 
stepping through a debugger—you observe a particular sequence of variable manipulations, 
condition evaluations, and function calls (sent or received events via the corresponding FSP 
expressions). 

However, each statement is from the CFA program and not the CCL specifications, so all 
differences discussed for interpretation apply: 

• The processes do not correspond one to one with CCL reactions. 

• The CFA program includes information not found in CCL specifications (e.g., event 
queues that are implicit in statecharts). 

• Some CCL concepts have been modeled differently (e.g., shared data as event 
communication). 

• States are represented by the value of a variable in a CFA program, not the text label from 
CCL. 

• CFA program variable and event names are different from those in the CCL 
specifications. 

Given these differences, users could not be expected to understand a CFA-based 
counterexample without also understanding the semantics of CFA and the transformations 
performed by the interpretation. To package such complexity, ComFoRT includes a reverse 
interpretation: CFA-based counterexamples are converted to a sequence of statements 
expressed in terms of CCL specifications by reversing the types of transformations used to 
generate a CFA program.  
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5 Current Status and Next Steps 

A PECT packages the complexities of a quality-specific analysis technique in a reasoning 
framework that can then be used to predict the behavior of assemblies of components. The 
ComFoRT reasoning framework packages the effectiveness of a state-of-the-art model 
checking engine in a form that enables users to apply the formal analysis technique without 
being experts in its use. Initial applications in verifying the safety claims of a small industrial 
example were effective and uncovered a significant concurrency problem in which processes 
could be unnecessarily blocked.  

Future steps include extending the ComFoRT reasoning framework in various directions to  

• Expand the component technology features that can be described in CCL. 

• Scale the application of ComFoRT to larger assemblies of components. 

• Address component technology specific verification problems in addition to verification 
of individual user-supplied claims. 

• Further reduce the expertise required to apply ComFoRT. 

Component technology features are already being expanded to include, among other things, 
fully automated interpretation and reverse interpretation. We are also working to enhance 
data communication support, including parameterized events and shared data. 

Scaling the size of assemblies that can be checked by ComFoRT involves two kinds of 
activities. First, we will continue to research compositional reasoning techniques, targeted 
abstractions, and other procedures that alleviate state space explosion. Second, we can 
optimize the CFA programs generated by interpretation such that they are more efficiently 
verified (e.g., by generating programs with fewer control points, resulting in fewer 
predicates). 

To address component technology specific problems, we plan to extend the compositional 
deadlock detection work and develop algorithms for checking (certifying) whether a 
component’s CCL statechart specification is consistent with its implementation. 

Finally, we are considering two ways to further reduce the expertise required to apply 
ComFoRT. First, we could provide developers with a pattern-based approach to specifying 
claims (like the approach described by Dwyer, Avrunin, and Corbett [Dwyer 99]), rather than 
requiring developers to use a temporal logic to write claims. Second, we could improve the 
usefulness of predictions made by ComFoRT by eliminating spurious counterexamples 
stemming from remaining sources of concurrency overapproximation (e.g., the lack of an 
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explicit scheduler in generated CFA programs) and by presenting counterexamples in a more 
user-friendly form. 
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Appendix A Interpretation Example 

This section contains the complete input and output of the ComFoRT interpretation for a 
simple example. This example contains a single component with a single reaction whose 
behavior was shown graphically in Figure 5. As it is a simple example, it does not illustrate 
all interpretation concepts explained in Section 4.3, but many of the concepts from Sections 
4.3.3 and 4.3.4 are shown. 

Section A.1 contains the CCL specification used as input to the ComFoRT interpretation. For 
more information on CCL syntax, see Wallnau and Ivers’ work [Wallnau 03b].  

Section A.2 contains the two files that make up the generated CFA program. For more 
information on CFA syntax (a feature of MAGIC retained in the ComFoRT model checking 
engine), see the MAGIC tutorial at http://www.cs.cmu.edu/~chaki/magic/tutorial-1.0.html. 

A.1 Input: CCL Specification (store.ccl) 
component store() { 
   int data = 0; 
   int max = 5; 
 
   sink asynch init(); 
   sink asynch incr(); 
   sink asynch decr(); 
    
   threaded react S(init,incr,decr) { 
      state two {  // init 
         entry data = 0; 
      } 
 
      state four { // incr 
         entry { 
            if (data < max) { 
               data = data + 1; 
            } else { 
               data = 0; 
            } 
         } 
      } 
 
      state five { // decr 
         entry { 
            if (data > 0) { 
               data = data - 1; 
            } 
         } 
      } 
 
      start -> one {} 
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      one -> two {trigger ^init();} 
      two -> three {action $init();} 
      three -> two {trigger ^init();} 
      three -> four {trigger ^incr();} 
      four -> three {action $incr();} 
      three -> five {trigger ^decr();} 
      five -> three {action $decr();} 
   } // end of react S 
 
   // claims to be checked 
   annotate S {"comfort", const string Claim1 = "G([data >= 0])"} 
   annotate S {"comfort", const string Claim2 = "G([data <= max])"} 
   annotate S {"comfort", const string Claim3 = "G([data <= 3])"} 
   annotate S {"comfort", const string Claim4 = "G([data == max] & 
^incr => F([data == 0]))"} // true 
   annotate S {"comfort", const string Claim5 = "G([data == max] & 
^decr => F([data == 0]))"} // false 
   annotate S {"comfort", const string Claim6 = "G([data < 0])"} 
} // end of component store 

A.2 Output: A CFA Program 
The generated CFA program consists of store.c and store.spec: store.c contains the C code 
portion of the program, and store.spec contains the FSP expressions and auxiliary statements 
(e.g., the claims to be checked). The C code found in store.c is not the final version given to 
the model checking engine for verification; store.c must be preprocessed to normalize the 
control structure and perform macro substitution before its use with the model checking 
engine. The unpreprocessed version is presented here because it is much easier to read and 
trace to the corresponding CCL specification. 

store.c 
// -------------------- Reaction Defines S:store-------------------- 
 
// -------------------- State Defines 
#define _START_ 0 
#define _one_ 1 
#define _two_ 2 
#define _three_ 3 
#define _four_ 4 
#define _five_ 5 
 
// -------------------- Sink Pin (Event) Defines 
#define __decr__ 0 
#define __incr__ 1 
#define __init__ 2 
 
// -------------------- Reaction store:S------------------------ 
 
void store_S() { 
  
 
// -------------------- declarations ----------------------- 
   int currState; 
   int nextEvent; 
   int listening; 
 
//--------------------declare component or service state variables-- 
   int store_data; 
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   int store_max; 
 
//--------------------declare reaction state variables-------------- 
 
// -------------------- initialization ----------------------- 
   store_data = 0; 
   store_max = 5; 
   // no exit action on START 
   // no transition action on START -> one 
   currState = 1; 
 
// -------------------- state machine ----------------------- 
   while(1) { 
      switch(currState) { 
      case _one_:  
         // no entry action for one 
         listening = 1; 
         while(listening) { 
            nextEvent = fsp_S_externalChoice(); 
            switch (nextEvent) { 
            case __decr__: 
               // Discard interaction on ^decr() 
               fsp_end_decr(); // an action specified in FSP 
               break; // case __decr__ 
            case __incr__: 
               // Discard interaction on ^incr() 
               fsp_end_incr(); // an action specified in FSP 
               break; // case __incr__ 
            case __init__: 
               // Consume interaction on ^init() 
               listening = 0; 
               // no exit action on one 
               // no transition action on one->two 
               currState = _two_; 
               break; // case __init__ 
            } // switch (nextEvent)  
         } // while (listening)  
         break; // case _one_  
 
      case _two_:  
         store_data =  0 ; 
         // no exit action on two 
         fsp_end_init(); 
         currState = _three_; 
         break; // case _two_  
 
      case _three_:  
         // no entry action for three 
         listening = 1; 
         while(listening) { 
            nextEvent = fsp_S_externalChoice(); 
            switch (nextEvent) { 
            case __decr__: 
               // Consume interaction on ^decr() 
               listening = 0; 
               // no exit action on three 
               // no transition action on three->five 
               currState = _five_; 
               break; // case __decr__ 
            case __incr__: 
               // Consume interaction on ^incr() 
               listening = 0; 
               // no exit action on three 
               // no transition action on three->four 
               currState = _four_; 
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               break; // case __incr__ 
            case __init__: 
               // Consume interaction on ^init() 
               listening = 0; 
               // no exit action on three 
               // no transition action on three->two 
               currState = _two_; 
               break; // case __init__ 
            } // switch (nextEvent)  
         } // while (listening)  
         break; // case _three_  
 
      case _four_:  
         { 
            if ( store_data < store_max )  
               { 
                  store_data = store_data +  1 ; 
               } 
            else 
               { 
                  store_data =  0 ; 
               } 
         } 
 
         // no exit action on four 
         fsp_end_incr(); 
         currState = _three_; 
         break; // case _four_  
 
      case _five_:  
         { 
            if ( store_data > 0 )  
               { 
                  store_data = store_data -  1 ; 
               } 
         } 
 
         // no exit action on five 
         fsp_end_decr(); 
         currState = _three_; 
         break; // case _five_  
 
      } // switch (currState)  
   } // while (1)  
} 

store.spec 
cprog my_prog = store_S { 
   abstract abs0, { P0::store_data == 0 && P0::store_max == 5 }, 
Claim10; 
   abstract abs1, { P0::store_data == 0 && P0::store_max == 5 }, 
Claim21; 
   abstract abs2, { P0::store_data == 0 && P0::store_max == 5 }, 
Claim32; 
   abstract abs3, { P0::store_data == 0 && P0::store_max == 5 }, 
Claim43; 
   abstract abs4, { P0::store_data == 0 && P0::store_max == 5 }, 
Claim54; 
   abstract abs5, { P0::store_data == 0 && P0::store_max == 5 }, 
Claim65; 
} 
 
// Claim1: G([data >= 0]) 
Claim10 :  G ([P0::store_data >= 0]); 
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// Claim2: G([data <= max]) 
Claim21 :  G ([P0::store_data <= P0::store_max]); 
 
// Claim3: G([data <= 3]) 
Claim32 :  G ([P0::store_data <= 3]); 
 
// Claim4: G([data == max] & ^incr => F([data == 0])) 
Claim43 :  G ([P0::store_data == P0::store_max] & begin_incr =>  F 
([P0::store_data == 0])); 
 
// Claim5: G([data == max] & ^decr => F([data == 0])) 
Claim54 :  G ([P0::store_data == P0::store_max] & begin_decr =>  F 
([P0::store_data == 0])); 
 
// Claim6: G([data < 0]) 
Claim65 :  G ([P0::store_data < 0]); 
 
 
cproc store_S { 
   predicate (currState == 1), (currState == 2), (currState == 3),  
      (currState == 4), (currState == 5); 
   predicate (nextEvent == 0), (nextEvent == 1), (nextEvent == 2); 
   predicate (listening); 
} 
 
 
cproc fsp_S_externalChoice {  
   abstract {abs, 1, S_ExtChoice}; 
} 
S_ExtChoice=( 
   begin_decr -> return {$0 == 0} -> STOP | 
   begin_incr -> return {$0 == 1} -> STOP | 
   begin_init -> return {$0 == 2} -> STOP). 
 
 
cproc fsp_begin_decr { 
   abstract{ abs, 1, Begindecr }; 
} 
Begindecr=(begin_decr -> return{} -> STOP). 
 
 
cproc fsp_end_decr { 
   abstract{ abs, 1, Enddecr }; 
} 
Enddecr=(end_decr -> return{} -> STOP). 
 
 
cproc fsp_begin_incr { 
   abstract{ abs, 1, Beginincr }; 
} 
Beginincr=(begin_incr -> return{} -> STOP). 
 
 
cproc fsp_end_incr { 
   abstract{ abs, 1, Endincr }; 
} 
Endincr=(end_incr -> return{} -> STOP). 
 
 
cproc fsp_begin_init { 
   abstract{ abs, 1, Begininit }; 
} 
Begininit=(begin_init -> return{} -> STOP). 
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cproc fsp_end_init { 
   abstract{ abs, 1, Endinit }; 
} 
Endinit=(end_init -> return{} -> STOP). 
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