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Abstract

Using software components to develop mission-critical systems poses a number of technical, 
organizational, and economic challenges. One persistent and largely unaddressed challenge is 
how the consumers of software components—that is, the developers of mission-critical sys-
tems—can obtain a meaningful level of trust in the runtime behavior of software components. 
The most frequently cited concerns are centered on issues of security; for example, trust that a 
component does not contain malicious code or exhibit vulnerabilities that can be exploited by 
malicious code. There are, however, other concerns about software component behavior that 
can be just as important. For example, in an embedded weapon system, it may be crucial to 
trust that a component will always execute a function within a particular time bound or never 
introduce unbounded priority inversion. 

Certification is a practical, proven means of establishing trust in various sorts of things in other 
disciplines and is, therefore, a natural contender for developing trust in software components. 
This technical note does not propose a particular certification regimen for components. Rather, 
it introduces a series of 10 distinctions that can help in understanding different aspects of certi-
fication in the context of software components.
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1 Introduction

The Predictable Assembly from Certifiable Components (PACC) Initiative at the Carnegie 
Mellon® 1 Software Engineering Institute (SEI) is investigating how the behavior of systems 
comprising assemblies of software components can be reliably inferred, or predicted, from the 
trusted properties of the software components themselves.

There is more than a little subtlety in the phrasing of this research agenda. In particular, we use 
the phrase “trusted properties of software components” rather than “trusted software compo-
nents” to indicate that we may trust some properties of a component but not others. We also 
place the topic of component-level trust within the broader context of system-level (or, more 
properly, assembly-level) predictability; doing so indicates the intended subservience of 
trusted components to an encompassing activity involving engineering analysis.

Another subtlety is that the title of our initiative uses the adjective “certifiable” rather than 
“certified.” Our interest in trusted components lies in how they are used to make reliable pre-
dictions about assembly behavior. Our interest in certification lies in how it can be used to 
engender trust. Certification is, therefore, at least one step removed from our fundamental 
agenda—reliable prediction. On the other hand, the conditions that make a component certifi-
able are of direct importance to our agenda, since trustworthy predictions are impossible with-
out trustworthy component properties.

Hermeneutics aside, it is apparent that our perspective (that of the PACC Initiative) on which 
aspects of software components are worth trusting—namely, the properties of components that 
are parameters to analytic theories of assembly behavior—is not wholly conventional. This 
perspective may unintentionally put us at odds with the more conventional, and familiar, 
notions of software certification used in the software industry. The resulting terminological 
confusion may obscure the ideas underlying the PACC premise regarding trusted compo-
nents—ideas whose validity does not hinge on certification per se. 

An important question for the PACC Initiative, then, is: Can the conventional understanding of 
software certification be adopted, or perhaps coerced, in the service of predictable assembly? 
The question presupposes that there is, in fact, a well-developed conventional notion of soft-
ware certification. There are, in fact, many notions of software certification currently imple-
mented in different ways.

1. Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
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For the term certifiable components to have technical meaning in PACC, it will have to be sit-
uated in a much clearer model of software certification than is currently available. This techni-
cal note is our first step toward exploring the software certification landscape by presenting a 
space of alternative concepts rather than a compendium of specific approaches. The device 
used to describe this space is a series of 10 distinctions, each expressing 2 concepts that may 
be similar but not identical, partially conflicting, or mutually exclusive to one another.

These distinctions do not completely characterize the conceptual space of software certifica-
tion. They are, however, representative of what we have encountered in the literature and at 
various fora on trusted software and software certification. The distinctions are not used in this 
technical note to classify different approaches, but rather to expose concerns that underlie the 
topic as a whole.

As background, Chapter 2 defines the term certification. Chapter 3 briefly discusses the 10 
distinctions; our goal in that chapter is to help the reader develop general intuition rather than 
to present an argument in detail. A representative but by no means comprehensive review of 
related work is provided in Chapter 4. Finally, Chapter 5 presents a few tentative conclusions 
about the distinctions discussed in this technical note.
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2 Definition of Certification

We should not, at the outset, prejudice how certification may be applied to software and, in 
particular, to software components. The dictionary definition below gives us insight into the 
conventional meaning of certification and exposes what may be a source of many hidden 
assumptions about how it does, or should, relate to software components:

1. to attest as certain; give reliable information of; confirm... 2. to testify to or 
vouch for in writing...3. to guarantee; endorse reliably; to certify a document 
with an official seal...[MWU 96]

This definition is a marvel of efficiency, yet is suggestive in several ways:

• to attest as certain suggests an authoritative testimonial or “standing by” a statement

• (to give) reliable information suggests an objective quality

• (to) confirm suggests a corroboration of other information

• (to) vouch for in writing suggests evidence and legal implications

• to guarantee suggests contractual obligations and remedies

• (to use) an official seal suggests a designated authority

More specialized definitions are available; for example, legal and medical definitions of the 
term have emerged over time. These specializations are consistent with the general meaning 
but are particular in their application. For our purpose, the general definition is a sufficient 
starting point.
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3 Ten Distinctions

3.1 Truth Vs. Knowledge
The full title of Mary Shaw’s position paper nearly says it all: “Truth Vs. Knowledge: The Dif-
ference Between What a Component Does and What We Know It Does” [Shaw 96]. 

On the one hand, this distinction expresses nothing beyond an age-old epistemological ques-
tion about the basis of human knowledge and its relation to reality. On the other hand, it does 
posit an axiom of any software certification regimen: all knowledge about the properties of a 
software component will be provisional. When this axiom is accepted, any robust treatment of 
certification must account for this provisionality and possibly make it explicit. 

We are accustomed to some level of provisionality for software. For example, performance 
benchmarks of, say, operating systems involve experimental measurement and, hence, intro-
duce potential sources of systematic and random error. In fact, any properties of software com-
ponents that are measured (for example, through functional testing) will introduce sources of 
experimental error. In all cases, we would be surprised by, and should be skeptical of, any pur-
ported measures if they were not also accompanied by some sort of statistical qualification.

We are less accustomed to the idea that provisionality applies equally to properties of software 
components established by purely formal means, that is, through means of logic and proof. 
What does it mean for a proof of total correctness in Hoare logic to be provisional? Just this: 
The proof in question applies to a specification that will undergo a sequence of transforma-
tions (e.g., from source to intermediate to assembly to machine instructions), each of which is 
assumed (usually with no formal or empirical basis) to be correct.

Although this last point is a well-known bugaboo noted by critics of formal methods, it is not 
our main concern. Instead, we are concerned with understanding the provisionality of formal 
assertions, especially since a recent trend in formal methods is the use of fully automated veri-
fication technology, such as temporal logic model checking. It is reasonable to assume that 
software implementing complex verification procedures is also be susceptible to bugs.2

2. You might find it helpful to examine the release history of the well-known Spin model checker provided at http://spinroot.com.
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3.2 Knowledge Vs. Trust
This distinction can also be linked to basic epistemological questions because a great deal of 
what we claim to know about the world is acquired not through direct experience, but rather 
through description.3 This sense of the distinction is not what is emphasized in this technical 
note.

Meyer, Mingins, and Schmidt express the intended meaning of this distinction in their article 
titled “Trusted Components for the Software Industry” [Meyer 98]. In particular, they argue 
(correctly in my judgement) that trust is a social phenomena. One (revealing) supporting argu-
ment is that even the acceptance (“trust”) of mathematical proof is influenced by social factors 
such as implicit agreement on what is an acceptable level of rigor in proofs, the perceived rep-
utation of the author of the proof, and so forth. 

While this social conditioning has been noted elsewhere [Demillo 77], Meyer, Mingins, and 
Schmidt draw software-specific implications related to the question of certification. Specifi-
cally, they conclude that a broad and varied array of evidence is required to establish a social 
foundation for trust. From that conclusion, we can infer that certification, in the sense of 
authoritative labeling, may sometimes be insufficient in itself to establish trust; conversely, it 
might be necessary in certain communities accustomed to the stricture of certification; for 
example, the nuclear power industry.

Note that trust is not absolute—absolute trust is better denoted as faith. The provisional nature 
of trust is also noted by Meyer, Mingins, and Schmidt. As a result, we can also conclude, as 
did Mary Shaw, that a robust treatment of certification will address the inherent boundedness 
of the certainty of empirical, and even formal, evidence.

3.3 Normative Vs. Descriptive
Normative certification attests that software conforms to, or satisfies, some established norm. 
Descriptive certification merely “describes” some aspect of the software. 

Examples of normative certification are legion and include the following: conformance to 
interface standards, for example, POSIX;4 test suites, for example, the Ada Compiler Valida-
tion Capability (ACVC) benchmarks;5 or quality-attribute-specific norms, for example, for 

3. A classic example of this is: I know the Taj Mahal exists, and yet I have never seen it (except, again, provisionally through
photographs). Is this knowledge trustworthy? How do you decide?

4. For more information, go to http://www.opengroup.org/testing/fips/.

5. For more information, go to http://www.iste.uni-stuttgart.de/ps/AdaBasis/pal_1195/ada/ajpo/compilers/95val/val-proc.txt.
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security, the storied “Orange Book,”6 or, for safety, a menagerie of standards, including 
UL1998, IEEE 1228, IEC 60880, IEC 60950, and IEC 61508. 

Examples of descriptive certification are, by comparison, rare. Performance benchmarks have 
been defined for particular kinds of software; for example, middleware and database technol-
ogy.7 Voas has long advocated the descriptive certification of reliability and has proposed sev-
eral mechanisms for acquiring such measures [Voas 98], [Voas 99], [Voas 00]. His proposals 
emphasize the descriptive rather than normative aspects of certification because no threshold 
(norm) that components must satisfy has been defined.

Normative certification is the rule in software; descriptive certification is nearly nonexistent. 
This situation is no doubt due, in part, to the dearth of accepted measures for software—with 
the exception of “source line of code” and “function point”—and even these are disputed. In 
contrast, electronic (hardware) components have numerous descriptive measures such as 
whetstones, dhrystones, and clock speed for processors; mean time to failure; access time and 
seek time for disk drives; and so forth. Generally, these measures are used to provide manufac-
turer-rated specifications.

In general, we can conclude that certification tends toward normative interpretation, partly 
because the notions of authority and the legal and economic sanctions implied by the general 
definition of certification (see Chapter 2) favor notions of compliance to established norms. 
Still, where standard measures of component properties are available—as for certain classes of 
hardware components—some level of descriptive certification can take shape simply to allow 
manufacturers to differentiate their products in the marketplace.

The following argument is worth considering: normative certification is really descriptive cer-
tification with associated acceptance criteria or, more generally, a classification threshold for 
acceptance. If this argument is valid, descriptive certification would appear to be of indepen-
dent significance since it permits the definition of various norms rather than a single “one size 
fits all” norm.

3.4 Objective Vs. Subjective
Objective measures are those that depend only on the object of study and possibly some phys-
ical apparatus. In contrast, subjective measures are the product of some mental activity. While 
this distinction is clear, an illustration can help explain some less than obvious subsidiary 
points. 

6. For more information, go to http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html.

7. For more information on benchmarking transaction processing systems, go to http://www.tpc.org/. To see various papers on
benchmarking middleware system, go to http://nenya.ms.mff.cuni.cz/projects/corba/oopsla-workshop-03/.
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Consider, for example, measures of a quality attribute that we might call the understandability 
of a computer program. A candidate objective measure of this quality is “cyclomatic complex-
ity,” which is defined as a numerical measure derived from the structure of a computer pro-
gram (in particular, control flow).8 A candidate subjective measure might be a statement posed 
to a human subject, such as “this code is understandable,” with a numerical measure derived 
from responses to this statement ranging from “strongly agree” to “strongly disagree.”

The virtue of objectivity is that the measure is repeatable. But repeatability does not suggest 
anything about other important qualities of the measure such as reliability. It is not clear 
whether cyclomatic complexity is more reliable than the proposed subjective measure, and, in 
fact, there is reason to think just the opposite. 

Note, too, that quantification is not the sole purview of objectivity; in practice, subjective mea-
sures are quite likely to be quantified. A significant body of literature on multi-attribute deci-
sion making depends on quantified judgement. Also, Fenton and Pleeger provide a nice 
discussion of the coevolution of measures, from qualitative to quantitative in tandem with an 
improved understanding of the phenomenon being measured [Fenton 97]. Their thesis sug-
gests that objective measures of software will become increasingly prominent, since qualita-
tive measures (which are supplanted as understanding improves) are inherently subjective.

3.5 Product Vs. Process
In this report, we have tacitly assumed that the subject of certification is the software product 
itself. Yet, normative certification standards for software tend to place significant importance 
on the development processes used to create the software. This again may reflect the dearth of 
reliable (objective or subjective) measures of software quality. An emphasis on process certifi-
cation illustrates the use of an indirect, or proxy, measure of software quality. 

Product certification is likely to be most useful where conformance testing can be fully mech-
anized, such as the earlier examples of certifying interface compliance (the POSIX example) 
and test suite compliance (the ACVC example). Product certification has the merit of empha-
sizing objective measures, which, as previously noted, improves repeatability. We have a 
strong intuition (not substantiated by measure theory or current practice) that product certifica-
tion will yield more reliable measures of software quality than process certification, despite 
the known correlation between better software process and better quality software.

Process certification is more useful when expert judgement is required and the cost of formu-
lating expert judgements from product artifacts is high. For example, certifying that software 
is safe in so-called human-rated systems requires detailed examination of design artifacts (for 

8. For more details on this measure, go to http://www.sei.cmu.edu/str/descriptions/cyclomatic_body.html. 
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example, requirements specifications, architectural specifications, and source code). A less 
costly but possibly reliable measure may be the quality of the software engineering processes 
used to manage requirements, architectural design, and implementation.

3.6 Local Vs. Contextual
Local properties of software are those that can be ascertained independently of their use con-
text. Contextual properties, in contrast, are just the opposite: they require a context.9 A local 
property of software might be its size in source lines of code—which is an illustrative, if not 
generally useful, measure. A contextual measure of the same software might be its reliability, 
since reliability will, in most cases, depend entirely on how the software is used—that is, on 
what input it receives from its environment (its context).

This dichotomy is of direct relevance to the question of certifiable software components, since 
the properties of software that are of most interest tend to be contextual. In other words, the 
properties of interest tend to be those exhibited by systems as a whole rather than by any one 
part of a system. Put in yet another (but more systems-theoretic) way, the properties of interest, 
such as safety, tend to be emergent properties—those that arise as a result of the interactions 
among the parts of a system. (For a discussion of emergence, see the monograph on safety 
engineering by Leveson and associates [Leveson 04]).

This notion of emergence has some rather obvious implications for the prospects of certifying 
software components. Certifying that a software component is safe requires the certification to 
be “contextualized” in at least two ways. First, the definition of what it means for a component 
to behave safely will vary from context to context. Second, the certified component property 
must be correlated in some way to the emergent behavior, since that, rather than the compo-
nent behavior, is what is of interest.

3.7 Determinate Vs. Predictive
We say that certification is determinate if norms can be established for local properties of com-
ponents and predictive if otherwise.10

9. Fenton and Pleeger [Fenton 97] refer to this distinction as internal (for local) and external (for contextual) measures, but the
terminology adopted in this technical note is more transparent. Also, the antonym of local is global, which might better rep-
resent the distinction. However, global suggests an absolute notion, whereas contextual suggests a more relative notion,
that is, the context for one software element may simultaneously be an element in another (its own) enclosing context. For
this reason, I prefer the term contextual.

10. Of the distinctions presented, this is the only one that directly reflects our research bias. The other distinctions reveal some-
thing of the state of the practice of software certification, while this one reveals something of our proposed improvement of
this practice. This distinction is also the most difficult to describe; more work is needed to understand the underlying issue. 
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To illustrate predictive certification, consider the contextual property “the system satisfies all 
performance deadlines.” Also imagine that our interest is in certifying the performance proper-
ties of the system’s software components. Does the software component have any purely local 
properties that can be certified as conforming to this contextual property? Probably not. We 
might measure the non-blocking execution time of all component traces (non-blocking to 
eliminate non-local effects). The validity of this measure assumes that traces are not dependent 
on environmental input—a situation that is unlikely. We are also excluding the role of proces-
sor, memory, and so on as contextual elements of such benchmarks.

Although the measure of execution time is arguably not contextual, it is clear that this particu-
lar measure is insufficient for determining whether the real contextual requirement—meeting 
deadlines—is satisfied. For this purpose, we need a sufficiently detailed model of the context, 
one into which we can “plug” the component execution time to determine (predict) deadline 
satisfaction. Even if the context were defined well enough for execution time norms to be 
established for components, the effect is still predictive rather than determinate. That is true 
because, in any case, the component execution time is insufficient in itself to fulfill the contex-
tual property of deadline satisfaction.

To illustrate determinate certification, consider first the rather simple properties of conform-
ance to interface specifications or the satisfaction of specified test cases (again, the POSIX and 
ACVC examples). These properties are determinate by definition. A less trivial illustration is 
to certify the total correctness of a software component—that is, that it always computes the 
correct result and terminates for input within specified bounds. Here, the contextual assump-
tions are finessed, but not eliminated, by circumscribing the behavior of the context (the envi-
ronment). The result is still determinate, however, because the proof of correctness requires 
only these assumptions.

If this last illustration is modified, however, from certifying component-level correctness to 
certifying system-level safety, matters become more obscure. We may now require (as we did 
in the performance illustration) a model of the context that is detailed enough to expose those 
patterns of interaction among components from which safety will emerge. Now the proof of 
component correctness is just a parameter of a larger proof of safety. Further contextual 
assumptions may need to be more detailed; for example, those in the “assume-guarantee” 
clauses that are often required to construct a compositional proof of correctness of concurrent 
software. Certification may still be determinate in this case, but the boundaries are becoming 
blurred.

To recap, the performance properties of components can be certified only predictively, since 
these properties are inherently contextual. In contrast, properties that are inherently local to 
components can be determinately certified. A grey area arises when the properties are local to 
components, but the norms are contextual. If we accept Fenton and Pleeger’s thesis that con-
textual properties are the main ones of interest, perhaps we should also accept that predictive 
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certification is likely to be more interesting than determinate certification for software compo-
nents.

3.8 Formal Vs. Empirical
This distinction differentiates those software component properties established through proofs 
in some system of logic (formal properties) from those established through observation and 
measurement (empirical properties).

It is natural to think of formal techniques as constituting a gold standard for the software prop-
erties dependent exclusively on software (i.e., those not dependent on the peculiarities of a 
particular computing environment such as memory and processor speed) and to consider 
empirical properties as a compromise at best. The second-class status of empirically derived 
evidence is certainly implied by Meyer, who assigns formal proof the high-road status, while 
relegating non-proof-theoretic approaches the low-road status [Meyer 03]. It is difficult to dis-
agree with this assessment, especially if a computer program is accorded its true stature as a 
formal specification. 

In some cases, though, we must rely on measurement for those properties dependent on the 
physical computing environment; for example, the consumption of time and power and the 
generation of heat—all of which may depend on the number of instructions needed to compute 
a particular function, on the mix of instructions used, and on the characteristics of hardware 
(which often vary from batch to batch in a manufacturing process).

Measurement may also be useful, however, when applied on a scale that would be impractical 
for formal techniques. There are analogues in the physical sciences. For example, the ideal gas 
laws are, in principle, an approximation of forces that could be computed by applying the laws 
of motion, assuming inelastic collision, on the scale of molecular interaction [Fermi 56]. There 
is no need to do so, however, since the law of large numbers assures us that the ideal gas laws 
adequately describe the emergent properties of temperature and pressure at a particular level of 
system description.

This ideal gas law example may seem contrived and far removed from software, but software 
analogues are not hard to find. For example, automata-theoretic models of program execution 
provide a sound foundation for microscopic theories of program behavior, and those models 
are exploitable by formal verification techniques such as temporal logic model checking. 
These techniques suffer from state space explosion, however, for even moderately complex 
computer programs, to say nothing of large-scale systems comprising many hundreds of such 
programs. At these levels of system scale, various forms of statistical quality control and sta-
tistical testing have proven more practical and effective.
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Probability theories that provide meaningful models of the behavior of software systems with 
large and potentially unbounded state space have been applied also in the new discipline of 
real-time queuing theory (RTQT) [Lehoczky 97] and, quite recently, in survivability models of 
software systems [Jha 01]. These techniques are favored because they provide more conve-
nient and tractable analysis of probabilistic behavior, while still exhibiting the soundness of an 
underlying mathematical theory. And, as noted earlier, such theories can provide a basis for 
predictive certification.

Formal and empirical may be described here as extremes of a dichotomy, but they are not 
mutually exclusive. For example, model checking and testing have been combined by using 
empirical testing to verify that a developed system is indeed a refinement of an abstract model, 
where that model is subjected to formal verification [Havelund 01].

3.9 Procedural Vs. Mechanical
Procedural certification mandates a role for some authorized, human, certifying agent. In other 
words, procedural certification involves a “human in the loop.” In contrast, mechanical certifi-
cation can, in principle at least, be fully automated.11

Normative certification standards currently in use in the software industry (see, for example, 
the safety standards mentioned earlier) are procedural. It is hardly possible to conceive that 
compliance with these standards can be reduced to mechanical checking. Moreover, these 
standards have spawned a support industry of independent verification and validation (IV&V) 
laboratories that provide testing services for standards compliance. This business model serves 
industry well, since IV&V allows for a specialization of skills, provides a means of reducing 
the liability exposure of system producers, and helps generate social trust.

Mechanical certification has appeared in the commercial marketplace. A notable example is 
Microsoft’s approach to certifying device drivers. Drivers are subjected to a battery of compli-
ance tests, including the use of a fully automated suite of model checking tools that formally 
verify a specified set of safety12 conditions (a “safety policy”). The logic of a mechanical 
approach seems well suited to Microsoft’s business need to establish social trust in its products 
without requiring a large investment in a “human in the loop” certification process. 

Intriguing possibilities for mechanical certification are also emerging in research in proof-car-
rying code (PCC), sometimes referred to as self-certifying code [Necula 96]. In one variant of 

11. The formulation of mechanical versus procedural is preferred to automated versus manual because some processes that
are automatable in principle may, for practical reasons, make use of manual processes—the running of test programs, for
example. The formulation chosen in this technical note reflects the inherently procedural nature of an activity.

12. Note that this use of the term safety refers to a particular class of properties that can be established by examining the prefix
of finite execution traces. This is not the same notion of safety used by the various safety standards mentioned earlier.
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this concept, a consumer publishes a safety policy,12 and certifying compilers insert a proof of 
this safety policy’s satisfaction directly into component code. The target system in which the 
component will be placed executes an efficient check of the proof. One interesting characteris-
tic of this approach is that fraudulent proofs are definitely rejected, while adulterated code (for 
example, code that has been tampered with or otherwise compromised) will be accepted only 
if it satisfies the published safety policy.

PCC is an approach to generate trust in components even if component suppliers and distribu-
tion channels (e.g., for mobile code) are untrusted. Research in so-called “foundational PCC” 
takes this approach to the extreme by systematically reducing the “footprint” of the trusted 
computing base required for PCC [Appel 01]. For example, in Necula and Lee’s original work 
[Necula 96], the proof checker must be a trusted component. Foundational PCC allows this 
component, and various others of the original PCC work, to be untrusted, achieving what Lee 
has referred to euphemistically as “a conjurer’s trick”13 of generating trust from a trustless 
environment. 

3.10 Standard Vs. De Facto
One assertion made in this technical note (and elsewhere) is that certification is a means to an 
end—it is a tactic that can be used to establish trust and, possibly, reduce liability. Trust and 
reduced liability are economic and social ends that transcend the objects of certification—par-
ticular systems or components of systems. Accordingly, in many cases, there are significant 
economic and social interests at stake in how certification norms are defined and compliance 
is enforced (sanctions, etc.). The established fora for reconciling these interests are the recog-
nized standards bodies—the Institute of Electrical and Electronics Engineers (IEEE), the Inter-
national Electrotechnical Commission (IEC), the American National Standards Institute 
(ANSI), the International Standards Organization (ISO), the Federal Information Processing 
Standards (FIPS), and so forth.

As we saw with the example of Microsoft device drivers, however, not all standards must be 
established by recognized standards bodies. Other standards may be imposed by particular 
businesses (for example, Microsoft), by standards bodies that are, in effect, proxies for one or 
more businesses (for example, the Object Management Group), or for particular business seg-
ments (for example, automotive and workflow management). Such standards are often called 
(sometimes pejoratively) de facto standards. Those standards tend to emphasize concerns such 
as branding (for example, “Microsoft Certified” or “100% Java”).

The distinction between standard and de facto certification may not seem, on the surface, to be 
significant. Branding is, after all, just another means of establishing trust—in this case, 

13. This is an overstatement, but just barely. One has to trust something, but if foundational PCC is successful, all that must be
trusted are the foundations of formal logic.
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through product uniformity. On the other hand, there is no question that the approaches used to 
establish sanctioned and de facto standards are radically different. Intuitively, deciding which 
route to take for certified software components seems to be important in defining a starting 
point for both the effort (e.g., a particular safety standard) and the strategy used to achieve 
consensus.
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4 Related Work

Meyer has long been an eloquent proponent of many aspects of software quality and has, most 
recently, been associated with the notion of trusted components. He is the creator of design by 
contract (DBC), a technique that embraces formal methods and testing to improve the pro-
gramming process and the quality of the resulting programs. Features to support DBC are 
incorporated directly into Meyer’s Eiffel programming language, although DBC features have 
appeared in other languages as well [Arnout 02], [Kramer 98]. 

Meyer’s most recent work on the subject of trusted components is geared toward establishing a 
component certification center. The center has two metaphorical roads: (1) the high road, 
based on proofs of component correctness and (2) the low road, based on a rudimentary but 
usable component quality model [Meyer 03]. It is not clear how much progress has been made 
toward the goal of the certification center.

Voas has been an outspoken advocate of software warranties and software certification. Much, 
but not all, of Voas’s work has been directed to the use of commercial off-the-shelf software in 
settings requiring a high level of quality assurance. Voas’s notion of a software certification 
laboratory [Voas 00] has a similar intent to Meyer’s certification center, but is more distributed 
in operation (at least in concept, since no such laboratory has been developed). 

Microsoft Corporation has several active areas of investigation and product development that 
have some bearing on the topic of software certification. The SLAM toolkit [Ball 01] imple-
ments a formal verification technique used to verify device drivers against a prespecified set of 
safety conditions (for a definition of safety, see footnote 12 on page 11). Various efforts are 
based on Gurevich’s Abstract State Machine Language (AsmL) [Gurevich 04]; for example, 
the use of monitors and “spying” for runtime contract verification [Barnett 01]. For example, 
intriguing work reported by Barnett and Schulte uses AsmL, runtime monitors, and features of 
the COM component technology to perform runtime conformance checking between a compo-
nent implementation and a formal specification of its behavior. This is another example of 
combining formal and empirical testing techniques (the other, already cited, is Havelund and 
Rosu’s work [Havelund 01]).

The National Infrastructure Assurance Partnership (NIAP)14 is a U.S. government initiative, 
initially conceived as a collaborative effort of the U.S. National Institute for Science and Tech-

14. For more information on the NIAP, go to http://niap.nist.gov/index.html.
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nology (NIST) and the U.S. National Security Agency (NSA). The goal of the NIAP is “to 
help increase the level of trust consumers have in their information systems and networks 
through the use of cost-effective security testing, evaluation, and validation programs.” The 
NIAP represents a traditional, normative approach to software certification. 

NIAP certification norms are referred to as the common criteria and protection profiles, which 
are product-category-specific “slices” through the common criteria (e.g., “firewall” and “oper-
ating system”). The common criteria are based on the NSA’s “Orange Book” security norms 
but have been updated to reflect the emergence of a robust marketplace in commercial soft-
ware technology. To date, over 120 products have been validated as compliant with some 
aspect of the common criteria,15 and the NIAP has established 8 separate testing laboratories. 

Underwriter’s Laboratory (UL) has developed the ANSI/UL1998 standard for the safety of 
software in programmable components. Like the NIAP, UL1998 is normative. Unlike the 
NIAP, however, UL1998 places a much stronger emphasis on process norms, which is consis-
tent with the system-level safety certification standards discussed earlier. UL1998 also shares 
with the NIAP its specialization to the concerns of software, focusing not on the system as a 
whole (the programmable component in UL1998-speak), but rather on its software element.

15. For a list of those products, go to http://niap.nist.gov/cc-scheme/vpl/vpl_name.html.
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5 Conclusions

Based on the discussions in this technical note, some preliminary observations about certifica-
tion in practice are that it 

• emphasizes process more than product, subjective rather than objective, normative rather 
than descriptive, determinate rather than predictive, and procedural rather than mechanical 
approaches

• involves a recognized, possibly designated certifying authority; the certifying authority 
need not be, and often is not, the same as the testing agent.

• does not accommodate provisionality, at least in part because the emphasis on process and 
subjective measures presents significant challenges to quantifying uncertainty

What do these observations mean for the PACC agenda? Compared with the first bulleted 
observation above, PACC emphasizes product rather than process, objective rather than sub-
jective, descriptive rather than prescriptive, predictive rather than determinate, and mechanical 
rather than procedural approaches to component trust. While the PACC notion of a certifiable 
component is clearly quite different from current practice, it is not unprecedented, as evi-
denced by the Microsoft device driver certification program. Since the Microsoft program is 
driven by clear-eyed business considerations, its contrary emphasis (like that in PACC) should 
be taken seriously.

The PACC concept of certifiable component is likely to be best received when the certifying 
authority is motivated primarily by bottom-line considerations; for example, manufacturers of 
software or devices that have tight design tolerance and are constructed from or extended by 
third-party software components. In contrast, the PACC concept of certifiable components will 
be difficult to transition in two situations: (1) when the certifying authority is part of an official 
regulatory process, since, in that setting, the bottom line is but one of many large-scale social 
interests at stake and (2) where the regulators must be wary of being overly prescriptive and 
imposing competitive or other economic hardship on manufacturers of software and software-
intensive systems.
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