
The Structured Intuitive
Model for Product Line
Economics (SIMPLE)

Paul C. Clements
John D. McGregor
Sholom G. Cohen

February 2005

TECHNICAL REPORT
CMU/SEI-2005-TR-003
ESC-TR-2005-003

Pittsburgh, PA 15213-3890

The Structured Intuitive Model
for Product Line Economics
(SIMPLE)

CMU/SEI-2005-TR-003
ESC-TR-2005-003

Paul C. Clements
John D. McGregor
Sholom G. Cohen

February 2005

Product Line Practice Initiative

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Christos Scondras
Chief of Programs, XPK

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2005 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

CMU/SEI-2005-TR-003 i

Table of Contents

Acknowledgments...vii

Abstract...ix

1 Introduction ..1

2 Introduction to SIMPLE..5
2.1 Cost and Benefit Functions ...6

2.2 The Four Basic Cost Functions of SIMPLE ...6

2.3 Cprod : The Cost of Building Products in a Stand-Alone Fashion8

2.4 Cevo and Ccabu : Modeling the Cost of Evolving a Product8

2.5 Expressing Time Periods in the Model...9

2.6 Accounting for Product Line Economic Benefits10

3 Scenarios..13
3.1 The Cost of Building a Software Product Line13

3.2 The Cost of Building a Software Product Line Vs. Building the
Products Independently...13

3.3 Cost of Releasing a New Version of a Product Line Member...............14

3.4 Comparing the Cost of Converting to a Product Line Vs. Continuing to
Evolve an Existing Set of Stand-Alone Products..................................15

3.5 Return on Investment (ROI) ..18

3.6 Constructing and Evolving a Product Line ...18

3.7 Redistributing Products Among Existing Product Lines19

3.8 Adding New Products to Existing Product Lines20

3.9 Build Vs. Buy...21

4 Approaches for Implementing Cost and Benefit Functions....................23
4.1 Using an Organization’s Own Historical Data23

4.2 Community Benchmarks ...23

4.3 Utility Functions...24

4.4 Quantifying Non-Numeric Values...26

4.5 Divide and Conquer...26

ii CMU/SEI-2005-TR-003

4.6 Inference... 26

4.7 Gross Approximation... 27

4.8 Benefit Function Implementation... 27

4.9 Implementing the Homogeneity Metric.. 29

5 Applying SIMPLE in Practice .. 31

6 Relationship to the SEI Framework for Software Product Line
Practice .. 33
6.1 Related Software Product Line Practice Areas.................................... 34

6.2 Patterns for Software Product Line Practice.. 37

7 Related Work.. 41
7.1 Poulin’s Measuring Software Reuse.. 41

7.2 COPLIMO... 43
7.2.1 Product Line Development in COPLIMO 43
7.2.2 Annualized Life-Cycle Model in COPLIMO 45

8 Future Work ... 47
8.1 Validating SIMPLE .. 47

8.2 Expanding and Organizing the Set of SIMPLE Scenarios 48

8.3 Exploring Intra-Model Dependencies and Sensitivities........................ 48

8.4 Presentation Issues: Making SIMPLE Available and Usable 49

Appendix A – Goal Question Metric (GQM) Analysis of Homogeneity
Metric.. 51

Appendix B – Table of Symbols Used in SIMPLE ... 57

Appendix C – Acronym List.. 59

References .. 61

CMU/SEI-2005-TR-003 iii

List of Figures

Figure 1: The General Scenario...5

Figure 2: Uniform Utility Curve ...24

Figure 3: Utility Function ..25

Figure 4: Step Utility Function ..25

iv CMU/SEI-2005-TR-003

CMU/SEI-2005-TR-003 v

List of Tables

Table 1: Initial Data...28

Table 2: Satisfaction After the Product Line ..28

Table 3: Benefit Calculation ..28

Table 4: Product Line Practice Areas..33

Table 5: Relationship of SIMPLE to Product Line Practices34

Table 6: Relationship of SIMPLE to Patterns for Software Product Line
Practice...38

vi CMU/SEI-2005-TR-003

CMU/SEI-2005-TR-003 vii

Acknowledgments

This work grew out of a discussion group about product line economics at the 2003 Dagstuhl
seminar on product family development. In addition to McGregor and Clements, that group
included Dirk Muthig and Klaus Schmid of Fraunhofer IESE and Günter Böckle of Siemens.
That group went on to publish two papers about their work: one on the basic model [Böckle
04b] and the other showing how to use the economic model to calculate return on investment
in a software product line approach [Böckle 04a]. Although this report is the work of the
authors listed, we would not have had anything to write about without the contributions of
our German colleagues, with whom we continue to meet and collaborate to further the work.
To them we express our gratitude and acknowledge their helpful comments on this report.
We are also grateful to Charles Krueger of BigLever Software, Inc., who made many helpful
suggestions during recent discussions and to Gary Chastek and Lawrence Jones of the
Carnegie Mellon® Software Engineering Institute (SEI) for their helpful reviews. And
finally, we thank Dale Peterson of Convergys and John Gaffney of Lockheed Martin for their
insightful reviews and comments. Dale Peterson’s paper, “Economics of Software Product
Lines” [Peterson 04], from which we have quoted liberally in this publication, was especially
illuminating.

® Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon

University.

viii CMU/SEI-2005-TR-003

CMU/SEI-2005-TR-003 ix

Abstract

Software product line practice is an effective strategy for developing families of software-
intensive products. Business modeling is a fundamental practice that provides input into a
number of decisions that are made by organizations using or considering using the product
line strategy. This report presents the Structured Intuitive Model of Product Line Economics
(SIMPLE), a general-purpose business model that supports the estimation of the costs and
benefits in a product line development organization. The model supports decisions such as
whether to use a product line strategy in a specific situation, the specific strategy to apply,
and the appropriateness of acquiring or building specific assets. This report illustrates the
model’s scope by presenting several scenarios and its usefulness by integrating it into several
product line practice patterns. The report ends with a description of future work aimed at
making the model usable by product line practitioners.

x CMU/SEI-2005-TR-003

CMU/SEI-2005-TR-003 1

1 Introduction

Product line practice has become an important and widely used approach for the efficient
development of complete portfolios of software products [McGregor 02]. The fundamental
idea of the approach is to undertake the development of a set of products as a single, coherent
development task. Products are built from a core asset base, a collection of artifacts that have
been designed specifically for use across the portfolio. This approach has produced order-of-
magnitude economic improvements compared to one-at-a-time software system development
[Clements 02b]. The product line approach is a comprehensive software-intensive product
development strategy. It includes not only technical approaches to solving the problem at
hand but business considerations as well, including the economic characteristics of the
development. The strategic nature of these characteristics affects how business modeling is
carried out in the organization.

The product line approach is not always the best economic choice for developing a family of
related systems. For example, the systems may be prohibitively dissimilar from each other,
or the family might contain too few systems to recoup the cost of developing the core assets.
Decision makers must be able to predict the costs and benefits of developing and evolving a
product line as compared to undertaking traditional development approaches. Even when a
product line approach has been embraced, alternative approaches are available, and their
economic implications must be weighed before one of those approaches is chosen. Peterson
writes

The investment costs and risks, as well as the downstream benefits can be
significant. Gaining executive stakeholder buy-in to making the investment
requires a business case that translates the qualitative benefits so often cited for
software product lines into concrete business benefits. The business case process
can be an effective decision making tool for not only deciding whether an
organization should transition to an SPL [software product line], but also how
best to make the transition a success. An understanding of the size and timing of
the cash flows will enable the organization to assess its transition strategy, and
determine the degree to which it should adopt an incremental and iterative
approach [Peterson 04].

Most of the current economic arguments are based on singular data points derived from case
studies [Clements 02a, Knauber 02, Clements 02b, Cohen 04, SPL 05a] or convincing
arguments appealing to reasonableness and simplistic cost curves [Weiss 99, Cohen 03].
Existing models of development costs in the context of reuse can only be applied in a
restricted way, since product line development involves some fundamental assumptions that
are not reflected in these models. Currently, only a few economic models exist specifically

2 CMU/SEI-2005-TR-003

for product line engineering, and usually they do not address the effects of maintenance and
evolution over time [Favaro 96, Mili 00, Schmid 02, Wiles 02]. Others limit reuse to
software only or artifacts close to software, treating cost as a function of lines of code
[Gaffney 92]. Most do not take into account the costs of making changes to the organization
so that it can more effectively create and sustain a software product line [Cruickshank 93].

A model is needed that can be used to predict software product line costs and benefits under a
variety of real-world situations and that can be used easily by product line decision makers
not skilled in intricate economic theories. This report suggests such a model called the
Structured Intuitive Model for Product Line Economics (SIMPLE), which was developed by
the Carnegie Mellon® Software Engineering Institute (SEI).

We have several objectives for SIMPLE:

1. It must model real situations completely and correctly so that it can give high-fidelity
answers to the real problems of organizations.

2. It must be sufficiently intuitive for product line personnel to easily produce answers
whose derivation can be shown to and understood by others.

3. It should be understandable by managers and technicians alike.

4. It should be flexible enough to help answer a wide range of questions. In fact, our model
is structured in parts to allow the modeler to select the appropriate levels of detail and
model elements to answer a specific question.

5. It should not assume any particular approach to software product line engineering
beyond the basic tenets implied by the definition of a software product line: “a set of
software-intensive systems sharing a common, managed set of features that satisfy the
specific needs of a particular market segment or mission and that are developed from a
common set of core assets in a prescribed way” [Clements 02b].

SIMPLE comprises a set of cost and benefit functions that can be used to construct equations
that can answer a number of questions such as whether the product line approach is the best
option for development and what the return on investment (ROI) is for this approach. In this
report, we define these functions and describe some possible implementations for them. We
also illustrate the usefulness of these functions by using them to construct the equations for
several scenarios.

Of course, even a full-fledged economic model may not provide every input necessary to
make the right choice among alternatives. For example, SIMPLE does not address risk—that
is, it does not help assess the relative risks of different alternatives and factor them into its
formulas.1 No economic model will replace a manager’s experience or instincts or take into
account intangibles such as customer loyalty, organizational culture, political influences, and

® Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon

University.
1 For an example of a software cost model that does address risk, see Verhoef’s work [Verhoef 04].

CMU/SEI-2005-TR-003 3

personality factors. It will, however, constitute an important tool in a savvy manager’s
decision-making toolkit.

The remainder of this report is organized as follows. In Section 2, we introduce the complete
model and provide specifications for the four basic cost functions at its core. Then, in Section
3, we present scenarios that illustrate the use of the model. These scenarios represent a
spectrum of business decisions to which the model can be applied. Section 4 discusses ways
of implementing the cost and benefit functions. We provide a general scheme and specific
techniques for implementing different portions of the equations. In Section 6, we relate the
model to several practice areas in the SEI Framework for Software Product Line PracticeSM
[Clements 04], as well as several applicable patterns for software product line practice
[Clements 02b]. In Section 6, we sketch out an uncomplicated process for using SIMPLE.
In Section 7, we relate the model to previous work in the field. Finally, in Section 8, we lay
out future directions for continuing work. Appendix A discusses a homogeneity metric for a
family of products, while Appendix B lists and defines the symbols used in SIMPLE.

SM Framework for Software Product Line Practice is a service mark of Carnegie Mellon University.

4 CMU/SEI-2005-TR-003

CMU/SEI-2005-TR-003 5

2 Introduction to SIMPLE

In broad terms, SIMPLE can be used to compute estimates for various economic measures
related to the building, sustainment, and evolution of software product lines. The problem of
cost-benefit calculations for product line engineering that led to SIMPLE can be reduced to
the (general) problem of modeling the following situation:

An organization has p_init product lines, each comprising a set of products, and
s_init stand-alone products. Over a period of time, the organization wishes to
transition to the state in which it has p_final product lines, each comprising a
(perhaps different) set of products, and s_final stand-alone products. Along the
way, the organization intends to add k products or delete d products.2

Figure 1 illustrates this scenario and how it is just one part of an ongoing process.

Figure 1: The General Scenario

It is easy to imagine special cases of this scenario that reflect real-world product situations of
interest, for example

• An organization has zero product lines and 12 stand-alone products. It wishes to have
one product line and zero stand-alone products—that is, it wishes to convert its product
collection into a product line. SIMPLE can be used to weigh the cost benefit of doing so,
as opposed to letting the products continue to evolve separately.

• An organization has two product lines (perhaps as the result of acquiring another
company). It wishes to merge them into one product line while deleting those products
that are duplicative. SIMPLE can be used to estimate the cost benefit of merging the
product lines, as opposed to keeping them separate.

2 A dictionary of notation appears in Appendix B.

6 CMU/SEI-2005-TR-003

• An organization has three product lines and wishes to add one product and to know
which product line is the best candidate to receive it. SIMPLE can be used to estimate
the cost and benefit of adding the product to each of the three product lines, thereby
helping to determine the best choice.

In each case (and many others), organizational decision makers will want to know what their
plan will cost, what benefits it will bring, and how it compares to other alternatives. As these
examples illustrate, SIMPLE can be used to weigh the costs and benefits of one or more
product-line-related alternatives, so the most opportune one can be chosen.

Not every scenario that SIMPLE can help with can be couched as a special case of the
general scenario described above; however, most of the scenarios we have dealt with to date
can be. Section 3 will illustrate the range of scenarios for which SIMPLE is applicable.

2.1 Cost and Benefit Functions
SIMPLE is constructed using a “divide and conquer” approach to the question of how much a
particular software product line strategy will cost an organization and how much it gains
compared to other alternatives. To express these quantities, SIMPLE introduces cost
functions and benefit functions that describe these constituent aspects of the overall economic
question. These functions are introduced beginning in Section 2.2. Rather than rigorously
defined mathematical functions, they should be thought of as an invitation to do a thought
experiment to come up with a reasonable cost (or monetary benefit) estimate in each area.
Each function can be “implemented” through a variety of approaches including the use of an
organization’s historical data, generalized cost models such as the Constructive Cost Model
(COCOMO) II [Boehm 00], or further decomposition into more finely grained functions.

Note: In this report, we may speak of these functions as “returning” a value, but this is meant
to invoke the image of an oracle rather than a mathematical subroutine in a programming
language. Some readers may be more comfortable substituting “stands for” for “returns.”

Section 4 discusses implementation strategies for the cost functions in more detail.

2.2 The Four Basic Cost Functions of SIMPLE
SIMPLE relies on four basic cost functions:

1. Corg() is a function that, given the relevant parameters, returns how much it costs an
organization to adopt the product line approach for its products. Such costs can include
reorganization, process improvement, training, and whatever other organizational
remedies are necessary.

2. Ccab() is a function that, given the relevant parameters, returns how much it costs to
develop a core asset base suited to satisfy a particular scope. Ccab takes into account the

CMU/SEI-2005-TR-003 7

costs of performing a commonality/variability analysis; defining the product line’s scope
[Clements 04]; designing and then evaluating a generic (as opposed to one-off) software
architecture; and developing the software so designed. Ccab also includes building the
production plan, establishing the development environment, and producing a testing
architecture and other artifacts that are reusable across the family. Ccab may be invoked
to tell us the cost of developing a core asset base where none currently exists or the cost
of deriving a desired core asset base from one or more bases already in place. Note that
the core asset base can (and should) also include non-software assets such as plans,
schedules, budgets, the scope definition, and various kinds of documentation. It also
includes the artifacts that tell you how to produce products from core assets; an example
of such an artifact is a production plan [Clements 04].

3. Cunique() is a function that, given the relevant parameters, returns how much it costs to
develop the unique parts (both software and non-software) of a product that are not
based on assets in the core asset base. The result might be a complete product (i.e., one
that is not a member of a product line) or the unique part of a product whose remainder
is built atop the core asset base of a product line.

4. Creuse() is a function that, given the relevant parameters, returns how much it costs to
build a product reusing core assets from a core asset base. Creuse includes the cost of
locating a core asset, checking it out of the repository, tailoring it for use in the intended
application, and performing the extra tests associated with reusing3 core assets.

In some product line approaches, every asset is managed as a core asset. An asset such as a
piece of software, a plan, or a design specification that only happens to be used in a single
product is not treated differently than a corresponding artifact that is used in two or more
products. Under this approach, Cunique() will simply be zero, and the entire cost of building a
product will be carried by Creuse().

A few more cost functions will be added to the model as we go, but these four represent the
basic approach.

To show these four cost functions in action, we use them in a very simple expression that
describes the cost of building a single product line containing n products. This cost can be
expressed by Equation 1.

Equation 1

Cost of building a product line =

))()((()()
1

ireuse

n

i
iuniquecaborg productCproductCCC +++ ∑

=

3 John Gaffney suggests the term multi-use instead of reuse to cover the situation in which material is

developed specifically to be incorporated into a set of software products, not just a new version of
an existing one. That’s a good distinction, but we will continue to employ reuse in this report
because in most instances we use it as a verb.

8 CMU/SEI-2005-TR-003

This equation says that the cost of fielding a product line is the cost of organizational
adoption plus the cost of building the core asset base plus the cost of building each of the n
products. The cost of building a product is the cost of building the unique part of that product
plus the cost of incorporating the core assets into the product.

This equation does not discuss the cost of running or maintaining the product line, nor does it
compare the cost with other development methods. These concerns will arise shortly.

The equation is agnostic with respect to whether the core asset base and the products are built
entirely from scratch, purchased off the shelf, or salvaged from legacy products. The cost
functions will “return” different values depending on the situation.

2.3 Cprod : The Cost of Building Products in a Stand-Alone
Fashion

A common question to ask about the cost of a product line is this: If we are planning to build
n products, are we better off building them as a software product line or independently
without sharing core assets? Answering this question requires knowing the cost of building
them independently. We introduce Cprod (product) as a cost function that returns the cost of
building a product in a stand-alone fashion.4 This cost function can rely on historical data or
general software engineering cost models for its evaluation. The cost of building n products
independently, then, is expressed in Equation 2.

Equation 2

Cost of building n stovepipe products =)(
1
∑

=

n

i
iprod productC

The cost savings (loss) for building n products as a product line versus building them
independently is simply [Equation 2] – [Equation 1].

2.4 Cevo and Ccabu : Modeling the Cost of Evolving a Product
To account for a cycle of product evolution—that is, the time in which a product appears in a
new version, probably with new or at least improved features—under the non-product-line
regime, the model introduces a new cost function, Cevo(). This function is parameterized with
product and version numbers and returns the cost of producing that version. Modelers might

4 This new cost function Cprod can be implemented, at least conceptually, by invoking Cunique for a

product that is 100% unique. In other words, introducing Cprod does not make our model any harder
to compute and can be thought of merely as a notational convenience.

CMU/SEI-2005-TR-003 9

make a first approximation by assuming that the cost to produce a new version is some
percentage of producing the original product; for example

Cevo() = 20% * Cprod()

To calculate the analogous cost under a product line regime, we introduce a new function,
Ccabu(). This function returns a measure of how much it costs to update the core asset base as
a result of releasing a new version of a product. Changes to the core asset base can occur
because the new version required changes to or exposed bugs in existing core assets.
Changes can also occur when new features expose new commonalities with other products
that were heretofore considered unique but now can be refactored into commonalities.

2.5 Expressing Time Periods in the Model
Modeling evolutionary cycles has made it clear that SIMPLE must be able to handle time
periods or at least have a way to express time periods in which particular events (such as an
update) occur. Cost functions need to be interpreted as returning the cost incurred during the
period of interest.

For example, up until now, Corg() has been applied as though it returns the complete cost of
organizational transition. However, managers who are interested in phasing in product lines
over time might accomplish the organizational work in stages. Hence, Corg() needs to account
for the cost during a time period of interest. If everything is done up front, Corg(period_1)
accounts for the entire cost, and Corg(t), for all other time periods, returns zero.

Similarly, Ccab() has to account for the cost of building the core asset base during a period of
interest. This is especially relevant under reactive product line development [Clements 02c,
Clements 04], which essentially prescribes just-in-time core asset development, as opposed to
an all-at-once proactive approach in which the entire core asset base is built up front.

The need to account for time periods is also true of Ccabu(), the cost of updating the core asset
base as the result of producing or evolving a product. Under a reactive product line regime in
which the core asset base is constructed from existing or newly fielded products, Ccabu() will
be high initially but then become lower as the core asset base stabilizes and fills out. Under a
proactive regime, the core asset base will stabilize sooner, and Ccabu() will stay lower and
vary less over time. Under either regime, if the period of interest is one in which products are
changing fairly substantially, Ccabu() will probably be higher as the core asset base evolves to
accommodate them.

The solution, obviously, is to parameterize SIMPLE’s cost functions with the period of
interest, so their implementation can return values fine-tuned to that period. Adding a period
of interest lets the model become much more flexible and carry more fidelity. For example,

10 CMU/SEI-2005-TR-003

one can easily implement the cost functions to take the time cost of money5 into account,
which may, in turn, influence the decision about whether to incur product line expenditures
up front or phase them out over time.

In this report, we use t to indicate a time period of interest that might be a calendar period or
correspond to a product release cycle or milestone. Another time aspect that is useful to
model has to do with the binding times that apply to the built-in variabilities. The cost of
providing and exercising variabilities is a major factor in deciding which variability
mechanisms to choose. SIMPLE can be used to help make these choices, by making the time
periods of interest correspond to time intervals bounded by applicable binding times such as
those listed on the Web [SPL 05b].

2.6 Accounting for Product Line Economic Benefits
Software product lines bestow benefits to the developing organization besides direct cost
savings. For example, they often allow an organization to bring a product to market much
more quickly. We can accommodate these other factors by using benefit functions that are
similar to the cost functions introduced in the basic model. Unlike the cost functions, there is
no fixed number of benefit functions. One product line may be intended to (1) reduce the
time required to get products to market and (2) increase productivity. Another product line
may only be expected to increase customer satisfaction. Still another may be intended to
increase sales by capturing a market share.

We add benefit functions to the model as a variable-sized collection as shown in Equation 3.

Equation 3

Benefits achieved from product line approach =)(
1

tB
snbrBenefit

j
ben j∑

=

where jben is a specific benefit and
jbenB is the benefit function for that benefit. Each benefit

function is parameterized by the time period of interest since the benefits may vary over time.

Benefit functions return the economic value of achieving that benefit during the time period
indicated. For example, achieving high customer satisfaction during a roll-out period may
result in increased sales during a product line’s formative period, which brings a quantitative
economic benefit.

The contributions of the benefits are summed and then used to build a model equation as
needed. For example, recall that to express the development cost savings (or loss) from using
the product line approach as opposed to one-off development for each product, we wrote

5 This refers to the cost of holding onto money—that is, lost investment returns and interest.

CMU/SEI-2005-TR-003 11

[Equation 2] – [Equation 1]. A more complete picture of the cost benefit of using a product
line approach adds Equation 3 to that result.

The economic forecaster who is building equations from these functions must take care not to
count some benefits twice. First, many benefits result in changes to the four cost functions
and hence are accounted for there. For example, increased productivity is often cited as a
benefit of product line engineering, but increased productivity is essentially a reduced cost
that will already be reflected in the cost of building the core asset base and in the sum of the
cost of reuse and the unique portion of the product. To then add a benefit function measuring
savings due to increased productivity would result in a model that overstates the savings.
Second, many different benefits might lead to the same cost savings. For example, increased
productivity also might result in shorter time to market, which, in turn, might result in higher
customer satisfaction. But tighter product alignment or higher product quality might also
lead to increased customer satisfaction. All these things might lead to increased sales and
income. It would be very easy to count a benefit whose cost savings has already been
accounted for under another benefit. Modeler beware.

In Section 4.7, we provide some examples of how the benefit functions might be
implemented. For now, benefit functions can be thought of as providing an answer to the
question “How much would achieving this benefit during this time period be worth to your
organization?”

In a cost-benefit analysis, the most visible benefit is the income derived from the sale of the
products. If the modeler is concentrating on the costs of software development, the income
figure may need to be adjusted based on the portion of the product provided by software. The
model should reflect when this income is generated. In Section 2.5, we discuss how to do this
by making the formulas time-period specific.

Peterson provides a strong list of benefits (several of which are not often cited) in describing
why his company (Convergys) chose the software product line approach [Peterson 04]. His
list may serve as a good starting point for producing a useful set of benefit functions:

• research and development (R&D) investment: the ability to leverage the R&D
investment across the product family by reusing a common set of components

• subject matter expertise: the ability to leverage subject matter experts across the
product family by concentrating domain subject matter experts with similar skills and
knowledge into centralized groups that serve all products

• productivity and quality: improving productivity and quality by breaking large,
monolithic applications into smaller, more manageable projects and by using components
that encapsulate the applications’ functionality

• time to market: increasing the rate of delivery of new capabilities to market and
enabling new products to be delivered faster by reusing well-established components

12 CMU/SEI-2005-TR-003

• people mobility: providing employees with more career development opportunities by
standardizing the development environment and processes, thereby reducing the learning
curve associated with a move to a new project

• supplier relationships: standardizing the platforms and development environment
enables a more effective leverage of supplier relationships

• geographic flexibility: standardizing component-based development facilitates the
distribution of development responsibilities across locations

• sourcing flexibility: using a modular architecture to enable greater flexibility to build,
license, or acquire software

• product refresh: using a modular architecture to facilitate the process of refreshing the
product family as new technologies and/or software components become available

CMU/SEI-2005-TR-003 13

3 Scenarios

With SIMPLE now fully introduced, this section will give examples of using it to solve a set
of scenarios that represent real-life situations in product line organizations.

3.1 The Cost of Building a Software Product Line
Scenario: An organization wishes know the cost of producing a set of products as a
software product line.

The cost can be expressed by Equation 4:

Equation 4

Cost of building a product line =

)),(),(()()(
1

tproductCtproductCtCtC ireuse

n

i
iuniquecaborg +++ ∑

=

The time parameter t refers to the entire time period during which the core asset base and the
first releases of each product are constructed. As noted in Section 2, this equation does not
take into account any evolution.

3.2 The Cost of Building a Software Product Line Vs. Building the
Products Independently

Scenario: An organization wishes to choose between building a set of products as a
software product line and building them as a set of stand-alone products that do not share
core assets.

The cost savings (loss) for building n products as a product line versus building them as
stand-alone products is simply [Equation 2] – [Equation 1]:

Equation 5

Cost savings of building a product line vs. stand-alone products =

),(
1
∑

=

n

i
iprod tproductC –

))),(),(()()((
1

tproductCtproductCtCtC ireuse

n

i
iuniquecaborg +++ ∑

=

14 CMU/SEI-2005-TR-003

Example 1: Suppose there are five products, all roughly the same size and complexity, and
each one costs about three person-years (PY) to build as a stand-alone project. Since Cprod()
= 3PY, Equation 2 returns 15PY as the cost of building the family separately.

Suppose it takes about 2PY to build the core asset base for these five products:

Ccab() = 2PY

And suppose it takes about 1PY to turn the organization around:

Corg() = 1PY

Suppose further that each product is about one-half core assets and one-half unique content
and therefore, Cunique() = 50% * 3PY = 1.5PY. Because reuse literature6 suggests that using
reusable software can cost around 15% of building it, Creuse() = 15% of one-half of 3PY, or
0.225PY.7 Hence, Equation 1 returns 1PY + 2PY + 5(1.5PY + .225PY) = 11.625PY.

The cost savings of the product line approach in this case, then, is 15PY – 11.625PY =
3.375PY. This savings is calculated over a single time period (the period of building the
products), and the scenario does not take into account any changes to the products or the core
assets over time.

3.3 Cost of Releasing a New Version of a Product Line Member
Scenario: An organization wishes to know the cost of releasing a new version of a product
in a software product line that is already in existence.

The cost of releasing a new version of a product in a product line is given by Equation 6
(which assumes that all the organizational and original core asset creation costs have already
been borne):

Equation 6

Cost of releasing a new version of a product in an already-existing product line =
()()() reuseuniquecabu CCC ++

where all terms are suitably parameterized for two purposes: (1) to designate the specific
product and version of interest, as well as the time period over which the update is to be
performed and (2) to note that the version is an update and not a new development. This
equation says that the cost of an update is the cost of updating the core asset base plus the

6 This value is the accepted value for opportunistic reuse. A product line will have a smaller value

than 15% because there is no search or qualification cost. Boehm’s COPLIMO model uses a figure
of around 5%. We use 15% as a very conservative estimate in this example but suggest that each
company measure its local cost.

7 Notice that Cunique and Creuse are both functions of the fraction of each product that the core asset
base provides. As that fraction rises, the former decreases and the latter increases.

CMU/SEI-2005-TR-003 15

cost of the unique part of the change plus the cost of using the updated core asset base to
make the change.

If all products in a product line are updated in lockstep, this equation can be summed over the
set of products to calculate the total cost of an evolutionary update.

Example 2: Suppose each time a product from the Example 1 product line is updated, about
20% of it is new. Suppose also that under a product line regime, about 5% of the core asset
base (which, recall, represents a 2PY investment) is updated as the result of a product update.
Suppose that since the core asset base accounts for roughly half of the product (as postulated
in Example 1), it will account for roughly one half of the new part of the product as well. So
the update to our product (which consists of an addition that’s about 20% the size of the
original) consists of half new code and half core asset code. Therefore

• Ccabu() = .05 * Ccab()

• Ccab() = 2PY

• Cunique() = 1.5PY for an entire product, and so 10% * 1.5PY for an update

• Creuse() = .225PY for an entire product, and so 10% * .225PY for an update

So Equation 6 returns

.05*2PY + 10%*1.5PY + 10% *.225PY = 0.2725PY

This compares favorably with Cevo() = 20% * Cprod() = 20%*3PY = 0.6PY, which is what a
product update under the stand-alone regime would take.

However, Equation 6 does not take into account the cost of setting up the product line in
order to be able to perform inexpensive updates. The next section will deal with that.

3.4 Comparing the Cost of Converting to a Product Line Vs.
Continuing to Evolve an Existing Set of Stand-Alone Products

Scenario: An organization has a set of existing stand-alone products undergoing periodic
evolutionary updates. Its managers might wish to know which is cheaper:

• Option A: converting them to a product line and continuing their evolution in that
form

• Option B: continuing to evolve them separately and foregoing the cost of setting up the
product line

The cost of option A for one evolutionary cycle is the cost of setting up the product line plus
the cost of evolving the products once using the core asset base. In other words, the cost of
option A is Equation 4 plus Equation 6 summed over the products in the product line:

16 CMU/SEI-2005-TR-003

Equation 7

Cost of setting up a product line and evolving it through one cycle =

))()((()()
1

ireuse

n

i
iuniquecaborg productCproductCCC +++ ∑

=

 +

))()()((
1

ireuseiuniqueicabu

n

i

productCproductCproductC ++∑
=

However, when we set up the core asset base and reengineer the products for this example,
we could take a shortcut. We could aim to produce core assets and reengineer the products to
support their next evolutionary cycle. Under this option, Equation 6 drops out of the picture,
since the set-up cost given by Equation 4 will aim for the next step in the products’
evolutionary trajectory. So we simply have

Equation 8

Cost of setting up a product line that aims for the first evolutionary cycle =

))()((()()
1

ireuse

n

i
iuniquecaborg productCproductCCC +++ ∑

=

The cost of option B for one evolutionary cycle is simply Cevo() summed over each product in
the portfolio:

Equation 9

Cost of evolving a group of stand-alone products through one cycle =)(
1
∑

=

n

i
ievo productC

The cost savings (if any) of turning the products into a product line and taking them through
one evolutionary cycle is Equation 9 – Equation 8:

Equation 10

Cost savings of setting up and evolving a product line once
vs. evolving group of stand-alone products once =

)(
1
∑

=

n

i
ievo productC – [))()((()()

1
ireuse

n

i
iuniquecaborg productCproductCCC +++ ∑

=

]

The cost savings for moving from the first evolutionary step to the second can be expressed
similarly: simply as Equation 9 – Equation 6 summed over all products, because at this point
the product line will have already been set up:

CMU/SEI-2005-TR-003 17

Equation 11

Cost savings of second evolutionary step with a product line =

)(
1
∑

=

n

i
ievo productC –

))()()((
1

ireuseiunique

n

i
icabu productCproductCproductC ++∑

=

Here, the functions are invoked to return the costs associated with product updates, not whole
products.

The same equation expresses the cost savings when moving from the pth step to the (p+1)st
step, as long as p>1 and the product line has already been set up. To add up the cost savings
of setting up the product line and evolving it over p rounds, add Equation 10 to the sum of
Equation 11 for each of the next (p-1) rounds.8

Example 3: Suppose that p is 5. Then the cost savings are equal to

Equation 10 + ∑
=

4

1t

Equation 11 or

)(
1
∑

=

n

i
ievo productC – [))()((()()

1
ireuse

n

i
iuniquecaborg productCproductCCC +++ ∑

=

] +

∑
=

4

1

(
i

)(
1
∑

=

n

i
ievo productC –

))()()((
1

ireuseiunique

n

i
icabu productCproductCproductC ++∑

=

Substituting the previous values gives

∑
=

5

1

3
i

PY – [)225.5.1(21
5

1

PYPYPYPy
i

+++ ∑
=

] + ∑
=

4

1

(
i

∑
=

5

1

6.
i

 –

))0225.15.02*)05(.
5

1

++∑
=

PY
i

= 9.925PY

8 If the costs of each round are the same, Equation 8 can simply be multiplied by (p-1).

18 CMU/SEI-2005-TR-003

3.5 Return on Investment (ROI)9
Scenario: An organization wishes to know the ROI achieved by setting up a software
product line and using it as the basis for product evolution. It wishes to know the ROI
after the first round of evolution and after subsequent rounds.

Many organizations wish to understand the costs of product line adoption and sustainment in
terms of the ROI, which is usually defined as

ROI = cost savings / cost of investment

The investment cost of a product line is the organizational cost plus the cost of establishing
the core asset base: Corg() + Ccab().

The cost savings depends on the specific scenario. Suppose we continue the example from
the previous section: An organization wishes to choose between continuing to evolve a set of
stand-alone products and converting them to a product line. The ROI after one round of
updates is Equation 10 divided by the investment cost:

Equation 12

ROI achieved after one round of evolution of a product line =

)(
1
∑

=

n

i
ievo productC – [))()((()()

1
ireuse

n

i
iuniquecaborg productCproductCCC +++ ∑

=

]

Corg() + Ccab()

The ROI after p rounds of updates (p>1) is Equation 10 plus (p-1) iterations of Equation 11,
all divided by Corg() + Ccab().

Example 4: Continuing Example 3 from the previous section, we see that the investment cost
of Corg() + Ccab() is 3PY, so the ROI through initiation and four rounds of updates is 9.925 / 3
= 331%.

3.6 Constructing and Evolving a Product Line
Scenario: An organization has zero product lines and wishes to produce s1 products. The
organization wishes to know the cost savings (if any) that it will accrue over “nbr_periods”
time periods of constructing the s1 products using a product line versus constructing and
evolving them in a stand-alone fashion.

9 Several financial measures are used for investment decisions such as net present value (NPV) and

payback period. Any of them can be computed using the information from the cost and benefit
functions. In this report, we illustrate that using a simple ROI computation.

CMU/SEI-2005-TR-003 19

There are two ways to prosecute this scenario. The first is by translating “nbr_periods” in the
scenario to a number p of evolutionary updates and then using Equations 7 and 8 as discussed
previously—namely, adding the result of Equation 7 to (p-1) times the result of applying
Equation 8.

The second way is to use the cost functions parameterized with the time period of interest and
interpreted accordingly. Setting up and evolving a product line over “nbr_periods” units of
time can be expressed as follows:

Equation 13

Cost of building and evolving product line over “nbr_periods” time periods =









+++ ∑∑∑

===

),(),()()(
11

_

1

tpCtpCtCtC
jj n

i
ireuse

n

i
iuniquecabuorg

periodsnbr

t

Equation 13 requires the modeler to determine the following in each period: how much
organizational cost was incurred, how much the core asset base was updated,10 how much
product-unique development cost was incurred, and how much reuse cost was incurred. The
last two terms return evolution costs for those time periods in which evolution is occurring.

Next, we compute the cost of building and evolving the s1 products in a stand-alone fashion
(using Equation 2) and sum that over the same time periods:

Equation 14

One-at-a-time cost = 






∑∑
==

),(
1

1

_

1

tproductC
s

i
iprod

periodsnbr

t

This scenario is “solved” by taking the difference of these two expressions.

Using the time periods allows modelers to experiment with different schemes for building the
core asset base and (for example) to see how early they can achieve a positive cost savings.

3.7 Redistributing Products Among Existing Product Lines
Scenario: An organization has n product lines, each comprising a set of products, and also
has s1 stand-alone products. The organization wishes to transition to the state in which it
has m product lines, each comprising a (perhaps different) set of products, and also s2
stand-alone products. The organization wishes to determine the optimum division of
products among the optimum number of product lines to minimize the cost of initial
construction and maintenance for the expected life of five years.

10 As mentioned previously, most of the core asset base could have been built up front or phased in

over time.

20 CMU/SEI-2005-TR-003

This is an optimization problem that requires a search of the possible solution space (i.e., all
possible allocations of products to product lines) to identify the optimal value. Each point in
the search space has a specific number of product lines, each with a specific set of products
and a specific number of stand-alone products. As the collection of products in each product
line changes, the amount of commonality or homogeneity also changes. This, in turn, changes
the value returned by Ccab (since the core asset base is responsible for providing that
commonality) and the sums of the Cunique and Creuse values. The difference among product
lines is the size of the core asset base relative to the size of the unique parts of the products.

The cost of each possible solution for this scenario is given by

Equation 15









++++= ∑∑∑∑

====

2

1111

)())),(),(()()((),,(
s

i
prodireuseiunique

nj

i
cabuorg

npl

j

riodsnumberOfPe

t
xj tCtpCtpCtCtCsnnplCOST

where

• Sx is the number of stand-alone products and varies over all values of s1+ sum(nj)
products.

• nj = number of products in the jth product line.

• npl, the number of product lines, is between 0 and s1+ sum(nj) products.

• numberOfPeriods = 5.

The solution for the scenario is to find the m and mj for which cost(m, mj, sx) is minimized.
That defines a large but finite search space. Future work will explore how a homogeneity
metric—a measure of how much alike the products in a product line are—would help narrow
this search space.

3.8 Adding New Products to Existing Product Lines
Scenario: An organization has n product lines, each comprising a set of products, and also
has s1 stand-alone products. The organization intends to add k products. It wishes to
determine the optimum allocation of the k products over the existing product lines based on
foreseeable maintenance costs over the next “nbr_periods” time periods.

This scenario can be solved by adding a product to the “best” product line, one at a time. To
compute the “best” product line to which to assign a stand-alone product, we compute the
cost of adding that product to each product line and the cost of maintaining that product line
with the new product added. The product line with the lowest costs in these two areas is the
“best.”

CMU/SEI-2005-TR-003 21

The cost of adding a product to a product line (assuming this is done in a single time period t)
is

Equation 16

Corg(t) + Ccab(t, PL, product) + Creuse(t, PL, product) + Cunique(t, PL, product)

where the PL parameter indicates the candidate product line to which we’re adding the
product. This parameterization reminds us to calculate the cost functions differently based on
the different product lines.

The cost of maintaining that product line with the new product in it over “nbr_periods” time
periods is the equation from scenario #2 above.

Repeating the application of Equation 16 and Equation 2 for each of the k products produces
the optimum allocation of products to product lines.

In practice, however, order might matter. That is, putting the first three products into product
line #2 might result in product line #2 being much better positioned to accept product #4.
However, if we had started with product #4, it might have been assigned to product line #1.
In theory, we can address this problem by calculating the cost for all possible assignments of
the k products in all possible orders and come up with the least costs. In practice, this will be
untenable, but we will probably want to test merely a few specific allocation hypotheses,
rather than every possible one.

3.9 Build Vs. Buy
Scenario: An organization has n product lines, each comprising a set of products, and also
has s1 stand-alone products. The organization intends to add k products. It wishes to
determine the optimum split between building and buying the additional assets required for
the k products. The products will be built in the first year and maintained for four
additional years.

This scenario builds on the scenario in Section 3.7. By adding k products, the number of
product lines, the number of products in each product line, and the number of stand-alone
products may change. Once the optimal arrangement has been determined as in the fourth
scenario, the newly needed assets are identified. The problem now becomes how to optimize
the cost of the new assets.

The driving cost is Ccab(t). In most scenarios, Ccab(t) returns the original cost of all the assets.
In the case where lease or royalty payments must be made and t > 1, Ccab(t) returns the
additional cost for that year’s payments. In the case where assets are created in-house and t >
1, Ccab(t) returns the amount anticipated for maintenance.

22 CMU/SEI-2005-TR-003

The solution for the scenario is the combination of new assets that requires the smallest
expenditure. This solution is below the level of visibility of the product line equation and
would be handled in the implementation of Ccab(t). Section 4 presents some ideas on
implementing the cost functions.

CMU/SEI-2005-TR-003 23

4 Approaches for Implementing Cost and Benefit

Functions

The name of our model, SIMPLE, indicates two attributes for which we are striving:
structured and intuitive. We intentionally defined the model in terms of a set of cost and
benefit functions to allow users to provide layers of implementations. This structure allows
the modeler to drive the model down to the level of detail for which sufficiently accurate data
can be provided. This structure allows the model to be intuitive to a wide range of people by
allowing them to view the level in the model that is most useful to them. In this section, we
describe some ways of implementing the functions described in Section 2.2.

Modelers begin their work with different levels of information. Some will have data from
previous non-product-line projects, some will have data from previous product line projects,
and some will have no previous data at all. SIMPLE allows different approaches based on
the knowledge at hand.

4.1 Using an Organization’s Own Historical Data
The simplest case of function implementation is when the user has estimates for each cost.
Some of the data can come from historical information, such as the average cost of building a
one-off product. As an example, the four cost functions of Equation 1 are replaced with cost
estimates (CE) in Equation 17:

Equation 17

))()((
1

ireuse

n

i
iuniquecaborg productCEproductCECECE +++ ∑

=

Using historical data is the simplest approach but perhaps not the easiest. The modeler must
have extensive quantified experience with the organization’s development processes and be
able to predict future costs based on past experience. That may not always be possible if the
future products are dissimilar to past products.

4.2 Community Benchmarks
The product line literature is slowly building an intuition about many of the costs. These
values can be used as the starting point for organizations that have no recorded development

24 CMU/SEI-2005-TR-003

history of their own. For example, the cost of making a component that is reusable is widely
estimated to be 150% of the cost of building the component for a single use, whereas the cost
of reusing reusable software is thought to be less than 5% of the cost of building it new (if
you do not have to go searching for it) [Boehm 04]. Gaffney and Cruickshank show how to
use estimated lines of code and industry-standard effort benchmarks to produce cost
estimates [Gaffney 92].

Boehm has revised the cost drivers in COCOMO to define a new set for the Constructive
Product Line Investment Model (COPLIMO) [Boehm 04]. Considering the cost of building
products from scratch in a product line, COPLIMO data shows that between two and three
products is the breakeven point, as supported by much of the product line literature
[Clements 02b]. COPLIMO will be discussed in Section 7.2.

4.3 Utility Functions
Utility functions can be used to help estimate a cost over each of a number of consecutive
time periods. An action or asset has a cost (or value). That cost may be incurred all at once or
over time. A modeler may assign a value to each of a set of outcomes. The utility function
has a minimum, usually 0, and a maximum that is often taken to be 1 or 100%. A utility
function, u(t), returns the amount of the utility (cost or value) for a time period t. For
example, if the expected cost of an asset is c dollars, to be paid in four equal installments
over four time periods, the utility curve looks like the one shown in Figure 2, and u(t) = 1/4
for t=1, 2, 3, or 4. The expected cost is computed by: c*u(t) or c/4 for each period.

4/4

3/4

1/2

1/4

value

time period

1 42 3

Figure 2: Uniform Utility Curve

Modelers may use a utility function to translate their assumptions about a scenario into a
quantity. For example, a utility function that has the shape given in Figure 3 would provide
the behavior of all costs being allocated in the first period and zero thereafter. The modeler
can select a curve whose shape matches the assumptions about the scenario.

CMU/SEI-2005-TR-003 25

1.0

value

time period

1 2 3

Figure 3: Utility Function

These utility functions can be used to help define the cost functions. For example, Corg can be
defined by estimating the total cost and then associating with it a utility function such as
Figure 4, where two-thirds of the cost are incurred in the first time period and one-third in the
second time period.

1.0

0.67

0.33

value

time period

1 2 3

Figure 4: Step Utility Function

Utility functions are most often used as a multiplier of an estimated or predicted cost. In an
equation, a modeler can include a term of this form:

cost*u(t)

This term will produce the value of the cost for each iteration. For example, consider a
scenario in which the total cost of moving an organization, Corg, is $150,000. In this scenario,
the modeler selects the utility function shown in Figure 4. The cost term cost*u(t) produces

26 CMU/SEI-2005-TR-003

values of $100,000 in the first period, $50,000 in the second period, and zero for any period
thereafter. The modeler changes assumptions by changing the utility function.

4.4 Quantifying Non-Numeric Values
The SEI Cost Benefit Analysis Method (CBAM) is a technique for performing a cost/benefit
analysis on architecture decisions [Kazman 02]. It includes an approach to quantifying the
benefits of architecture decisions.

4.5 Divide and Conquer
The definitions of the cost functions may be defined by decomposing their definition into
other functions. For example, one factor contributing to Ccab() is the cost of establishing the
product line’s software architecture. This cost can, in turn, be decomposed further. Peterson
suggests the following list [Peterson 04]:

• domain analysis: Domain analysis is concerned with understanding and documenting
the requirements commonalities and variabilities.

• target architecture: The target architecture specifies the common component
boundaries, scope, interfaces, and variation points.

• technology standards: A common set of technology standards must be agreed on that
deal with operating systems, programming languages, database management systems,
graphical user interface technologies, and user interface “look and feel” standards.

• current architecture: In order to establish realistic architecture migration plans, an
understanding of the current architectures employed across the product family is needed.

• migration strategy and plan: The architecture migration strategy and plan make up the
roadmap for evolving the existing product family to the target architecture.

Similarly, Corg() can be decomposed into the cost of training, the cost of data collection, the
cost of reorganization, the cost of establishing necessary processes, and so forth. Of course,
the whole cost function approach of SIMPLE is predicated on a “divide and conquer”
technique that merely extends the idea.

4.6 Inference
Sometimes it is possible to infer the value of a cost function if you know key information that
relates to it. For example, Ccab() can be estimated if you know the reuse level throughout a
product line—that is, how much of each product on average comes from the core asset base.
For example, if the reuse level is 70% (a modest figure for a software product line), the core
asset base is going to shoulder the burden, on average, of 70% of each product. If each
product costs about the same to build on a stand-alone basis (i.e., has the same Cprod() value),

CMU/SEI-2005-TR-003 27

the core asset base is going to shoulder about 70% * Cprod() of the cost. But the cost of
making software reusable is about 150% of making it in the first place, so Ccab will be 150%
* 70% * Cprod().

11

Now we have two new functions to calculate: (1) how much it costs to build reusable
software (the Freusable function) and (2) how common the products are (the Fcommon function).
However, these functions may be easier to project than Ccab by itself.

Similarly, Creuse is the cost of reusing reusable artifacts, which according to the literature can
be up to 15% of the cost of building them from scratch. Given that the core asset base bears a
portion of the burden of any product equal to Fcommon, to get that proportion of a product
requires an investment of Fcommon * Cprod * 15%. So if Fcommon is 70%, the cost of reusing the
core asset base is 15% of 70% of the stand-alone cost of the product.

4.7 Gross Approximation
If first-order approximations reveal an overwhelming preference among alternatives on the
table, further modeling may be unnecessary. An example of a rough approximation is
assuming that Ccabu is some fixed fraction of Ccab. This approximation says that the cost of
updating the core asset base after each product release is (for example) 10% of the cost of
building it—not an unreasonable assumption. Similarly, a modeler might set Cevo to some
fixed fraction of Cprod, saying that evolving a product costs (for example) 15% of building it
in the first place.

4.8 Benefit Function Implementation
It is beyond the scope of this report to discuss in detail how the benefit functions are
implemented; however, we will provide an example. Consider the benefit of increased
customer satisfaction. One technique for quantifying it would follow these steps:

• Develop a classification for customers so that they form homogeneous groups with
respect to the dimensions of products for which we are measuring satisfaction (e.g., price
or feature sets).

• Collect data about the satisfaction of customers and the likelihood of them purchasing
from the company again.

• Maintain data about the average purchase level for each classification.

• After the product line has been implemented, measure the increase (decrease) in
customer satisfaction per group. Multiply the increase in satisfaction, as a percentage, by

11 This approximation is full of assumptions, such as (a) all products are roughly the same in stand-

alone cost and (b) the core asset base accounts for the same 70% in each product. If those
assumptions do not hold, Ccab would have to be calculated using product-by-product costs.

28 CMU/SEI-2005-TR-003

the average purchase per group. Sum for all classes to determine the customer
satisfaction benefit.

Consider an automobile manufacturer who wishes to add a mass-customizable driver
information system. The company monitors three categories of customers: personal use,
internal business use, and rental use. The level of satisfaction is recorded in Table 1 as the
percentage of customers likely to purchase again.

Table 1: Initial Data

Category Level of Satisfaction Average Annual Purchase

Personal use 95% $25,000

Internal business
use

80% $200,000

Rental use 85% $2,000,000

After the product line is produced, customer data is collected again (or predicted through
marketing surveys). The new data is shown in the third column of Table 2.

Table 2: Satisfaction After the Product Line

Category Level of
Satisfaction

New Level of
Satisfaction

Average Annual
Purchase

Personal use 95% 95% $25,000

Internal business
use

80% 90% $200,000

Rental use 85% 90% $2,000,000

The benefit is calculated in Table 3. The $120,000, in the last line, is the result returned by
the benefit function.

Table 3: Benefit Calculation

Category Level of
Satisfaction

New Level of
Satisfaction

Increase
in Satis-
faction

Average
Annual
Purchase

Expected Increase
in Sales Due to
Increased Customer
Satisfaction

Personal use 95% 95% 0 $25,000 0

Internal
business use

80% 90% .1 $200,000 20,000

Rental use 85% 90% .05 $2,000,00
0

 100,000

Total $120,000

There are other ways of quantifying customer satisfaction and a wide range of approaches to
quantifying other intangible benefits.

CMU/SEI-2005-TR-003 29

4.9 Implementing the Homogeneity Metric
The homogeneity metric provides an indication of the degree to which a product line is
homogeneous, taking into account the fact that not every product exhibits the same
commonality. The metric varies from 0 to 1, where 0 indicates that the products are all totally
unique and 1 indicates that the products are exactly the same. The Goal Question Metric
(GQM) analysis used to derive this metric is shown in Appendix A.

The fundamental premise of GQM is that there is a direct relationship between commonality
at the feature level and commonality at the core asset level. That is not always the case, but it
is sufficient for our purposes. We also normalize the requirements so that each requirement
represents the same amount of effort as the others.

The requirements for a product Pi is the union of the product line requirements that apply to
Pi and the requirements unique to product Pi:

ipipi uplp RRR ∪=

We define the homogeneity metric as follows:

homogeneity =
||

||
1 1

T

productsofnumber

i
u

R

R
i∑

=−

Notation:
PL = product line
U = unique
R = a functional requirement of a product

TR = the set of all requirements

=|| TR the total number of different requirements

This metric measures the percentage of the total set of requirements that are unique. If all the
requirements are unique, homogeneity is zero. If they are the same, homogeneity is one.

30 CMU/SEI-2005-TR-003

CMU/SEI-2005-TR-003 31

5 Applying SIMPLE in Practice

Experience with applying SIMPLE in an industrial setting is limited to date, but through an
early engagement the following process sketch has emerged:

1. Hold a workshop. This step gathers people in the organization who have specific
questions they wish to answer via SIMPLE. The goal of the workshop is to establish
baseline answers to the following questions:

a. What are the product lines of interest?

b. What products are currently involved or planned for the future?

c. What are the scenarios for which we wish to build a model?

d. Which alternatives are under consideration?

e. What are the anticipated benefits of each one?

f. What are the anticipated costs of each one?

g. What are the relevant time horizons? (e.g., release dates, testing dates)

2. Formulate the SIMPLE model. The modelers construct formulas based on the
scenario and the alternatives that it embodies, making sure to account for the anticipated
costs and benefits of each alternative.

3. Review and validate the model. The modelers present the model to the stakeholders to
make sure that their concerns are addressed and that the constructed model will, in fact,
answer the key questions of interest.

4. Establish the “shopping list” for data. The modelers and the stakeholders must work
out the organizational data (such as the cost of building past products or the cost of
establishing a training program) that will provide input to the formulas.

5. Populate the model. The data is gathered and inserted into the formulas, and the results
are calculated.

6. Review the results. The modelers make a presentation to the stakeholders, and the next
steps are planned.

We expect there to be iteration among the steps above, especially 2, 4, and 5. As mentioned
earlier, it may turn out that a coarse-grained first-order result reveals a clear preference
among the alternatives contained in the scenario. If so, the model’s work is done, and no
further effort is required. If not, however, the model may have to be reformulated using more
finely grained or more sophisticated cost estimates, which, in turn, will result in more precise
or detailed data being collected and used to populate the formulas.

32 CMU/SEI-2005-TR-003

We expect to use this process outline in future engagements, where we will refine, elaborate,
and evolve the process as appropriate.

CMU/SEI-2005-TR-003 33

6 Relationship to the SEI Framework for Software

Product Line Practice

The Framework for Software Product Line Practice, Version 4.2 [Clements 04] serves a
number of purposes by identifying and defining

• foundational concepts underlying software product lines and the essential activities to
consider before developing a product line

• practice areas that an organization developing software product lines must master

• needed guidance to an organization about how to move to a product line approach for
software

The Framework organizes the product line practices into three categories as shown in Table
4.

Table 4: Product Line Practice Areas

Software Engineering
Practice Areas

Technical Management
Practice Areas

Organizational Management
Practice Areas

Architecture Definition
Architecture Evaluation
Component Development
COTS12 Utilization
Mining Existing Assets
Requirements Engineering
Software System Integration
Testing
Understanding Relevant

Domains

Configuration Management
Data Collection, Metrics, and

Tracking
Make/Buy/Mine/Commission

Analysis
Process Definition
Scoping
Technical Planning
Technical Risk Management
Tool Support

Building a Business Case
Customer Interface

Management
Developing an Acquisition

Strategy
Funding
Launching and

Institutionalizing
Market Analysis
Operations
Organizational Planning
Organizational Risk

Management
Structuring the Organization
Technology Forecasting
Training

Product line economics, as defined in this report, directly or indirectly supports many of these
practice areas. The “Building a Business Case” practice area directly applies the results of the
ROI calculation or comparison between product line and stovepipe costs. In other practice
areas, the economic models may provide input to the practice area in the form of information
needs. The models inform the “Data Collection, Metrics, and Tracking” practice area of data

12 Commercial off-the-shelf

34 CMU/SEI-2005-TR-003

collection needs, such as historic costs, growth (in size, features, users), or effort
distributions.

Even where costs and ROI calculations are not an essential part of the practice, the decision
makers should take economic concerns into consideration. Today, these decisions are often
made with unsupportable estimates, but the models make it possible to add some degree of
rigor to the estimates. For example, a thorough architecture evaluation will require tradeoffs
between qualities such as usability and level of security. A question often asked is: How
much security can you afford given the potential for loss? In a product line context, the
power of the economic models shown in this report could present the costs of building assets
at various levels of security, their impact on usability, and the costs of products built using
those assets. These costs could be compared with the costs of developing these capabilities
through a stovepipe product. The development organization could use this comparison, along
with technical issues of the quality attributes, as part of the architecture evaluation.

6.1 Related Software Product Line Practice Areas
The following table provides a list of the practice areas in which SIMPLE models play a role.

Table 5: Relationship of SIMPLE to Product Line Practices

Practice Area Role of SIMPLE Models

Architecture Evaluation Cost tradeoffs may be one aspect of an architecture evaluation
[Kazman 02]. The product line model provides the basic equation
from which the evaluator may construct a profile of costs based
on architecture choices or options.

Data Collection, Metrics,
and Tracking

The economic model relies on good current and historical data
for cost estimates and projections. The models provide planners
with the basic indicators that they can use to both track current
efforts and determine data for collection to build estimates.

Make/Buy/Mine/
Commission Analysis

This analysis relies heavily on cost comparisons, both short and
long term. For example, while an organization may find it
economically advantageous to build a core asset in house, the
long-term costs of sustaining that asset should also be considered.
Similar tradeoffs exist in the other aspects of acquiring core
assets or even an entire product line. SIMPLE offers models to
deal with each of these circumstances and thus can contribute to
all aspects of the analysis, especially when comparing the total
product line development costs with the costs of commissioning
assets or a product, or developing a complete product line.

CMU/SEI-2005-TR-003 35

Table 5: Relationship of SIMPLE to Product Line Practices (cont’d.)

Practice Area Role of SIMPLE Models

Scoping Just as scoping provides boundaries on what’s in or out of the
product line, scoping will also bound the validity of the economic
models. A narrowly scoped product line will generally yield
greater accuracy in cost projections—all products tend to share
the same commonalities. In a broadly scoped product line,
individual products in the product line will have less overlap, and
previous cost estimates will have less relevance to a new product.
SIMPLE may also be used to determine the ROI based on a
varied scope of the product line or alternative partitioning of
products into one or more product lines.

Technical Planning Decision making plays a significant role in planning any aspect
of the product line—asset development, product development, or
long-term sustainment. Cost comparisons provide input to the
decision-making process, along with other considerations.
SIMPLE can assist the planners in justifying such plan elements
as planning the scope of product line assets, choosing asset
development approaches, choosing testing approaches, and
scheduling the introduction of assets. It also helps planners carry
out all aspects of product planning.

Technical Risk
Management

At various stages in the maturity of a product line, SIMPLE may
either be a source of technical risk or be used to mitigate risk.
When first applied to assess product line viability, SIMPLE uses
assumptions about costs and projected product line markets.
Only results within the bounds of these assumptions are
considered reliable. Once a product line is established, the
reliability of costs to develop a new product or to extend the
product line scope will be grounded in experience and can be a
source of risk mitigation—the existence of the product line
provides product cost estimates much more reliably than
traditional stovepipe estimation techniques.

Tool Support SIMPLE can influence and justify the selection of product line
support tools. The cost of asset reuse (Creuse) can be substantially
lowered through the effective choice and use of tools. However,
there may be an increase in organizational costs (Corg).
Generative technologies can also substantially lower Creuse, but at a
higher asset development cost (Ccab).

36 CMU/SEI-2005-TR-003

Table 5: Relationship of SIMPLE to Product Line Practices (cont’d.)

Practice Area Role of SIMPLE Models

Building a Business
Case

The product line business case relies heavily on cost benefit
analyses that use the ROI as a basis for comparison. SIMPLE
provides the business case with results from a variety of
approaches for assessing and advocating product line approaches.
The business case uses historical costs and data as points of
comparison with projections for the product line. With SIMPLE,
the business case developer can vary the product line scope
definition, cost of building assets, cost of using assets, and
potential benefits to demonstrate the validity of a product line
approach.

Developing an
Acquisition Strategy

SIMPLE may be used by an organization to assess and compare
alternative acquisition strategies. Acquisition approaches may
split asset development and product development activities
between the supplier and acquirer or rely entirely on the supplier
for all aspects of product line development. In any case, SIMPLE
offers models to support cost benefit analyses across a set of
strategies, based on either short- or long-term considerations.
The acquirer may also use SIMPLE to make comparisons among
potential suppliers or require suppliers to use SIMPLE as the
basis for their proposals.

Funding While funding sources and models vary according to
organizational culture and the nature of the software product
being developed, accurate cost models are essential in both
making and justifying funding. At the enterprise level, SIMPLE
offers projections across a set of product lines that may
encompass the organization’s complete set of product lines. In
making funding decisions for the individual product line,
SIMPLE offers estimates for alternative product line approaches.
Finally, funding restrictions may require choices such as which
assets to develop or which improvements to fund. SIMPLE also
supports models to assist in these decisions.

CMU/SEI-2005-TR-003 37

Table 5: Relationship of SIMPLE to Product Line Practices (cont’d.)

Practice Area Role of SIMPLE

Launching and
Institutionalizing

Operations
Organizational Planning

While these practice areas actually apply to other practice areas,
as appropriate to the needs and capabilities of an organization,
SIMPLE models can especially apply here. SIMPLE models can
predict the costs of transition where an organization moves to a
higher state of product line sophistication, whether starting a
product line effort (launching) or trying to expand and/or improve
the scope of an ongoing product line effort (institutionalizing).
The organizational costs of a product line, Corg, encompass these
costs as the impact on the entire organization, and asset and
product costs (Ccab, Creuse, and Cunique) encompass actual
development costs to fund the transition. Without accurate
estimates, the organization cannot adequately plan for the launch
or institutionalization.

Market Analysis While market analysis examines external factors that determine
the success of a product in the marketplace, SIMPLE offers
models that can compute the ROI from entering that market. A
key ingredient of SIMPLE is the calculation of NP (number of
products) and “nbr periods.” Market analysis plays a key role in
both of these calculations. In addition, using different parameters
within SIMPLE, an organization can develop cost benefit
analyses for a variety of market strategies.

Technology Forecasting Technology forecasting examines future trends that may affect a
product line. Core technologies—as well as the tools, techniques,
methods, and processes used to develop the products and bring
them to market—all affect costs and may become factors in
SIMPLE models. In a rapidly evolving product line, the costs of
sustaining the core asset base must take this rapid change into
consideration. These costs will be captured in Ccab (where new
assets are required to accommodate technology evolution) and
Creuse (where the modification of assets may be required).
Similarly, improvements in development techniques and tools
may lower Creuse but may incur organizational costs, Corg, as the
costs of incorporating these tools into the development
environment.

6.2 Patterns for Software Product Line Practice
Patterns for software product line practice [Clements 02b] help organizations appropriately
apply the practice areas described in the Framework. SIMPLE models can support many of

38 CMU/SEI-2005-TR-003

these patterns wherever the patterns require decisions based on economic considerations. The
patterns represent common context and common problems/solutions, and the use of SIMPLE
provides a standard means of approaching the economic product line decision.

Table 6: Relationship of SIMPLE to Patterns for Software Product Line Practice

Pattern Contribution of SIMPLE

What to Build SIMPLE provides models to support the “Market Analysis,”
“Technology Forecasting,” “Scoping,” and “Building a
Business Case” practice areas within the pattern. By
applying the models consistently across the practices, the
organization will obtain a clear picture of the external market
forces and the impact of their decisions. Moreover, the
results are not just a static cost savings or ROI, but can
include the dynamics of market and technology impacts over
the life of the product line.

Product Parts This pattern relates decisions of the “Make/Buy/Mine/
Commission Analysis” practice area to other practices and
patterns that are used to build or acquire assets. SIMPLE
provides the basics for decisions in the “Make/Buy/Mine/
Commission Analysis” practice area and can also establish
data needs as produced in other patterns and practices.

Monitor While SIMPLE is most often used to develop cost benefit
analyses or business cases in advance of product line
development, the models should also be used in tracking
product line performance. Many of the estimates used as
parameters in SIMPLE calculations may, during the course of
product line development, become hard numbers as actual
results are collected and tracked. In the Monitor Pattern, the
“listen group” in the “Data Collection, Metrics and Tracking”
and “Technical Risk Management” practice areas can provide
hard data to the “response group” to improve the accuracy of
SIMPLE predictions. Such improvements can be part of
revised and new production plans.

CMU/SEI-2005-TR-003 39

Table 6: Relationship of SIMPLE to Patterns for Software Product Line Practice
(cont’d.)

Pattern Contribution of SIMPLE

Cold Start

In Motion

In both of these patterns, the “Funding” practice area plays a
significant role. Funding sources require justification and
validation of the product line approaches, whether initiating a
product line or continuing to support it. SIMPLE models
provide input to these decision makers by providing accurate
pictures of both the current and projected product lines.
These pictures are used in the pattern to support choices such
as: whether to expand the scope of the product line; whether
to split the product line or combine product lines; which
assets to invest in; and, in some cases, whether to terminate
the product line.

40 CMU/SEI-2005-TR-003

CMU/SEI-2005-TR-003 41

7 Related Work

SIMPLE models the effects of systematic reuse also covered by other techniques, some of
which we’re already mentioned.

One model of note was proposed by Dale Peterson based on the experience of his company,
Convergys, in opting to take a software product line approach [Peterson 04]. Based on an
understanding of the requirements’ commonalities and variabilities, as well as on the
component architecture, Peterson’s model attempts to quantify such things as

• how much of the development work will be performed by the component groups versus
the product groups

• the benefits associated with improved productivity and the use of common components,
based on the concept of overlapping market needs

• the manpower savings associated with eliminating redundant software development and
increasing productivity

• the benefits associated with increasing the throughput of the software factory (i.e., by
doing more work with the same number of people)

Two other modeling approaches are discussed in detail below: Poulin’s Measuring Software
Reuse [Poulin 97a] and COPLIMO [Boehm 04]. Poulin considers the use of assets in
developing individual products and the potential for cost savings, but his models do not take
the broader implications of product lines into consideration. COPLIMO is based on the
widely used COCOMO II [Boehm 00] and provides an algorithmic approach to cost
calculations for product lines.

7.1 Poulin’s Measuring Software Reuse
Poulin uses two parameters in estimating the effects of a systematic reuse strategy: (1) the
relative cost of reuse (RCR) and (2) the relative cost of writing for reuse (RCWR) [Poulin
97a, Poulin 97b]. The RCR is a ratio that compares the effort needed to reuse software
without modification to the costs normally associated with developing that same software for
a single use. An RCR of 0.1 for an asset, or set of assets, says that the cost of using that asset
is one-tenth the cost of developing equivalent software for a single use. The costs of creating
that asset are reflected in the RCWR. This value relates the costs of creating reusable
software to the cost of writing one-time-use software. For example, an RCWR of 1.5
represents the addition of 50% to the effort of creating single-use software—if it costs
$10,000 to create a component for a single use, a reusable version would cost $15,000,
accounting for increased design time, testing, documentation, and so forth.

42 CMU/SEI-2005-TR-003

The Poulin model uses the RCR and RCWR to calculate two more values that predict savings
over an entire project:

1. The reuse cost avoidance (RCA) compares the savings of reusing assets over writing the
equivalent software for a single use. The RCA incorporates two values: the
development cost avoidance (DCA) and the service cost avoidance (SCA). To calculate
these values, Poulin uses the reused source instructions (RSI). The RSI value comes
from the level of reuse on a project where

%100*
__

__
%

nsinstructiosourcetotal

nsinstructiosourcereused
reuse =

Given the RSI, Poulin calculates the DCA by calculating the cost avoidance based on the
total software reused and the cost of reusing that software:

DCA = RSI * (1-RCR) * (Cost of single-use code/lines of code [LOC])

For example, if the RCR is 0.1, and the reused software is 10 thousand lines of code
(KLOC), and the typical costs per LOC is $40

DCA = 10000 * (1-0.1) * ($40) = $360,000

The SCA represents the maintenance savings accrued through the elimination of repair
costs:

SCA = RSI * (Error rate) * (Error cost)

For example, if error rates are 1.5 errors/KLOC and error costs are $1000/error

SCA = 10000 LOC * 1.5 errors/KLOC * $1000/error

 = 15 errors * $1000/error

 = $15,000

The RCA in this example is DCA + SCA, or $375,000.

2. The additional development cost (ADC) is the cost of writing software for reuse and is
based on the RCWR and the actual code written for reuse. The ADC reflects the cost of
writing the reusable software, reflected in the RSI, over the cost of writing for a single
use and is expressed as

 ADC = (RCWR -1) * RSI * (new code cost)

For example, using the numbers above

ADC = (1.5 – 1) * 10 KLOC * ($40/LOC) = $200,000

Under this approach, Poulin calculates the ROI as

∑
−

−=
n

i

ADCRCAROI i

1

CMU/SEI-2005-TR-003 43

where i represents the successive uses of the reusable software. Assuming a series of 3
development efforts using these 10 KLOC for reuse

 ROI = ($375,000 * 3) - $200,000 = $925,000

Poulin looks only at the cost savings based on estimated development and reuse costs.
Because Poulin’s method involves a reuse model and not a product line model, it can be used
in a very limited fashion compared to SIMPLE. Moreover, Poulin’s method does not look at
the effects of time on the reuse of assets and necessary changes to those assets or consider
alternative strategies for developing and using a product line.

7.2 COPLIMO
COPLIMO is an outgrowth of COCOMO. Both models estimate effort based on code size
plus a combination of development factors. For COCOMO, size represents KLOC. For
COPLIMO, the model applies a series of equations to generate an “equivalent code size,”—
that is, given asset use in a product line, there is some value that represents a code size for a
product. This product line code size takes into consideration the costs of generating the
assets, the complexity of the assets, the effort of using the assets, and other factors.

COCOMO produces a nominal effort for product development that is defined as

 nominal effort = a* (size)b

In this equation, the factors a and b are dependent on the relative complexity of a software
product—a more complex product requires additional effort, all other factors being equal.

A final effort calculation in COCOMO requires the inclusion of a set of effort multipliers—
that is, factors that influence cost. Examples of these multipliers include the experience of
the development organization, level of documentation, use of tools, and other development
factors. Given these multipliers, the development effort in COCOMO is defined as

 effort = nominal effort * ∏
=

n

i
multipliereffort i

1
_

COPLIMO uses a similar equation but must develop two components in order to apply the
equation:

• a cost model for product line development

• an annualized post-development life-cycle extension

7.2.1 Product Line Development in COPLIMO

The cost model for product line development calculates values similar to the RCWR and
RCR from Poulin. For the RCWR, COPLIMO uses multipliers from COCOMO, namely

44 CMU/SEI-2005-TR-003

development for reuse (RUSE) and two constraints from COCOMO: (1) required reliability
(RELY) and (2) degree of documentation (DOCU). These factors represent the added costs
of developing product line assets. COPLIMO uses 15-20% as the added effort of developing
assets for reuse (an effort that is lower than Poulin because COCOMO removes other
contributing factors) and then applies the other constraints:

estimated cost = (1 + RUSE) * cost of reliability * cost of documentation

COPLIMO calculates the RCR as an equivalent size of code using a factor known as
assessment and assimilation (AA). The RCR calculations consider two cases:

1. Black-box reuse applies the AA factor in the range 0.02 < AA factor < 0.08, based on the
effort of reusing the code. When multiplied by the amount of code reused, this factor
generates an equivalent size. For example, if there is no effort to reuse the code, except
to find it, the total code is multiplied by 0.2. Where testing and evaluation are required,
the factor may be as high as 0.08. For 10 KLOC reused, the equivalent size could range
from 200 to 800, depending on the AA factor.

2. Adapted software (white-box reuse) includes several factors:

- the amount of design modified (DM) and code modified (CM)

- the integration effort (IM)

- the system understanding factor (SU) and programmer unfamiliarity (UNFM)

The formula first accounts for modification (adaptation adjustment factor [AAF]) as the
design and code modification plus integration effort:

• AAF = (.4*DM) + (.3*CM) + (.3*IM)

• COPLIMO calculates an adaptation adjustment multiplier (AAM). Where AAF is <= 50,
AAM =

100

))**02.0(1(UNFMSUAAFAA ++

Where AAF > 50, AAM =

100

)*(UNFMSUAAFAA ++

In these formulae, system understanding will be lower based on the clarity of the architecture,
a clear match between assets and product, and the level of documentation; unfamiliarity will
be lower based on the frequency of asset use.

The AAM is then multiplied by the LOC reused to obtain an equivalent size of code for
further COPLIMO calculation. For moderate (25%) levels of modification and high levels of
system understanding and unfamiliarity, the AAM will be approximately 30%. Modifying 10
KLOC under these conditions would be the equivalent of creating 3 KLOC from scratch.

CMU/SEI-2005-TR-003 45

COPLIMO then takes equivalent sizes and applies standard COCOMO multipliers. If the
product consists of 30 KLOC, 10K of which are new, 10K are reused as is, and 10K are
reused with modifications, the equivalent lines of code would equal

• 10,000 (for the new lines) +

• 10,000 * 8/100 = 800 lines of black-box reuse (where 8/100 represents the cost AAF)

• 10,000 * .3 = 3000 lines of modified reuse (where .3 is the AAM as shown above)

The equivalent lines would total 13,800. Given this value, COCOMO can be applied as stated
above:

effort = A * (PSIZE)B * ∏
=

n

i
multipliereffort i

1
_

You can compare the cost of development from scratch with PSIZE = 30 (COCOMO uses
KLOC for size) versus 13.8 for the reuse-based approach. Using typical COCOMO values
for A (e.g., 2.94) and 1.0 for B and all effort multipliers, this formula give values of
approximately 90 person-months (PM) and 40PM respectively for from-scratch versus
product line development. The cost savings must take product line development costs into
account, as well, which will cover the 20 KLOC to be reused. Given typical values (e.g., 1.2)
for RUSE, DOCU, and RELY, the asset development costs could be 1.2*1.2*1.2 = 1.7 times
those of development from scratch. COCOMO would predict approximately 100PM of effort
to develop the assets. After three similar applications of the asset base, the COPLIMO model
would show approximately 50PM return, 270 (90 * 3)PM to develop three products from
scratch, versus 220PM (100 + 40 + 40 + 40) using the product line assets.

7.2.2 Annualized Life-Cycle Model in COPLIMO

COMPLIO makes some simplifying assumptions when looking at the life cycle of
maintaining the core asset base and products. Three factors must remain relatively constant:

1. the fractions of a product that are new, reused, or adopted

2. all the effort multipliers (e.g., AA, RUSE, AAM)

3. the annual change traffic (ACT) or the fraction of a product’s software that changes per
year

In calculating life-cycle costs, COPLIMO uses the basic COCOMO approach: add the initial
development cost (in PM) to the maintenance costs based on the number of years in
maintenance. The maintenance costs use an annual maintenance size based on product size,
the ACT, and system understanding and unfamiliarity factors. The actual formula for size is

 AMSIZE = PSIZE * ACT (1 +
100

SU
 * UNFM)

46 CMU/SEI-2005-TR-003

COCOMO factors the AMSIZE into a maintenance formula as

 PM (N, L) = PM (N) + L * N [A * (AMSIZE)B * ∏ (EM)]

In this formula, N is the number of products under maintenance and L is the number of years.
For the product line, COPLIMO applies this same formula once for each of the three
categories of new, reused, and adopted assets. The results are summed to give a total
maintenance value.

As with Poulin, COPLIMO is essentially a reuse-based model: COPLIMO assumes the use of
a set of assets for building a set of related products. COPLIMO goes further than Poulin by
considering variations in the cost of reuse (Creuse in SIMPLE) and in considering maintenance
but makes some simplifying assumptions as well. On the other hand, COPLIMO relies on the
availability of a range of parametric values that must be accurately calibrated, making it less
suitable for a nontechnical audience.

CMU/SEI-2005-TR-003 47

8 Future Work

SIMPLE is still very much a work in progress, with four main efforts remaining:

1. validating the model

2. adding new scenarios and sorting out how to organize them

3. exploring dependencies and sensitivities within the model

4. making SIMPLE widely available and usable

Each effort is described below.

8.1 Validating SIMPLE
How will we know that the predictions returned by SIMPLE are correct? The fact is that
most likely, they will not be. All models are subject to accuracy and precision concerns,
especially SIMPLE. So the appropriate question becomes, “How will we know if the
answers returned by SIMPLE are good enough?”

What does it mean for a prediction to be good enough? If a model predicts 42 and the real
answer is 142, is the model good enough or not? It is a question that can be answered only in
the context of goals for the model. If a model that is accurate within an order of magnitude is
a good one (i.e., if it returns helpful results), the model that returns 42 is indeed a good one.
But if only answers within 5% of reality are helpful, the model is not a good one.

We envision that SIMPLE will be used by product line champions as a tool to provide first-
order-of-magnitude feasibility results related to envisioned product line scenarios. As one
reviewer put it, “If an organization can realize a productivity gain of 200-500% through a
product line approach, you don’t need to worry if your model is off by some small integer
factor. You aren’t trying to convince someone who’s worried about whether some value is
12% or 13%.”

With this in mind, our task becomes one of gaining confidence in the model, not validating it
in the strict sense. Towards this end, we are making arrangements with one organization to
cooperatively formulate several scenarios of interest, make SIMPLE predictions, and then
compare those predictions to actual results over time. We are also looking for other
organizations with which to repeat this process. As we do this, we will publish the results so
that potential users of SIMPLE can see how well those pilot organizations fared and decide
on their own whether the results warrant its use.

48 CMU/SEI-2005-TR-003

8.2 Expanding and Organizing the Set of SIMPLE Scenarios
This report has presented a number of scenarios that SIMPLE can calculate. Of course, many
more are possible. We’d like to try additional scenarios that

• explore the short-term benefits but long-term costs of the “clone and own” approach to
exploiting commonality

• express time-based options, such as choosing between building core assets heavily early
on versus spreading out the process over time. This kind of scenario would address
incremental product line development [Clements 04].

• express choices between different production strategies, such as using a generator to
produce products versus using more traditional check-out/parameterize/compile/build
approaches. This kind of scenario would let an organization investigate the feasibility of
a generative programming approach to its product line [Czarnecki 00].

• let users investigate the difference between reactive and proactive approaches to product
line engineering [Clements 02c]

• let users investigate different approaches to providing variability in their core assets. One
way of doing that is to ask, “How well is an envisioned product supported by the
variability provided?”

• investigate different strategies for product line testing

• let users choose which of hundreds of change requests should be given highest priority

We would also like to provide a systematic means for organizing scenarios so that SIMPLE
users can find the scenarios they want easily without having to search randomly through a
long unstructured list.

8.3 Exploring Intra-Model Dependencies and Sensitivities
Dependencies certainly exist among the variables that constitute a SIMPLE model for a
product line. For instance, providing a core asset base whose assets come equipped with
wizards to guide instantiation and installation will increase Ccab but reduce Creuse. And if Ccab
provides core assets that cover most of a product, Cunique will be low, but Ccab may well be
somewhat high. Uncovering and quantifying these dependencies will help a model builder
set up the model, check it for reasonableness, and perform various “what if” investigations.

Also, it may be the case that a model for a particular product line addressing a particular
scenario is much more sensitive to the value of some variables than others. Knowing that
will tell a modeler which variables are important to have accurate estimates for and which
variables can be filled in with more “finger in the wind” guesses. Peterson describes a good
example of analyzing a model for its input sensitivities [Peterson 04].

CMU/SEI-2005-TR-003 49

8.4 Presentation Issues: Making SIMPLE Available and Usable
We envision a Web-based user interface for SIMPLE. Product line decision makers who
wish to use the model will visit a Web site where they will be presented with a number of
scenarios for which SIMPLE formulas have been developed. After choosing the one that best
describes their situation of interest, they will be asked to fill in estimated values of the
parameters relevant to that scenario. The formulas will be run, and answers will be provided.

Longer term plans might include

• displaying a number of graphs, each showing how one of the outputs is a function of one
or more of the input parameters

• accepting a range of inputs, as a hedge against uncertainty, with the result of having
SIMPLE compute a range of outputs

• using existing skeletal outlines for a business case [Cohen 01] to produce prepackaged
business case write-ups on request that incorporate the results of choosing the scenario
and running the model

• preparing a list of assumptions (some inherent in the model, some inherent in the selected
scenario, and some inherent in the inputs provided) that the results encompass

• addressing concerns about submitting confidential data to a Web site by, for example,
providing ways to let users download the computational software

• letting users suspend and resume a modeling session over time

• data farming, or collecting (without retaining any identification of the user) entered
profiles, so as to gain insights into the kinds of product line scenarios and values that are
being experienced in the real world

• showing role-based benefits

Still longer term plans might include a section of the Web site where visitors can propose new
scenarios and then propose SIMPLE formulations that express those scenarios. Much like
open source software, these scenarios and their formulas would be built and maintained by
the user community, who could decide whether the formulations were reliable enough to use.

50 CMU/SEI-2005-TR-003

CMU/SEI-2005-TR-003 51

Appendix A – Goal Question Metric (GQM) Analysis of

Homogeneity Metric

Several activities in product line management depend on the characteristics of the products in
the product line. The degree of reuse among the products in the product line depends on how
homogeneous the products are. In this report, we propose a metric that characterizes the
homogeneity of a set of products. This metric can be used for various estimation and
planning activities such as product line scoping.

We use the GQM approach [Basili 92] to describe the context and basic definition of the
metric. We then give a complete definition of it and illustrate its use with several scenarios.

Goal
Our goal is to be able to characterize a product line, so we can compare one product line to
another. A product line made up of wireless devices that differ from one another only by the
types of peripheral devices that attach to it is different from a product line made up of
handheld terminals that perform diverse tasks such as traffic ticket issuance or merchandise
inventory control. A higher level of component reuse would be anticipated in the former
product line than in the latter.

Questions
The statement of the goal raises several questions:

1. How many products are in each product line?

2. What is the size of each product in the product line?

3. How complex is each product and, by inference, the product line?

4. How similar are the products within a single product line? The more similar the
products, the higher the degree of reuse and the faster the time to market for the product
line.

52 CMU/SEI-2005-TR-003

Metric
To answer the question posed above about the similarity of the products in a product line, we
need to define a measure that characterizes how homogeneous the products are. To do that,
we must address the issues discussed below.

Units

The first issue is the selection of the unit that will be used in the computation of the metric. A
product is most often thought of in terms of its requirements; however, different writers will
divide the responsibilities of a system differently, resulting in potentially different values of
the metric for the same product. Two requirements may have very different impacts on the
system, yet a counting scheme may count each as a single requirement. There is no uniform
technique for writing requirements.

Two other candidate units are features and use cases. A feature is just as nebulous as a
requirement, but techniques such as feature-oriented domain analysis (FODA) [Kang 90] can
reduce the variation between people defining the same system. Likewise, use cases can be
vague, but specific techniques [Major 98, Cockburn 01] exist that result in more uniform use
cases.

Following the approach used by McGregor [McGregor 95], the conceptual definition of the
metric can remain unchanged, while different units of measure are selected. This approach
allows measures of homogeneity to be defined very early in the product line life cycle and on
into the implementation of the products. So early on, features or use cases can be considered
the units, while later, unique components can be the units.

Accuracy

In defining the measure, a number of issues will arise that affect the accuracy of the measure.
For example, are all the requirements, features, or other units equally important? What if one
requirement is a derivative of another?

We are taking an iterative approach. Initial results from using the metric will drive
modifications in the definition.

Metric Definition

Consider the definition of the following measure:

Notation:
NP = number of products in the product line
R = a functional requirement of a product

CMU/SEI-2005-TR-003 53

TR = the set of all requirements

=|| TR the total number of different requirements

Assumption: A “unique” requirement is one that is used by only one product.

Scenario: Suppose there are 10 products in the product line and a total of 100 separate
requirements. There are several possibilities:

a) All requirements apply to all products.

b) Ten requirements apply to each product, and each product is different.

c) Some products share requirements, but not the same requirements.

The requirements for a product Pi is the union of the product line requirements that apply to
Pi and the requirements unique to product Pi.

ipipi uplp RRR ∪=

So we need a measure for the homogeneity of the product line. Consider the measure

homogeneity =
||

||
1 1

T

productsofnumber

i
u

R

R
i∑

=−

54 CMU/SEI-2005-TR-003

There are three cases to consider:

1. In the degenerate case where every product is totally unique

0|| =plR and

∑
=

=
productsofnumber

i
uT

ip
RR

1

|||| then

homogeneity = 0
||

||
1 =−

T

T

R

R

When each product is unique, the number of products using any requirement is 1. Each

term in the sum is
NP

1
, the sum is

NP

T
, and the result is 1 -

NP

1
.

2. If all the products are identical, |||| plT RR = and 0||
1

=∑
=

productsofnumber

i
u

ip
R and

homogeneity = 1 – 0 = 1.

When the products are identical, each term in the numerator is a 1. The sum is T, the
quotient is 1, and homogeneity is 1 – 1 = 0.

3. This still leaves the third case in which a requirement applies to more than one product
but not all of them. This is still a product line requirement, but the variables of diversity
and reuse factor still can vary over wide ranges. We consider an average case where all
requirements are used by more than one product, but none are used by all products.

One possibility is to weight each requirement by the fraction of the total number of
products that use it.

homogeneity =
||

1

T

T

i

i

R
NP

Rsatisfyingproductsofnumber∑
=

Consider these scenarios:

• Suppose there are 100 requirements and 10 products and a core set of 10 requirements
common to all products. Each product has nine unique requirements. In this case, the sum
is 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 90(.1) = 19, and the homogeneity is 1 - 19/100
= .81

CMU/SEI-2005-TR-003 55

• Suppose there are 100 requirements and 10 products and a core of 50 requirements
common to all products. Each product has five unique requirements. In this case, the sum
is 50(1) + 50(.1) = 55, and the homogeneity is 1 - 55/100 or .45.

• Suppose there are 100 requirements and 10 products and a core of 80 requirements
common to all products. Each product has two unique requirements. In this case, the sum
is 80(1) + 20(.1) = 82, and the homogeneity is 1 - 82/100 or .18.

56 CMU/SEI-2005-TR-003

CMU/SEI-2005-TR-003 57

Appendix B – Table of Symbols Used in SIMPLE

Symbol Definition

jbenB A benefit function that returns the economic value of product line benefit
jben (such as faster time to market)

Ccab()

A cost function that, given the relevant parameters, returns the cost of
developing a core asset base suited to satisfy a particular scope. Ccab
takes into account the costs of performing a commonality/variability
analysis, defining the product line’s scope, designing and then evaluating
a generic (as opposed to one-off) software architecture, and developing
the software so designed. Ccab may be invoked to tell us the cost of
developing a core asset base where none currently exists or deriving a
desired core asset base from one or more already in place.

Ccabu() The cost of updating the core asset base has to change as a result of
releasing a new version of a product

Cevo() A cost function that is parameterized with product and version numbers
and returns the cost of producing that version without using a core asset
base

Corg() A cost function that, given the relevant parameters, returns how much it
costs an organization to adopt the product line approach for its products.
Such costs can include reorganization, process improvement, training,
and whatever other organizational remedies are necessary.

Cprod (product) A cost function that returns the cost of building a product in a stand-alone
fashion

Creuse() A cost function that, given the relevant parameters, returns the
development cost of reusing core assets from a core asset base to build a
product. Creuse includes the cost of locating a core asset, checking it out of
the repository, tailoring it for use in the intended application, and
performing the extra tests associated with reusing core assets.

Cunique()

A cost function that, given the relevant parameters, returns the cost of
developing the unique parts (both software and non-software) of a
product that are not based on the assets in the core asset base. The result
might be a complete product (i.e., one that is not a member of a product
line) or the unique part of a product whose remainder is built atop the
core asset base of a product line.

Fcommon A factor describing what fraction of a product (or, on average, a set of
products) is built from core assets (e.g., 70%)

Freusable A factor describing how much more it costs to build multi-use software
than single-purpose software (e.g., 150%)

ROI return on investment, calculated as cost savings/cost of investment

t A time period of interest, used as a parameter to cost and benefit functions

58 CMU/SEI-2005-TR-003

CMU/SEI-2005-TR-003 59

Appendix C – Acronym List

Acronym Definition

AA assessment and assimilation

AAF adaptation adjustment factor

AAM adaptation adjustment multiplier

ACT annual change traffic

ADC additional development cost

CBAM Cost Benefit Analysis Method

CM code modified

COCOMO Cost Construction Model

COPLIMO Constructive Product Line Investment Model

COTS commercial off-the-shelf

DCA development cost avoidance

DM design modified

DOCU degree of documentation

GQM Goal Question Metric

FODA feature-oriented domain analysis

IM integration effort

KLOC thousand lines of code

LOC lines of code

PM person-months

PY person-years

R&D research and development

ROI return on investment

RCA reuse cost avoidance

RCR relative cost of reuse

RCWR relative cost of writing for reuse

RELY required reliability

RSI reused source instructions

RUSE development for reuse

60 CMU/SEI-2005-TR-003

Acronym Definition

SCA service cost avoidance

SEI Software Engineering Institute

SIMPLE Structured Intuitive Model of Product Line Economics

SU system understanding

UNFM programmer unfamiliarity

CMU/SEI-2005-TR-003 61

References

URLs are valid as of the publication date of this document.

[Basili 92] Basili, Victor R. Software Modeling and Measurement: The
Goal/Question/Metric Paradigm (CS-TR-2956, UMIACS-TR-92-
96). College Park, MD: University of Maryland, September 1992.

[Böckle 04a] Böckle, Günter; Clements, Paul; McGregor, John D.; Muthig, Dirk;
& Schmid, Klaus. “Calculating ROI for Software Product Lines.”
IEEE Software 21, 3 (May/June 2004): 23-31.

[Böckle 04b] Böckle, Günter; Clements, Paul; McGregor, John D.; Muthig, Dirk;
& Schmid, Klaus. “A Cost Model for Software Product Lines,”
310-316. Proceedings of the 5th International Workshop on Product
Family Engineering (PFE 2003), Lecture Notes in Computer
Science (LNCS) 3014. Siena, Italy, November, 2003. Berlin,
Germany: Springer, 2004.

[Boehm 04] Boehm, Barry; Brown, A. Winsor; Madachy, Ray; & Ye Yang. “A
Software Product Line Life Cycle Cost Estimation Model,” 156-
164. Proceedings of the 2004 International Symposium on
Empirical Software Engineering. Redondo Beach, CA, August 19-
20, 2004. Los Alamitos, CA: IEEE Computer Society, 2004.

[Boehm 00] Boehm, Barry W. Software Cost Estimation with Cocomo II. Upper
Saddle River, NJ: Prentice Hall, 2000.

[Clements 04] Clements, Paul & Northrop, Linda. A Framework for Software
Product Line Practice, Version 4.2.
http://www.sei.cmu.edu/productlines/framework.html (2004)

[Clements 02a] Clements, Paul & Northrop, Linda. Salion, Inc.: A Software Product
Line Case Study (CMU/SEI-2002-TR-038, ADA412311).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2002. http://www.sei.cmu.edu/publications/documents
/02.reports/02tr038.html

http://www.sei.cmu.edu/productlines/framework.html
http://www.sei.cmu.edu/publications/documents

62 CMU/SEI-2005-TR-003

[Clements 02b] Clements, Paul & Northrop, Linda. Software Product Lines:
Practices and Patterns. Boston, MA: Addison-Wesley, 2002.

[Clements 02c] Clements, Paul & Krueger, Charles. “Initiating Software Product
Lines - Point/Counterpoint: Being Proactive Pays Off.” IEEE
Software 19, 4 (July/August 2002): 28.

[Cockburn 01] Cockburn, Alistair. Writing Effective Use Cases. Boston, MA:
Addison-Wesley, 2001.

[Cohen 04] Cohen, Sholom; Zubrow, Dave; & Dunn, Ed. Case Study: A
Measurement Program for Product Lines (CMU/SEI-2004-TN-
023). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 2004.
http://www.sei.cmu.edu/publications/documents/04.reports
/04tn023.html

[Cohen 03] Cohen, Sholom. Predicting When Product Line Investment Pays
(CMU/SEI-2003-TN-017, ADA418466). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2003.
http://www.sei.cmu.edu/publications/documents/03.reports
/03tn017.html

[Cohen 01] Cohen, Sholom. Case Study: Building and Communicating a
Business Case for a DoD Product Line (CMU/SEI- 2001-TN-020,
ADA395155). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2001.
http://www.sei.cmu.edu/publications/documents/01.reports
/01tn020.html

[Cruickshank 93] Cruickshank, R. D. & Gaffney, J. E. “An Economic Model of
Software Reuse,” 99-137. Analytical Methods in Software
Engineering Economics. Edited by T. Gulledge & W. Hutzler. New
York, NY: Springer-Verlag, 1993.

[Czarnecki 00] Czarnecki, K. & Eisenecker, U. Generative Programming:
Methods, Tools, and Applications. Boston, MA: Addison-Wesley,
2000.

http://www.sei.cmu.edu/publications/documents/04.reports
http://www.sei.cmu.edu/publications/documents/03.reports
http://www.sei.cmu.edu/publications/documents/01.reports

CMU/SEI-2005-TR-003 63

[Favaro 96] Favaro, John. “A Comparison of Approaches to Reuse Investment
Analysis,” 136-145. Proceedings of the Fourth IEEE International
Conference on Software Reuse. Orlando, FL, April 23-26, 1996. Los
Alamitos, CA: IEEE Computer Society Press, 1996.

[Gaffney 92] Gaffney, J. E., Jr. & Cruickshank, R. D. “A General Economic
Model of Software Reuse,” 327-337. Proceedings of the
International Conference on Software Engineering. Melbourne,
Australia, May 11-15, 1992. New York, NY: ACM, 1992.

[ISO9126 01] International Organization for Standardization (ISO) &
International Electrotechnical Commission (IEC). Software
Engineering—Product Quality = Genie du Logiciel—Qualite des
Produits [ISO/IEC 9126-1:2001(E)]. Geneva, Switzerland:
ISO/IEC, 2001.

[Kang 90] Kang, K.; Cohen, S.; Hess, J.; Novak, W.; & Peterson, A. Feature-
Oriented Domain Analysis (FODA) Feasibility Study (CMU/SEI-
90-TR-021, ADA235785). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1990.
http://www.sei.cmu.edu/publications/documents/90.reports
/90.tr.021.html

[Kazman 02] Kazman, Rick; Asundi, Jai; & Klein, Mark. Making Architecture
Design Decisions: An Economic Approach (CMU/SEI-2002-TR-
035, ADA408740). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2002.
http://www.sei.cmu.edu/publications/documents/02.reports
/02tr035.html

[Knauber 02] Knauber, Peter; Bermejo, Jesus; Böckle, Günter; Leite, Julio; van
der Linden, Frank; Northrop, Linda; Stark, Michael; & Weiss,
David. “Quantifying Product Line Benefits,” 155-163. Proceedings
of the 4th International Software Product Family Engineering
Workshop (PFE 2001), Lecture Notes in Computer Science (LNCS)
2290. Bilbao, Spain, October 3-5, 2001. Berlin, Germany: Springer-
Verlag, 2002.

http://www.sei.cmu.edu/publications/documents/90.reports
http://www.sei.cmu.edu/publications/documents/02.reports

64 CMU/SEI-2005-TR-003

[Major 98] Major, Melissa & McGregor, John D. A Qualitative Analysis of Two
Requirements Capturing Techniques for Estimating the Size of
Object-Oriented Software Projects (Department of Computer
Science Technical Report 98-002). Clemson, SC: Clemson
University, 1998.

[McGregor 02] McGregor, John D.; Northrop, Linda M.; Jarrad, Salah; & Pohl,
Klaus. “Initiating Software Product Lines - Guest Editor’s
Introduction.” IEEE Software 19, 4 (July/August 2002): 24-27.

[McGregor 95] McGregor, John D. “Managing Metrics in an Iterative
Environment.” Object Magazine 5, 6 (1995): 65-71.

[Mili 00] Mili, A.; Chmiel, S. F.; Gottumukkala, R.; & Zhang. L. “An
Integrated Cost Model for Software Reuse,” 157-166. Proceedings
of the 2000 International Conference on Software Engineering.
Limerick, Ireland, June 4-11, 2000. New York, NY: ACM, 2000.

[Peterson 04] Peterson, Dale. “Economics of Software Product Lines,” 381-402.
Proceedings of the 5th International Workshop on Product Family
Engineering (PFE 2003). Siena, Italy, November 2003. Berlin,
Germany: Springer, 2004.

[Poulin 97a] Poulin, Jeffrey S. Measuring Software Reuse. Reading, MA:
Addison-Wesley, 1997.

[Poulin 97b] Poulin, Jeffrey S. “Fueling Software Reuse with Metrics.” Object
Magazine 7, 7 (September 1997): 42-47.

[Schmid 02] Schmid, Klaus. “An Initial Model of Product Line Economics,” 38-
50. Proceedings of the 4th International Software Product Family
Engineering Workshop (PFE 2001), Lecture Notes in Computer
Science (LNCS) 2290. Bilbao, Spain, October 3-5, 2001. Berlin,
Germany: Springer-Verlag, 2002.

[SPL 05a] Success Stories in Software Product Lines.
http://www.softwareproductlines.com/successes/successes.html
(URL valid as of March 2005)

http://www.softwareproductlines.com/successes/successes.html

CMU/SEI-2005-TR-003 65

[SPL 05b] Binding Times.
http://www.softwareproductlines.com /introduction/binding.html
(URL valid as of March 2005)

[Verhoef 04] Verhoef, C. Quantifying the Value of IT-Investments.
http:www.cs.vu.nl/~x/val/val.pdf (August 2004)

[Weiss 99] Weiss, David & Lai, Chi Tau Robert. Software Product-Line
Engineering. Reading, MA: Addison-Wesley, 1999.

[Wiles 02] Wiles, Ed. “Economic Models of Software Reuse: A Comparison
and Validation.” PhD diss., University of Wales. 2002.

http://www.softwareproductlines.com

66 CMU/SEI-2005-TR-003

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

February 2005

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

The Structured Intuitive Model for Product Line Economics (SIMPLE)

5. FUNDING NUMBERS

F19628-00-C-0003
6. AUTHOR(S)

Paul C. Clements, John D. McGregor, Sholom G. Cohen
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2005-TR-003

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

ESC-TR-2005-003

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Software product line practice is an effective strategy for developing families of software-intensive products.
Business modeling is a fundamental practice that provides input into a number of decisions that are made by
organizations using or considering using the product line strategy. This report presents the Structured Intuitive
Model of Product Line Economics (SIMPLE), a general-purpose business model that supports the estimation
of the costs and benefits in a product line development organization. The model supports decisions such as
whether to use a product line strategy in a specific situation, the specific strategy to apply, and the
appropriateness of acquiring or building specific assets. This report illustrates the model’s scope by
presenting several scenarios and its usefulness by integrating it into several product line practice patterns.
The report ends with a description of future work aimed at making the model usable by product line
practitioners.

14. SUBJECT TERMS

software product line, cost model, return on investment, ROI, product
line economics, product line business case

15. NUMBER OF PAGES

80

16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	The Structured Intuitive Model for Product Line Economics (SIMPLE)
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Introduction
	2 Introduction to SIMPLE
	3 Scenarios
	4 Approaches for Implementing Cost and Benefit Functions
	5 Applying SIMPLE in Practice
	6 Relationship to the SEI Framework for Software Product Line Practice
	7 Related Work
	8 Future Work
	Appendix A – Goal Question Metric (GQM) Analysis of Homogeneity Metric
	Appendix B – Table of Symbols Used in SIMPLE
	Appendix C – Acronym List
	References

