A CONCAVE PROPERTY OF THE HYPERGEOMETRIC FUNCTION WITH RESPECT TO A PARAMETER*

JOSEPH B. KADANE \dagger

Abstract

The hypergeometric function is shown to be logarithmically concave in integer values of one of its parameters. The methods used are probabilistic.

Theorem. Let m, i and g be positive integers satisfying $3 \leqq i+1 \leqq g$, and let z be a negative real number. Then

$$
\left\{{ }_{2} F_{1}[-m, i: g: z]\right\}^{2}>{ }_{2} F_{1}[-m, i+1 ; g ; z]_{2} F_{1}[-m, i-1 ; g ; z] .
$$

We first establish the following lemma concerning the evaluation of the generating function of the negative hypergeometric distribution.

Lemma.

$$
\begin{gather*}
\sum_{j=0}^{k}\binom{b+j-1}{j}\binom{k+a-j-1}{k-j} s^{j} /\binom{a+b+k-1}{k} \\
={ }_{2} F_{1}[-k, b ; a+b ; 1-s] \tag{1}
\end{gather*}
$$

for all positive integers k, and all real s, and positive real values of a and b.
Proof of Lemma. Skellam [2] has shown that if X follows a binomial distribution with parameters p and k, and if p is integrated with respect to the normalized beta function

$$
\frac{p^{b-1}(1-p)^{a-1} d p}{B(a, b)},
$$

then the unconditional distribution of X is negative hypergeometric, that is,

$$
\operatorname{Pr}\{X=j\}=\binom{b+j-1}{j}\binom{k+a-j-1}{k-j} /\binom{a+b+k-1}{k} .
$$

The left-hand side of (1), denoted below by I, is then the probability generating function of the negative hypergeometric distribution. Thus

$$
\begin{aligned}
I=\mathscr{E}\left(s^{X}\right) & =\mathscr{E}_{p}\left\{\left(s^{X} \mid p\right)\right\}=\mathscr{E}_{p}(1-p+p s)^{k} \\
& =\frac{1}{B(a, b)} \int_{0}^{1}[1-p(1-s)]^{k} p^{b-1}(1-p)^{a-1} d p \\
& ={ }_{2} F_{1}[-k, b ; a+b ; 1-s] .
\end{aligned}
$$

See [3, p. 20]. This proves the lemma.
Proof of Theorem. The essence of the proof is to use two theorems proved elsewhere [1], one on the existence of a probability distribution with a certain property, the other giving an inequality relating to such a distribution.

[^0]Let $s=1+z, h=g-1$ and $n=m+g-1$. Theorem 3 of [1] states that there is a probability distribution F such that $a_{i, n}$, the expected value of the i th largest of a sample of size n drawn independently from F, satisfies

$$
a_{i, n}=s^{i-1} \quad \text { for all } i, \quad 1 \leqq i \leqq n .
$$

By use of a standard recurrence relation, quoted in [1, (4)], the expected value of the i th largest of some smaller sample of size h can be deduced as follows: For $1 \leqq i \leqq g \leqq n$,

$$
\begin{align*}
a_{i, h} & =\sum_{j=0}^{n-h}\binom{i+j-1}{j}\binom{n-j-i}{n-h-j} a_{i+j, n} /\binom{n}{h} \\
& =\sum_{j=0}^{n-h}\binom{n-j-i}{n-h-j}\binom{i+j-1}{j} s^{i+j-1} /\binom{n}{h} \tag{2}\\
& =s^{i-1}{ }_{2} F_{1}[h-n, i ; h+1 ; 1-s]
\end{align*}
$$

on using the lemma with $k=n-h, b=i$ and $a=h-i+1$.
Theorem 4 of [1] states that if $a_{i, n}=s^{i-1}$ for all $i=1, \cdots, n$, then

$$
a_{i, h}^{2}>a_{i-1, h} a_{i+1, h} \quad \text { for } i=2, \cdots, h-1 \quad \text { and } h \leqq n-1 .
$$

Applying (2), we obtain

$$
\begin{aligned}
& s^{2 i-2}\left\{{ }_{2} F_{1}[h-n, i ; h+1 ; 1-s]\right\}^{2} \\
> & s^{i-2}\left\{{ }_{2} F_{1}[h-n, i-1 ; h+1 ; 1-s]\right\} s^{i}\left\{{ }_{2} F_{1}[h-n, i+1 ; h+1 ; 1-s]\right\} .
\end{aligned}
$$

The theorem now follows by substituting for h, n and s.
Remark. An analytic proof of the theorem has been shown to the author by Dr. Tyson of the Center for Naval Analyses.

REFERENCES

[1] J. B. Kadane, A moment problem for order statistics, Ann. Math. Statist., 42 (1971), pp. 745-751.
[2] J. G. Skellam, A probability distribution derived from the binomial distribution by regarding the probability of success as variable between sets of trials, J. Roy. Statist. Soc. Ser. B, 10 (1948), pp. 257-261.
[3] L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966.

[^0]: * Received by the editors October 19, 1971, and in revised form February 22, 1972.
 \dagger Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.

