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A CONCAVE PROPERTY OF THE HYPERGEOMETRIC FUNCTION
WITH RESPECT TO A PARAMETER*

JOSEPH B. KADANEY

Abstract. The hypergeometric function is shown to be logarithmically concave in integer values
of one of its parameters. The methods used are probabilistic.

THEOREM. Let m, i and g be positive integers satisfying 3 <i+ 1 < g, and
let z be a negative real number. Then
(Fi[—m,itg:z]}? > ,F[—m,i+ 1;g;z] ,F[—-m,i—1;g;2].

We first establish the following lemma concerning the evaluation of the
generating function of the negative hypergeometric distribution.
LEMMA.
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= ,F[—k,b;a+ b;l — 5]

for all positive integers k, and all real s, and positive real values of a and b.

Proof of Lemma. Skellam [2] has shown that if X follows a binomial distribu-
tion with parameters p and k, and if p is integrated with respect to the normalized
beta function
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then the unconditional distribution of X is negative hypergeometric, that is,
b+j—l(k+a—-j—1 a+b+k—1
= =[S |
J k—j k
The left-hand side of (1), denoted below by I, is then the probability generating

function of the negative hypergeometric distribution. Thus

I = &%) = &,{(s"Ip)} = &,(1 — p + ps)t
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=, Fi[—k,b;a+b;1 —s].

See [3, p. 20]. This proves the lemma.

Proof of Theorem. The essence of the proof is to use two theorems proved
elsewhere [1], one on the existence of a probability distribution with a certain
property, the other giving an inequality relating to such a distribution.
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Lets=1+z h=g—1and n=m + g — 1. Theorem 3 of [1] states that
there is a probability distribution F such that q;,, the expected value of the ith

largest of a sample of size n drawn independently from F, satisfies
a;,=s"1 foralli, 1 <i<n.

By use of a standard recurrence relation, quoted in [1, (4)], the expected value of
the ith largest of some smaller sample of size h can be deduced as follows: For
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_“”n—j—ii+j—liﬂﬂ/V)
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=s"1,F[h—n,i;h+ 1,1 —5]
on using the lemma withk =n — h,b=ianda=h —i + L.
Theorem 4 of [1] states that if a;,, = s'" ' foralli = 1, -, n, then
aty > a;_y ;41 fori=2,---,h—1 andh<n-—1.
Applying (2), we obtain
TR h—nyish+ 151 = s])?
> sTHLFh—ni— 1h+ 11 = s]ys'GF [h—ni+ 1;h+ 151 — 5]}

The theorem now follows by substituting for h, n and s.

Remark. An analytic proof of the theorem has been shown to the author
by Dr. Tyson of the Center for Naval Analyses.
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