A CONCAVE PROPERTY OF THE HYPERGEOMETRIC FUNCTION WITH RESPECT TO A PARAMETER*

JOSEPH B. KADANE†

Abstract. The hypergeometric function is shown to be logarithmically concave in integer values of one of its parameters. The methods used are probabilistic.

THEOREM. Let m, i and g be positive integers satisfying $3 \le i + 1 \le g$, and let z be a negative real number. Then

$$\left\{{}_{2}F_{1}[-m,i:g:z]\right\}^{2} > {}_{2}F_{1}[-m,i+1\,;g\,;z]\,{}_{2}F_{1}[-m,i-1\,;g\,;z].$$

We first establish the following lemma concerning the evaluation of the generating function of the negative hypergeometric distribution.

LEMMA.

$$\sum_{j=0}^{k} {b+j-1 \choose j} {k+a-j-1 \choose k-j} s^{j} / {a+b+k-1 \choose k}$$

$$= {}_{2}F_{1}[-k,b;a+b;1-s]$$

for all positive integers k, and all real s, and positive real values of a and b.

Proof of Lemma. Skellam [2] has shown that if X follows a binomial distribution with parameters p and k, and if p is integrated with respect to the normalized beta function

$$\frac{p^{b-1}(1-p)^{a-1}\,dp}{B(a,b)},$$

then the unconditional distribution of X is negative hypergeometric, that is,

$$\Pr\{X=j\} = \binom{b+j-1}{j} \binom{k+a-j-1}{k-j} / \binom{a+b+k-1}{k}.$$

The left-hand side of (1), denoted below by I, is then the probability generating function of the negative hypergeometric distribution. Thus

$$I = \mathscr{E}(s^X) = \mathscr{E}_p\{(s^X|p)\} = \mathscr{E}_p(1-p+ps)^k$$

$$= \frac{1}{B(a,b)} \int_0^1 [1-p(1-s)]^k p^{b-1} (1-p)^{a-1} dp$$

$$= {}_2F_1[-k,b;a+b;1-s].$$

See [3, p. 20]. This proves the lemma.

Proof of Theorem. The essence of the proof is to use two theorems proved elsewhere [1], one on the existence of a probability distribution with a certain property, the other giving an inequality relating to such a distribution.

^{*} Received by the editors October 19, 1971, and in revised form February 22, 1972.

[†] Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.

Let s = 1 + z, h = g - 1 and n = m + g - 1. Theorem 3 of [1] states that there is a probability distribution F such that $a_{i,n}$, the expected value of the *i*th largest of a sample of size n drawn independently from F, satisfies

$$a_{i,n} = s^{i-1}$$
 for all $i, 1 \le i \le n$.

By use of a standard recurrence relation, quoted in [1, (4)], the expected value of the *i*th largest of some smaller sample of size h can be deduced as follows: For $1 \le i \le g \le n$,

(2)
$$a_{i,h} = \sum_{j=0}^{n-h} {i+j-1 \choose j} {n-j-i \choose n-h-j} a_{i+j,n} / {n \choose h}$$
$$= \sum_{j=0}^{n-h} {n-j-i \choose n-h-j} {i+j-1 \choose j} s^{i+j-1} / {n \choose h}$$
$$= s^{i-1} {}_{2}F_{1}[h-n, i; h+1; 1-s]$$

on using the lemma with k = n - h, b = i and a = h - i + 1.

Theorem 4 of [1] states that if $a_{i,n} = s^{i-1}$ for all $i = 1, \dots, n$, then

$$a_{i,h}^2 > a_{i-1,h}a_{i+1,h}$$
 for $i = 2, \dots, h-1$ and $h \le n-1$.

Applying (2), we obtain

$$s^{2i-2} \{ {}_{2}F_{1}[h-n,i;h+1;1-s] \}^{2}$$

$$> s^{i-2} \{ {}_{2}F_{1}[h-n,i-1;h+1;1-s] \} s^{i} \{ {}_{2}F_{1}[h-n,i+1;h+1;1-s] \}.$$

The theorem now follows by substituting for h, n and s.

Remark. An analytic proof of the theorem has been shown to the author by Dr. Tyson of the Center for Naval Analyses.

REFERENCES

- [1] J. B. KADANE, A moment problem for order statistics, Ann. Math. Statist., 42 (1971), pp. 745-751.
- [2] J. G. SKELLAM, A probability distribution derived from the binomial distribution by regarding the probability of success as variable between sets of trials, J. Roy. Statist. Soc. Ser. B, 10 (1948), pp. 257–261.
- [3] L. J. SLATER, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966.