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Abstract

This paper applies conformal prediction techniques to compute simultane-
ous prediction bands and clustering trees for functional data. These tools
can be used to detect outliers and clusters. Both our prediction bands
and clustering trees provide prediction sets for the underlying stochastic
process with a guaranteed finite sample behavior, under no distributional
assumptions. The prediction sets are also informative in that they cor-
respond to the high density region of the underlying process. While or-
dinary conformal prediction has high computational cost for functional
data, we use the inductive conformal predictor, together with several
novel choices of conformity scores, to simplify the computation. Our
methods are illustrated on some real data examples.

1 Introduction

Functional data analysis has been the focus of much research efforts in the statistics
and machine learning community in the last decade. In functional data analysis, the
data points are functions rather than scalars or vectors. The functional perspective
provides a powerful modeling tool for many natural processes with certain smoothness
structures. Typical examples arise in temporal-spatial statistics, longitudinal data,
genetics, and engineering. The literature on functional data analysis is growing very
quickly and familiar techniques like regression, classification, principal component
analysis and clustering have all been extended to functional data. The books by
Ramsay & Silverman (1997) and Ferraty & Vieu (2006) have established the state of
the art.

The focus of this paper is exploratory analysis and visualization for functional
data, including detection of outliers, median sets, and high density sets. Due to
its infinite dimensional nature, visualization is a challenging problem for functional
data since it is hard to see directly which curves are typical and which are abnor-
mal. In the literature, many classical notions and tools for ordinary vector data have
been extended to functional data, using either finite dimensional projection methods
such as functional principal components (FPCA) and spline basis, or componentwise
methods. For example, Hyndman & Shang (2010) developed functional bagplots
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and boxplots, where a band in functional space is obtained by first applying bivariate
bagplots Rousseeuw et al. (1999) on the first two principal component scores, and pro-
jecting the bivariate sets back onto the functional space. In Sun & Genton (2011), the
sample functions are ordered using a notion of functional data depth López-Pintado
& Romo (2009) and a band is constructed by taking componentwise maximum and
minimum of sample quantile functions. Other related work in outlier detection mostly
use functional data depth to order the curves, and then apply robust estimators to
detect outliers, see Cuevas et al. (2007), Febrero et al. (2008), Gervini (2009).

In this paper, we visualize functional quantiles in the form of simultaneous pre-
diction bands. That is, for a given level of coverage, we construct a band that covers
a random curve drawn from the underlying process. Our prediction bands are con-
structed by combining the finite dimensional projection approach and the idea of
conformal prediction, a general approach to construct distribution free finite sample
valid prediction sets Vovk et al. (2005); Shafer & Vovk (2008). Although originally
developed as a tool for online prediction, conformal prediction methods have been
proven to be useful for general nonparametric inferences, yielding robust and efficient
prediction sets Lei et al. (2013); Lei & Wasserman (2013). To apply conformal meth-
ods to functional data, a major challenge is computation efficiency. Computing the
bands with finite dimensional projection is infeasible using ordinary conformal predic-
tion methods because the conformal prediction sets are usually hard to characterize.
Here we use the inductive conformal method which allows efficient implementation
for functional data when combined with some carefully chosen conformity scores.
The resulting prediction bands always give correct finite sample coverage, without
any regularity conditions on the underlying process. Unlike many existing functional
boxplots, our bands tend to reflect the “high density” regions in the functional spaces
and may have disconnected slices. In some cases, such a property can also reveal
other salient structures in the data such as clusters.

Another contribution of this paper is the construction of clustering trees with fi-
nite sample interpretation for functional data. In classical vector cases, clustering,
together with the aforementioned prediction sets, is closely related to density level
sets Hartigan (1975); Rinaldo & Wasserman (2010); Rinaldo et al. (2012). However,
in functional spaces, the density is not well defined because there is no σ-finite dom-
inating measure. In Ferraty & Vieu (2006), a notion of “pseudo density” is used
instead of density. In context of functional data, most methods use finite dimensional
projections, combined with classical clustering methods such as K-means Tarpey &
Kinateder (2003); Antoniadis et al. (2010) and Gaussian mixtures James & Sugar
(2003); Shi & Wang (2008). A componentwise approach to functional data clustering
is studied by Delaigle et al. (2012). In this paper we construct clustering trees for
functional data by combining the pseudo density idea Ferraty & Vieu (2006) and
conformal prediction. Each level of our cluster tree corresponds to an estimated pre-
diction set, with distribution free, finite sample coverage. The clustering trees are
therefore naturally indexed by the level of coverage. Moreover, the prediction sets at
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a higher level on the tree correspond to regions with higher pseudo density.

To our knowledge, this paper is the first to do prediction and visualization of
functional data with finite sample guarantees. In Section 2 we introduce the problem
of prediction bands for functional data and the general idea of conformal prediction
method under this context. In Section 3 we develop the extended conformal prediction
and apply it to efficiently construct simultaneous prediction bands for function data
with good finite sample property. In Section 4 we develop our method of conformal
cluster tree. Both methods are illustrated through real data examples.

2 Notation and Background

2.1 Prediction Sets for Functional Data

Let X1(·), · · · , Xn(·) denote n random functions drawn from an unknown distribution
P over the set of functions on [0, 1] with finite energy: Ω = L2[0, 1]. The distribution P
is defined on an appropriate σ-field F on Ω. Given the data and a number 0 < α < 1,
we will construct a set of functions Cn ⊂ Ω such that, for all P and all n,

P(Xn+1 ∈ Cn) ≥ 1− α (1)

where Xn+1 denotes a future function drawn from P and P denotes the probability
corresponding to P n+1, the product measure induced by P .

Requiring (1) to hold is very ambitious and may be more than needed. If we are
only interested in the main structural features of the curve, then we instead aim for
the more modest goal that, for all P and all n,

P(Π(Xn+1) ∈ Cn) ≥ 1− α (2)

where Π is a mapping into a finite dimensional function space Ωp ⊂ Ω. The projection
Π may correspond to the subspace spanned by the first few functions in Fourier basis,
wavelet basis, or any other orthonormal basis of L2[0, 1].

In practice it is often of interest (for example, for visualization purposes) to have
prediction bands. A prediction band Bn is a prediction set of the form Bn = {X(·) ∈
L2[0, 1] : X(t) ∈ Bn(t), ∀ t ∈ [0, 1]}, where for each t, Bn(t) ⊆ R1 can be expressed as
the union of finitely many intervals. Most existing prediction bands for functional data
with provable coverage relies on the assumption of Gaussianity (see, for example, Yao
et al. (2005)). It is desirable to construct distribution free, finite sample prediction
bands for functional data under general distributions.

2.2 Conformal Prediction Methods and Variants

Conformal inference Vovk et al. (2005); Shafer & Vovk (2008) is a very general the-
ory of prediction, focused on sequential prediction. For our purposes, we only need

3



the following batch version. Given the observed objects (random variables, random
vectors, random functions, etc.) X1, . . . , Xn we want a prediction set for a new object
Xn+1. Assume that Xi ∈ Ω and let x ∈ Ω be a fixed, arbitrary object. We will test
the null hypothesis that Xn+1 = x and then take Cn to be the set of x’s that are not
rejected by the test. Here are the details.

Define the augmented data aug(x) = {X1, . . . , Xn, x}. Define conformity scores
σ1, . . . , σn+1 where σi = g(Xi, aug(x)) for some function g. (Actually, in Vovk et al.
(2005) they omit Xi from g when defining σi. We discuss this point at the end of
this section.) For i = n + 1, the score is defined to be σn+1 = g(x, aug(x)). The
conformity score measures how similar Xi is to the rest of the data. An example is
σi = −

∫
(Xi(t)−X

x
(t))2dt where

X
x
(t) = (n+ 1)−1[x(t) +

∑n
i=1Xi(t)].

In fact, we will use some other conformity scores that are better adapted to the data
distribution.

Consider testing the null hypothesis H0 : Xn+1 = x. When H0 is true, the
objects in the set aug(x) = {X1, . . . , Xn, x} are exchangeable and so the ranks of the
conformity scores are uniformly distributed. Thus, the p-value

π(x) =

∑n+1
i=1 1I(σi ≤ σn+1)

n+ 1
(3)

is uniformly distributed over {1/(n+ 1), 2/(n+ 1), ..., 1} and is a valid p-value for the
test in the sense that P[πn(Xn+1) ≥ α] ≥ 1 − α. We now invert the test, that is, we
collect all the non-rejected null hypotheses:

Cn = {x : π(x) ≥ α}. (4)

It follows from the above argument that

P(Xn+1 ∈ Cn) ≥ 1− α (5)

for any P and n. We refer to the above construction as the standard conformal
method. Next we discuss the use of inductive conformal method which, as we shall
see, has some computational advantages. The general idea is first given in Section
4.1 of Vovk et al. (2005).
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Algorithm 1: Inductive Conformal Predictor

Input: Data X1, ..., Xn, confidence level 1− α, n1 < n.
Output: Cn.

1. Split data randomly into two parts X1 = {X1, ...Xn1}, and
X2 = {Xn1+1, ..., Xn}. Let n2 = n− n1.

2. Let g : Ω 7→ R be a function constructed from X1, . . . , Xn1 .

3. Define σi = g(Xn1+i) for i = 1, . . . , n2. Let σ(1) ≤ · · · ≤
σ(n2) denote the ranked values.

4. Let Cn = {x : g(x) ≥ λ} with λ = σ(d(n2+1)αe−1).

Lemma 2.1. Let Cn be the output of Algorithm 1. For all n and P , P(Xn+1 ∈ Cn) ≥
1− α.

Proof. Note that the random function g(·) is independent of X2. Assume Xn+1 is
another random sample. By exchangeability, the rank of σn2+1 := g(Xn+1) among
{σ1, ..., σn2+1} is uniform among {1, 2, ..., n2 + 1}. Therefore with probability at least
1− α, Xn+1 falls in Cn.

In the rest of this paper, unless otherwise noted, we use n1 = bn/2c. The data
splitting step might seem inefficient due to the sample splitting. However, it greatly
reduces the computational burden of the standard conformal method by avoiding re-
fitting the function g with every augmented data aug(x) for all x ∈ Ω. Moreover, such
a reduction can also substantially improve the robustness of the resulting prediction
sets. For example, consider k-means clustering in d-dimensional Euclidean space. Let
Z = (Z1, ..., Zn) ⊂ Rd be a data set. Given k centers v1, . . . , vk ⊂ Rd, let

R(v1, ..., vk) =
1

n

n∑
i=1

min
j
‖vj − Zi‖2

2.

The k-means prototypes are the functions v̂1, . . . , v̂k that minimize R. As usual,
we can partition the data into k groups Ĝ1, . . . , Ĝk where Ĝj = {Zi : ‖Zi − v̂j‖ ≤
‖Zi − v̂r‖, r 6= j}.

For the standard conformal method, let v̂1(z), . . . , v̂k(z) denote the prototypes
based on the augmented data Z1, . . . , Zn, z. Define the conformity score σi = −minj ‖Zi−
v̂j(z)‖. Let Cn denote the resulting conformal set. With obvious modification,
let C ′n denote the conformal set based on the modified method. Define diam(C) =
supx,y∈C ‖x− y‖.

Proposition 2.1. For any Z, diam(Cn) =∞ but diam(C ′n) <∞ if n > 2/α.
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Proof. For the first statement, consider the augmented data Z1, . . . , Zn, z, where
‖z‖ ≥ C. For C sufficiently large (may depend on Z), there exists a group Gj

such that Gj = {z}. In this case, σn+1 = 0 and hence Cn ⊇ {z : ‖z‖ ≥ C} for all α. It
follows that diam(Cn) =∞. The second statement follows since all the prototypes are
in convhull(Z1) ⊆ convhull(Z). For all α, there exists a C > 0 large enough such that
g(z) < σ1 for all ‖z‖ ≥ C. The key is that in the modified method, the prototypes
and the majority of σi’s are not affected by absurd values of z.

Remark 2.1. Bounded prediction sets could also be obtained by omitting Yi from g
when defining σi. This is, in fact, the method used in Vovk et al. (2005). But this
“omit one” approach is much more computationally expensive than our data-splitting
method.

2.3 Conformal Prediction Bands in the Functional Case

We conclude this section with a brief discussion on conformal prediction bands for
functional data. When the Xi’s are functions, we can construct prediction bands as
follows. Given Cn, a conformal prediction set, we can define upper and lower bounds
for all t ∈ [0, 1]: `(t) = infx∈Cn x(t) and u(t) = supx∈Cn x(t). It follows that

P[`(t) ≤ Xn+1(t) ≤ u(t), ∀ t] ≥ 1− α.

However, these bounds may be hard to compute, depending on the choice of confor-
mity score.

The choice of conformity score also affects statistical efficiency. To see this, con-
sider the following example. Under mild conditions on the process, the random vari-
able Y = supt |X(t)| has finite quantiles. Then we can construct conformal prediction
set Cn using the standard approach with conformity score g(X) = − supt |X(t)|. Thus
Cn is a valid prediction set and naturally leads to a band. However, such a band is
usually too wide and hence of limited use.

We therefore face two challenges: choosing a good conformity score and extracting
useful information from Cn. In the vector setting, Lei et al. (2013) showed that using
a density estimator to define a conformity score leads to conformal set Cn with certain
minimax optimality properties. However, in the present setting, densities do not even
exist. Instead, we consider two approaches: the first uses density of coefficients of
projections to construct prediction bands and the second uses pseudo-densities to
build clustering trees.

There is also a third challenge: identifying an optimal conformity score. This
was done using minimax theory in Lei et al. (2013); Lei & Wasserman (2013) in the
case where the data are vectors. To our knowledge, choosing an optimal conformity
score for the functional case is still an open question. Rather, our current focus is on
computation and visualization.
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3 Prediction Bands Based on Projections

A common approach to functional data analysis is to project the curves onto a finite
dimensional space that captures the main features of the curves. In this section, we
consider the projection approach because it enables us to characterize the prediction
sets and to construct simultaneous prediction bands with finite sample guarantee. To
be concrete, we require the prediction band Cn to satisfy P(Π(Xn+1) ∈ Cn) ≥ 1 − α
where Π is a mapping into a p-dimensional function space Ωp ⊂ Ω. There are two
types of projections: projections on a fixed basis (for example, Fourier basis, wavelet
basis, and spline basis) and projections on a data-driven basis such as functional
principal components (FPC). Our method, summarized in Algorithm 2, is general
enough so that it can be used for any basis. It is a specific implementation of the
general method given in Algorithm 1.

Algorithm 2: Functional Conformal Prediction Bands

Input: Data X1, ..., Xn, basis functions (φ1, ...φp), conformity

score f̂ , level α, 1 ≤ n1 < n.
Output: Bn(t) ⊆ R1 for all t ∈ [0, 1].

1. Split data randomly into two parts X1 = {X1, ...Xn1}, and
X2 = {Xn1+1, ..., Xn}. Let n2 = n− n1.

2. Compute basis projection coefficients ξij = 〈Xi, φj〉, for
i = 1, ..., n, j = 1, ..., p. Denote ξi = (ξi1, ..., ξip).

3. For i = n1 + 1, ..., n, evaluate f̂(ξi) = f̂(ξi; ξ1, ..., ξn1) and
rank these numbers by f1 ≤ f2 ≤ ... ≤ fn2 .

4. Define Tn = {ξ ∈ Rp : f̂(ξ) ≥ λ = fd(n2+1)αe−1}.

5. Bn(t) = {
∑p

j=1 ζjφj(t) : (ζ1, ..., ζp) ∈ Tn}.

Proposition 3.1. Denote Πp the projection operator induced by eigen-functions {φj :
1 ≤ j ≤ p}. Then the prediction band Bn given by Algorithm 2 satisfies

P
{

(ΠpXn+1) (t) ∈ Bn(t), ∀ t ∈ [0, 1]
}
≥ 1− α.

The proof follows from that of Lemma 2.1.

Remark 3.1. The above finite sample coverage guarantee remains valid if the ba-
sis functions are estimated from X1, which is the case in most applications where
functional principal components are used.
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3.1 Conformal Prediction Bands using Gaussian Mixture Ap-
proximation

In general one can apply Algorithm 2 with any basis (possibly a data-driven one
obtained from X1). However, in its abstract form, Algorithm 2 leaves some imple-
mentation issues unsolved. The most challenging one is the characterization of Tn and
Bn(t) which depend on the choice of conformity score. Usually f̂ is a density estima-
tor of the projection coefficient vector ξ ∈ Rp since it makes sense to use high density
region as a prediction set for future observations. For example, Lei et al. (2013) use

kernel density estimator to construct f̂ . Although kernel density estimators can ap-
proximate any smooth densities, it is unclear how to keep track of {ξTφ(t) : ξ ∈ Tn},
the linear projection of the resulting prediction sets, where φ(t) = (φ1(t), ..., φp(t))

T .
However, the inductive conformal method allows us to use any other conformity score
to simplify the computation. Next we show how to use Gaussian mixture density
estimator to construct such a band.

To motivate the method, consider the mixture model

X ∼ P = π1P1 + π2P2 + · · ·+ πKPK ,

where each Pk is the distribution of a Gaussian process on [0, 1] and πk’s are mixing
probabilities satisfying

∑
k πk = 1 and πk ≥ 0. Let {φj : j ≥ 1} be an orthonormal

basis of L2[0, 1], and ξj = 〈X,φj〉 be the scores of X, where 〈f, g〉 =
∫
fg. Then

(ξ1, ..., ξp) is distributed as a p-dimensional Gaussian mixture. For smooth processes,
the variance of the projection score on dimension j in each component decays quickly
as j grows. Therefore, it is common in functional data analysis the sequence of
scores is truncated for some small p. The basis that gives fastest decay corresponds
to the functional principal components, where φj’s are the eigen-functions of Γ, the
covariance function of X:

Γ = E[X ⊗X]− EX ⊗ EX =
∑

j≥1 λj [φj ⊗ φj],

where for functions f, g ∈ L2[0, 1], we define f ⊗ g : [0, 1]2 7→ R1: [f ⊗ g](s, t) =
f(s)g(t). We emphasize that our band has correct coverage: (1) without assuming
that the mixture model is correct, and (2) for all choices of projection dimension and
numbers of mixture components.

Going back to Algorithm 2, we can choose f̂ to be a Gaussian mixture density
estimator with K components and φ1, ..., φp the first p eigen-functions of empirical

covariance function obtained from X1. Let π̂k, µ̂k, Σ̂k be the estimated mixture
proportion, mean, and covariance of the kth component. Denote ϕ(·;µ,Σ) the density

function of Norm(µ,Σ). A rough outer bound of Tn, the level set of f̂ at λ, can be
obtained by

Tn = {ξ : f̂(ξ) ≥ λ} ⊆
K⋃
k=1

{ξ : ϕ(ξ; µ̂k, Σ̂k) ≥ λ/(Kπ̂k)} :=
K⋃
k=1

Tn,k. (6)
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Note that each Tn,k is an ellipsoid in Rp whose projection on φ(t) can be computed
easily. Let uk(t) = supξ∈Tn,k ξ

Tφ(t) and `k(t) = infξ∈Tn,k ξ
Tφ(t). Both uk and `k are

available in close form. Then we can output Bn(t) = ∪k[`k(t), uk(t)].

3.2 Two refinements

The approximation in (6) is usually conservative and improvements are usually pos-
sible. We elaborate this idea in two cases.

A better approximation of the density level set. First, when the components
in the Gaussian mixture are well separated (µ̂k’s are far from each other), then in-

tuitively the level set of f̂ at λ shall be approximately the union of level sets of
ϕ(·; µ̂k, Σ̂k) at λ/πk. Now we make this idea precise and give an more refined approx-
imation of Tn that also retains finite sample coverage guarantee.

For all 1 ≤ k, s ≤ K, define

δks = sup
ξ

(
π̂kϕ(ξ; µ̂k, Σ̂k) ∧ π̂sϕ(ξ; µ̂s, Σ̂s)

)
, δk =

∑
s 6=k

δks.

Roughly speaking, δks measures how much the two components overlap and δk mea-
sures how much the kth component overlaps with all other components. We note
that δks can be computed by solving a sequence of simple quadratically constrained
quadratic programming (QCQP). More concretely, for a given value of c, we find

supξ ϕ(ξ; µ̂k, Σ̂k) under the constraint ϕ(ξ; µ̂s, Σ̂s) ≥ c, which is a simple QCQP. De-

note this value by η(c), then it can be shown that δks is either trivial (π̂sϕ(µ; µ̂s, Σ̂s) ≤
π̂kϕ(µ; µ̂k, Σ̂k)) or it can be given by the unique c∗ such that π̂kc

∗ = π̂sη(c∗). In the
non-trivial case, c∗ can be found using a simple binary search.

When all δk are smaller than λ, we have a better approximation of Tn:

Tn = {ξ : f̂(ξ) ≥ λ} ⊆
K⋃
k=1

{ξ : ϕ(ξ; µ̂k, Σ̂k) ≥ (λ− δk)/πk} :=
K⋃
k=1

T̃n,k. (7)

Note that T̃n,k is also an ellipsoid. We can similarly compute ˜̀
k = infξ∈T̃n,k ξ

Tφ(t),

ũk = supξ∈T̃n,k ξ
Tφ(t), and the band B̃n(t) = ∪k[˜̀k, ũk].

Proposition 3.2. The prediction band B̃n(t) constructed above is a union of K bands,
and

P
{
∃ k : [Πp(Xn+1)] (t) ∈ [˜̀k(t), ũk(t)], ∀ t

}
≥ 1− α.

We implement this method on a real data example. The data set consists of 1,000
recordings of neurons over time (see Figure 1 (a)). The data come from a behavioral
experiment, performed at the Andrew Schwartz motorlab1: A macaque monkey per-

1http://motorlab.neurobio.pitt.edu/index.php
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Figure 1: Two functional data sets. (a): neuron data. (b): phoneme data.

forms a center-out and out-center target reaching task with 26 targets in a virtual
3D environment. The curves show voltage of neurons versus times recorded at elec-
trodes. The recorded neural activity consists of all action potentials detected above
a channel-specific threshold on a 96-channel Utah array implanted in the primary
motor cortex. One of the goals is “spike sorting” which means clustering the curves.
Each cluster is thought to correspond to one neuron since each neuron tends to have
a characteristic curve (spike).

Our implementation uses functional principal components with p = 2 and K = 3.
A band consists of three components is plotted along with the projected sample
curves. The empirical coverage is 916 out of 1000. See Figure 2.

A different conformity score. The approximation introduced above may still be
too conservative when the mixture components are not well separated. An example
of such a situation can be seen from the phoneme data, which is considered in Hastie
et al. (2009) and Ferraty & Vieu (2006). The data considered here consists of three
phonemes, where each phoneme has 400 sample curves of discretized periodograms
of length 150.2 The data is plotted in Figure 1 (b).

When analyzing the phoneme data, we also perform a FPCA and focus on the first
two principal component scores. Note that our method can be implemented using
other variants such as robust FPCA and using more dimensions. Here we choose
two principal components for the ease of visualization. In the original data, the
label of each curve is known and we summarize this information in Figure 3 (a) (but
our algorithm assumes that the labels are unknown). We observe that the cluster

2Further information and the data set can be found at (http://www.math.univ-toulouse.fr/
staph/npfda/npfda-phoneme-des.pdf).

10

http://www.math.univ-toulouse.fr/staph/npfda/npfda-phoneme-des.pdf
http://www.math.univ-toulouse.fr/staph/npfda/npfda-phoneme-des.pdf


(a) Principal Components

PC1

P
C
2

0 5 10 15 20 25 30

-2
00
0

-1
00
0

0
10
00

20
00

(b) 90% Prediction Bands for Projection

R
es
po
ns
e

Time

Figure 2: Prediction Bands for Neuron Data. (a): plots of first two FPC coefficients
with boundary of T̃n,k. (b): conformal prediction bands and projected curves.

corresponding to phoneme “dcl” exhibits significant non-Gaussianity, therefore the
Gaussian mixture model fitting suggests that this single cluster is best modeled by a
two-component Gaussian mixture. The band for that cluster is just the union of the
bands given by the two components.

In this case, if the approximation in (7) is used, the resulting prediction and hence
the band will be too wide than necessary due to the heavy overlap between the two
components corresponding to phoneme “dcl”. Here we use a different conformity
score to obtain a better prediction set. In particular, consider

f̂(ξ) = max
k:1≤k≤K

π̂kϕ(ξ; µ̂k, Σ̂k). (8)

That is, instead of computing the sum of density from each component, we only look
at the density of the cluster that ξ is most likely to belong to. Such a conformity
score function resembles that of a K-means clustering, except it takes into account of
the mixture probabilities.

The advantage of using such a max function is the decomposability:

Tn = {ξ : f̂(ξ) ≥ λ} =
K⋃
k=1

{ξ : ϕ(ξ; µ̂k, Σ̂k) ≥ λ/π̂k} :=
K⋃
k=1

T̄n,k. (9)

Since T̄n,k is also an ellipsoid, we can analogously define ¯̀
k(t) = infξ∈T̄n,k ξφ(t), ūk(t) =

supξ∈T̄n,k ξ
Tφ(t), and B̄n(t) = ∪k[¯̀k(t), ūk(t)].

Remark 3.2. We note that T̄n,k defined in (9) and T̃n,k defined in (7) are very close

if the components are well-separated because δk ≈ 0 for all k and f̂ defined in (8) is
very close to the estimated density.
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Figure 3: Prediction Bands for Phoneme Data. (a): plots of first two FPC coefficients
with boundary of T̃n,k. (b): conformal prediction bands and projected curves.

Since the union representation in the above equation is exact, there is no loss of
statistical efficiency. The only possible loss of efficiency is using a conformity score
function other than the density function. However, such a loss is conceivably small:
since if the max contributor is large, the density is likely to be large. Therefore,
ranking the max component density is roughly the same as ranking the density. The
prediction band for the phoneme data is plotted in Figure 3 (b) where the empirical
coverage is 90.5%.

4 Methods Based on Pseudo-Densities

Here we investigate a different approach, based on pseudo-densities which were intro-
duced by Ferraty & Vieu (2006). For simplicity, assume nα is an integer. Given a
kernel K and bandwidth h > 0 define the pseudo-density estimator

p̂h(u) =
1

n

n∑
i=1

K

(
d(u,Xi)

h

)
(10)

where d(f, g) is some distance measure (for example, d(f, g) = [
∫

(f − g)2]1/2). We
assume that K(z) ≤ K(0) for all z. This looks like a kernel density estimator but it
is not a density function. Indeed, there are no density functions on Ω because there is
no σ-finite dominating measure. Nevertheless, Ferraty and Vieu show that p̂h(u) can
be used for various tasks such as clustering curves, just as we would do for a density
estimator. We can view p̂h as an estimator of ph(u) = E(p̂h(u)) =

∫
K
(d(u,x)

h

)
dP (x).
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(f) Prototypes

Figure 4: Neuron data. X axis: time. Y axis: response. (a) 1,000 recordings of action
potentials over time. (b-e) anormalies, median, and high density sample curves using
pseudo-density. (f) mean-shift prototypes.

We follow a similar approach here, and endow the high density sets in the func-
tional space with a conformal prediction interpretation. For presentation simplicity,
we use the standard conformal method. Let Cn,α = {f : π(f) ≥ α} where

π(f) =
1 +

∑n
i=1 1I(p̂fh(Xi) ≤ p̂fh(f))

n+ 1
,

p̂fh(u) =
n

n+ 1
p̂h(u) +

1

n+ 1
K

(
d(u, f)

h

)
.

It is straightforward to see that Cn,α constructed above is a level 1− α conformal
prediction set, and hence has distribution-free, finite sample coverage. The set Cn,α
can be approximated by a level set of p̂h as follows. Let X(1), X(2), . . . , denote the
re-ordered data, ranked so that p̂h(X(1)) ≤ p̂h(X(2)) ≤ · · · . Let λ = p̂h(X(nα)) and let

C+
n,α =

{
f : p̂h(f) ≥ λ− n−1K(0)

}
. (11)

We have the following result ensuring that the level sets of the pseudo-density have a
well-defined finite sample predictive interpretation. Its proof is analogous to that of
ordinary kernel density for vectors (see Lei et al. (2013)).

Lemma 4.1. We have P(Xn+1 ∈ Cn,α) ≥ 1 − α for all P and n. Furthermore,
Cn,α ⊆ C+

n,α and hence, P(Xn+1 ∈ C+
n,α) ≥ 1− α for all P and n.

Now we describe how to make use of and explore the set C+
n,α. Let Ĉn,α = C+

n,α ∩
{X1, . . . , Xn}.
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Anomalies, median set, and high density curves We first consider three such
sets of Ĉn,α: anomalies (α close to 0), typical (α = .5) and high density (α close to
1). Figures 4 (b-e) show the results using the distance d2(f, g) =

∫
(f(t) − g(t))2dt

for the neuron data. It is easily seen that the median set successfully captures the
common shape of each group of neurons. The high density set contains curves in the
two larger groups. The anomalies consist of mostly curves with irregular shape.

Modes, prototypes, and mean shift Another summary of Ĉn,α are prototypes,
that is, representative functions corresponding to the local maxima of the pseudo
density (see also the cluster tree below). The modes of the pseudo-density can be
obtained using the mean-shift algorithm Cheng (1995). Figure 4 (f) shows the three
modes obtained in our example. Two of the modes have the signature of a neuron
firing (a decrease followed by a sharp increase). The third mode, which stays negative,
is unusual and deserves further attention.

Conformal cluster tree Here we use a cluster tree to visualize how the conformal
prediction set evolves as α changes smoothly from 0 to 1. For a given ε > 0, define the
graph Gα,ε whose nodes correspond to the functions in Ĉn,α and with edges between
nodes Xi and Xj if

∫
(Xi(t) − Xj(t))

2dt ≤ ε2. Define the level α clusters to be

the partition of Ĉn,α induced by connected components of Gα,ε. As the conformal
parameter α varies from 0 to 1, the collection T of all level α clusters form a tree (i.e.
A,B ∈ T implies that A ∩ B = ∅ or A ⊂ B or B ⊂ A), which we call the conformal
tree. The height of the tree is indexed by α, with the root of tree indexed by α = 0,
corresponding to all the points in the dataset. As α increases the sets Ĉn,α becomes
smaller, and the leaves, which are associated to local modes of the pseudo density,
consist each of a single data point. Such a conformal tree is similar to an ordinary
clustering tree, plus the additional feature of finite sample coverage and a different
but quite natural indexing on α rather than the usual indexing on the density itself.

The conformal tree provides a graphical representation of some distributional
properties of the data and, in particular, of the “high-density” regions. As such
it allows us to identify salient features about the data that may be otherwise hard to
detect. Figure 5(a) shows the conformity tree of the neuron data based on the pseudo
density estimator described above using the L2 distance and the Gaussian kernel. It
is easy to see how the data appear to arise from a mixture of three components (com-
pare with Figure 2), with splits occurring at values of α equal to approximately 0.08
and 0.24. A further, more subtle, split occurs at α = 0.79, and distinguishes between
two groups of curves exhibiting very similar but ultimately distinct behavior. The
leaves of the tree correspond to prototypical curves of highest pseudo density within
each component. In Figure 5(b) we present the conformal tree with h = ε = 1000 as
in Figure 4. The tree is different but suggests strongly the three-component structure.
It also rises the issue of choosing tuning parameters, an important problem for future
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Figure 5: Conformal trees for the neuron data. (a): conformal tree with band-
width h chosen to maximize the variance of p̂h(X1), ..., p̂h(Xn) and ε set to 0.5 ×
max{minXi,Xj∈Ĉn,α d(Xi, Xj)}. (b): conformal tree obtained using: h = ε = 1000.

The plots show the clusters for different values of α. Next to each node (e.g., split),

we plot the curves belonging to the elements of the corresponding partition of Ĉn,α.
Isolated clusters of size smaller than 10 are ignored.

study.

5 Conclusion and Future Directions

We have extended conformal methods and its variants to functional data. Using the
inductive conformal predictor, together with basis projections, we obtain the first
distribution-free simultaneous prediction bands for functional data with finite sample
performance guarantee. These prediction bands can also be viewed as quantile sets of
the underlying process that corresponding to high density region. On the other hand,
using standard conformal prediction with pseudo densities, the prediction set Cn also
reveals hierarchical and salient features in the data. We have proposed methods for
extracting information from and visualizing Cn. Currently, we are investigating several
open questions such as extension of the new conformal method to other conformity
scores in high dimensional problems and issues regarding optimality and the selection
of tuning parameters. For functional data, the choice of distance in pseudo densities
is also interesting. It can be shown that for the L2 distance, the induced bands are
unbounded. The results using the distance d2(f, g) =

∑
j e

γj(βj − θj)2 for example
are somewhat different (not shown). Here, {βj} and {θj} are the coefficients f and
g in the cosine basis. We call this the analytic distance as it is related to the set
of analytic functions; see page 46 of Efromovich (1999). This distance is much more
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sensitive to the shape of the curve.
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