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Abstract

We present a fast clustering algorithm for density contour clusters
(Hartigan , 1975) that is a modified version of the Cuevas, Febrero
and Fraiman (2000) algorithm. By Hartigan’s definition, clusters
are the connected components of a level set Sc ≡ {f > c} where f

is the probability density function. We use kernel density estimators
and orthogonal series estimators to estimate f and modify the Cuevas,
Febrero and Fraiman (2000) Algorithm to extract the connected com-
ponents from level set estimators Ŝc ≡ {f̂ > c}. Unlike the original
algorithm, our method does not require an extra smoothing parameter
and can use the Fast Fourier Transform (FFT) to speed up the cal-
culations. We show the cosmological definition of clusters of galaxies
is equivalent to density contour clusters and present an application in
cosmology.

Key Words: Density contour cluster; clustering; Fast Fourier Trans-
form.

1 Introduction

Clustering is an important subject in statistics and has recently received
a great deal of attention in the field of machine learning under the name
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comments and suggestions
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unsupervised learning (Hastie et al , 2001). The usual tools for clustering are
similarities or distances between objects.

In most case, the objectives of clustering are to find the locations and the
number of clusters. Although these two problems are separate, it is tempting
to solve both of them simultaneously. For the first step in clustering, we shall
define clusters precisely from statistical point of view.

From one point of view, a cluster is a mode associated with a location

carrying high probability over a neighborhood rather than a local maximum of

the density. To capture this concept, several definitions of clusters have been
introduced in statistics, for example, density contour clusters (Hartigan ,
1975), modes of given width (Hartigan , 1977) and bumps (Good and Gaskins
, 1980).

We adapt Hartigan’s definition of clusters : clusters are connected com-
ponents of level sets Sc ≡ {f > c} where f is the probability density function
on R

d. Therefore clustering is equivalent to estimating level sets.
Then we face the following two problems immediately :

• How to estimate the level set?

• How to extract the connected components of the estimated level set?

A naive estimator for the level set is the plug-in estimator Ŝc ≡ {f̂ > c}

where f̂ is a nonparametric density estimator. For example, kernel density
estimators and orthogonal series estimators can be used. The consistency of
the plug-in estimator was proved by Cuevas and Fraiman (1997) in terms
of a set metric such as the symmetric difference dµ and the Hausdorff metric
dH :

dµ ≡ µ(T∆S), dH(T, S) ≡ inf{ε > 0 : T ⊂ Sε, T ε ⊂ S},

where ∆ is symmetric difference, µ is Lebesgue measure and Sε is the union
of all open balls with a radius ε around points of S.

Báıllo et al (2001) showed that the convergence rates of the plug-in
estimator are at most the order of n−1/(d+2).

While the plug-in estimator is conceptually simple, it is not easy to extract
the connected components of the estimated level set in practice. Instead of
using the plug-in estimator, Cuevas, Febrero and Fraiman (2000) proposed
a different method which we will refer to as the CFF algorithm.

The key idea of the CFF algorithm is first to find the subset of data
belonging to the level set and then find clusters by agglomerating the data
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points. Unlike other clustering algorithms such as mixture models and hier-
archical single linkage clustering, the CFF algorithm performs well even with
a noisy background (Wong and Moore , 2002).

2 Clustering Algorithm

The CFF algorithm consists of two key steps.

• Find the data points Yi’s which belong to estimated level set Ŝc.

• Join every given pair of Yi’s with a path consisting of a finite number
of edges with length smaller than 2εn.

In other words, the CFF algorithm provides a method to approximate Ŝc

by

S̃1
c =

kn⋃

i=1

B(Yi, εn)

where B(Yi, εn) is a closed ball centered at Yi with radius εn and kn is the

number of the observations which belong to Ŝc. Note that kn is random.
While the CFF algorithm is simple and outperforms the other clustering

algorithms for noisy background cases, it is also computationally expensive.
Even for the first step, we need to evaluate the density estimates at every
data point. Especially in high dimension, the task could be daunting even
with today’s high computing power. Furthermore, the CFF algorithm require
an extra smoothing parameter εn in addition to the smoothing parameter of
the density estimator such as the bandwidth in the kernel density estimator.

Gray and Moore (2003) addressed the issue in the first step. They
evaluated density estimates by cutting off the search early without computing
exact densities.

The second step is equivalent to finding Minimum Spanning Tree and
(Wong and Moore , 2002) proposed an alternative implementation based on
the GeoMS2 algorithm ( Narasimhan et al , 2000). Though Wong and Moore
showed the improvement of the CFF algorithm, their algorithm still requires
εn as an input.

To avoid choosing another smoothing parameter and save computing
time, we propose a modified version of the CFF algorithm. The key idea
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is to replace data points with grid points. In other words, we approximate
Ŝc by

S̃2
c ≡

k′

m⋃

i=1

B(ti, ε
′

m)

where ti’s are equally spaced grid points which belong to Ŝc, k′
m is the total

number of the grid points belonging to Ŝc and ε′m is the grid size.
Having used the size of grid as the radius of the ball, one can avoid an ex-

tra smoothing parameter. Moreover, one can use the Fast Fourier Transform
(FFT) to evaluate density estimates at grid points to speed up the calcula-
tions. Since grid points are equally spaced, one can also use information of
coordinate systems of grid points to calculate the distance of any pairs. We
us the following steps as described in (Cuevas, Febrero and Fraiman , 2000).

Let T be the number of connected components and set the initial value
of T as 0.

Step 1 Evaluate f̂ at every gird point using the FFT to find the set {ti : ti ∈

Ŝc}.

Step 2 Start with any grid point of the set and call it t1. Compute the distance
r1 between t1 and the nearest grid point, (say t2).

Step 3 If r1 > 2ε′m, the ball B(t1, ε
′
m) is a connected component of Ŝ. Put

T = T + 1 and repeat step 1 with any grid point in Ŝc except t1.

Step 4 If r1 ≤ 2ε′m, find another grid point (denote t3) closest to the set {t1, t2}
and compute

r2 = min{‖t3 − t1‖, ‖t3 − t2‖}

Step 5 If r2 > 2ε′m, put T = T + 1 and repeat step 1 with any grid point in Ŝc

except t1 and t2.

Step 6 If r2 ≤ 2ε′m, compute, by recurrence,

rK = min{‖tK+1 − ti‖, i = 1, . . . , K},

where tK+1 is the grid point closest to the set {t1, . . . , tK}.

Continue in this way until we get , for the first time, rK > 2ε′m. Then
put T = T + 1 and return to step 1.
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Step 7 Repeat Step 2 - 6 until every grid point is considered, then the total
number of clusters, connected components of Ŝc is T .

3 Application in Cosmology

In cosmology, clusters of galaxies play an important role in tracing the large-
scale of the universe. However, the availability of high quality of astronomical
sky survey data for such studies was limited until recently.

The power of modern technology is opening a new era of massive astro-
nomical data that is beyond the capabilities of traditional methods for galaxy
clustering. For example, Figure 1 show the Mock 2dF catalogue. The Mock
2dF catalogue has been built to develop faster algorithms to deal with the
very large numbers of galaxies involved and the development of new statis-
tics (Cole et al , 1998). The catalogue contains 202,882 galaxies and each
galaxies has 4 attributes : right ascension (RA) , declination (DEC), redshift
and apparent magnitude. RA and DEC are the longitude and latitude with
respect to the Earth and the redshift can be considered as a function of time.

Cosmological theory assume that clusters of galaxies are virialized objects
which means that they have come into dynamical equilibrium. To reach dy-
namical equilibrium, a cluster must satisfy the following geometric condition,

C =
{

x
∣∣∣ρ(x|t) > δ

}
,

where δ is given from cosmological theory and ρ(x|t) is the mass density
function at time t.

Estimating ρ is equivalent to estimating a probability density (Jang ,
2003). Therefore, from cosmological point of view, clusters of galaxies is the
same as density contour clusters.

Our goal is to find the spatial distribution of the locations of clusters as a
function of time. In other words, we want to estimate the joint distribution
of RA and DEC given redshift. To do so, the data were divided into 10 slices
by equally spaced redshift and then, a bivariate kernel density estimator was
fitted. Figure 2 (a) shows a slice of the 2dF data with 0.10 < z < 0.125 and
the contour plot by the density estimates is given in Figure 2 (b).

To keep the original scale of the data, a spherically symmetric kernel was
used, which means the bandwidth matrix is a constant times the identity ma-
trix. The bandwidth was selected by cross-validation and density estimates
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Figure 1: Mock 2dF catalogue

at the grid points were evaluated by the FFT. A Newton-Raphson type op-
timizer was used to find the optimal bandwidth and the plug-in method was
used to provide the starting point in the Newton-Raphson method. The FFT
and the plug-in method were implemented by the R library “KernSmooth”
developed by Matt Wand.

After finding the sub set of grid points belonging to the level set, the
modified CFF algorithm was applied for galaxy clustering. Figure 2 (c)

shows the grids point which belongs to the estimated level set {f̂ > δ}. In
Figure 2 (d), each color represents a different cluster and 1,945 clusters were
found out of 33,157 galaxies.
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4 Nonparametric Confidence Sets

To address uncertainty of the level set estimators or clustering results, one
consider constructing the confidence sets for clusters. While there is a sub-
stantial literature on making confidence statements about a curve f in the
context of nonparametric regression and nonparametric density estimation,
most of them produce confidence bands for f . Therefore, it is not easy to
construct confidence statements about features of f such as density contour
clusters from the band.

Beran and Dümbgen (1998) developed a method for constructing confi-
dence sets for nonparametric regression which can be used to extract confi-
dence sets for features of f . The confidence set Cn is asymptotically uniform
over certain functional classes. Thus,

lim inf
n→∞

inf
f∈F

P (f ∈ Cn) ≥ 1 − α. (1)

As a result, a confidence set for a functional T (f) is

(
inf

f∈Cn

T (f), sup
f∈Cn

T (f)

)
.

These confidence sets are uniform as in (1), simultaneously over all function-
als.

The theory in Beran and Dümbgen (1998) doesn’t not carry over directly
due to some technical reasons. (Jang et al , 2004) provides a method to
construct uniform confidence sets for densities and density contour clusters.

5 Conclusion

The explosion of data in scientific problems provides a better opportunity
where nonparametric methods can be applied for solving the problems. Our
algorithm shows the improvement of the original CFF algorithm in terms of
computation expense with the FFT. We also address the issue of the extra
smoothing parameter εn by using the grid space as the size of the balls.

Constructing confidence sets for clusters can be used to address the un-
certainty of the clustering results. While the theory has been developed, it is
computationally challenging to extract the confidence sets for clusters from
the confidence sets for densities.
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From practical point of view, it is desirable to develop a stand alone
R library for our clustering method. Another possible improvement is to
combine our method with Gray and Moore’s method which can be used to
speed up the density estimation part in the first step.
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 (a) Mock 2dF catalogue with 0.1 < z < 0.125
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Example : Mock 2dF catalogue

(b) contour plot by kernel density estimation
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(c) Grid points belong to level sets
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(d) Clustering with modified Cuevas algorithm − Each color presents a different level set 
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