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Abstract

Many ninth grade students are required to take Algebra I, and extra support is needed for
underprepared students. A common solution is to double the amount of mathematics instruction
but educators do not agree on how to use the extra time. One common intervention is to enroll
these students in a year long Algebra I course, where they are taught Algebra during these
double class periods. We compare this with offering a catch-up course on basic skills, Transition
to Advanced Mathematics (TAM) taught during the first half of the year, followed by a typical
Algebra I course during the second half of the year. Preliminary analyses suggest students in
the TAM condition outperform the control condition on general math skills but students in each
condition do not differ in performance on an algebra test even though TAM students have had
only half of the exposure to Algebra.

1 Introduction

In recent years, the passing of No Child Left Behind (NCLB) has mandated states and districts to
reexamine their educational practices. One goal of NCLB is to improve accountability of schools,
to ensure that a high school diploma certifies that a student has not only satisfied various criteria
but has the skills and knowledge necessary to be successful following school.

The National Assessment of Educational Progress (NAEP) suggests that students in 12th grade
with a basic level of understanding in mathematics be able to perform arithmetic and basic ge-
ometry, understand sample statistics and probability, use and manipulate expressions and solve
problems with linear equations represented in a variety of ways. These are the topics covered in
most Algebra I courses. In 2005, the most recent administration of the survey assessment, 61% of
all students tested at or above this basic level, but only 30% of black students test at or above this
level.

To prepare students for post-secondary work, many districts require all students to take college
preparatory mathematics; some districts only offer college preparatory level courses and some
require these courses for graduation. For graduation in Maryland, students must earn a passing
score on a series of state assessments which include an exam in Algebra I and is administered in
ninth grade; thus, students take Algebra I regardless of prior coursework or achievement. The same
is true for students in New York and California.

Unfortunately, many students are woefully unprepared, particularly in low income and urban
districts. In a NAEP study of 11 urban school districts, only 53% of urban 8th graders tested at or
above basic and in DC and Atlanta, only 31% achieved these levels. In fact, students are testing
well below grade level. Neild and Balfanz (2006) found 54% of Philadelphia ninth grade students
tested scored below a 7th grade level on a nationally normed math test.



The large gap between course standards and student achievement is especially disconcerting
given that failing courses in ninth grade is a strong predictor of dropping out of high school (Neild
et al. 2008). The ninth grade is so important that it is a central component of the Talent De-
velopment Model. Components of this reform model include creating a Ninth Grade Academy in
which cohorts of students are taught by the same team of teachers. Students are supported by this
small learning community and through catch-up courses in reading and mathematics and a seminar
course to address social and study behaviors. Schools are not only restructured but the school day
operates on a block schedule; students take four classes each day and each course is a semester long.
Students in upper grades join similar small learning communities in the form of career academies.

There is some evidence that students benefit from attending Talent Development High Schools
(TDHS) (Balfanz et al. 2004, Kemple et al. 2005). Kemple et al. (2005) found students in Philadel-
phia who attended Talent Development schools had higher achievement, rates of attendance, and
Algebra I passing rates than similar students who did not attend Talent Development schools. One
possible cause for student success in Algebra is the TDHS ninth grade mathematics curriculum,
Transition to Advanced Mathematics (TAM) which precedes Algebra I. In several Baltimore city
schools with dropout rates above 50%, Balfanz et al. (2004) found students enrolled in TAM courses
had higher gains on standardized mathematics tests and felt they learned more mathematics than
similar students not taking TAM courses.

Thus, researchers are interested in how the TAM curriculum, independent from the TDHS
reform model, benefits under-prepared ninth grade students and whether it promotes success in
Algebra I as most TAM students take Algebra I during the second semester of their ninth grade
year. The principal investigators, Robert Balfanz and Ruth Neild, propose a group randomized
trial to compare ninth grade students in a TAM/Algebra I sequence with students in a Algebra
I sequence (Balfanz and Neild 2006). Before we describe the study in detail, we introduce the
educational rationale behind each condition.

1.1 Transition to Advanced Mathematics

The purpose of Transition to Advanced Mathematics (TAM) is to improve conceptual understand-
ing and skills needed to be successful in Algebra without being a repeat course of middle school
mathematics. TAM is based on existing research of concepts and skills needed by underperforming
ninth grade students, best teaching practices to these types of learners, feedback from classroom
teachers about student misconceptions and knowledge gaps, and analysis of state/district stan-
dards. The National Research Council suggests that incoming ninth grades students struggle most
with intermediate level topics, namely rational numbers and integers (Kilpatrick et al. 2001). Both
of these topics are procedurally complicated in that whole number reasoning no longer applies,
making them both conceptually challenging and also unintuitive (Stavy and Tirosh 2000). TAM
attempts to address these issues in a relevant and rigorous way. Unit topics include rational num-
bers, integers, coordinate geometry, measurement, and functions.

Feedback from teachers of urban and underperforming students suggests that students need
relevant topics and a variety of different activities that allow for movement and collaboration.
In addition, teachers complain of lack of textbooks and materials and living circumstances that
inhibit students carrying many books to and from school. Furthermore, teachers have little time for
planning, and most new and inexperienced teachers lack the capacity to create elaborate activities
and projects. As such, the TAM curriculum consists of bound, disposable student journals which



include all of the necessary printed material that students can easily carry back and forth to
school. The teaching manual includes transparencies, cut-outs, grouping strategies for cooperative
learning, hands-on activities and real-world examples. Furthermore, the TAM curriculum comes
with a plethora of manipulatives and school supplies that are commonly unavailable in urban
schools.

1.2 Stretch Algebra

As an alternative, many districts have created a stretch or double-dose algebra course for under-
prepared ninth graders. While these students still need some form of support to be successful in
Algebra I, educators claim that students can gain the necessary concepts and skills while in the
context of learning algebra. There is evidence that double-dosing can be successful among some
ninth grade students. Nomi and Allensworth (2009) found that Chicago students in double-dose
algebra courses increased their algebra test scores using regression discontinuity methods. They
also found that double dosing was less effective for those students with the weakest math abilities.

2 Research Study

While there is evidence suggesting that each mode of instruction can be helpful to ninth grade
students, this is the first study directly comparing the two methods (Balfanz and Neild 2006).
Schools using the TAM curriculum are part of the TDHS reform model and evidence of student
achievement could be due to the larger changes in the school and school environment. Furthermore,
double-dose algebra has not been assessed on a national level and neither curriculum has been
assessed in a randomized control study.

The purpose of this study is to directly compare a stretch algebra sequence with TAM followed
by a traditional algebra course among ninth grade students who need additional curriculum support
using a randomized control design. For the first year of the study, eight districts in six states were
selected. Districts were required to volunteer an even number of participating schools and schools
needed to have at least 75 underprepared first time ninth grade students. Within each district,
schools were randomized to one of two treatments.

Students in the treatment group take TAM for 80-90 minutes each day for the first half of the
school year followed by a traditional Algebra I course for 80-90 minutes each day during the second
half of the school year (TAM/A1 condition). Students in the control condition take the district
Algebra I course for 80-90 minutes each day for the entire school year (Stretch condition). All
schools in the study have district-hired coaches to help them implement the curriculum as well
as TDHS math facilitators to lead trainings and workshops. Teachers receive equal amounts of
professional development in areas chosen by teachers or school leaders. Since TAM teachers receive
supplies as part of the curriculum, stretch algebra teachers received gift cards to an educational
supply company.

To measure student achievement in mathematics, students are tested in the fall, winter, and
spring. In addition, students and teachers complete both beginning and end of year surveys. Other
data include student and school level information provided by the district, teacher observations
from the fall and spring, and facilitator reports about implementation. Research questions are
given below.



3 Data

There are several sources of data; from the students directly we have test scores and survey re-
sponses, from the teachers we have survey responses, and from the district, student demographics
and attendance, and these data vary in their state of use. We summarize only the data used in our
analyses below (Table 1).

Table 1: Summary of Data

Student Level Covariates N | Variable Type
Condition 3327 Binary
Race 2137 Discrete
Gender 2788 Binary

Grade 2520 | Quantitative

Birth Year 2384 | Quantitative
Free/Reduced Lunch 985 Binary
English Second Language 484 Binary

Fall CTBS 2399 | Quantitative

Fall OH 2454 | Quantitative

Winter CTBS 2208 | Quantitative

Spring Alg TN 1930 | Quantitative
Student Survey Responses | 1683 Discrete

Teacher Level Covariates N | Variable Type
Condition 83 Binary
Teacher Survey Responses 72 Mixed
Fall Teacher Observations 76 Mixed
Spring Teacher Observations | 68 Mixed




4 Overall Goals

There are several outcome measures to investigate and we are interested in the effect of condition on
each outcome measure. These include the California Test of Basic Skills (CTBS), which measures
general math ability, given in the winter, the Algebra Terra Nova exam given in the spring, and
student attitude measures. In addition to comparing across conditions, we are interested in how
student level and teacher level variables affect each outcome measure.

5 Preliminary Analyses

5.1 EDA: Comparing Students Across Conditions

There is always concern with randomized trials that treatment groups will vary significantly across
condition. Thus, we compare student demographics by condition (Table 2); more detailed analyses
are included in Appendix A.1. Although differences at baseline may not affect outcome measures,
we include them as we believe they may provide valuable information as to understanding why we
do or do not see differences in achievement across condition. What is especially interesting is that
missingness appears to vary by condition. We note that student covariates vary significantly by
district as well (see Appendix A.2).

Table 2: Differences in Student Level Variables By Condition

Covariate Statistical p-value Conclusion

Test
Race w/missing % p < 0.001 | TAM condition has higher proportion of black
data students, Stretch condition has higher propor-

tion of hispanic students

Race w/o missing X2 p < le — 10 | TAM has higher proportion of missingness
data
Gender X2 p < le—8 | TAM students have higher rates of missingness
w /missing data
Gender w/o miss- X2 p = 0.267 | Proportion of female students same across con-
ing data ditions
FRL  w/missing X2 p =0.002 | TAM students have higher rates of missingness
data
FRL w/o missing X2 p =0.267 | No differences found between conditions
data
Fall CTBS t-test 0.617 No differences found
Fall OH t-test 0.097 No differences found




5.2 Teacher Surveys

Teachers were given brief surveys in the fall and spring during the study. The fall survey contains
demographic and background items such as teaching experience and certification. The spring survey
contains mostly items about teaching practices and beliefs. Unfortunately, there is a problem with
the spring surveys as they were either not administered, not collected, or lost during the study.
Although JHU facilitators attempted to re-administer the survey, less than half of the teachers
responded. The level of non-response coupled with the time that passed (at least 4 months), we
choose to omit these survey results from our analysis.

We compare various measures of teaching experience by condition (Table 3). Stretch condition
teachers have more years of teaching experience but not significantly more experience teaching
ninth grade mathematics or algebra. In other measures, teachers do not differ by condition. See
Appendix A3 for more details.

Table 3: Differences in Teacher Level Variables by Condition Assessed by t-test

Variable | p-value | Conclusion of Significant t-test
Yrs Teaching | 0.074 | Slight evidence that stretch teachers
have more experience

Yrs w/Ninth Grade Math | 0.433 | No difference
Yrs w/Algebra | 0.446 | No difference
Exp w/Block | 0.356 | No difference
Exp w/Coaching | 0.775 | No difference
Exp w/Doubledose | 0.144 | No difference
Proportion who Volunteered | 0.103 | No difference
Proportion w/ Math major | 0.918 | No difference
Proportion Certified | 0.444 | No difference

6 Student Surveys

While we believe outcome measures will be affected by pretest scores, we also believe student atti-
tudes and teacher characteristics to be relevant. To measure these, we use responses to collections
of survey items administered in the spring.

The survey consists of 35 questions scored on a four-point Likert scale. The full exploratory
factor analysis is given in Appendix A.4 and we provide a short summary. Student survey items
generally load on two different factors and many items are excluded as they do not load at all.
Based on several measures of reliability, we find a optimal set of items for each factor (Table 4).

Although Cronbach’s « is commonly used for reliability, Sijtsma (2009) suggests using the glb
(greatest lower bound) as a better measure for reliability. Revelle and Zinbarg (2009) recommend
wt which is computed using the uniqueness of each item (the unique variability of that item with
respect to the other items). In addition, we compute Mokken scalability coefficients H for each set
of items (van derk Ark 2007). H is a measure of covariance for discrete response items. A value of
H =1 implies a perfect Guttman scale and values of 0.3 < H < 0.4, 04 < H < 0.5, and H > 0.5



are considered weak, moderate, and strong scales. We name factors 1 and 2, Student Attitudes and
Teacher Practices respectively (see Table 5 and Table 6 for corresponding survey questions).

Table 4: Reliability Measures for Optimal Student Survey Constructs Obtained From Exploratory
Factor Analysis

Construct 1 (Student Attitude) Construct 2 (Teacher Practice)
o 0.90 0.76
glb 0.92 0.81
wi 0.88 0.71
H 0.43 0.30

Table 5: Student Survey Items: Student Attitude Factor

Survey Item | Question
14 I liked coming to math class
15 I paid attention in math class
16 I did my math homework
17 I felt that I could do almost all the work in math if I didn’t
give up
18 I felt bored in math class
19 I felt confused in math class
20 I worked hard in math class
21 I felt that math class was interesting
22 I studied for math tests and quizzes
23 I felt successful in math
24 I felt confident that I could do the math work
28 I am good at math
31 I like mathematics
32 When I try hard, I can usually understand math
34 Math problems usually make sense to me
35 This year I became a better math student than I used to be




Table 6: Student Survey Items: Teacher Practice Factor

Survey Item

Question

4

10
12

13

Students used objects or tools, such as rulers, protractors,
or Algebra tiles.

The teacher asks students to explain how they got their an-
swers

When I didn’t understand something, my teacher tried to
help me by asking me questions about my thinking.
Students are asked to show more than one way of solving a
math problem

I worked on math problems during class time with other
students in my class

IT was asked to write a few sentences about how I solved a
math problem

Students worked in small groups or with a partner

My teacher uses real-life examples to help us understand
math

The teacher made sure that everyone understood before
moving on to another topic




7 Teacher Observations

Teachers were observed in the fall and spring during the study year by two veteran teachers unaffil-
iated with the districts. Each observation lasted an entire 80 or 90 minute class period and various
aspects of the class were recorded. Quantitative measures include the number of students present
and number of students engaged during the beginning, middle, and end of the class, amount of
time spent on house-keeping versus instruction, and the amount of time students spent working
alone, in groups, and as a whole class. Teachers were also rated on a four point scale on their use of
teaching practices, the extent that the class was student-centered and the level of student learning
that was evident.

An exploratory factor analysis (see Appendix A.5 for details) indicate two factors for the fall
observation data and two factors for the spring observation data. Factors and items are listed in
Table 7. We also note that when the fall and spring observation data were grouped together or
separately, items loaded in the same arrangements and fall items did not load with spring items.

Table 7: Optimal Teacher Observation Constructs Obtained From Exploratory Factor Analysis

Factor Ttems Description
Fall Factor 1 Best Practice, Student Learn, | Fall scores on teaching practices, student learn-
Student Center ing, student centeredness

Fall Factor 2 Engagel, Engage2, Engage3 Fall percentage of students engaged at the be-
ginning, middle and end

Spring Factor 1 | Best Practice, Student Learn, | Spring scores on teaching practices, student
Student Center learning, student centeredness

Spring Factor 2 | Engagel, Engage2, Engage3 Spring percentage of students engaged at the be-
ginning, middle and end

Finally, we include the same reliability measures introduced in the previous section to justify
our choice of these items for each factor Table 8. Note that the values for w are inappropriate for
the fall and spring factors which contain engagement levels. We suspect it is partly due to the
small variation among the levels of engagement and the restricted range of [0,1].

Table 8: Reliability Measures for Optimal Teacher Observation Constructs Obtained From Ex-
ploratory Factor Analysis

«a glb w H
Falll 0.94 |1 0.94 | 0.93 | 0.94
Fall2 | 0.76 | 0.83 | -3.26 | NA

Spring 1 | 0.93 | 0.94 | 0.92 | 0.91

Spring 2 | 0.89 | 0.90 | -218 | NA




8 Methodology

8.1 Missing Data and Multiple Imputation

Given the scale and length of our study, it unsurprising that we have missing data. There was
movement by both students and teachers as well as administrative difficulties with collecting and
reporting data. Missingness varies by covariate (Table 1); some missingness is due to school and
district level issues and some is due to teacher and student issues. The purpose of this section is
to highlight causes for missing data and justify the modifications made to compensate.

We first introduce some terminology common in the field (Schafer and Olsen (1998); Gelman
and Hill (2006)). Missing data generally falls into one of three categories: Missing Completely at
Random (MCAR), Missing at Random (MAR), and Missing Not at Random (MNAR). MCAR
data is data that if it were known and included in statistical models would not affect the results
of the model. More formally, we can think of MCAR data as data being generated from the same
distribution as the observable data. If we choose to exclude MCAR data, our overall inference and
conclusions are unbiased; however, a smaller sample size increases standard errors.

MAR data is slightly different from MCAR data in that MAR data is assumed to be generated
from the same distribution as the observed data only when conditioned on other covariates. For
example, suppose student test scores tend to be missing for students who would have low scores
because these students have poor attendance rates. These scores would not be considered MCAR.
However, if we condition these scores on known attendance rates, we can assume that the missing
test scores do not differ from the observed test scores. The final category, MNAR, encompasses
all missing data that that is neither MAR or MCAR and is the most difficult type of missing data
with which to work. MCAR and MAR data can be imputed whereas MNAR data is not imputable
without making additional assumptions. There are methods to work with MNAR data but these
are beyond the scope of this project. Instead, we constructed a data set that is a subsample of the
full data set with missing data that is either MAR or MCAR.

We first discuss covariates that we choose to exclude from our analyses. First, we exclude
Free and Reduced Lunch (FRL) status and English as a Second Language (ESL) status. These
are measures that are missing at the district level; for example, only one district reported ESL
status for students and only three districts reported FRL status for students. Districts cite privacy
concerns as reasons for not disseminating such data. While these measures may be available on
a district level, we do not believe district FRL or ESL status as an accurate estimate of FRL or
ESL status of our study students. Recall that these students have been selected by the school as
those students who are several years behind in mathematics and we believe these students to have
higher rates of FRL and ESL than what is reported for the entire district. We also exclude the
race variable. Although we might expect to find race effects, we have a large amount of missing
race data. In fact, an entire district failed to report race and half the schools from another district
are missing race. Furthermore, approximately half the students from two other districts are also
missing race. We investigate the effects of race for the districts with minimal missing data (see
Appendix A.6) and do not find evidence that race affects our outcome variables.

For our statistical inference, we therefore desire a subsample of our data that is maximally
informative and includes as many students as possible but at the same time has missing data that
is either MCAR or MAR. Because the intervention was designed for students who attend school
somewhat regularly and who were enrolled in the treatment courses for the course of the year,
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we are interested in students for whom we have evidence of their being in the study, namely the
existence of their test scores. We first choose to exclude students who were missing both pretest
scores (Fall CTBS or Fall OH) as these students were absent during the two days the test were
administered and during the three rounds of make-up testing. For a student to be absent for these
five or more days, we can assume that these students either did not attend school regularly or the
student enrolled in the study several weeks after the start of the year (and missed the first half of
the treatment).

While we could have included students with either a Winter CTBS or Spring Algebra TN
posttest score, the Spring Algebra TN posttest score is the most important outcome measure
from a policy perspective, and we chose to exclude students without a Spring Algebra test score.
Moreover, including students with a midyear test score and without a spring test score would have
increased our sample size by only 90 students.

In fact, given the sample of students who attend school regularly and remained in the study
through the spring, spring test scores and survey responses are MAR. Given that the student has
taken a pretest, the Spring Algebra TN score or student survey is a proxy indicator that that
student was a part of the study for the course of the year. Our population of interest include only
students exposure to the full treatment (regular attendance and attended the school during the
entire year). A student who from this sample but that is missing a spring test score or a spring
survey is assumed to be no different from the rest of the other students given their previous test
scores. Thus, if we include students with a Spring Algebra TN score and a completed student
survey, we have a sample that is from the same distribution as our focus population conditional on
previous measures.

Based on this sampling procedure, we created a sample of 1233 students. We refer to this sample
of students as our standard sample. Of these, 83 are missing one pretest score and 107 are missing
the Winter CTBS test score. We choose to use 5 imputations (i.e. generate 5 sets of complete
case data) for several reasons. Rubin (1987) suggests than 2-3 imputations offer adequate coverage
probabilities of interval estimates, especially given the low amount of missing data. Schafer and
Olsen (1998) suggest 3-5 imputations for most applications, and as storage is not a concern, we use
5 imputations.

There are also teachers for whom we are missing data: teachers who failed to return a fall survey
and teachers who were not observed during the fall and/or the spring rounds of observations. There
is reason to believe that these data may be MNAR, i.e. that these teachers may differ from teachers
with complete or almost complete data cases. Teachers who did not complete a fall survey either
did not attend the training sessions or were hired after the start of the school year and for whatever
reason failed to complete a survey. While these teachers may not differ in ability, we lack the data
to support either claim. Teachers missing observations were absent on the days of the observations,
which suggests that these teachers may have higher rates of absenteeism than the teachers who
were observed. By the same token, these teachers may not differ from the teachers who were
observed and completed a teacher survey. We could also assume teacher data is MCAR. In our
model selection procedures, we find teacher level variables are not relevant (Appendix A.7).

We impute our missing test scores in the following way: Since pretest scores are correlated, we
impute missing pretest scores using a linear model, regressing one pretest score on the other. For
the Winter CTBS test score, previous models (see Appendix A.7) suggested correlations with both
pretest scores (Fall OH and Fall CTBS), Spring Algebra TN and condition. We use a linear model
with these covariates to impute missing CTBS scores. See Appendix A.8 for regression models for
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imputation.

Some final notes about our standard sample: First a summary of the pre-imputation data set
is presented in Table 9. Note that, although treatment condition was not use to select students the
standard sample is approximately balanced between conditions. We further examined differences
between TAM and Stretch students on pretest scores: Table 10 gives the means, standard devi-
ations, two-sample T statistics and p-values for the pre-imputation sample and the 5 imputation
samples (ignoring clustering effects as described below). Fall OH pretest scores are significantly
higher for the Stretch condition than the TAM condition. While this is unfortunate, we find a
similar pattern with Stretch Fall OH scores being greater than the TAM in the full data set (see
Appendix A.1). Any differences in condition may affect our analyses, so we may revisit this issue
when we discuss our results.

Table 9: Summary of Pre-Imputation Data: Sample Sizes, Raw Score Means, and Standard Devi-
ations by Condition

Variable Stretch TAM
N | Nmissing | Mean (SD) N | Nmissing | Mean (SD)
Fall CTBS | 627 41 10.42 (3.81) || 606 15 10.19 (3.90)
Fall OH | 627 11 22.56 (10.26) || 606 16 21.33 (10.72)

Table 10: Standard Dataset n=1233: Comparing Raw Pretest Scores Across Condition by Dataset
Using Two Sample t-test

Fall CTBS Fall OH

Dataset Stretch TAM p— Stretch TAM p—

Mean (SD) | Mean (SD) | T | value | Mean (SD) Mean (SD) T | value
Pre | 10.42 (3.81) | 10.19 (3.90) | 1.02 | 0.31 | 22.56 (10.26) | 21.33 (10.72) | 2.04 | 0.04
Imp 1 | 10.42 (3.83) | 10.18 3.91) | 1.08 | 0.28 | 22.47 (10.32) | 21.68 (10.72) | 2.00 | 0.05
Imp 2 | 10.42 (3.79) | 10.17 (3.88) | 1.14 | 0.25 | 22.28 (10.27) | 21.18 (10.68) | 2.18 | 0.03
Imp 3 | 10.38 (3.81) | 10.18 (3.90) | 0.91 | 0.36 | 22.56 (10.24) | 21.32 (10.74) | 2.07 | 0.04
Imp 4 | 10.41 (3.82) | 10.15 (3.92) | 1.14 | 0.25 | 22.51 (10.27) | 21.24 (10.78) | 2.11 | 0.03
Imp 5 | 10.35 (3.82) | 10.20 (3.91) | 0.68 | 0.50 | 22.37 (10.32) | 21.31 (10.69) | 1.78 | 0.08

Second, based on our selection procedure, different proportions of students from each school are
retained in our sample. Figure 1 shows the distribution of these proportions. It is not surprising
that schools vary in their levels of student participation in the study. Schools vary in their levels of
student absenteeism, student mobility, and overall ability to implement such a study. Furthermore,
we note that we are missing gender for 39 students in this new sample. Based on our preliminary
models (see Appendix A.6), gender is not correlated with any combination of covariates, and for
this reason we choose not to impute gender values or include them in our models.

12



Standard Sample Retained by School

Frequency

]

[ T T T T T T 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Proportion Retained

Figure 1: Proportion of Students by School Selected to be in Standard Dataset n=1233
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8.2 Parameter Estimates from Multiple Imputation

For m imputations, we report the average parameter estimate,

1 m
H = EZ”’
i=1

where p; represents a parameter estimate for each imputation (Rubin 1987). The variance for each
parameter estimate has two components, the variance of the parameter estimate for a given im-
putation (within-imputation variance) and the variance between imputations (between-imputation
variance). Rubin (1987) suggests a weighted sum of these two components, namely,

Var(u) = - > Var(u) + (1 + ) Var(u)
i=1

where p* is the set of variance estimates across imputations. For all subsequent models, we report
parameter estimates calculated in this way.

8.3 Motivation for a Nested Model

Because of the nested structure of the data, we have prior beliefs that outcome measures are more
highly correlated for students with the same teacher and within the same school than between
teachers or schools. We also believe that students and teachers within a district are also more
correlated than between districts.

For each outcome variable, Figure 2 shows the variance in scores within each teacher (left) and
within each school (right). Most within teacher variances are smaller than the overall variance for
each outcome measure. Similarly, outcome measure variances tend to be smaller within schools
than their respective overall variances. As we have some evidence of nesting, we choose to use a
hierarchical linear modeling (HLM) structure for our data.

Ordinary least squares (OLS) assumptions are violated as observations are not independent of
each other. HLM assumed that observations at the highest level of the model are independent of
each other and that residuals at each level are uncorrelated. In addition, HLM follows the OLS
assumptions of linearity, normality of residuals, and homoscedasticity.

8.4 Latent Variable Estimation

In Section 6, we introduce two constructs that we name Student Attitude and Teacher Practice
based on student responses to two sets of items from the student survey. While each set of items
reflect both Student Attitude and Teacher Practice, they are merely proxy measures of each and
the actual variables, Student Attitude and Teacher Practice, are latent variables. Furthermore, we
assume each of these sets of items is an adequate measure of the corresponding latent variable.
We consider two methods to estimate latent variables, using sum scores and fitting an Item
Response Theory (IRT) model. Our items are polytomous with four categories. A sum score is
calculated by simply adding the responses for each item. Sum scores are used mostly for conve-
nience. We can also fit a polytomous IRT model to estimate the value of the latent variable given
the set of student responses. In most cases, we would recommend an IRT model for latent variable
estimation for several reasons. An IRT model produces information about each student’s latent
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variable estimate but also provides information about each item. We can determine which items
students tend to rate higher or lower and which items are better at separating or discriminating
among students. In addition, a sum score treats a student responses to each item equally, whereas
an IRT model incorporates items parameters in the latent variable estimation. For example, two
students may have the same total response score but one student might have selected low responses
to items that most the students selected high categories and the other might have selected low
responses to items to items that most students selected low categories.

For items with polytomous responses, there are two popular models: The Graded Response
Model(GRM; Samejima (1969)) and The General Partial Credit Model (GPCM; Muraki (1992),
Masters (1982)). The probability of student i selecting category higher than k on item j as given
by the GRM is

capla;(0; — bir)]
1+exp [aj(Hi — bjk)]

where a; is an item discrimination parameter, b; is an item location parameter, and 6; is the latent
variable. Since the model specifies cumulative probabilities, there is an additional constraint that
bjk—1 < bjr which guarantees that P(X;; > k) < P(X;; > k —1). It is trivial that P(X;; = k) =
P(Xij >k — 1) — P(Xij > k‘)

For the GPCM, the probability of student ¢ selecting category k on item j is given directly,

exp[ S2F_ a;(0; — bj + dji)]
Semyexp[ S6_y a;(0; — by + dji)]

where a; is an item discrimination parameter, b; is an item location parameter, d;; is a threshold
parameter for response k on item j, and 6; is the latent variable.

We first compare model fits for the GRM and GPCM for each set of responses using AIC
and BIC scores, and the GRM fits the data better (Table 11). We can fit these models using
frequentist methods in R or using a Gibbs Sampler. We will revisit differences in methodology
when we introduce our overall models in Section 9, but due to large differences in simulation time,
we choose to use the GPCM to model these response data instead of the GRM. Although the GRM
produces lower AIC and BIC scores, the #; estimate for each student 7 is highly correlated to those
estimates given by the GPCM, R? = 0.998 and R? = 0.997 for Student Attitude and Teacher
Practice respectively.

P(Xz'j > k) =

P(Xij = k) = Pjr(0;) =

Table 11: AIC and BIC Scores for Latent Variable Estimation Using IRT Models: GRM and GPCM

Model | AIC BIC
GRM | 41140 | 41467
GPCM | 41315 | 41642
Model | AIC BIC
GRM | 25864 | 26048
GPCM | 25880 | 26064

Student Attitude

Teacher Practice
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9 Results

For each response variable, we use variable selection procedures to obtain an optimal model, and
we present the results separately.

9.1 Variable Selection

Using variable selection techniques, those variables that decrease the Akaike Criterion Information
(AIC) score or Bayesian Criterion Information (BIC) score are included in our models. Variables
from all three models are described in detail in Table 12. We also use these measures to select the
number of random effects and the number/level of variance components for our models. For more
detailed analysis of our variable selection process, see Appendix A.7. The only variables that were
purposely excluded are the factors associated with teacher observations in the fall and spring.

Table 12: Description of Explanatory Variables included in Final HLM Models

Explanatory Variable Description

Pretest CTBS Intermediate math skills test given in the fall

Pretest OH Algebra success predictor test given in the fall

Condition = Stretch Indicator variable whether student is in the
stretch condition

Gender = Male Indicator variable whether student is male

Student Attitude Score | Estimate from IRT model based on student sur-
vey responses (see Student Surveys)
Teacher Practices Score | Estimate from IRT model based on student sur-
vey responses (see Student Surveys)

9.2 Winter CTBS Model

The selected model for Winter CTBS scores is a 2-level random intercept HLM with student and
school levels.

}/ij = ﬂOj + ,31]' [FCLHCTBS]” + ,Bg[FallOHL] + ﬂg[StT@tch]j + €55
Boj = "o+ Uy

where ¢ indexes students, j indexes schools, €;; ~ N (0, 0?) and Up; ~ N(0, 7).

We choose to fit this model using both frequentist and Bayesian methods. For maximum
likelihood estimation, we fit our models in SAS, and for our Bayesian method of Gibbs sampling,
we use a program called Just Another Gibbs Sampler (JAGS). Standardized regression coefficients
and variance components for each method are shown in Figure 3. Additional tables and figures can
be found in the Appendix A.9.1. Students with higher pretest scores (FallCTBS and FallOH) tend
to have higher Winter CTBS scores and students in the Stretch condition do significantly worse than
students in the TAM condition. Student level variance is much higher than school level variance,
suggesting that students vary more within a school than average student performance varies across
schools. In terms of methodology, SAS and JAGS produce similar parameter estimates.
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9.3 Student Attitude Model

For Student Attitude as an outcome variable, we fit a 3-level random intercept HLM with student,
teacher, and school levels. Also notice that in this model, there are two latent variables: « which
is the student attitude measure and 6 which is the teacher practice measure.

i = Pojk + B1[FallOH);ji + Bo;[SpringAlgebraT N;j, +
B3[Stretch|y + Bal0)ijk + €ijk
Bojk = nok + Ugjx
nok = oo + Vo

where i indexes students, j indexes teachers, k indexes schools, €;; ~ N (0,0?) , Uojr ~ N (0,73),
and Vo ~ N(0,73).

In Section 8.5, we introduce two methods of estimating latent variables, using sum scores and
fiting an IRT model. Thus, we could use either one of these techniques to first estimate these
latent variables and then use these estimates as covariates in our HLM. These models are shown
graphically in Figure 4 and Figure 5. Notice that in each of these models, we treat the latent
variables as fixed and known when we fit the HLM. Another method for fitting this model is to
estimate the latent variables and HLM parameters simultaneously using a Gibbs Sampler (Figure 6).

Fall OH

Spring Student
Algebra TN \ Attitude
/ 2 Xij
Stretch /

Teacher
Practice

>
J

Figure 4: Student Attitude Model: Estimating Latent Variables Separately Using Sum Scores and
Using Sum Scores in HLM

Regression coefficient estimates and variance components are shown in Figure 7. See Appendix
A.9.2 for additional tables and figures. Students with higher Fall OH and Spring Algebra TN scores
tend to have more positive student attitudes. Similarly, students who rate their teachers as having
better teaching practices also have more positive student attitudes. There is not any evidence of an
effect of condition on student attitude. Similar to the Winter CTBS model, we see more variance
at the student level than at either the teacher or school levels. In fact, average student attitude
varies very little from teacher to teacher and from school to school.

Unlike the Winter CTBS model, we do see differences in the three estimation methods. Using
sum scores produces similar parameter estimates and standard errors as when IRT model estimates
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Figure 5: Student Attitude Model: Estimating Latent Variables Separately Using an IRT Model
and Using IRT Model Estimates in HLM

are used, but parameter estimates are more dissimilar when we estimate latents and HLM param-
eters simultaneously in JAGS. In fact, there appears to be some amount of shrinkage towards zero
in both the regression coefficients and variance components. We discuss possible reasons for these
differences in Sections 11 and 12.3.
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Figure 6: Student Attitude Model: Estimating Latent Variables and HLM Parameters Simultane-
ously
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Figure 7: Student Attitude Model: Standardized Regression Coefficients and Variance Compo-
nents With 3 Methods of Latent Variable Estimation, Sum Scores, IRT Models, and Simultaneous
Estimation via JAGS with Error Bars (+ 2SE)
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9.4 Spring Algebra TN Model

Our final model is a 3-level random intercept HLM modeling the Spring Algebra TN score as the
outcome variable. The levels for this model are student, teacher, and district. As in the Student
Attitude Model, our model includes latent variables, Student Attitude and Teacher Practice. We
present three methods of estimating our latent variables in the context of this model (Figure 8-
Figure 10).

Yiik = Pojk + B1[FallOH]iji, + Bo[WinterCTBS);ji + Bs[Stretch] i
Bal0]iji + Bslalijk + €iji
Bojk = nok + Uojk
nok = doo + Vor

where ¢ indexes students, j indexes teachers, k indexes districts, €;; ~ N (0, o?), Uojr ~ N(0, ),
and Vo ~ N(0,73).

Fall OH

Winter CTBS \

Stretch \ Spring

Algebra TN
Student
Attitude
S,
J

Teacher
Practice

3
J

Figure 8: Spring Algebra TN Model: Estimating Latent Variables Separately Using Sum Scores
and Using Sum Scores in HLM

Regression coefficient estimates and variance components are displayed in Figure 11. Additional
information can be found in Appendix A.9.3. Students with higher Fall OH and Winter CTBS
scores have higher Spring Algebra TN scores. There is also a positive relationship between Student
Attitude and test score. While only marginally significant, students who rate their teachers as
having poor Teacher Practices tend to score slightly better on the Spring Algebra TN test. Finally,
there is not any evidence of differences between condition on algebra test scores.

In this model, there are fewer differences among the three estimation techniques. Again, using
sum scores or IRT parameter estimates yield similar regression coefficients and variance components.
The JAGS model for Spring Algebra TN no longer shows the same shrinkage trend that we saw in
the Student Attitude model; rather, we see an increase in variance and a much higher regression
coefficient of the variable Student Attitude.
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Figure 9: Spring Algebra TN Model: Estimating Latent Variables Separately Using an IRT Model
and Using IRT Model Estimates in HLM
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Figure 10: Spring Algebra TN Model: Estimating Latent Variables and HLM Parameters Simul-
taneously
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10 Model Diagnostics

10.1 Goodness of Fit

We use goodness of fit statistics to assess our posterior samples from our JAGS models. We first
introduce a goodness of fit statistic for our IRT models which was also used by (Johnson et al.
(1999), Masters (1982)). For response y of student i to item j with parameters ¢, we define the
test statistic:

N
. _ N Wiy — E(Yi09))?

Then, we define the posterior predictive p-value (Gelman et al. 1996) for item j as:

s T(yles) < Ti(yilgs) s =1,..M}
. M

where y} is data simulated from ¢, the parameters from one step of our MCMC chain. A low
p-value suggests a poor fit as the simulated data is a better fit for the model than the actual data.
As an example, we compare test statistics for our IRT models. Recall in Section 8.4, we
introduced two IRT models for polytomous responses, the GRM and GPCM. We compare the
p-values for each item fit using each model (Table 13).
We use a slightly adapted test statistic to assess our HLM model fits using JAGS. For outcome
measure y of student 7 with parameters ¢, define our test statistic:

N

_ i Bl
") =2 T Nvvi)

then

- #{s: H(ylps) < H(yz|¢s) :s=1,..M}
p= M

For the Winter CTBS model (a 2-level HLM without an IRT component), we have a p-value of
0.975 which indicates that the model fit our data just as well as data simulated from our model.

For our Student Attitude and Spring Algebra TN models, we can assess the IRT and HLM
portions of the model separately and together. We first test goodness of fit on each of the items
for the IRT portion of the model. We then create a weighted average of test statistics to assess the
overall model. Let S be the test statistic for the Student Attitude IRT and T be the test statistic
for the Teacher Practice IRT. Define S and T as:

N

= (Wi — E(Yi]9))?
Si(yle) = z; NV (Yij|o)

where y is the set of responses to the Student Attitude items.

N

X (g — B(Yi]0))?
n(y\@—; NV (Yilé)

where y is the set of responses to the Teacher Practice items.
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Table 13: Goodness of Fit p—values for GRM and GPCM for Student Attitude and Teacher Practice
Responses

Item | GPCM | GRM
1 0.46 0.46
2 0.49 0.52
3 0.56 0.42
4 0.30 0.14
5 0.09 0.23
6 0.23 0.29
7 0.48 0.41
Student Attitude 8 0.52 0.46
Responses 9 0.76 0.73
10 0.58 0.64
11 0.29 0.27
12 0.48 0.41
13 0.57 0.44
14 0.52 0.62
15 0.52 0.45
16 0.43 0.40
1 0.72 0.48
2 0.74 0.59
3 0.65 0.45
4 0.59 0.54
Teacher Practice
Responses 5 0.68 0.49
6 0.84 0.64
7 0.73 0.39
8 0.69 0.43
9 0.84 0.67

Then we construct a weighted average of test statistics in the following way: Let:

1 16
Savg = TGZS](yka)
j=1

1 16
ngg = TGZS](Z/:|¢S)
j=1
9

1
Tavg = §ZT](Q|¢S)
j=1

9

1
T;vg = 9 Z Sj(y;|¢s)
j=1
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Then,

. #{s : Savg + Tavg + H(ylds) < Saug + Tapg + H(Yil¢ps) : s =1,...M}
- M

We assess the IRT model portions of our Student Attitude model, and p-values are given in
Table 14. There is no evidence of poor fit for any of the items in either the Student Attitude nor
Teacher Practice IRT portion and in fact, the overall model has a p-value of 1. The same is true for
the Spring Algebra TN model (Table 15). Based on these results, we believe that these models do
not fail to fit our data; however, we question whether the test statistic H is an adequate measure
of fit for linear models as it returns p-values near one for each HLM tested (Winter CTBS, Student
Attitude, and Spring Alg TN).

Table 14: Goodness of Fit Tests for Student Attitude Model

Item

p-value
1 2 3 4 5 6 7 8
0.50 | 0.78 | 0.50 | 0.27 | 0.16 | 0.31 | 0.69 | 0.87
9 10 11 12 13 14 15 16
0.67 | 1.00 | 0.98 | 0.92 | 0.75 | 0.54 | 0.95 | 0.44
1 2 3 4 5 6 7 8 9
0.67 | 0.74 | 0.62 | 0.57 | 0.72 | 0.84 | 0.73 | 0.67 | 0.77

’ Overall Model ‘ 1.00 ‘

Student Attitude IRT

Teacher Practice IRT

Table 15: Goodness of Fit Tests for Spring Algebra TN Model

Ttem

p-value
1 2 3 4 5 6 7 8
0.47 | 0.54 | 0.56 | 0.30 | 0.11 | 0.21 | 0.48 | 0.56
9 10 11 12 13 14 15 16
0.77 1 0.59 | 0.28 | 0.46 | 0.58 | 0.50 | 0.49 | 0.44
1 2 3 4 5 6 7 8 9
0.69 | 0.71 | 0.67 | 0.57 | 0.70 | 0.83 | 0.71 | 0.69 | 0.84

’ Overall Model \ 1.00 ‘

Student Attitude IRT

Teacher Practice IRT
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11 Sensitivity Analyses

11.1 Priors

In addition to model fit diagnostics, sensitivity analyses are also used in Bayesian analyses.
fit both the Student Attitude model and Spring Algebra TN model in JAGS using different prior
specifications to determine the effect of prior choice on parameter estimates.
using less informative and more informative priors. Priors are shown in Table 16. See Appendix

A.11 for JAGS code.

Table 16: Gibbs Sampler Priors Used for Sensitivity Analysis

We fit each model

Parameter Flat Priors | Original Model Priors | Strong Priors
Discrimination U]0,10] U[0,4] U[0, 4]
Location N(0, 10) N (0,1) N(0, 0.5)
Threshold N(0, 1) N(0, 0.01) N(0, 0.001)
Student Variance UJ0, 100] UJ0, 10] UJo, 1]
Teacher Variance U[0, 100] UJo, 10] Ulo, 1]
School Variance U[0, 100] U[0, 10] Ulo, 1]
Regression Coefficient | N(0, 100) N(0, 1) N (0.2, 0.5)*
*Prior for Stretch Coefficient is N(0, 0.5)

We compare standardized regression coefficients and variance component estimates from each
set of priors and each model (Figure 12, Figure 13). Exact parameter estimates are included in
the Appendix A.10. For the Student Attitude model (Figure 12), we see that a stronger, more
informative prior causes regression coefficients and variance components to decrease towards zero.
Thus, some of the shrinkage we saw in Section 9.3 is due to our choice of prior despite our original
efforts to choose an uninformative prior. Note also that flatter priors have larger standard errors.

For the Spring Algebra TN model (Figure 13), priors have a less consistent effect on parameter
estimates. We see little effect of priors on regression coefficients on fixed covariates, and different
effects on our latent variables. Priors do not appear to affect the coefficient for Teacher Practice
but stronger priors do seem to increase the regression coefficient for Student Attitude and increase
the associated standard error. Other than an atypically large Teacher variance estimate, priors do
not appear to affect variance components.

28



< } 2
0] o | ©
©
2
= © |
< N | { } o
c o -
g |} I : <
2 I 3 S
® o s I
S — Flat = s
§ N —— Model ;
§ Q —— Strong | o | 3 {I
n T T © \ T \
Spring Teacher Student Teacher  School
Fall OH Alg N Practice Stretch
Standardized Regression Coefficients Variance Components

Figure 12: Student Attitude Model: Effect of Gibbs Sampler Priors on Parameter Estimates

8- @ III
—— Flat
© | | —— Model
o —— Strong © |
o

04
!
e
—eo—
04
!
—e—

S HI i3t IH

Standardized Spring
Algebra TN
0

N
i S
o
N i I Q] } E
o o
' T T T T T T T
Winter ~ Student Teacher Student  Teacher District
FallOH  cTBS  Attitude Practice  Stretch
Standardized Regression Coefficients Variance Components

Figure 13: Spring Algebra TN Model: Effect of Gibbs Sampler Priors on Parameter Estimates

29



11.2 Imputation Techniques

We are also interested in the effect that the missing data imputation technique has on our parameter
estimates. Recall that for our results, we use a regression model to impute missing data. We refer
to this method of imputation as Random Regression as we sampled from our regression model using
residual error. We consider two additional methods of imputation. We first use a method that is
computationally simple, using overall means for missing values for each variable. For example, in
our data set we are missing values for Fall OH, Fall CTBS and Winter CTBS. Rather than using a
model to estimate missing values, we use the group mean. The overall mean Fall OH scores is used
for all of the missing Fall OH score, the overall mean Fall CTBS score is used for all of the missing
Fall CTBS scores, and the overall mean Winter CTBS is used for all of the missing Winter CTBS
scores. We refer to this method of imputation as Group Means, and we note that this method only
yields one data set.

The second method involves imputing missing data values using Bayesian techniques. We can
use a Gibbs sampler to simultaneously model our missing data along with our model of interest. As
JAGS is a Gibbs Sampling algorithm, we could theoretically use a JAGS model to impute missing
data and fit our model. However, BUGS-type algorithms are recommended for missingness in the
response variable only (Kynn 2006). We therefore create a JAGS model that simulates draws for
missing data for Fall CTBS, Fall OH and Winter CTBS as outcome variables using regression
models as well as parameter values for the primary model. See Appendix A.11 for model codes.
We refer to this imputation technique as JAGS.

According to Gelman et al. (2004), the proper way to use a Gibbs sampler to model data with
missing values is to use a two stage approach. Note that the model remains the same in each stage.
In the first stage, the simulation is run and for each missing value, a random sample of n posterior
draws are taken, creating n complete data sets. The second stage uses these n imputations and the
simulation is rerun with these data. Posterior samples are then pooled to create posterior densities
for each parameter. Due to time constraints, it was not possible to do this two-stage approach with
our data however we would expect parameter estimates to be similar.

We compare parameter estimates using these methods of imputation for each model (Figure 14
and Figure 15). First, there appears to be no difference between using the Random Regression and
JAGS imputation techniques for either model. There is some evidence of shrinkage of regression
coefficients using group means in the Student Attitude Model (Figure 14). This is unsurprising
as using group means for missing data shrinks slope parameters since including additional data
point with a slope of zero influences the slope toward zero. The method of imputation appears to
have no effect on variance components. For the Spring Algebra TN model (Figure 15), using group
means for missing data significantly reduces the Student Attitude slope as well as the Teacher level
variance component. We also note that the Student level variance is higher for using group means
and it is possible that the increase in Student level variance drives the decrease in Teacher level
variance.
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12 Discussion

12.1 Research Study

Given our focus population of students who remained in the study for the entire time and who attend
school somewhat regularly, we infer that students in the TAM condition outperform the Stretch
condition on a test measuring general math ability through questions targeting intermediate math
skills. While the Stretch condition allows teachers the additional time to focus on intermediate math
skills, the TAM condition provides structured lessons on these topics. Thus, it is not surprising
that TAM students would outperform the Stretch students.

The attitudes of these students, however, do not differ between conditions. There are several
possible reasons for these null results. Recall that these surveys were administered in the spring
when all students were enrolled in an Algebra I course. It is possible that student attitudes may
have changed during the TAM course (as this is a goal of the course), but that these attitudes
reverted back during the second semester. Another possible interpretation of course is that TAM
does not affect student attitudes. We did find positive relationships between attitude and teacher
practices, Fall OH scores, and Spring Alg TN scores. Students whose teachers have better practices
have better attitudes towards their class. Students who began the study with higher propensity to
learn algebra have better attitudes and students who end the study with higher algebra abilities
have better attitudes.

Finally, we find that algebra performance does not differ between conditions. While these results
may appear to be null, most educators would agree that we should expect students in the TAM
condition to do worse than students in the Stretch condition as they had less instructional time in
Algebra I. Recall that Stretch students took Algebra coursework throughout both semesters whereas
the TAM students did not begin formal Algebra coursework until the second semester. These results
are quite promising and suggest that a course like TAM facilitates students to “catch-up” to their
classmates.

12.2 Latent Variable Estimation

We use three methods to estimate latent variable measures from survey responses: sum scores and
IRT models, a separate model and as part of an HLM. Overall trends in regression coefficients
are constant across estimation methods, however regression coeflicients and variance components
differed from models using sum scores in SAS more in the JAGS models using IRT-based latent
variables than in the SAS models using IRT-based latent variables. This is less than surprising for
two reasons. The first is that we are comparing not only two different methods of estimation but
also two different models. The SAS models treat the latent variables as fixed and known whereas
the JAGS models treat them as parameters to be estimated. The second reason is that the latent
variable estimates using sum scores and a separate IRT model are highly correlated. In essence, the
two SAS models are virtually identical whereas the JAGS model includes uncertainty for estimating
the latent variables.

Under most circumstances, we do not expect sum scores to be identical to latent variable esti-
mates (6) produced by an IRT model. While these methods of estimation may produce correlated
estimates, the purpose of using an IRT model is to take into account differences in the survey
items. Items with varying location parameters are more likely to yield 0 estimates that are less
highly correlated with sum scores. We see this with our simulated data in Section 12.3. For our
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particular data set, however, we find that all items have similar location parameter estimates and
therefore produce highly correlated sum scores and 6 estimates.

12.3 Simulations

In this section, we explore causes behind some of the trends in our results. There is a large effect of
prior specification on the JAGS models parameter estimates when the outcome variable is modeled
as a latent but there is little effect when the outcome variable is fixed. In addition, we saw some
amount of shrinkage of regression coefficients towards zero when the outcome variable is modeled as
a latent variable although it is possible that this is solely attributed to choice in prior. The difference
between these two models (Student Attitude and Spring Algebra TN) is that the Student Attitude
model incorporates measurement error in student responses as part of the outcome variable. To
investigate the effects of priors and measurement error, we conduct several simulations.

Each simulated dataset contains 500 students and the number of survey items are 16 and 9
for Student Attitude and Teacher Practice. We create two datasets for each model, one with high
measurement error (low discrimination item parameters) and one with low measurement error (high
discrimination item parameters).

We fit each model using four methods. For the first two, we first estimate our latent variables
using sum scores or an IRT model and then fit the HLM in SAS. For the second two, we use a JAGS
model to estimate our latent variables and HLM in the same model. We use the set of priors used
in the results section and the set of flat priors used in Section 11.1. As these data are simulated,
the true regression coefficient and variance component is also shown.

The simulated Student Attitude model parameter estimates are given in Figure 16 and Figure 17.
We see that the prior specification significantly affects parameter estimates with the flat prior
increasing both standard errors and parameter estimates. There is a slight difference between
estimates with low and high measurement error. Also, there is shrinkage of parameter estimates
towards zero with the high measurement error data only, suggesting that both measurement error
and prior specification affect parameter estimates.

There is little effect of measurement error on parameter estimates when the outcome variable
is not a latent variable, and again, we see that there is no effect of prior specification on parameter
estimates (Figure 18 and Figure 19). Thus, we conclude that including measurement error in the
model is particularly important when the outcome variable is a latent variable. Similarly, these
models are also highly sensitive to choice in prior.

These conclusions are particularly important as most outcome variables in educational inter-
ventions are in fact latent variables, regardless of whether they are modeled as latent or not. For
this study, two of our outcome measures are test scores which we assume to be proxy measures for
overall math ability and proficiency in algebra. In fact, both of these test scores are actually sum
scores based on the number of correct responses on each test and these outcome variables could
also be modeled as latent variables.
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A Appendix

A.1 Differences in Student Baseline Variables by Condition

To determine differences in categorical student baseline variables by condition, we fit log linear
models to the full data set (n=3327). We fit two models, one with the missing values as a separate
variable and one with the missing values excluded. For each variable and each model, we show the
residuals, Pearson x? test statistic for model of independence and p-value (Table 17 -Table 19). In

addition, we compare fall test scores (Table 20).

Table 17: Contingency Table for Students Race by Condition

Table 19: Free and Reduced Lunch Status by Condition

Race Stretch | TAM
White 233 255
Black 411 574
Hispanic 301 251 Model 2 t.s. p-value
Asian 8 16 w/missing 612 | p<le—10
Native American 24 42 w/o missing | 31.6 | p<2e—5
Multiracial 5 14
Other 1 1
NA 665 525
Table 18: Student Gender by Condition
Stretch | TAM Model 2 t.s. p-value
Male 759 730 —
w/missing 403 |p<le—8
Female 689 610 .
NA 201 338 w/0 missing 1.2 p = 0.267

Stretch | TAM Model X2 ts. | p-value
No Free and Reduced Lunch 132 178 —
Free and Reduced Lunch 313 362 w/ mls.sn.lg 12.0 ) p = 0.002
NA 1204 1138 w/0 missing 1.2 | p=0.267
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Table 20: Fall Pretest Scores by Condition

Variable Stretch Mean (n) | TAM Mean (n) | 2-Sample t-test p-value
Fall CTBS 6.64 (1205) 6.59 (1194) 0.617
Orleans Hanna 21.27 (1247) 20.55 (1207) 0.097
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A.2 Differences in Student Baseline Variables by District

We include similar analyses by district. We include counts and Pearson x? test statistics for the
model of independence and p-values for log linear models that include and do not include missing
data. In addition, we fit an ANOVA model for each fall pretest score by district.

Table 21: Student Race by District

38

District | White | Black | Hispanic | Asian | Nat. Am. | Multiracial | Other | NA
0 51 19 366 3 44 0 0 217
1 31 103 68 0 2 3 0 33
2 0 0 0 0 0 0 0 607
3 246 66 48 11 16 0 0 2
4 1 209 1 0 0 0 0 180
5 71 202 26 8 2 0 2 12
6 1 194 10 0 0 0 0 136
7 87 192 34 2 2 16 0 3

Model 2 t.s. | p-value
w/missing | 3905.2 | p~0
w/o missing | 1785.5 | p~0
Table 22: Student Gender by District, n=2788
Male | Female | NA
0| 267 224 209
1] 122 90 28
2| 269 228 | 110 Model Y2 ts. | p-value
3| 231 156 2 w/missing 602 pa0
4 | 100 131 160 || w/o missing | 27.4 | p=0.0003
5| 187 134 2
6| 151 162 28
7| 162 174 0




Table 23: Free and Reduced Lunch Status by District, n=985

No FRL | FRL | NA
0 142 324 | 234
1 0 0 240
2 0 0 607 Model x“ t.s. p-value
3 133 194 | 62 w/missing | 2371.4 p~0
4 0 0 | 391 || w/o missing p = 0.0001
5 0 0 323
6 35 157 | 149
7 0 0 336
Table 24: ANOVA Analysis Pretest Scores by District
District | Mean CTBS | Mean OH
0 6.9 20.8
1 6.9 24.2
2 5.8 16.1 Test F statistic | p-value
3 6.5 21.1 Fall CTBS 13.41 0.00025
4 5.5 19.0 Orleans Hanna 24.416 <le—6
) 7.0 21.2
6 7.1 23.8
7 7.3 23.7
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A.3 Differences in Teacher Baseline Variables by Condition

We compare teacher level variables by condition. Self-reported responses by condition are compared
using a 2-sample t-test in Table 25.

Table 25: Differences in Teacher Level Covariates by Condition

Covariate | Stretch Mean TAM Mean p-value

Yrs Teaching 9.40 5.44 0.046

Yrs w/Ninth Grade Math 5.49 3.84 0.235
Yrs w/Algebra 5.61 3.79 0.207

Experience w/Block Schedule 0.70 0.69 0.909
Experience w/Coaching 0.35 0.28 0.533
Experience w/Doubledose 0.38 0.50 0.287
Proportion who Volunteered 0.58 0.38 0.090
Proportion w/ Math major 0.64 0.66 0.894
Proportion Certified 0.67 0.61 0.587

A.4 Student Survey Exploratory Factor Analysis

We first fit a scree plot to determine the number of factors. Based on the scree plot, we fit a 3 and

Scree Plot for All Student Survey Items

Eigenvalue
4
l

\ \ \ \ \ \ \ \
0 5 10 15 20 25 30 35

Dimension
5 factor model.
We include the results of the 3-factor model fits with no rotation and oblique rotation (Table 26,
Table 27) however there is some evidence that a 2-factor model may fit better.
We remove items that do not load well and create another scree plot in which a 2-factor model
is suggested. We fit a 2-factor model and include factor loadings for the no rotation and oblique
rotation models (Table 28, Table 29).
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Scree Plot for Student Survey Items (Items Removed)
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We group the items into two factors and determine a optimal set of items for each factor based
on reliability measures. We name the factors in the following way: Student Attitudes (Items 14-
24, 26, 28, 31-35, 37) and Teacher Practices (Items 4-10, 12, 13). Based solely on these results,
it appears that the optimal item set for Student Attitudes include Items 14-21, 28, 31, 32, and
34, however researchers at Johns Hopkins found evidence for including item 35. As this does not
drastically affect reliability measures, we include this item. In addition, we also consider Item 37
however research team members did not find evidence for this Item in their analysis so we do not
include this Item. For Teacher Practices, we have so few items that we prefer to keep all 9 items
rather than use a more reliable set of fewer items.
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Table 26: Factor Loadings for 3-Factor Model on Student Survey Data: No Rotation and Items
with Loadings < 0.25 on all Factors Excluded

Item | Factorl | Factor2 | Factor3
14 0.67 0.17 -0.01
15 0.63 0.09 0.45
16 0.54 0.05 0.36
17 0.57 -0.04 0.00
20 0.65 0.01 0.39
21 0.68 0.16 -0.02
23 0.79 -0.13 0.02
24 0.71 -0.18 -0.03
28 -0.70 0.36 0.19
31 -0.69 0.16 0.18
34 -0.67 0.25 0.24
35 -0.62 0.03 0.07
2 0.11 0.31 -0.02
3 0.17 0.30 -0.07
4 0.18 0.44 -0.17
5 0.28 0.38 -0.13
6 0.38 0.45 -0.11
7 0.21 0.43 -0.14
8 0.31 0.36 -0.18
9 0.14 0.41 -0.18
10 0.27 0.35 -0.17
11 0.08 0.30 0.01
12 0.32 0.43 -0.17
13 0.44 0.34 -0.03
18 -0.49 -0.12 0.06
19 -0.48 0.24 0.19
22 0.47 0.19 0.22
26 -0.35 -0.06 -0.30
32 -0.49 0.15 0.17
33 -0.47 -0.01 0.16
37 0.37 -0.19 0.04
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Table 27: Factor Loadings for 3-Factor Model on Student Survey Data: Oblique Rotation and
Items with Loadings < 0.25 on all Factors Excluded

Item | Factorl | Factor2 | Factor3
19 0.65 0.05 0.11
23 -0.59 0.02 0.27

24 -0.62 -0.02 0.18
28 0.88 0.13 0.06
31 0.72 -0.07 0.03
32 0.57 -0.04 0.08
34 0.82 -0.01 0.12
4 0.09 0.56 -0.10
5 0.01 0.51 -0.03
6 0.01 0.58 0.05
7 0.09 0.55 -0.05
8 -0.07 0.51 -0.08
9 0.09 0.53 -0.13
12 -0.01 0.58 -0.05
15 0.02 0.00 0.80
16 -0.02 -0.01 0.64
20 -0.10 -0.05 0.72
26 -0.05 0.02 -0.50

2 0.16 0.35 0.05
3 0.06 0.37 0.00
10 -0.04 0.49 -0.09
11 0.18 0.31 0.08
13 -0.05 0.45 0.14
14 -0.31 0.31 0.23
17 -0.40 0.08 0.18

18 0.28 -0.25 -0.10
21 -0.34 0.31 0.22
22 0.02 0.18 0.46
25 -0.02 0.13 -0.35
33 0.43 -0.19 0.05
35 0.48 -0.14 -0.11
36 0.41 0.03 0.13

37 -0.36 -0.13 0.15
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Table 28: Factor Loadings for 2-Factor Model on Student Survey Data: No Rotation and Items
with Loadings < 0.25 on all Factors Excluded

Item | Factorl | Factor2
14 0.68 0.20
15 0.60 0.05

16 0.52 0.02
17 0.58 -0.05
20 0.63 -0.03
21 0.70 0.18
23 0.79 -0.15
24 0.72 -0.19

28 -0.69 0.35
31 -0.69 0.13
34 -0.66 0.24
35 -0.62 0.03

4 0.18 0.42
) 0.28 0.37
6 0.38 0.46
7 0.22 0.44
8 0.31 0.35
9 0.14 0.42
10 0.27 0.33
12 0.32 0.45

13 0.44 0.36
18 -0.48 -0.15
19 -0.49 0.20
22 0.46 0.17
26 -0.34 -0.02
32 -0.50 0.16
33 -0.48 -0.02
37 0.38 -0.18
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Table 29: Factor Loadings for 2-Factor Model on Student Survey Data: Oblique Rotation and
Items with Loadings < 0.25 on all Factors Excluded

Item | Factorl | Factor2
17 -0.53 0.09
19 0.58 0.11
20 -0.55 0.12
23 -0.79 0.03
24 -0.77 -0.04
28 0.87 0.22

31 0.69 -0.02
32 0.55 0.05
34 0.75 0.11
35 0.55 -0.13

4 0.18 0.53
6 0.04 0.61
7 0.17 0.55
9 0.22 0.52
12 0.08 0.59
13 -0.09 0.52
) 0.06 0.49
8 0.02 0.48
10 0.04 0.44
14 -0.42 0.40
15 -0.47 0.20
16 -0.43 0.15
18 0.29 -0.29
21 -0.45 0.38
22 -0.25 0.31
26 0.27 -0.11
33 0.39 -0.14
37 -0.46 -0.11
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Table 30: Student Attitude Reliability Measures o = 0.84, glb = 0.85, w; = 0.84, H=0.26 and
Leave One Item Out Reliability Measures

item Q) glb[,i] = H[,Z]
14 0.83 0.84 0.82 0.24
15 | 0.83 | 0.86 0.83 | 0.25
16 0.83 0.86 0.83 0.25
17 1 0.83 | 0.84 0.82 | 0.25
18 0.84 0.85 0.83 026
19 0.84 0.87 0.83 0.25
20 0.83 0.86 0.82 0.25
21 0.83 0.84 0.82 0.24
22 | 0.84 | 0.87 0.83 | 0.26
23 0.82 0.81 0.81 0.24
24 | 083 | 0.8 0.82 | 0.24
26 0.87 | 0.87 0.86 0.31
28 | 0.83 | 0.81 0.82 | 0.24
31 0.83 0.87 0.82 0.24
32 | 0.84 | 0.87 0.83 | 0.25
33 0.84 0.88 0.83 0.26
34 0.83 0.88 0.82 0.25
35 0.88 0.87 0.86 0.33
37 0.84 0.85 0.83 0.26

Table 31: Subsets of Student Attitude Items and Reliability Measures

Items « glb wy H
ook 0.89 | 0.91 | 0.87 | 0.43
Rk 34 0.90 | 0.93 | 0.87 | 0.43
ik 34, 35 0.86 | 0.88 | 0.85 | 0.32

w0k 3435 37 | 0.86 | 0.89 | 0.85 | 0.31
0k 33 3435, 37 | 0.87 | 0.87 | 0.85 | 0.31
FF*Ttems 14-24, 28, 31, 32
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Table 32: Teacher Practices Reliability Measures o« = 0.76, glb = 0.81, wy = 0.708, H=0.304

item Q] glb[_i] We [—i] H[_ﬂ
4 0.740 | 0.80 0.69 | 0.3
) 0.738 | 0.80 0.69 | 0.30
6 0.727 | 0.79 0.66 | 0.29
7 0.739 | 0.79 0.68 | 0.30
8
9

0.739 | 0.77 0.68 | 0.31
0.743 | 0.79 0.69 | 0.31
10 | 0.729 | 0.75 0.69 | 0.31
12 | 0.744 | 0.79 0.67 | 0.30
13 | 0.743 | 0.79 0.68 | 0.31
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A.5 Teacher Observation Exploratory Factor Analysis

To determine a possible number of factors, we plot scree plots. We include scree plots for the fall
and spring data separately and one for the combined data. The observation data suggest a 2 or
3-factor model for the fall and a 2, 4 or 5-factor model spring data separately and a 4 or 8 factor
model for the combined data.

Scree Plot for Fall Teacher Observation Data Scree Plot for Spring Teacher Observation Data Scree Plot for All Teacher Observation Data
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We include factor loadings for 2-factor model for the fall observation data (Table 33). We see
that the levels of engagement and housekeeping (engl, eng2, eng3, timeinstruct, timehouse) load
together and that teacher ratings (bestpractice, stdlearn, stdcenter) also load together.

Table 33: Exploratory Factor Analysis on Fall Teacher Observation Data: 2-Factor Model with No
Rotation and Oblique Rotation

No Rotation Oblique Rotation

Ttem Factorl | Factor2 | Factorl | Factor2
fall.eng1 0.42 0.56 -0.07 0.72
fall.eng?2 0.55 0.71 -0.07 0.92
fall.eng3 0.71 0.32 0.35 0.57
fall.timeinstruct 0.61 0.30 0.28 0.51
fall.timehouse -0.54 -0.45 -0.11 -0.65
fall.pctwhole -0.25 0.51 -0.57 0.44
fall.pctgroup 0.41 -0.21 0.48 -0.08
fall.room 0.21 0.15 0.07 0.23
fall.bestpractice 0.94 -0.03 0.79 0.29
fall.stdlearn 0.91 -0.10 0.81 0.20
fall.stdcenter 0.93 -0.25 0.93 0.06

For the spring observation data, we include the factor loadings for a 4-factor model with no
rotation and oblique rotation (Table 34, Table 35). These models suggest that levels of engagement
(engl, eng2, eng3) load together and that teacher ratings (bestpractice, stdlearn, stdcenter) also
load together. Evidence that other variables load together appears contradictory and we use only
these two factors from the spring data.
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Table 34: Exploratory Factor Analysis on Spring Teacher Observation Data: 4-Factor Model with
No Rotation

Ttem Factorl | Factor2 | Factor3 | Factor4
spr.engl 0.75 0.18 0.19 -0.36
spr.eng?2 0.84 0.16 -0.04 -0.31
spr.eng3 0.78 0.02 0.17 -0.42

spr.timeinstruct 0.19 0.05 0.02 0.12
spr.timehouse -0.19 -0.18 0.05 -0.12
spr.pctwhole 0.02 -0.64 -0.76 0.01
spr.pctgroup 0.00 1.00 -0.04 0.00
spr.pctalone 0.00 -0.54 0.84 0.00
spr.room -0.04 0.21 -0.38 0.06
spr.bestpractice 0.49 0.39 0.17 0.65
spr.stdlearn 0.48 0.21 0.28 0.64
spr.stdcenter 0.31 0.42 0.29 0.64

For the both sets of observation data combined, we include the factor loadings for a 8-factor
model with no rotation (Table 36). While there is clear evidence that there are not 8 factors,
the extra variables make finding simple structure difficult. Instead, we focus only on the data
that loaded together in the fall and spring factor models. We fit a 4-factor model on these data
(Table 37) which suggests that the loading structure is the same when the fall and spring data are
modeled separately or together.

Thus, we have two constructs for the fall data and two constructs for the spring data, but we
calculate reliability measures to determine an optimal set for each factor (Table 38). Based on
these reliability estimates and on the spring factors chosen, we choose to use a second fall factor
containing only the levels of student engagement.
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Table 35: Exploratory Factor Analysis on Spring Teacher Observation Data: 4-Factor Model with
Oblique Rotation

Ttem Factorl | Factor2 | Factor3 | Factor4
spr.engl -0.01 0.85 -0.04 -0.12
spr.eng?2 0.06 0.89 0.15 0.09
spr.eng3 -0.07 0.91 -0.10 0.00

spr.timeinstruct 0.22 0.08 0.01 0.07
spr.timehouse -0.21 -0.09 -0.14 0.00
spr.pctwhole -0.02 0.00 0.31 0.98
spr.pctgroup 0.00 0.02 0.57 -0.74
spr.pctalone 0.04 -0.01 -1.01 -0.11
spr.room 0.03 -0.07 0.44 0.08
spr.bestpractice 091 0.03 0.06 0.02
spr.stdlearn 0.89 0.03 -0.13 0.08
spr.stdcenter 0.82 -0.11 -0.03 -0.15
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Table 36: Exploratory Factor Analysis on Full Combined Teacher Observation Data: 8-Factor
Model with Oblique Rotation

Ttem Factorl | Factor2 | Factor3 | Factor4d | Factorb | Factor6 | Factor7 | Factor8
spr.engl -0.06 0.79 0.23 0.16 -0.08 -0.33 -0.20 -0.19
spr.eng?2 -0.06 0.86 0.17 -0.06 -0.03 -0.21 -0.09 0.166
spr.eng3 -0.16 0.78 0.05 0.14 -0.12 -0.27 -0.16 0.19

spr.timeinstruct 0.13 0.19 0.08 0.04 -0.12 0.36 -0.05 0.23
spr.timehouse -0.12 -0.16 -0.19 0.11 0.01 0.11 -0.20 -0.05
spr.pctwhole 0.07 0.03 -0.65 -0.75 -0.01 0.00 0.01 -0.01
spr.pctgroup -0.03 0.00 1.00 -0.04 0.02 0.00 0.00 0.00
spr.pctalone -0.03 0.00 -0.58 0.81 0.00 0.00 0.00 0.00
Spr.room 0.06 -0.03 0.20 -0.35 -0.01 0.08 -0.11 -0.27
spr.bestpractice 0.37 0.42 0.40 0.31 -0.20 0.19 0.44 -0.08
spr.stdlearn 0.44 0.35 0.23 0.39 -0.16 0.15 0.48 0.03
spr.stdcenter 0.43 0.21 0.45 0.33 -0.39 0.17 0.41 -0.11
fall.engl 0.23 0.32 -0.13 0.19 0.47 0.29 -0.18 -0.44
fall.eng?2 0.33 0.32 0.02 0.05 0.63 0.38 0.12 -0.01
fall.eng3 0.63 0.21 -0.17 -0.05 0.39 0.33 0.00 0.38
fall.timeinstruct 0.41 0.22 -0.04 0.26 0.23 0.32 -0.27 -0.03
fall.timehouse -0.43 -0.24 0.01 -0.19 -0.61 -0.36 0.10 0.24
fall.pctwhole -0.46 0.19 -0.20 -0.17 0.45 -0.12 0.31 0.17
fall.pctgroup 0.45 0.09 0.19 0.14 -0.55 0.49 -0.34 0.03
fall.room -0.11 0.07 0.05 -0.12 -0.15 0.62 -0.06 0.03
fall.bestpractice 0.85 0.05 0.04 0.16 0.19 0.04 0.00 -0.02
fall.stdlearn 0.80 0.11 -0.04 0.19 0.12 -0.08 0.01 0.06
fall.stdcenter 0.97 -0.07 0.09 0.13 0.00 -0.12 -0.02 0.00
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Table 37: Exploratory Factor Analysis on Selected Teacher Observation Data: 4-Factor Model with

Oblique Rotation

Table 38: Reliability Measures for Fall and Spring Teacher Observation Factors

Item Factorl | Factor2 | Factor3 | Factor4
fall.engl -0.04 0.68 0.08 -0.06
fall.eng?2 -0.22 1.06 -0.04 0.09
fall.eng3 0.33 0.57 0.05 -0.10

fall.timeinstruct 0.45 0.16 0.09 0.01
fall.timehouse -0.11 -0.65 0.09 0.07
fall.bestpractice 0.87 0.10 -0.04 0.02
fall.stdlearn 0.92 0.00 0.04 0.00
fall.stdcenter 1.01 -0.20 -0.06 0.10
spr.bestpractice | -0.05 0.17 0.06 0.87
spr.stdlearn 0.09 0.13 0.06 0.75
spr.stdcenter 0.10 -0.12 -0.09 0.97
spr.engl 0.01 -0.14 0.82 0.02
spr.eng2 -0.13 0.13 0.88 0.04
spr.eng3 0.06 -0.09 0.91 -0.08

Construct

Ttems o

glb

Wt

H

Fall Construct 1

Fall Construct 2a

Fall Construct 2b

Fall Construct 2c

Spring Construct 1

Spring Construct 2

bestpractice,| 0.94
stdlearn,
stdcenter
engl, eng2,
engd, time-
instruct,
timehouse
engl, eng2,
engd, time-
instruct
engl, eng2,
eng3
bestpractice,
stdlearn,
stdcenter
engl, eng2,
eng3

0.04

0.76

0.93

0.89

-1.33

0.94

0.71

0.87

0.83

0.94

0.90

0.93

0.99

0.99

-3.26

0.92

-218.9

0.94

NA

NA

NA

0.92

NA
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A.6 Preliminary Models

We first fit models to determine whether to include race in our models. We fit a two level HLM for
each outcome variable and include only those districts with mostly complete cases for race. Table 39
- Table 41 show regression coefficients for each model and we see that race is not significant. While
AIC and BIC scores do not necessarily select out race, there is evidence that race is not relevant

for these models.

Table 39: Winter CTBS as Response in 2 Level HLM with 4 Districts

Variable | Estimate (SE)

Fall OH
Fall CTBS
Stretch
Race 0
Race 1
Race 2
Race 3
Race 4
Race 5

0.24 (0.03)
0.50 (0.03)
-0.27 (0.08)
0.52 (0.71)
0.29 (0.71)
0.33 (0.72)
0.25 (0.73)
0.59 (0.73)
0.48 (0.73)

AIC = 1915.9, BIC=1917.2 vs. AIC = 1921.8, BIC=1923.1 for excluding race

Table 40: Student Attitude as Response in 2 Level HLM with 4 Districts

Variable Estimate (SE)
Fall OH 0.14 (0.04)
Spring Alg TN 0.29 (0.04)
Stretch 0.09 (0.16)
Race 0 -0.34 (0.82)
Race 1 -0.04 (0.81)
Race 2 -0.14 (0.82)
Race 3 0.01 (0.86)
Race 4 0.16 (0.87)
Race 5 -0.17 (0.84)
Teacher Practice | 0.37 (0.04)

AIC = 1624.7, BIC=1626.0 vs. AIC = 1633.9.0, BIC=1635.2 for excluding race

We now investigate models involving gender. We use our standard data set of 1233 students
to fit a model to predict gender. We fit a logistic regression to predict gender based on the other
student level covariates and we fail to find any correlations between gender and student level

variables (Table 42).

Furthermore, we use these data to fit models for each outcome variable that include and exclude
gender. AIC and BIC scores do not prefer including gender in each model as they do not decrease
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Table 41: Spring Algebra TN as Response in 2 Level HLM with 4 Districts

Variable Estimate (SE)
Fall OH 0.19 (0.04)
Winter CTBS | 0.19 (0.04)
Stretch 0.21 (0.17)
Race 0 -0.86 (0.80)
Race 1 -0.78 (0.80)
Race 2 -0.43 (0.81)
Race 3 -0.83 (0.85)
Race 4 -0.56 (0.85)
Race 5 -0.84 (0.83)
Student Attitude | 0.28 (0.04)
Teacher Practice | -0.13 (0.04)

AIC = 1528.4, BIC=1529.6 vs. AIC = 1534.0, BIC=1539.3 for excluding race

Table 42: Standard Dataset n=1233: Regression Coefficients for Model Predicting Gender

Variable Estimate (SE)
Fall CTBS 20.05 (0.07)
Fall OH 0.08 (0.06)
Winter CTBS 0.004 (0.06)
Spring Algebra TN | -0.10 (0.06)
Student Attitude 0.03 (0.06)
Teacher Practice 0.05 (0.06)

by more than 2 by including gender (Table 43 - Table 45). As gender is not correlated with other
variables, we choose not to include gender in our final models.
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Table 43: Winter CTBS as Response in 2 Level HLM with Standard Data Set

Variable | Estimate (SE)
Fall OH | 0.30 (0.03)
Fall CTBS |  0.28 (0.03)
Stretch -0.18 (0.07)
Male 0.10 (0.05)

AIC = 3212.3, BIC=3214.8 vs. AIC = 3212.1, BIC=3214.6 for excluding gender

Table 44: Student Attitude as Response in 2 Level HLM with 4 Districts

Variable Estimate (SE)
Fall OH 0.11 (0.03)
Spring Alg TN 0.27 (0.03)
Stretch -0.05 (0.11)
Male -0.01 (0.05)
Teacher Practice | 0.33 (0.03)

AIC = 3141.4, BIC=3143.9 vs. AIC = 3137.3, BIC=3139.9 for excluding gender

Table 45: Spring Algebra TN as Response in 2 Level HLM with 4 Districts

Variable Estimate (SE)
Fall OH 0.17 (0.03)
Winter CTBS 0.15 (0.03)
Stretch -0.02 (0.18)
Male -0.11 (0.05)
Student Attitude | 0.24 (0.03)
Teacher Practice | -0.07 (0.03)

AIC = 2976.6, BIC=2979.1 vs. AIC = 2977.7, BIC=2980.2 for excluding gender
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A.7 Variable Selection

With the entire data set, we select models by comparing AIC and BIC scores using a 2-level
HLM (student/teacher). We use a somewhat greedy search technique in that we begin with all
covariates in the model and retain only variables whose removal/addition does not significantly
increase/decrease the AIC/BIC score by 2 or more. We consider two-way interactions only. We do
not impute missing data in these models; rather we use complete cases only and include missing
values as separate factors for ordinal variables only.

We begin with all variables in the model as fixed effects, and then we determine random effects
in the model. We consider a random intercept model and a random intercept and slope model for
test scores. We highlight the random effects models that minimizes AIC and BIC, and then we
begin searching for interactions. We consider two-way interactions among student level variables
only. If we find a better model by including interactions, we would highlight that model in pink.
We then continue with the highlighted model by removing variables one at a time as fixed effects.
Any variable that does not increase the AIC/BIC is removed. We then fit the model with these
variables removed we repeat the process of removing fixed effects one at time again until there
aren’t any variables whose removal increases the AIC or BIC score. We highlight iterations of this
process in pink.

We first outline variable selection for the Winter CTBS model. We see that the random intercept
only model is best (Table 46). The next section looks at interactions and we see that including
interactions fail to decrease the AIC/BIC so the highlighted pink model is still optimal. The
next part of the table shows scores for eliminating student and teacher level variables. The next
highlighted model is the model that removes all variables whose removal did not significantly
increase the AIC/BIC. The models that follow are all models that removed those variables (frl,
race, yrs exp, block, coach, vol) and one additional variable. We use the symbol + to represent the
variables that we have already removed. The process is repeated with the variables that have not
been removed. Based on these results, we see that all variables except “dd” (doubledose experience)
can be removed. The final model is a random intercept model that includes Fall CTBS, Fall OH,
condition, and dd.

For the Student Attitude model, we follow the same variable selection techniques (Table 47).
Note that in this model selection procedure, race is selected to remain in the model based on AIC
and BIC scores, but since race was not significant according to a t-test for regression coefficients
and was missing for at least one full district and half of another, we decide not to include race in
this model.

For the Spring Algebra TN model, we follow the same variable selection procedure (Table 48).
Notice in this model that the model selected included an interaction between the fall and winter
CTBS scores. With our standard data set, we use the student level variables selected and perform
additional selection procedures to refine our models. With the Winter CTBS model, our variable
selection procedure included one teacher level variable, experience with a double-dose course. We
use our standard data set to compare AIC/BIC scores for including this variable for each imputation.
The difference in AIC/BIC scores average 3.8 and 3.4 in favor of not including this teacher level
variable, so we exclude it. For the Student Attitude model, there is also one teacher level variable,
the number of years having taught math. Again, we compare AIC/BIC scores for including this
variable for each imputation and they average 5.7 and 5.7 in favor of not including this teacher
level variable.
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For the Spring Algebra TN model, there are several models to compare (Table 49). Given this
data set, there is some evidence of an interaction between the Fall and Winter CTBS scores on the
outcome variable but for simplicity, we choose to exclude this interaction. Finally, we use this data
set to determine the number of levels in each model (Table 50).
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Table 46: Variable Selection Process for Winter CTBS Model

Random Effect Interactions Fixed Effect Removed AIC BIC
Fall CTBS 1386.3 | 1385.9
Fall OH 1389 | 1388.7
Intercept 1368.8 | 1368.6
Intercept Fall CTBS*Stretch 1372.4 | 1372.2
Intercept Fall CTBS*speced 1372.1 | 1371.9
Intercept Fall CTBS*frl 1372.5 | 1372.3
Intercept Fall CTBS*female 1369.6 | 1369.5
Intercept Fall CTBS*race 1374.4 | 1374.3
Intercept Fall CTBS*ohrawl 1374 | 1373.8
Intercept FallOH 1477.5 | 1477.3
Intercept FallCTBS 1387.1 | 1387
Intercept speced 1369.2 | 1369.1
Intercept frl 1362.2 | 1362.1
Intercept female 1369.3 | 1369.2
Intercept race 1366.7 | 1366.6
Teacher Level Variables

Intercept yIs exp 1365.9 | 1365.8
Intercept yrs math 1368.4 | 1368.3
Intercept yrs alg 1368.1 | 1367.9
Intercept blockexp 1365.7 | 1365.6
Intercept coach 1366.4 | 1366.3
Intercept doubledose 1368.4 | 1368.3
Intercept volunteer 1366.8 | 1366.6
Intercept major 1367.9 | 1367.7
Intercept cert 1367.1 | 1367
Intercept frl, race, yrs exp, block, | 1343.3 | 1343.2

coach, vol
Intercept +speced 1339.5 | 1339.4
Intercept +female 1343.8 | 1343.7
Intercept +yrs math 1344.1 | 1344
Intercept +yrs alg 1343 | 1342.9
Intercept +doubledose 1344.6 | 1344.5
Intercept +major 1343.9 | 1343.8
Intercept ~+cert 1341.3 | 1341.2
Intercept frl, race, yrs exp, block, | 1334 | 1333.8

coach, vol, speced, yrs

alg, cert
Intercept +female 1333.6 | 1333.5
Intercept +yrs math 1331.6 | 1331.5
Intercept +dd 1336.5 | 1336.4
Intercept +major 1334.3 | 1334.2
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Table 47: Variable Selection Process for Student Attitude Model

Random Effect Interactions Fixed Effect Removed AIC BIC
Fall CTBS 1584.1 | 1583.7
Fall OH 1589.6 | 1589.2
Winter CTBS 1577.2 | 1576.8
Spring Algebra TN 1579.5 | 1579.2
Intercept 1571.6 | 1571.4
Intercept FallCTBS *WinterCTBS 1575.2 | 1575
Intercept FallCTBS *SprAlgTN 1572.7 | 1572.6
Intercept FallCTBS *FallOH 1576.5 | 1576.3
Intercept WinterCTBS*SprAlgTN 1570.8 | 1570.6
Intercept WinterCTBS*FallOH 1572.6 | 1572.4
Intercept FallOH*SprAlgTN 1574.4 | 1574.2
Intercept FallCTBS 1568.5 | 1568.3
Intercept FallOH 1575.2 | 1575
Intercept WinterCTBS 1571.3 | 1571.1
Intercept SpringAlgTN 1600.7 | 1600.6
Intercept speced 1572.7 | 1572.6
Intercept frl 1569.5 | 1569.4
Intercept female 1568.1 | 1567.9
Intercept race 1576.2 | 1576
Intercept VIS exp 1569.5 | 1569.3
Intercept yrs math 1572.2 | 1572.1
Intercept yrs alg 1571.8 | 1571.6
Intercept blockexp 1571.1 | 1570.9
Intercept coach 1570.5 | 1570.3
Intercept doubledose 1570.8 | 1570.7
Intercept volunteer 1570.6 | 1570.4
Intercept major 1571.5 | 1571.3
Intercept cert 1570.9 | 1570.7
Intercept teacher practice 1621.7 | 1621.5
Intercept FallCTBS, Winter | 1547.1 | 1546.9
CTBS, frl, female,
yrs exp, block, coach,
doubledose, volunteer,
major, cert
Intercept +FallOH 1553.8 | 1553.7
Intercept +SpringAlgTN 1581.1 | 1581
Intercept +speced 1547.8 | 1547.7
Intercept +race 1551.7 | 1551.6
Intercept +yrs math 1549.2 | 1549.1
Intercept +yrs alg 1549 | 1548.8
Intercept +tptheta 1605.1 | 1604.9
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Table 48: Variable Selection Process for Spring Alg TN Model

Random Effect | Interactions Fixed Effect Removed AIC BIC
FallOH 1533.8 | 1533.5
FallCTBS 1525.9 | 1525.5
WinterCTBS 1537.5 | 1537.2
Intercept 1524.5 | 1524.3
Intercept FallCTBS*FallOH 1523.5 | 1523.4
Intercept FallCTBS*WinterCTBS 1519.2 | 1519
Intercept FallCTBS*WinterCTBS, 1518.4 | 1518.3
FallCTBS*Student At-
titude
Intercept FallCTBS*WinterCTBS | FallOH 1524.4 | 1524.2
Intercept FallCTBS*WinterCTBS | speced 1517 | 1516.8
Intercept FallCTBS*WinterCTBS | frl 1517.6 | 1517.4
Intercept FallCTBS*WinterCTBS | female 1522.5 | 1522.3
Intercept FallCTBS*WinterCTBS | race 1533.7 | 1533.6
Intercept FallCTBS*WinterCTBS | yrs exp 1517.3 | 1517.1
Intercept FallCTBS*WinterCTBS | yrs math 1520.3 | 1520.2
Intercept FallCTBS*WinterCTBS | yrs alg 1520.1 | 1519.9
Intercept FallCTBS*WinterCTBS | blockexp 1519.8 | 1519.7
Intercept FallCTBS*WinterCTBS | coach 1518.6 | 1518.5
Intercept FallCTBS*WinterCTBS | doubledose 1519.8 | 1519.6
Intercept FallCTBS*WinterCTBS | volunteer 1518.2 | 1518.1
Intercept FallCTBS*WinterCTBS | major 1518.5 | 1518.3
Intercept FallCTBS*WinterCTBS | cert 1519.6 | 1519.4
Intercept FallCTBS*WinterCTBS | student attitude 1551.6 | 1551.5
Intercept FallCTBS*WinterCTBS | teacher practice 1518.6 | 1518.4
Intercept FallCTBS*WinterCTBS | speced, yrs exp, frl 1510.5 | 1510.3
Intercept FallCTBS*WinterCTBS | +female 1514.5 | 1514.3
Intercept FallCTBS*WinterCTBS | +yrs math 1511.3 | 1511.1
Intercept FallCTBS*WinterCTBS | +yrs alg 1511 | 1510.8
Intercept FallCTBS*WinterCTBS | +blockexp 1510.7 | 1510.5
Intercept FallCTBS*WinterCTBS | +coach 1509.5 | 1509.3
Intercept FallCTBS*WinterCTBS | +doubledose 1511.7 | 1511.5
Intercept FallCTBS*WinterCTBS | +volunteer 1509.2 | 1509.1
Intercept FallCTBS*WinterCTBS | +major 1509.5 | 1509.3
Intercept FallCTBS*WinterCTBS | +cert 1510.2 | 1510
Intercept FallCTBS*WinterCTBS | +teacher practice 1509.9 | 1509.7
Intercept FallCTBS*WinterCTBS | speced, yrs exp, yrs | 1503.2 | 1503.1
math, yrs alg, frl,
teacher practice, block-
exp, coach, volunteer,
major, cert
Intercept FallCTBS*WinterCTBS | +FallOH 1510.7 | 1510.6
Intercept FallCTBS*WinterCTBS | +female 1507.3 | 1507.1
Intercept FallCTBS*WinterCTBSG0+race 1517.9 | 1517.7
Intercept FallCTBS*WinterCTBS | +doubledose 1503.5 | 1503.4
Intercept FallCTBS*WinterCTBS | +student attitude 1531 | 1530.9




Table 49: Spring Algebra TN Model Variable Selection Using Standard Imputation Data Sets

Model Interaction AIC BIC
Fall CTBS, 2992.7 | 2997.3
Winter CTBS, 2989.7 | 2994.4
Fall OH, Stretch, | FallCTBS*WinterCTBS 2991.9 | 2996.6
SAttitude, 2995.3 | 3000
TPractice 2987.5 | 2992.2
Fall CTBS, 3004.6 | 3009.2
Winter CTBS, 3001.3 | 3005.9
Fall OH, Stretch, | No Interaction 3004.5 | 3009.1
SAttitude, 3004.6 | 3009.2
TPractice 3001.3 | 3006
Winter CTBS, 3000.2 | 3004.8
Fall OH, Stretch 2997.0 | 3001.7
. " | FallCTBS*WinterCTBS 3000.1 | 3004.7
SAttitude,
TPractice 3000.3 | 3005
2997.1 | 3001.8
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Table 50: AIC/BIC Scores for 2 and 3 Level Random Intercept Models for Each Response Variables

Winter CTBS Model: AIC/BIC Scores for 2 and 3 Level Random Intercept Models

Imputation 2 Level 2 Level 3 Level 3 Level
(Teacher) (School) (Teacher C School) (Teacher C District)
1 3319.9 3324.6 | 3318.7 3321.4 | 3320.7 3324.7 3319.9 3320.1
2 3317.2 33219 | 3315.4 3318.1 | 3315.4 3318.1 3319.2 3319.5
3 3316.4 3321.0 | 3314.1 3316.8 | 3316.1 3320.1 3316.4 3316.5
4 3310.8 3315.4 | 3308.8 3311.5 | 3310.8 3314.8 3310.8 3310.9
5 3316.4 3321.1 | 3314.9 3317.6 | 3314.9 3317.6 3318.4 3318.7
Student Attitude Model: AIC/BIC Scores for 2 and 3 Level Random Intercept Models
Imputation 2 Level 2 Level 3 Level 3 Level
(Teacher) (School) (Teacher C School) (Teacher C District)
1 3225.5 3230.1 | 3238.2 3240.9 | 3223.8 3227.8 3224.8 3225.0
2 3223.7 3228.4 | 3236.9 3239.5 | 3222.2 3226.2 3223.1 3223.3
3 3225.2  3229.8 | 3238.2 3240.9 | 3223.6 3227.6 3224.5 3224.8
4 3225.5  3230.1 | 3238.3 3241.0 | 3223.9 3227.9 3224.9 3225.1
5 3223.8 3228.4 | 3239.4 3239.4 | 3222.2 3226.2 3223.2 32234
Spring Algebra TN Model: AIC/BIC Scores for 2 and 3 Level Random Intercept Models
Imputation 2 Level 2 Level 3 Level 3 Level
(Teacher) (School) (Teacher C School) (Teacher C District)
1 3000.7  3005.3 | 3061.9 3064.6 | 2993.2 2997.2 2084.1 2084.4
2 2997.5  3002.1 | 3057.0 3059.7 | 2989.8 2993.8 2081.1 2081.3
3 3000.5 30005.2 | 3061.4 3064.1 | 2992.9 2996.9 2983.9 2084.1
4 3000.8  3005.4 | 3062.6 3065.3 | 2993.3 2997.3 2984.0 2984.3
5 2997.6  3002.3 | 3058.0 3060.7 | 2990.1 2994.1 2981.0 2081.2
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A.8 Missing Data Imputation Regression Model

We use regression models to create imputations for missing data. As we are missing Fall OH, Fall
CTBS, and Winter CTBS scores only, we describe in detail how these missing values were imputed.
To impute Fall OH scores, we fit the following linear model to determine estimates for Gy and

pr.
FallOH; = By + f1FallCTBS;

To generate missing data, we sampled in the following way:
FallOH™® ~ N(By + 1 FallCTBS;, 0*)

where o is the residual variance. The same procedure was used to impute Fall CTBS scores.
For Winter CTBS scores, we fit the following linear model to determine estimates for 3y, ...04.

WinterCTBS; = By + 1 FallCTBS; + B2 FallOH; + B3Stretch; + B4SpringAlgT N;
To generate missing data, we sampled in the following way:
WinterCTBS™* ~ N (betag + 31 FallCTBS; + B2 FallOH; + B3Stretch; + f4Spring AlgT Ny, o)

where o2 is the residual variance.
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A.9 Statistical Models

In this section, we present additional tables and figures presenting parameter estimates for each
outcome variable.

A.9.1 Winter CTBS

Table 51 gives the parameter estimates for the Winter CTBS model for each fitting method.

Table 51: Winter CTBS Score Model: Regression Coefficients and Variance Components for Two
Methods of Estimation SAS and JAGS

School Variance

(0.03)
0.01 (0.01)

Covariate SAS Estimate (SE) | JAGS Estimate (SE)
Pretest CTBS 0.21 (0.03) 0.21 (0.03)
Pretest OH 0.29 (0.03) 0.29 (0.03)
Condition -0.19 (0.06) -0.18 (0.07)
Student Variance 0.84 (0.03 0.92 (0.02

(0.02)
0.11 (0.05)

A.9.2 Student Attitude

Table 52: Student Attitude Model: Regression Coefficients and Variance Components for Each
Method of Latent Variable Estimation (Sum Scores, IRT, JAGS)

Sum Scores IRT JAGS
Estimate (SE) | Estimate (SE) | Estimate (SE)
Fall OH 0.11 (0.03) | 0.11 (0.03) 0.04 (0.01)
Regression Variable Spring Alg 0.27 (0.03) 0.27 (0.03) 0.09 (0.02)
Coefficients Teacher Practice 0.34 (0.03) 0.34 (0.03) 0.22 (0.02)
Condition = Stretch | -0.05 (0.11) | -0.05 (0.11) | -0.02 (0.04)
Variance Student 0.74 (0.03) 0.74 (0.03) 0.28 (0.01)
Components | Lo Teacher 0.05 (0.02) 0.05 (0.02) 0.08 (0.02)
School 0.04 (0.02) 0.04 (0.02) 0.07 (0.03)

A.9.3 Spring Algebra TN
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Table 53: Spring Algebra TN Model: Regression Coefficients and Variance Components for Each
Method of Latent Variable Estimation (Sum Scores, IRT, JAGS)

Sum Scores IRT JAGS

Estimate (SE) | Estimate (SE) | Estimate (SE)
Fall OH 0.16 (0.03) | 0.16 (0.03) 0.16 (0.03)
Regression | o Winter CTBS 0.14 (0.03) 0.14 (0.02) 0.13 (0.02)
Coefficients Student Attitude 0.23 (0.03) 0.23 (0.03) 0.41 (0.04)
Teacher Practice -0.05 (0.03) -0.06 (0.03) -0.07 (0.04)

Condition = Stretch | -0.01 (0.10) | -0.01 (0.10) | -0.002 (0.10)
Variance Student 0.58 (0.02) 0.58 (0.02) 0.76 (0.02)
Components Level Teacher 0.14 (0.03) 0.14 (0.03) 0.39 (0.04)
District 0.17 (0.011) | 0.17 (0.11) 0.40 (0.20)
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A.10 Sensitivity Analyses

Table 54: Effects of Gibbs Sampler Priors on Parameter Estimates

Variable Standardized Regression Coefficients
Flat Priors | Regular Priors | Strong Priors
Fall OH 0.12 (0.03) 0.05 (0.02) 0.06 (0.01)

Spring Alg TN | 0.27 (0.04) 0.12 (0.03) 0.13 (0.02)

Teacher Practice | 0.46 (0.05) 0.24 (0.03) 0.24 (0.02)
Stretch -0.05 (0.11) -0.04 (0.05) -0.03 (0.05)

Variance Components

Flat Priors | Regular Priors | Strong Priors

Student 0.81 (0.07) | 0.28 (0.01) | 0.39 (0.02)
Teacher 0.21 (0.05) 0.08 (0.02) 0.11 (0.02)
School 0.17 (0.07) | 0.06 (0.03) | 0.09 (0.03)
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A.11 JAGS Codes

Winter CTBS Model

modelq{

for(i in 1:students){

mathrw2[i] “dnorm(mu[i],taul)

mu[i]<- bO[schoolnumber[i]]+ bil*mathrwl[i] + b2*ohrawl[i] +b3*condition[i]
}

taul <- pow(sigma, (-2))
sigma~dunif (0, 1)
b1~dnorm(0, 1)
b2~dnorm(0, 1)

b3~ dnorm(0, 1)

for(k in 1:schools){
b0 [k] “dnorm(eta, tau2)}

eta~dnorm(0, 0.1)

tau2 <-pow(Ul.tau, (-2))
Ul.tau"dunif (0, 1)

}

Student Attitude Model

model{

####H#HHSATHET A##H#####

for(i in 1:students){

for(j in 1:itemssa){

snum[i,j,1]<- exp(sa.al[jl*(sathetal[il-sa.c[jl+sa.d[j,1]))

snum[i,j,2]<- exp(sa.al[jl*(sathetal[il-sa.c[jl+sa.d[j,1]) + sa.al[jl*(sathetalil-sa.c[jl+sa.d[j,2]))
snum[i,j,3]<- exp(sa.al[jl*(sathetalil-sa.c[jl+sa.d[j,1]) + sa.a[jl*(sathetali]-sa.c[jl+sa.d[j,2]) +
sa.a[jl*(sathetalil-sa.c[jl-sa.d[j,1]1-sa.d[j,2]))

sdenom[i,j] <- 1+sum(snum[i,j,1:3])

sp.star[i,j,1] <- 1/sdenoml[i, j]

sp.star([i,j,2] <- snum[i,j,1]/sdenom[1i, j]
sp.star([i,j,3] <- snum[i,j,2]/sdenom[i,j]
sp.star([i,j,4] <- snum[i,j,3]/sdenom[1i, j]

responsesali, j]“dcat(sp.star[i,j,1:4])
}

####H#TPTHETA########
for(j in 1:itemstp){

tnum([i,j,1]1<- exp(tp.aljl*(tpthetalil-tp.c[jl+tp.d[j,11))

tnum([i,j,2]<- exp(tp.aljl*(tpthetali]l-tp.c[jl+tp.d[j,1]) + tp.al[jl*(tpthetalil-tp.c[jl+tp.d[j,2]))
tnum([i,j,3]<- exp(tp.aljl*(tpthetalil-tp.c[jl+tp.d[j,1]1) + tp.aljl*(tpthetalil-tp.c[jl+tp.d[j,2]) +
tp.aljl*(tpthetalil-tp.c[jl-tp.d[j,1]1-tp.d[j,21))

tdenom[i,j] <- 1+sum(tnum([i,j,1:3])

tp.star[i,j,1] <- 1/tdenoml[i, j]
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tp.star[i,j,2] <- tnum[i,j,1]/tdenom[i,j]
tp.star[i,j,3] <- tnum[i,j,2]/tdenom[i,j]
tp.star[i,j,4] <- tnum[i,j,3]/tdenom[i,j]

responsetpli,j]l~dcat(tp.star[i,j,1:4])
}

tpthetali] "dnorm(0, 1.0)

satheta[i] “dnorm(muli], taul)

####HHHLM Model#####it##

mu[il<- bilxtpthetal[i] +b2*mathrw3[i] + b3xohrawl[i] +bd*condition[i] + bO[newtch[i], schoolnumber[i]]
int [1]<-bO[newtch[i], schoolnumber[i]]

}

###H##EHHPRIORSHE##H##
for(j in 1:itemssa){
sa.alj]l~dunif(0,4)
sa.c[j]~dnorm(0, 1)
sa.d[j,1] “dnorm(0, 100)
sa.d[j,2] “dnorm(0, 100)}

for(j in 1:itemstp){
tp.alj]l ~"dunif (0,4)
tp.c[j]l “dnorm(0, 1)
tp.d[j,1] “dnorm(0, 100)
tp.d[j,2] “dnorm(0, 100)}

for(k in 1:schools){

for(j in 1:numofteachers[k]){
b0[j,k] “dnorm(etalk], tau2)
}

etal[k] “dnorm(delta, tau3)

}

delta~dnorm(0, 5.0)

taul <- pow(sigma, (-2))
sigma~dunif (0, 10)
tau2 <- pow(Ul.tau, (-2))
Ul.tau"dunif (0, 10)
tau3 <- pow(U2.tau, (-2))
U2.tau~dunif (0, 10)

b1~dnorm(0, 1)
b2~dnorm(0, 1)
b3~dnorm(0, 1)
b4~ dnorm(0, 1)
}
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Spring Algebra TN Model

model{

###H##HHSATHET At ## ##H4

for(i in 1:students){

for(j in 1:itemssa){

snum[i,j,1]1<- exp(sa.a[jl*(sathetalil-sa.c[jl+sa.d[j,1]1))

snum[i,j,2]<- exp(sa.al[jl*(satheta[i]l-sa.c[jl+sa.d[j,1]) + sa.al[jl*(sathetalil-sa.c[jl+sa.d[j,2]))
snum[i,j,3]<- exp(sa.al[jl*(sathetalil-sa.c[jl+sa.d[j,1]) + sa.a[jl*(sathetali]-sa.c[jl+sa.d[j,2]) +
sa.a[jl*(sathetalil-sa.c[j]l-sa.d[j,1]-sa.d[j,2]))

sdenom[i,j] <- 1+sum(snum[i,j,1:3])

sp.star[i,j,1] <- 1/sdenomli, j]

sp.star([i,j,2] <- snum[i,j,1]/sdenom[i,j]
sp.star([i,j,3] <- snum[i,j,2]/sdenoml[i,j]
sp.star([i,j,4] <- snum[i,j,3]/sdenom[i, j]

responsesali,j]“dcat(sp.star[i,j,1:4])
}

###H#HTPTHETA##H####H##

for(j in 1:itemstp){

tnum[i,j,11<- exp(tp.aljl*(tpthetalil-tp.c[jl+tp.d[j,11))

tnum([i,j,2]<- exp(tp.aljl*(tpthetalil-tp.c[jl+tp.d[j,1]) + tp.aljl*(tpthetalil-tp.c[jl+tp.d[j,2]1))
tnum([i,j,3]<- exp(tp.aljl*(tpthetali]l-tp.c[jl+tp.d[j,1]1) + tp.aljl*(tpthetalil-tp.c[jl+tp.d[j,2]) +
tp.aljl*(tpthetalil-tp.c[jl-tp.d[j,1]1-tp.d[j,2]))

tdenom[i,j] <- 1+sum(tnum[i,j,1:3])

tp.star[i,j,1] <- 1/tdenoml[i, j]

tp.star[i,j,2] <- tnum[i,j,1]/tdenoml([i,j]
tp.star[i,j,3] <- tnum[i,j,2]/tdenom[i,j]
tp.star[i,j,4] <- tnum[i,j,3]/tdenom[i,j]

responsetp[i,j]l~dcat(tp.star[i,j,1:4])
}

tpthetali] “"dnorm(0, 1.0)
satheta[i] "dnorm(0, 1.0)

###H#HHHLM Model#######

mathrw3[i] “"dnorm(muli], taul)

mu[i] <- bO[newtch2[i], district[i]] + bl*satheta[i]+ b2*tptheta[i] + b3*mathrw2[i] + b4*ohrawl[i]
+b5*condition[i]

int [i1<-bO[newtch2[i], district[i]]

}

H#H#H#HERAPrior sHEH##H#E
for(j in 1:itemssa){
sa.al[j]l~dlnorm(0,1)
sa.c[j]~dnorm(0, 1)
sa.d[j,1] “dnorm(0, 100)
sa.d[j,2] “dnorm(0, 100)}

for(j in 1l:itemstp){

tp.aljl"dlnorm(0,1)
tp.c[j]l "dnorm(0, 1)
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tp.d[j,1] “dnorm(0, 100)
tp.d[j,2] "dnorm(0, 100)}

for(k in 1:8){

for(j in 1:teachersindis[k]){
b0[j,k] ~“dnorm(etalk], tau2)
}

etalk] “dnorm(delta, tau3)

}

delta~dnorm(0, 5.0)

taul <- pow(sigma, (-2))
sigma~dunif (0, 100)
tau2 <- pow(Ul.tau, (-2))
Ul.tau~dunif (0, 100)
taud <- pow(U2.tau, (-2))
U2.tau~dunif (0, 100)

b1~dnorm(0, 1)
b2~dnorm(0, 1)
b3~dnorm(0, 1)
b4~dnorm(0, 1)
b5~dnorm(0, 1)
}

Missing Data Imputation in Student Attitude Model

modelq{

####Model for FallCTBS Missing#####
for(i in 1:students){

mathrwil[i] “dnorm(mu.rwi[i], tau.rwl)
mu.rwl[i] <- b0.rwil[schoolnumber[i]]
}

for(k in 1:28){

b0.rwil[k] “dnorm(0, 1)

}

tau.rwl <- pow(sigma.rwl, (-2))
sigma.rwl~dunif (0, 1)

####Model for FallOH Missing####
for(i in 1:students){

ohrawl[i] “"dnorm(mu.oh1[i], tau.ohl)
mu.ohl[i]<- b0.ohl[schoolnumber[i]]+ bil.ohl*mathrwi [i]
}

for(k in 1:28){

b0.oh1[k] “"dnorm(0, 1)

}

bl.oh1~dnorm(0,1)

tau.ohl <- pow(sigma.ohl, (-2))
sigma.oh1~dunif (0, 1)

###Model for WinterCTBS Missing#####

for(i in 1:students){

mathrw2[i] “dnorm(mu.rw2[i], tau.rw2)

mu.rw2[i]<- b0.rw2[schoolnumber[i]]+ bl.rw2*ohrawl [i]+b2.rw2*mathrwl[i]+b3*condition[i]
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}

for(k in 1:28){

b0.rw2[k] “dnorm(0, 1)

}

bl.rw2 dnorm(0,1)

b2.rw2 dnorm(0,1)
b3.rw2 " dnorm(0,1)

tau.rw2 <- pow(sigma.rw2, (-2))
sigma.rw2”dunif (0, 1)

####Full Model######

for(i in 1:students){

for(j in 1:itemssa){

snum[i,j,1]<- exp(sa.al[jl*(sathetal[il-sa.c[jl+sa.d[j,1]))

snum[i,j,2]<- exp(sa.a[jl*(sathetalil-sa.c[jl+sa.d[j,1]) + sa.a[jl*(sathetali]l-sa.c[jl+sa.d[j,2]))
snum[i,j,3]<- exp(sa.al[jl*(sathetalil-sa.c[jl+sa.d[j,1]) + sa.a[jl*(sathetali]-sa.c[jl+sa.d[j,2]) +
sa.al[jl*(sathetali]-sa.c[jl-sa.d[j,1]1-sa.d[j,2]))

sdenom[i,j] <- 1+sum(snum(i,j,1:3])

sp.star([i,j,1] <- 1/sdenoml[i,]j]
sp.star([i,j,2] <- snum[i,j,1]/sdenom[i,j]
sp.star([i,j,3] <- snum[i,j,2]/sdenoml[i, j]
sp.star([i,j,4] <- snum[i,j,3]/sdenom[1i, j]
responsesali,j]“dcat(sp.star[i,j,1:4]1)}

###H##TPTHETA########

for(j in 1:itemstp){

tnum([i,j,1]1<- exp(tp.aljl*(tpthetalil-tp.c[jl+tp.d[j,11))

tnum([i,j,2]<- exp(tp.aljl*(tpthetalil-tp.c[jl+tp.d[j,1]) + tp.aljl*(tpthetalil-tp.c[jl+tp.d[j,2]))
tnum([i,j,3]<- exp(tp.aljl*(tpthetalil-tp.c[jl+tp.d[j,1]1) + tp.aljl*(tpthetalil-tp.c[jl+tp.d[j,2]) +
tp.aljl*(tpthetalil-tp.c[jl-tp.d[j,1]1-tp.d[j,21))

tdenom[i,j] <- 1+sum(tnum([i,j,1:31)

tp.star[i,j,1] <- 1/tdenoml[i, j]

tp.star[i,j,2] <- tnum[i,j,1]/tdenom[i,j]

tp.star[i,j,3] <- tnum[i,j,2]/tdenom[i,j]

tp.star[i,j,4] <- tnum[i,j,3]/tdenom[i,j]

responsetpl[i,j]~dcat(tp.star[i,j,1:4]1)}

tpthetal[i] "dnorm(0, 1.0)
sathetal[i] “"dnorm(mul[i], taul)
mu[il<- bilxtpthetal[i] +b2*mathrw3[i] + b3*ohrawl[i] +b4*condition[i] + bO[newtch[il, schoolnumber[i]]}

HH##HHBHHPr ior sHHHHH#H
for(j in 1:itemssa){
sa.a[j]l~dunif (0,4)
sa.c[j]“dnorm(0, 1)
sa.d[j,1] “dnorm(0, 100)
sa.d[j,2] “dnorm(0, 100)}

for(j in 1:itemstp){
tp.alj]l~dunif (0,4)
tp.c[j]l dnorm(0, 1)
tp.d[j, 1] dnorm(0, 100)
tp.d[j,2] “dnorm(0, 100)}
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for(k in 1:schools){

for(j in 1:numofteachers[k]){
b0[j,k] ~“dnorm(etalk], tau2)
}

etal[k] “dnorm(delta, tau3)

}

delta~dnorm(0, 5.0)

taul <- pow(sigma, (-2))
sigma~dunif (0, 10)
tau2 <- pow(Ul.tau, (-2))
Ul.tau"dunif (0, 10)
taud <- pow(U2.tau, (-2))
U2.tau~dunif (0, 10)

b1~dnorm(0, 1)
b2~ dnorm(0, 1)
b3~dnorm(0, 1)
b4~dnorm(0, 1)
}

Missing Data Imputation in Spring Algebra TN Model

modelq{

####Model for FallCTBS Missing#####
for(i in 1:students){

mathrwil[i] “dnorm(mu.rwi[i], tau.rwl)
mu.rwl[i] <- b0.rwl[schoolnumber [i]]
}

for(k in 1:28){

b0.rwl[k] “dnorm(0, 1)

}

tau.rwl <- pow(sigma.rwl, (-2))
sigma.rwl~dunif (0, 1)

####Model for FallOH Missing####
for(i in 1:students){

ohrawl[i] “dnorm(mu.oh1[i], tau.ohl)
mu.ohl[i]<- b0.ohl[schoolnumber[i]]+ bil.ohl*mathrwi[i]
}

for(k in 1:28){

b0.oh1[k] “dnorm(0, 1)

}

b1l.oh1 dnorm(0,1)

tau.ohl <- pow(sigma.ohl, (-2))
sigma.oh1~dunif (0, 1)

###Model for WinterCTBS Missing#####

for(i in 1:students){

mathrw2[i] “dnorm(mu.rw2[i], tau.rw2)

mu.rw2[i]<- bO.rw2[schoolnumber[i]]+ bl.rw2*ohrawl [i]+b2.rw2*mathrwl[i]+b3*condition[i]
}

for(k in 1:28){

b0.rw2[k] “dnorm(0, 1)

}
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bl.rw2"dnorm(0,1)
b2.rw2~dnorm(0,1)
b3.rw2"dnorm(0,1)

tau.rw2 <- pow(sigma.rw2, (-2))
sigma.rw2"dunif (0, 1)

#####ACtual Model######

for(i in 1:students){

for(j in 1:itemssa){

snum[i,j,1]<- exp(sa.al[jl*(sathetali]l-sa.c[jl+sa.d[j,1]))

snum[i,j,2]<- exp(sa.al[jl*(sathetal[il-sa.c[jl+sa.d[j,1]) + sa.aljl*(sathetalil-sa.c[jl+sa.d[j,2]))
snum[i,j,3]<- exp(sa.a[jl*(sathetalil-sa.c[jl+sa.d[j,1]) + sa.a[jl*(sathetali]-sa.c[jl+sa.d[j,2]) +
sa.a[jl*(sathetali]l-sa.c[jl-sa.d[j,1]-sa.d[j,2]))

sdenom[i,j] <- 1+sum(snum[i,j,1:3])

sp.star([i,j,1] <- 1/sdenom[i,j]

sp.star([i,j,2] <- snum[i,j,1]/sdenom[1i, j]

sp.star([i,j,3] <- snum[i,j,2]/sdenom[i,j]

sp.star([i,j,4] <- snum[i,j,3]/sdenoml[i,j]

responsesali,j]“dcat(sp.star[i,j,1:4])

}

###H#HTPTHETA##H######

for(j in 1:itemstp){

tnum([i,j,1]1<- exp(tp.aljl*(tpthetalil-tp.c[jl+tp.d[j,11))

tnum([i,j,2]<- exp(tp.aljl*(tpthetali]l-tp.c[jl+tp.d[j,1]1) + tp.aljl*(tpthetalil-tp.c[jl+tp.d[j,21))
tnum([i,j,3]<- exp(tp.aljl*(tpthetalil-tp.c[jl+tp.d[j,1]1) + tp.aljl*(tpthetalil-tp.c[jl+tp.d[j,2]) +
tp.aljl*(tpthetalil-tp.c[jl-tp.d[]j,1]1-tp.d[j,2]))

tdenom[i,j] <- 1+sum(tnum[i,j,1:3])

tp.star[i,j,1] <- 1/tdenoml[i, j]
tp.star[i,j,2] <- tnum[i,j,1]/tdenoml[i, j]
tp.star[i,j,3] <- tnum[i,j,2]/tdenom[i,j]
tp.star[i,j,4] <- tnum[i,j,3]/tdenom[i,j]
responsetpl[i,j]l~dcat(tp.star[i,j,1:4])

}

tpthetal[i] “"dnorm(0, 1.0)

satheta[i] “dnorm(0, 1.0)

mathrw3[i] “"dnorm(mul[i], taul)

mu[i] <- bO[newtch2[i], district[i]] + bl*satheta[i]+ b2*tptheta[i] + b3*mathrw2[i] + béd*ohrawl[i]
+b5*condition[i]

int [1]<-bO[newtch2[i], district[i]]

}

#HHH#BHAPrior sHHHHHHH
for(j in 1:itemssa){
sa.al[j]l~dlnorm(0,1)
sa.c[j]l~dnorm(0, 1)
sa.d[j,1] “dnorm(0, 100)
sa.d[j,2] “dnorm(0, 100)}

for(j in 1:itemstp){
tp.alj]l "dlnorm(0,1)
tp.c[jl "dnorm(0, 1)
tp.d[j,1] “dnorm(0, 100)
tp.d[j,2] "dnorm(0, 100)}
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for(k in 1:8){

for(j in 1:teachersindis[k]){
b0[j,k] “dnorm(etalk], tau2)
}

etal[k] “dnorm(delta, tau3)

}

delta~dnorm(0, 5.0)

taul <- pow(sigma, (-2))
sigma~dunif (0, 100)
tau2 <- pow(Ul.tau, (-2))
Ul.tau"dunif (0, 100)
taud <- pow(U2.tau, (-2))
U2.tau~dunif (0, 100)

b1~dnorm(0, 1)
b2~dnorm(0, 1)
b3~ dnorm(0, 1)
b4~dnorm(0, 1)
b5~dnorm(0, 1)
}
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