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The current framework for U.S. Environmental Protection Agency regulation of water quality
in community drinking water supplies consists of sequential rules for either single contaminants
or small groups of similar contaminants. For both substantive and pragmatic reasons, pro-
mulgating less frequent rules for larger contaminant classes may be desirable. Such a change
would require the expansion of existing regulatory evaluation technologies to account for joint
occurrence distributions of the contaminants. This paper extends existing methods for model-
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eral methodological interest. Through case studies involving arsenic, sulfate, magnesium and
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1. INTRODUCTION

Regulations on the quality of water distributed by community water systems are set by the U.S.

Environmental Protection Agency (EPA). The agency mandates uniform national upper bounds,

or maximum contaminant levels (MCLs), on the concentrations of various organic and inorganic

contaminants in community drinking water supplies, including microbial pathogens, radionuclides

and heavy metals. The regulatory process begins by establishing a maximum contaminant level

goal (MCLG), a non–enforceable standard which is the maximum concentration of the contaminant

believed to result in no adverse health effects. Prior to the 1996 Safe Drinking Water Act Amend-

ments (PL 104-182), the EPA was required to set the MCL as close to the MCLG as “feasible.” One

focus of the amendments was the establishment of a more formal and flexible decision framework

for the regulatory process. For each proposed rule, the EPA must publish a “regulatory impact

assessment” (RIA) comparing the estimated costs associated with upgrading treatment facilities

and the estimated health benefits of reduced exposure. At its discretion, EPA may set the final

MCL to a value higher than the feasible level if the costs of regulating to the feasible level would

not be justified by the anticipated health benefits.

Community water suppliers must comply simultaneously with the MCLs for all regulated sub-

stances, the number of which is currently in excess of 90 (EPA 2001b) and is slated to grow

continuously (at a rate of up to one per year) according to the regulatory plan detailed in the 1996

amendments. The initial post-amendment regulatory activity has focused on separate rules for sin-

gle contaminants such as arsenic and radon, as well as rules for groups of similar contaminants such

as radionuclides, pathogens and disinfection byproducts. Each of these contaminants or groups of

contaminants are treated in isolation from a regulatory perspective, with independent RIAs either

completed or underway for each rule. Water systems will be forced to comply successively with

each rule as it is promulgated. However, because the RIAs are performed sequentially, the net

realized costs and benefits for the collection of rules may be vastly different from those implied by

the individual analyses.

The are numerous sources of potential discrepancy. First, because many treatments remove
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a broad array of substances, a treatment technology which would be prohibitively expensive for

treating a given contaminant class may be more attractive if it helps a system comply with multiple

standards simultaneously. On the other hand, the presence of substance A may interfere substan-

tially with the performance of a particular treatment in removing substance B. In this case, a more

expensive treatment option may be necessary to adequately remove substance B, but a cost–benefit

analysis that ignores the presence of substance A would not reflect these additional costs. In ad-

dition, health impacts can depend heavily on the joint occurrence of contaminants because certain

substances such as pesticides may exhibit “additive or synergistic” toxic effects (Kolpin, Barbash,

and Gilliom 1998; Gennings, Schwartz, Carter Jr., and Simmons 1997). Risk analyses performed

one contaminant at a time thus may seriously misstate the actual risks caused by the simultaneous

exposure to multiple substances. Finally, the failure to consider the joint behavior of contaminants

neglects both the natural and anthropogenic activities which are known to induce relationships

in contaminant occurrence. Not accounting for covariations in the presence of a high degree of

contaminant co-occurrence is likely to produce estimated national occurrence distributions that are

unrealistic, which in turn biases independently estimated costs and benefits.

In addition to these substantive issues, the sequential regulatory approach has been criticized

on pragmatic grounds. Community water systems generally have only limited ability to augment

treatment technologies. Most systems are quite small, serving less than a few thousand people, and

thus financial constraints dictate that sweeping treatment changes cannot be made often. However,

the current regulatory protocol produces new standards sequentially and frequently, which in the

worst case may impose an unfeasible sequence of treatment upgrades (Roberson and Power 2000).

This is at odds with a more holistic approach to regulation, whereby systems could optimize treat-

ment upgrades to meet long-term water quality goals (Neukrug 2000). These factors suggest that a

regulatory framework in which rules are made less frequently but for larger groups of contaminants

might be more scientifically sound and practical. This paradigm shift would necessitate the devel-

opment of a flexible, integrated RIA process capable of addressing a multitude of potentially diverse

contaminants. Two of the stumbling blocks to the development of such a “multi-contaminant RIA”

are the lack of adaptable methods for simultaneously analyzing groups of contaminants with re-
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spect to their tendencies to occur and to be removed together. Both topics are in need of additional

research, a fact noted by Guttorp (2000) with regard to air quality regulation.

Moreover, as the recent debates over the reduction of the arsenic MCL (EPA 2001a) have high-

lighted, systematically quantifying uncertainties is of paramount importance to an effective RIA

process. Uncertainty analysis can be invaluable to navigating and arbitrating the often disparate

estimates of key regulatory decision quantities made by different stakeholders. Previous work on

arsenic regulation treats uncertainty in an integrated Bayesian framework by providing a raw (i.e.

untreated) water occurrence model (Lockwood, Schervish, Gurian, and Small 2001) and the use

of this model in a RIA (Gurian, Small, Lockwood, and Schervish 2001c,a). The cost estimates

and associated uncertainties resulting from this work provided insights into the nature of the dis-

agreements among other published analyses. It is thus imperative that the component models of a

multi-contaminant RIA retain, if not augment, these capabilities for addressing uncertainty.

The current study develops and illustrates a method for calculating one of the key inputs to a

multi-contaminant RIA in a manner that coherently quantifies uncertainty. In particular, it extends

the work of Lockwood et al. (2001) on estimating national raw water occurrence for a single con-

taminant by deriving a flexible framework for estimating joint raw water occurrence distributions

of multiple contaminants. Raw water concentrations, while typically not the focus of regulatory

impact assessments, are an integral component of the proper quantification of treatment upgrade

costs and their uncertainties. Their characterization is especially interesting from a statistical per-

spective because compliance monitoring is based only on finished (i.e. treated) water measurements,

leading to generally sparse measurement and reporting of raw water data. Hence, as discussed in

Lockwood et al. (2001), inferences about national raw water contaminant levels often must be based

on only a single sample from a small number of community water systems, making the problem

particularly well-suited to statistical analysis.

The model developed here is used successfully by Gurian et al. (2001b) in a multi-contaminant

RIA evaluating standards for arsenic, uranium and nitrate, with consideration of calcium, mag-

nesium, manganese and sulfate for their aesthetic and treatment performance implications. In

the absence of methods for estimating the joint occurrence distributions of these contaminants, a
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multi-contaminant RIA would rely on marginal occurrence distributions, which could compromise

its validity on several fronts when the contaminants are correlated. The analyses presented here

exhibit precisely how the multivariate modeling approach enhances the fit to existing data, the

predictive power for future data, and ultimately the inferences for important regulatory quanti-

ties. Moreover, the model structure offers solutions to a number of shortcomings in existing water

quality modeling strategies, including the lack of rigorous analyses of data collected over a large

spatial scale, the tendency to ignore either multivariate or spatial aspects of data, and suboptimal

treatment of censored observations.

The remainder of the paper is organized as follows. Section 2 establishes a statistical frame-

work for estimating joint distributions of contaminants based on limited data from community

water system raw waters. Section 3 briefly reviews an existing methodology for modeling a single

contaminant, and provides an extension of this model to the simultaneous consideration of an arbi-

trary number of contaminants. Section 4 discusses technical issues regarding the implementation of

the multi-contaminant model. Section 5 presents some key applications of the multi-contaminant

model, highlighting how jointly modeling contaminants can improve model fit, predictive power,

and inferences about key regulatory quantities. Finally, Section 6 discusses how the model addresses

some shortcomings of existing approaches, and provides possible extensions.

2. STATISTICAL FRAMEWORK

Suppose that for each of n0 community water systems is available an observation vector pro-

viding raw water concentrations for some number of contaminants. The general goal is to model

the joint distribution of p contaminants as a function of system characteristics represented by

the covariates x0 = (x0,1, . . . ,x0,n0), which include auxiliary system information such as location,

source-water type and population served. For the ith sampled system, i = 1, . . . , n0, let Yi be

a p-dimensional vector of the natural logarithms of the concentrations for the p contaminants of

interest. Components of these vectors may be left-censored (Section 4.1), and may also be miss-

ing, because not all of the p contaminants of interest will be represented by each of the sampled

systems. Let Y0 be the entire collection of contaminant vectors, with observed value y0. Let Θ

5



be a vector of unknown parameters quantifying the dependence of contaminant concentrations on

system characteristics x0. Denote the conditional distribution of the contaminant concentrations

given Θ = θ by fY0|Θ,X0
(·|θ, x0). To quantify prior uncertainty about the parameter, suppose that

Θ has a prior distribution with density fΘ|Λ(·|λ), where Λ is a vector of hyperparameters which

is conditionally independent of the data given Θ, having a prior distribution fΛ(·) depending only

on fixed hyperparameters. Bayes Rule then allows calculation of the posterior distribution of the

model parameters:

fΘ,Λ|Y0,X0
(θ, λ|y0, x0) ∝ fY0|Θ,X0

(y0|θ, x0)fΘ|Λ(θ|λ)fΛ(λ) (1)

From this the marginal posterior density of Θ, fΘ|Y0,X0
(·|y0, x0), can be obtained either by inte-

gration or, more typically, with a sample from the joint posterior distribution of all unobserved

quantities. The posterior distribution of any function of the parameters, as well as the predictive

distributions of any future data, can be calculated stochastically via Markov Chain Monte Carlo

(MCMC) methods (Carlin and Louis 2000; Gilks, Richardson, and Spiegelhalter 1996; Gelman,

Carlin, Stern, and Rubin 1995) with a sample θ1, . . . ,θm from fΘ|Y0,X0
(·|y0, x0).

The posterior inferences that are potentially of interest are diverse and numerous. Of obvious

importance are the relationships between system characteristics and contaminant levels as well as

the covariances among the contaminants. An issue of paramount concern is the use of the model to

predict unobserved contaminant concentrations Y1 in a collection of n1 community water systems

with associated covariates x1 = (x1,1, . . . ,x1,n1). If this set of systems is a subset of the observed

data, the predictions can be used for model validation with posterior predictive checking techniques

(Gelman, Meng, and Stern 1996; Gilks et al. 1996). The more important case from a regulatory

perspective is when the set of systems is the totality of community water systems in the country.

These predictions, as well as their associated uncertainties, would provide a valuable input to either

single contaminant RIA methods (Frey, Chwirka, Kommineni, Chowdhury, and Narasimhan 2000;

Frey, Owen, Chowdhury, Raucher, and Edwards 1998) or multi-contaminant RIAs (Gurian et al.

2001b).

The prediction of contaminant levels in the Bayesian framework is straightforward. Assume that
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Y1 is conditionally independent of the observed data Y0 given Θ with density fY1|Θ,X1
(·|θ, x1). The

fundamental distribution of interest is the posterior predictive distribution (Schervish 1995)

fY1|X1,Y0,X0
(y1|x1, y0, x0) =

∫
fY1|Θ,X1

(y1|θ, x1)fΘ|Y0,X0
(θ|y0, x0)dθ. (2)

The most practically feasible way to examine the features of this distribution is by sampling from

it. This can be achieved by first obtaining a sample θ1, . . . ,θm from fΘ|Y0,X0
(·|y0, x0), and for each

i, sampling y1,i from fY1|Θ,X1
(·|θi, x1). Then the sampled concentrations y1,1, . . . ,y1,m follow the

posterior predictive distribution in Equation (2). At this point any feature of the distribution, such

as the number of systems exhibiting concentrations above possible MCLs for some contaminants,

can be calculated. Moreover, because the predictive distribution represents integration with respect

to the posterior distribution of Θ, it encompasses the uncertainties in contaminant occurrence that

result from not knowing the value of Θ. It is precisely these uncertainties that must be recognized

and quantified in a RIA, both in the univariate and multivariate case.

3. MODEL DEVELOPMENT

3.1 A Model for a Single Contaminant

A logical point of departure for the process of modeling the joint behavior of contaminants is the

development of an effective model for a single contaminant. Such a model for arsenic is presented

in Lockwood et al. (2001). In that study, a collection of nineteen models were compared in a cross-

validation analysis. One model provided the best available compromise between fit and predictive

power given the resolution of the raw water data. This model, summarized in the remainder of this

section, is thus taken as the starting point for the development of the multi-contaminant model.

The covariates of the model include the source-water type used by the community water system,

and the U.S. state in which the system is located. Justifications for these covariates as well as other

features of the model structure are given in Lockwood et al. (2001).

The data under consideration are, for i = 1, . . . , n0 observed community water systems, a single

(possibly censored) log contaminant concentration denoted Yi. Also, let X(i) indicate the U.S.

state in which system i is located, and let Wi = −1 if the system i is classified as surface water
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and Wi = 1 if it is classified as ground water. The model is a Bayesian hierarchical model with the

following stages:

Stage 0: Yi|µi, σi ∼ N(µi, σ
2
i ) independently for i = 1, . . . , n0,

Stage 1: For i = 1, . . . , n0,

µi = α
(m)
X(i) + β

(m)
X(i)Wi (3)

−2 log σi = α
(v)
X(i) + β

(v)
X(i)Wi (4)

The superscripts “(m)” and “(v)” are mnemonic devices for “mean” and “variance”. Let α(m) refer

to the vector (α(m)
1 , . . . , α

(m)
50 ), and make a similar definition for each of the other three vectors α(v),

β(m), β(v).

Stage 2: The four vectors in Stage 1 all have a similar prior structure, only one of which is

described here with the others being analogous. Conditional on a vector of prior means α
(m)
0 , a

scalar prior precision τ
(m)
α and a positive scalar parameter ρ, suppose that α(m) has a 50-dimensional

multivariate normal distribution with mean vector α
(m)
0 and covariance matrix C(ρ)/τ

(m)
α . For

each value of ρ, the matrix C(ρ) is a non-singular 50-dimensional correlation matrix with entries

cp,q = exp[−ρd2(p, q)], where d2(p, q) is the squared distance between the pth and qth states based

on estimates of the geographical centroids of the respective states. The parameter ρ and the matrix

C(ρ) are common to all four vectors while each vector has its own prior mean and precision. The

prior means are fixed hyperparameters but the individual precision parameters are updated by the

model and are addressed in Stage 3. Conditional on ρ and all of the individual hyperparameters,

the four vectors are independent.

Stage 3: The logarithms of the four precision terms from Stage 2 are assumed to be indepen-

dent and identically distributed as N(µτ , ξτ ) for fixed hyperparameters µτ and ξτ . Also suppose

that log(ρ) is distributed N(µρ, ξρ) for fixed hyperparameters µρ and ξρ. These five parameters are

assumed independent a priori.
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3.2 Extension to Multiple Contaminants

This section extends the structure of the univariate model in Section 3.1 to modeling the joint

raw water occurrence distributions for an arbitrary number p of contaminants. The model attempts

to maintain as much of the structure of the univariate model as is practically feasible, while intro-

ducing dependence among the contaminants and the parameters governing their distributions. The

fundamental problem that must be addressed is that the scalar measurements Yi from each water

system are replaced by p-dimensional vectors Yi = (Yi,1, . . . , Yi,p)′ denoting the vector of natural

logarithms of the contaminant concentrations (e.g., in µg/L), as discussed in Section 2. The co-

variates under consideration are again the location and source water type of each system. To retain

generality, suppose that the systems under consideration are divided into k indexed locations, and

let X(i) be the location to which system i is allocated. The location basis is entirely arbitrary and

may be based on political boundaries (e.g. U.S. states as in Section 3.1 or counties), geological

entities such as watersheds, or in the most extreme case, the systems themselves. Finally, as in the

univariate model, let Wi = −1 if the system i is classified as a surface-water system and Wi = 1 if

it classified as a ground-water system.

It is easiest to deal first with the likelihood function by generalizing Stage 0 of the univariate

model as Yi|µi,Σi ∼ Np(µi,Σi) independently for i = 1, . . . , n0. Here µi = (µi,1, . . . , µi,p)′ is a

vector of means and Σi is a (p×p) positive definite symmetric matrix. This will force a fundamental

divergence from the structure used in the univariate model, in which it was possible to place the

same ANOVA structure on the data means and log precisions. Now that covariation between con-

taminants is allowed through the matrices Σi, these sets of parameters must be treated differently.

We next consider possible prior structures for each of these sets of parameters.

Prior structure of data means: Generalizing Equation (3) in Stage 1 of the univariate

model to handle the vector mean parameters µi is straightforward. Suppose that for i = 1, . . . , n0,

µi = α
(m)
X(i) + β

(m)
X(i)Wi. Here, unlike in the univariate model, the terms α

(m)
X(i) and β

(m)
X(i) are not

scalars, but vectors of length p giving main effects and source-type adjustments for each contaminant

in location X(i). Some difficulty arises in the specification of the joint prior distribution for each
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of these sets of k vectors. Focus now on the collection {α(m)
j } for j = 1, . . . , k, the discussion for

{β(m)
j } being analogous. Define α(m) to be the (k× p) matrix with rows α

(m)
j for j = 1, . . . , k, and

thus vec(α(m)) refers to the kp-dimensional vector with effects organized in p contaminant blocks.

The fundamental challenge is in the specification of a positive-definite (k × p)× (k × p) covariance

structure for α(m). Independent replicates of the univariate model would have a block diagonal

covariance matrix, the blocks being the spatial correlation matrices C(ρi) for i = 1, . . . , p. This

structure forces prior independence among parameters for different contaminants. Prior dependence

among parameters for different contaminants, both within a location and across locations, can be

accomplished by replacing zero entries in this covariance matrix by non-zero values. This task,

however, is not easy because the resulting matrix must be ensured to be positive semi-definite.

In the most general case, where different contaminants are allowed to have different values of ρ,

the problem approaches intractability because of the complex constraints this places on all of the

elements off of the block diagonal. This is clearly a place where additional research would prove

valuable, because this sort of problem arises quite naturally in most multivariate analyses and

has been identified as one of the more challenging aspects of modeling complex environmental

data (Cressie 2000; Berliner 2000). For example, Woodard et al. (2000) develop a more flexible

structure for modeling the joint spatial covariances of two random quantities, but the problem for

higher dimensions persists. This paper does not address this issue further because the solution

to be discussed (which constrains the value ρ to be the same for all p contaminants) places only

modest limitations on the complexity of the models that can be considered.

Assuming that the contaminants share a common value of ρ, which is tantamount to specifying

that the correlation structure of effects across locations within each contaminant is the same for

all contaminants, progress can be made via a multivariate Gaussian process prior distribution with

Kronecker covariance structure. Let C(ρ) be a (k × k) correlation matrix with entries based on

location distances as before, and let γ be a (p × p) positive definite symmetric matrix. It is then

possible to model the covariance structure of α(m) as Cov(vec(α(m))) = C(ρ)⊗γ. γ gives the prior

covariance across contaminants of all of the effects within the same location, and this is assumed to

be the same for all locations. C(ρ) gives the correlation structure of the effects across locations for
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all the effects for the same contaminant, and this is assumed to be the same for all contaminants.

As long as the two component matrices are positive semi-definite, their Kronecker product is also

positive semi-definite, a guarantee not afforded by more general structures. Note that if γ is a

diagonal matrix, the parameters for different contaminants are independent and the structure used

in the univariate model is recovered (with the additional constraint that a common ρ is shared by

all contaminants, a constraint unnecessary if γ is diagonal). Hence, while forcing all contaminants

to share a common value of ρ results in some loss of generality, it does allow prior dependence

between contaminant parameters both within locations and across locations in a way that results

in a valid positive definite covariance matrix. Because ρ is a hyperparameter which impacts only

the form of prior distributions of the parameters of interest and not the parameters themselves, the

loss of generality does not seriously limit the resulting model for the joint distributions of multiple

contaminants.

Prior structure of data covariances: As mentioned previously, modeling the data covari-

ance structure is more complicated than the extension possible in the mean structures because it is

necessary to place distributions on the positive definite matrices Σi as opposed to just scalar vari-

ance terms. In order to organize the discussion, this section classifies the approaches to the problem

as either “direct” or “decomposition”. In the direct approach, the matrices Σi (or, to mimic the

previous models, Σ−1
i ) are modeled directly with probability distributions over the space of pos-

itive definite matrices. A convenient choice for this distribution that has been employed often in

Bayesian multivariate analysis problems is the Wishart distribution (Gelman et al. 1995). If one is

willing to sacrifice some generality and assume, for example, that the covariance structure depends

only on source-water type and not location, then one possible approach would be to model the

surface water and ground water covariance matrices with independent Wishart prior distributions.

On the other hand, if one wishes to allow each location and source-water type to have a different

covariance structure, a feature necessary to attain the most effective model in the univariate ar-

senic analysis, then directly modeling the covariance matrices becomes far more complicated. The

fundamental difficulty is that this approach results in 2k matrices representing a total of kp(p + 1)
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parameters. This number of nominal parameters could be justified if enough data were available

from each location and source-type combination to estimate them adequately or if the effective

number of parameters could be reduced by forcing relationships between these parameters beyond

whatever restrictions are imposed by the positive definiteness constraint. The former solution of

relying on sufficient data to inform the large number of parameters is not viable because even with

the relatively coarse location delineations based on U.S. states, some states have little or no raw

water data available. This entails the need for some mechanism for reducing the effective number

of parameters by inducing relationships among the covariance matrices for different locations and

source types. For example, analogous to the role of the correlation matrices C(ρ) in the univariate

case, geographical proximity could serve as both a pragmatic and physically justifiable mechanism

for forming relationships among covariance matrices of neighboring locations. Unfortunately this

problem does not lend itself to a ready solution in the multivariate setting. For example, it is

not clear what kind of prior distribution for the matrices Σi would have the property that the

covariance matrices for neighboring locations are more similar to one another than those for more

separated locations. Moreover, there is no clear multivariate analog to the ANOVA structure of

correlated parameters used for the scalar data precision terms in the univariate model because

of the restriction of positive definiteness. It is not possible to subtract matrix “effects” and still

ensure positive definiteness of the resulting matrix, eliminating from consideration structures such

as Σi = ΘX(i) +ΛX(i)Wi. If one could somehow coerce the various matrix “effects” such that only

positive definite matrices were added together, there would still be the substantive concern that

matrices would continue to get “larger” as each effect is added. In summary, if one wants to allow

each location and source water type to have its own covariance matrix, and if these matrices are

to be related to one another geographically, then methods for directly modeling the matrices Σi

are not apparent. Of course, that is not to say that no solution exists, and the problem raises a

potentially fruitful avenue for future research.

If the focus is switched to modeling some decomposition of the covariance matrices Σi rather

than the matrices themselves, more progress is possible. The particular decomposition addressed

here separates the treatment of inter-contaminant correlation and intra-contaminant variation and

12



is discussed by Barnard et al. (2000). This decomposes the covariance matrices as

Σi = DiRiDi (5)

where Di = diag(σi,1, . . . , σi,p), a diagonal matrix of contaminant standard deviations for the ith

system and Ri is a correlation matrix. Such a structure is particularly useful in a Bayesian context

where the prior information available about the coordinate standard deviations is greater than that

available for correlation matrices (Barnard et al. 2000), which is arguably the case with the problem

at hand. Relatively informative prior information about individual contaminant variation is known,

while the paucity of published analyses of joint contaminant occurrence (especially after controlling

for location effects) makes prior information about co-occurrence more elusive. Moreover, the

structure is practically feasible and has been used successfully in applications (Barnard et al. 2000;

Brav 2000; Boatwright, McCulloch, and Rossi 1999).

The generality of allowing Ri to depend on both source type and location results in a problem

no simpler than what was faced while attempting to model the matrices Σi directly. However,

under the assumption that the correlation structure depends only on source type, the number

of parameters under consideration changes from kp(p + 1) to 2kp + p(p + 1). This results in

substantial parsimony, especially for large k and p. Moreover, because the decomposition separates

the scalar standard deviations from the correlations, the log precisions −2 log(σi,j) can be modeled

in precisely the same manner by which the mean parameters are modeled (i.e., with the matrix

normal distribution). This introduces both spatial and source-type dependence in the data variance

structure, extending the structure successfully implemented in the univariate case. On the other

hand, the correlation matrices R−1 for surface water systems and R1 for ground water systems

are assumed to be the same for all locations. While this assumption is probably more restrictive

than is justified by the complexity of the underlying phenomenon, the decision is practically sound.

The separation of the treatment of the contaminant variances from their covariances balances

the desire to make use of geographical proximity in modeling the data covariance structure with

the need to limit the number of parameters to a tractable amount. Of course, a more flexible

model would allow the correlation matrices to depend on location as well as source type, but
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have geographical dependence among matrices in different locations. This would keep the effective

number of parameters manageable while maintaining the generality of the model. Unfortunately,

as is the case with the covariance matrices Σi, it is not clear what form of prior distribution would

be appropriate for introducing such spatial relationships between the matrices.

Other decompositions of the data covariance matrices are available. For example, one could use

the orthogonal diagonalization decomposition Σi = QiTiQ
′
i where Qi is orthogonal with columns

equal to the eigenvectors of Σi and Ti is a diagonal matrix of the eigenvalues of Σi. This de-

composition has mathematical appeal but is not nearly as intuitive as that in Equation (5). The

eigenvalues of Σi are variances of linear combinations of the components of the data vector rather

than variances of the components themselves, and this would be difficult to reconcile with the

ANOVA structure for the data component variances used in the arsenic analysis. Similar concerns

pertain to the Cholesky decomposition Σi = LiL
′
i for Li a lower triangular matrix (Pinheiro and

Bates 1996) and the other decompositions summarized in Barnard et al. (2000). The remainder of

this paper considers only the standard deviation and correlation decomposition in Equation (5).

Distributions over the space of correlation matrices: Probably the most difficult as-

pect of using the decomposition in Equation (5) is the formulation of a prior distribution for the

correlation matrices. The space R of positive definite correlation matrices is as complicated as the

space of general positive definite matrices, with the additional constraint that the diagonal elements

of the matrices are 1. This section discusses a number of options for distributions over this space

and considers the relative merits of each.

Barnard et al. (2000) deal only with the case where prior information about the correlation

matrices under consideration is non-informative, and they suggest two different prior distributions

that could reasonably be considered as reference priors. The first is derived from examination of

the marginal distribution of the correlation matrix from a matrix which has a Wishart distribution,

and has the property that the marginal distribution of each correlation coefficient is uniform on

(−1, 1). The disadvantage of this approach is that the joint distribution of subsets of the elements

of the matrix are not nearly as intuitive. The other is a uniform distribution over the space of
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correlation matrices, with density p(R) = cIR(R) for some normalizing constant c. Because of

the compactness of the space, such a distribution is proper. Unlike the marginal distribution of

the Wishart matrix, the marginal distributions of the individual matrix elements are not uniform.

Instead, because of the positive definiteness constraint, the marginal distributions are concentrated

near zero, with more concentration as the dimension increases. Barnard et al. (2000) examine this

phenomenon in detail. For the dimension p = 3, the degree of concentration is minimal, while for

p = 10, the concentration places very low density on only nearly singular matrices. In a simulation

study designed to examine the influence of these prior distributions, Barnard et al. (2000) conclude

that the “informativeness may have a tolerable impact on the marginal posteriors, as long as [the

dimensionality] is not too large relative to the amount of data.” Of course, this depends on the

data and likelihood of whatever model is under consideration. In the current application, if the

modeler is content to allow the correlation matrices to be in large part determined by the data,

this goal will be realized for small to moderate numbers of contaminants (p ≤ 10). For p very

large, p(R) = cIR(R) will probably not provide the requisite flexibility, and less restrictive prior

structures will be necessary.

Neither of these possibilities for modeling the correlation matrices is entirely satisfactory because

it is not possible to manifest any substantive prior information about the correlation matrices.

However, they each have some intuitive appeal from the perspective of a researcher desiring a non-

informative prior. From a practical standpoint, the uniform distribution p(R) = cIR(R) is the more

attractive of the two because the density is bounded even near the boundary of the parameter space.

This precludes the kinds of MCMC convergence problems that arise from the use of unbounded

density functions. In order to make progress with the underlying problem, the remainder of this

paper uses p(R) = cIR(R) in all analyses. However, future applications may benefit from a more

flexible prior structure that could be informed more effectively by expert opinion, and such work

is underway (Garthwaite and Al-Awadhi 2001).
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3.3 Model formulation

The discussions of the previous section culminate in the formulation of a model which incorpo-

rates the bulk of the flexibility necessary to model inter-contaminant dependence while maintaining

mathematical tractability and conciseness. The stages are as follows.

Stage 0: Independently for i = 1, . . . , n0,

Yi|µi,Σi ∼ Np(µi,Σi) (6)

Stage 1: For i = 1, . . . , n0,

• Mean structure:

µi = α
(m)
X(i) + β

(m)
X(i)Wi (7)

• Variance structure: From Equation (5), write

Σi = DiRWiDi (8)

where RWi is a source-type specific correlation matrix and Di is a diagonal matrix whose

elements are the square roots of the diagonal elements of Σi. Let σi be the vector of these

diagonal elements, and for a vector x, let f(x) = (f(x1), . . . , f(xp)). Then suppose

−2 log σi = α
(v)
X(i) + β

(v)
X(i)Wi (9)

Now let

α(m) =




α
(m)
1,1 · · · α

(m)
1,p

...
. . .

...
α

(m)
k,1 · · · α

(m)
k,p


 =




α
(m)′
1
...

α
(m)′
k


 (10)

Also organize the other three sets of parameters analogously. Note that this stage introduces no

additional randomness; it merely re-expresses the mean and covariance structures of the data as

deterministic functions of parameters which can be modeled more easily.
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Stage 2a: Each of the four (k×p) matrices α(m), α(v), β(m) and β(v) have a similar Gaussian

process prior structure based on the matrix normal distribution, one of which is described here.

Conditional on the scalar parameter ρα(m) , a (p×p) positive definite matrix γα(m) , and a fixed (k×p)

prior mean matrix α
(m)
0 , suppose that the (k × p) matrix α(m) has a matrix normal distribution:

α(m)|α(m)
0 , ρα(m) , γα(m) ,∼ N(k×p)

(
α

(m)
0 , C(ρα(m))⊗ γα(m)

)
(11)

Remark: Analogously to the univariate model, it is possible replace the parameters ρα(m) , ρα(v) ,

ρβ(m) , and ρβ(v) with an omnibus parameter ρ which is the same for all 4 matrices. However, the

structure is written here in terms of the more general case, where such a reduction would be a

special case of the general model.

Stage 2b: Assume that the two source-specific correlation matrices R1 and R−1 are indepen-

dent with a uniform prior distribution over the space of positive definite correlation matrices.

Stage 3: Suppose the logarithms of the four parameters ρα(m) , ρα(v) , ρβ(m) , ρβ(v) are iid

univariate normal conditional on scalar parameters µρ (mean) and ξρ (standard deviation). Finally,

suppose that the four matrix parameters γα(m) , γα(v) , γβ(m) , γβ(v) are iid Wishart conditional on a

scalar degrees of freedom parameter aγ and a fixed scale matrix parameter bγ .

This formulation leads to the following joint distribution of the data and parameters:[
n0∏
i=1

p0(yi|µi,Σi)

]
(likelihood function) (12)

× p1

(
α(m)|α(m)

0 , ρα(m) , γα(m)

)
p1

(
α(v)|α(v)

0 , ρα(v) , γα(v)

)
× p1

(
β(m)|β(m)

0 , ρβ(m) , γβ(m)

)
p1

(
β(v)|β(v)

0 , ρβ(v) , γβ(v)

)
× p2(R1)p2(R−1)

× p3(log ρα(m) |µρ, ξρ)p3(log ρα(v) |µρ, ξρ)p3(log ρβ(m) |µρ, ξρ)p3(log ρβ(v) |µρ, ξρ)

× p4(γα(m) |aγ , bγ)p4(γα(v) |aγ , bγ)p4(γβ(m) |aγ , bγ)p4(γβ(v) |aγ , bγ)

where p1 is the matrix normal density, p2 is the uniform density over the space of positive definite

correlation matrices, p3 is the univariate normal density, and p4 is the Wishart density.
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4. IMPLEMENTATION ISSUES

As is the case in all Bayesian models, the posterior distribution of the model parameters is, up to

a constant, the same as the joint distribution of the data and parameters viewing the data as fixed.

In order to make inferences about the parameters from this joint distribution, MCMC methods can

be used to generate a large sample with which to learn about expected values of functions of the

parameters. The complexity of the data and the model in the current study necessitate some more

specialized considerations, which are discussed in the subsections that follow.

4.1 Censoring and data augmentation

A common problem in quantifying levels of trace substances is that contaminant concentrations

cannot be quantified unless they are sufficiently high, resulting in left-censoring of some contaminant

measurements. A nice summary of this issue is given in Piegorsch et al. (1998). The net result

is that most observations yi will not be a p-dimensional vector of observed concentrations, but a

mixture of observed concentrations and missing components. In the case of censored observations,

the missing components will contain the information that the corresponding measurement was less

than some censoring limit which in general may be a function of both the contaminant and the

observation vector. Moreover, the algorithm must allow for components that are missing due to

an unmeasured contaminant. An unmeasured coordinate is equivalent to a coordinate censored at

positive infinity, so that an appropriate analytical technique for handling the censored observations

suffices for the unmeasured ones as well. As such, the remainder of the discussion refers to both

censored and unmeasured coordinates as “missing.”

In the arsenic analysis (Lockwood et al. 2001), missing observations are handled with a data

augmentation technique (Dyk and Meng 2001; Gelman et al. 1995; Tanner and Wong 1987), which

imputes missing observations at each iteration of the MCMC algorithm. In particular, before

updating any of the parameters for the next iteration, the algorithm simulates observations for the

missing values conditional on the parameters from the last stage and possibly on the fact that the

observations were known to be less than some concentration. Then, based on the imputed complete

data, it generates the next set of parameters.
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For the multiple contaminant case, the same general data augmentation approach is possible, but

the technique requires sampling from a truncated multivariate conditional distribution. The proper

conditional distribution can be formed in two steps, the first isolating the missing components and

the second accounting for the censoring of these components where applicable. Step one uses the

formula for the conditional distribution of the missing coordinates given the observed coordinates,

available in closed form because the entire vector has a multivariate normal distribution (Morrison

1990). The additional knowledge about censoring, where applicable, must now be incorporated

into the conditional distribution of the missing components given the others. This results in a

multivariate distribution which is truncated in some of the dimensions. There are a number of

methods available for sampling from this distribution, including rejection sampling, introduction of

latent variables (Damien and Walker 2001), the method of Geweke (1991), and the “one for one”

algorithm of Gelfand et al. (1992). This final method, a multivariate generalization of the typical

inverse CDF method, has proven successful in applications (Boatwright et al. 1999; McCulloch

and Rossi 1994) and was used for all results presented here. The method reduces the problem of

imputation in the multivariate setting to a series of univariate imputations, where a clear solution

to sampling from the distribution exists whether the missing value is censored or not. It proceeds

as follows. First, find the conditional distribution of the first missing component given all of the

observed components and then sample from this (possibly truncated) univariate distribution. This

step is not difficult because sampling from a univariate truncated distribution is easily accomplished

with the inverse CDF method. Then treat this imputed value as observed and sample from the

conditional distribution of the next missing component given the new set of observed components.

Repeating in this manner until all missing components are imputed results in a realization that has

the desired truncated conditional distribution.

4.2 Reparameterization

As discussed in the arsenic analysis in Lockwood et al. (2001), the spatial correlation C(ρ) in

the prior distribution for α(m) (a k-dimensional vector in the univariate case) necessitates special

consideration when attempting to update elements of the vector α(m). The primary difficulty is that
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small values of ρ imply high correlations among the elements, causing the chain to move inefficiently

through the parameter space. A solution to this problem, discussed in detail in Lockwood et al.

(2001), is to reparameterize to parameters that are uncorrelated a priori, resulting in a parameter

space which is more efficiently navigated. Instead of directly considering the parameter α(m),

introduce a parameter θα(m) which has a k-dimensional standard normal prior distribution. θα(m)

is related to α(m) by

α(m) = α
(m)
0 +

1√
τ

(m)
α

L(ρ)θα(m) , (13)

where L(ρ) is a lower-triangular Cholesky factor of the matrix C(ρ) satisfying L(ρ)L′(ρ) = C(ρ).

Rudimentary results about transformations of normal random variables implies that conditional on

ρ and τ
(m)
α , the prior distribution for α(m) is N(α(m)

0 , C(ρ)/τ
(m)
α ). Thus the prior distribution of

the parameter of interest in unchanged. However, the new parameterization greatly alleviates the

difficulty in accepting proposed values of α(m) when ρ is small. In addition, if ρ is small enough

that the matrix is numerically singular, an appropriate modification to the matrix L(ρ) is possible.

This is also discussed in detail in Lockwood et al. (2001).

Clearly an analogous and potentially more severe situation occurs with the random matrices

of location and contaminant effects when p > 1. For concreteness, focus on the (k × p) matrix

α(m) of the multi-contaminant model. Let θα(m) be a (k × p) random matrix whose elements are

iid standard normal. Anticipating the transformation of this matrix to another with the same

distribution as α(m), note that the distribution of θα(m) is a matrix normal distribution with mean

matrix 0, a (k × p) matrix of zeros, and with covariance matrix Ik ⊗ Ip. Now perform the lower-

triangular factorization C(ρα(m)) = L(ρα(m))L
′
(ρα(m)) and γα(m) = L(γα(m))L

′
(γα(m)), and appeal

to a result concerning linear functions of normal random matrices. Let X be a (k × p) normal

random matrix with mean matrix µ and covariance matrix σ ⊗ ν. Then for fixed real matrices a

and b of dimensions (a×k) and (b×p) respectively, it can be shown that aXb′ has a matrix normal

distribution (of dimension (a× b)) with mean matrix aµb′ and covariance matrix (aσa′)⊗ (bνb′).

Now suppose that θα(m) is related to α(m) by

α(m) = α
(m)
0 + L(ρα(m))θα(m)L

′
(γα(m)) (14)
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It is immediate from the result about linear transformations of normal random matrices that

the conditional distribution of α(m) given α
(m)
0 , ρα(m) and γα(m) is the same as that posited in

Equation (11). This is the multivariate analog to the transformation in Equation (13) and achieves

identical benefits by treating θα(m) as the parameter. Finally, introduce parameters θα(v) , θβ(m)

and θβ(v) which are related to α(v), β(m) and β(v) in a manner given by Equation (14). These

reparameterizations, similar to those developed by Rue (2001) for sampling Markov random fields,

greatly improve the performance of the algorithm used to sample from the posterior distribution.

It is important to note, however, that the joint distribution of the data and parameters specified

in Equation (12) changes in light of the reparameterization. In the original formulation, the data

are conditionally independent of the ρ and γ hyperparameters given the α, β and R parameters.

Hence when updating the ρ and γ parameters, it is not necessary to evaluate the likelihood function

because it is constant with respect to the conditional posterior distribution of these parameters given

the others. However, when treating the θ quantities as the parameters, the likelihood function is

implicitly a function of all model parameters via the relationship in Equation (14) and its analogs for

the other three matrices of parameters. That is, the data are not conditionally independent of the

ρ and γ parameters given the θ and R parameters. The net result is that the Metropolis-Hastings

algorithm applied to updating any of the model parameters must take the likelihood function into

account, forcing a greater number of likelihood evaluations per iteration of the Markov chain. Hence,

while the reparameterization is necessary to produce a viable MCMC algorithm, each iteration of

the modified chain will be somewhat more computationally intensive.

4.3 Updating positive definite matrix parameters

The γ matrices and the data correlation matrices R−1 and R1 are constrained to be positive

definite, and thus warrant special consideration in the MCMC setting. The simpler case regards

the four γ matrices, for which updating was performed on the individual elements of the Cholesky

decomposition L = ((`ij)) of each γ. We used lognormal proposal distributions for the diagonal

elements `ii, and normal proposal distributions for all subdiagonal elements. Because the transfor-

mation from γ to L has a relatively simple Jacobian of 2p
∏p

i=1 `p−i+1
ii (Olkin 1953), the density
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for L is available in closed form. This updating scheme provided superb mixing properties in all

applications.

Developing an effective updating strategy for the data correlation matrices R−1 and R1 presents

somewhat more difficulty. The discussion that follows uses “R” to refer to either of these matri-

ces. The primary problem is that because the diagonal elements of R must be one, the subspace

of positive definite matrices that must be navigated, C, is more complicated than the space of

all positive definite matrices. For example, the Cholesky decomposition strategy used for the γ

matrices cannot be used in the same way because the Cholesky decomposition for a correlation

matrix has rows which are constrained to have Euclidean length less than (or, in case of positive

semi-definiteness, equal to) one. This not only disqualifies the use of a normal proposal distribution

for the subdiagonal elements, but also makes it impossible to consider the Cholesky elements in

isolation of one another. The method used here, a modification of the algorithm first presented by

by Barnard et al. (2000), directly updates R one element at a time. The method is based on the

fact that conditional on all of the other elements of R, the range of allowable values for a partic-

ular element rij based on the constraint of positive definiteness is a subinterval of (−1, 1) whose

endpoints are available in closed form. The precise equations of the interval boundaries are based

on determinants of a matrix R∗ obtained by varying only rij and are detailed in their paper. The

net result is that updating R proceeds one element at a time, with proposed values being drawn

from some distribution over the allowable range for that particular matrix element.

In their implementation, Barnard et al. (2000) used the so-called “griddy” Gibbs sampler (Rit-

ter and Tanner 1992), which essentially uses a discrete approximation to the marginal posterior

distribution of each ri,j as a proposal distribution. Because the models presented here were part of

an extensive cross-validation study involving multiple data sets, the model was fit to a relatively

large collection of different observation sets. Thus, a method not requiring approximations to the

various marginal posterior distributions is preferred. An easy alternative is a uniform distribution

over the allowable interval for the element at hand. However, this proposal distribution is not

centered at the current value, cannot be changed in any way to optimize the mixing of the chain,

and places non-negligible probability of values near the boundary of positive definiteness. This
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results in numerically singular proposed correlation matrices, which presents additional computa-

tional difficulties. A more flexible solution is to alter the proposal distribution to one centered in

some manner at the current value and which has vanishingly small probability near the bound-

aries. The strategy pursued here is to use a normal proposal distribution on a transformation of

the correlation coefficient which produces the desired result. Let (a, b) ⊂ (−1, 1), a < b, be the

allowable range of a particular correlation element r conditional on the rest of the matrix. We

construct a proposal distribution f∗R(·|r0) over (a, b) which is centered at the current value r0 as

follows. Consider the transformation y = g(r) = tan (π((r − a)/(b− a)− 0.5)) which maps (a, b)

to (−∞, +∞) and which has inverse transformation r = g−1(y) = a + (b − a)
(
tan−1(y)/π + 0.5

)
.

Then, if the current value of a correlation R is r0, then the suggested distribution of the proposed

value is that of g−1(Y ) where Y ∼ N(g(r0), σ2). The density of this distribution is available by the

usual change-of-variables formula. Because g is strictly monotonic and continuous on (a, b), g−1 is

as well. Hence quantiles are preserved and the median of the proposal distribution is r0, provid-

ing the desired centering at the current value. This method proved successful in all applications,

examples of which are discussed next.

5. APPLICATION

The primary motivation of jointly modeling contaminants is to exploit relationships among

the contaminants to achieve a better descriptor of the underlying phenomena generating the data.

This section highlights some applications of the model presented in Section 3, showing how in

the presence of contaminant covariations, the model provides better fit and predictive power than

modeling contaminants individually. In addition, this section discusses how inferences about im-

portant regulatory quantities can depend on which modeling approach is used. The purpose of this

section is not to provide a comprehensive analysis of the available data, but rather to present key

results highlighting the benefits of joint contaminant models to the underlying policy objective of

developing a multi-contaminant RIA.

The data used in these applications originate from the same two data sets discussed in Lockwood

et al. (2001), to which a lengthier discussion is deferred. The first, derived from the National Arsenic
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Occurrence Survey (NAOS) (Frey, Edwards, and Amy 1997; Frey and Edwards 1997), provides raw

water concentrations for approximately 25 substances from nearly 500 community water systems

from across the U.S. The other data were provided by the United States Geological Survey (USGS)

as part of the National Water Information System (Focazio, Welch, Watkins, Helsel, and Horn

2000). These data provide analytical results for approximately 15 substances from nearly 2000

community water systems using groundwater.

The applications presented here focus on two pairs of contaminants, the first being arsenic (As)

and sulfate (SO4). Unlike arsenic, sulfate is neither carcinogenic nor acutely toxic. However, water

with high sulfate concentrations is aesthetically bothersome because of a salty taste, pungent odor

and mild laxative effect (Backer 2000; EPA 1999). The joint occurrence of arsenic and sulfate

is most interesting from a water treatment perspective. Both arsenic and sulfate are negatively

charged particles, and hence are removed by any treatment whose mode action derives from particle

charge (e.g. anion exchange). This is a benefit to systems designed to remove both contaminants,

but can be a detriment to a system concerned with only one or the other of the substances. In

either case, properly accounting for occurrence covariation between arsenic and sulfate would be

an integral part of the estimation of treatment costs and their uncertainties in a multi-contaminant

RIA. The other pair of contaminants under consideration is magnesium (Mg) and calcium (Ca),

which together comprise what is commonly termed “water hardness.” Their typically high degree

of covariation, along with their inherently joint interest from a treatment perspective, motivates an

isolated study of these contaminants. All four constituents are reported at most sites in both the

NAOS and USGS data sets.

This section presents comparisons of two different models. The first, called “Model I” for “In-

dependence Model,” is the model in Section 3.3 fit separately (e.g., with p = 1) to the contaminants

under consideration, taking k = 50 corresponding to the U.S. states. This is essentially equivalent

to fitting the arsenic model in Lockwood et al. (2001) independently to each contaminant. The

other model, called “Model J” for “Joint Model,” is the full multi-contaminant model of Section 3.3,

again with k = 50. Specific details regarding prior distributions and convergence diagnostics can be

found in Lockwood (2001). In short, the results of this section were quite robust to different sensible
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prior specifications, which were based on substantive information about the marginal distributions

of the contaminants under consideration. In all cases, prior distributions for correlation matrices

are uniform as discussed in Section 3.2, and a common value of ρ was used for ρα(m) , ρβ(m) , ρα(v)

and ρβ(v) because allowing differences in these parameters added little to the model.

5.1 Assessing Model Fit

A natural first item to consider is how the model fits differ for the two models, which can

be evaluated effectively with posterior predictive checks (Gelman et al. 1996; Gilks et al. 1996).

Figure 1 summarizes these posterior predictive distributions for the two pairs of contaminants in

the NAOS data, separately for surface and ground water systems but aggregated across states.

Each frame was constructed by first obtaining, for each of Model I and Model J, a sample from

the posterior predictive distribution of hypothetical data with the same sampling design as the

observed data, as described in Section 2. In all cases, 10,000 such simulated hypothetical data sets

were used to characterize the predictive distribution, based on sampling a new data set conditional

on every 100th parameter vector of a MCMC sample of size one million from the relevant posterior

distribution conditional on the NAOS data. The net result is, for each pair of contaminants, a

large sample from two different posterior predictive distributions: one based on Model I and the

other based on Model J. The samples were then used to estimate both marginal and joint posterior

predictive densities via univariate and bivariate kernel density estimators (Simonoff 1996). The

estimated marginal predictive densities, along with marginal histograms of the observed data, form

the margins of each frame. The image in each frame represents the log of the ratio of the estimated

posterior predictive density for Model J to that of Model I. Hence, a value of 0 represents a region

assigned approximately equal density under the two models, while positive values correspond to

regions where Model J provides higher density than Model I. The images are restricted to regions

where both densities are at least 1% of their respective maxima to avoid unstable ratios.

For each pair of contaminants, it is clear that the two models provide nearly identical marginal

fits to the data, and these fits are acceptable. This is not surprising since the marginal structure

of the bivariate model is nearly identical to that of the univariate model. However, the models
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provide substantially different joint fits to the contaminants. The posterior distributions of the

within–location correlation coefficients of Model J for each pair of contaminants within each source

type is approximately unimodal and symmetric, with posterior means of 0.86 (surface) and 0.83

(ground) for Mg and Ca and 0.52 (surface) and 0.18 (ground) for As and SO4. These degrees of

positive correlation are evident in the data even after aggregation across locations, and it is clear

that Model J captures these correlations in a way not possible with Model I. For the most part,

the data are concentrated in regions of the observation space to which Model J assigns higher

posterior predictive density than Model I. The case in which the two are most similar is As and

SO4 in ground water, for which the contaminants exhibit only a mild positive association. Thus,

in the presence of contaminant covariation, explicitly accounting for these correlations provides a

better fit to the data. Plots similar to those depicted in Figure 1 formed within locations display

similar patterns, and in no case was there strong evidence to refute the assumption of a common

correlation structure across locations.

5.2 Comparison of Predictive Ability

Because the analyses presented here are motivated by prediction, it is necessary to examine

whether the additional structure of Model J results in better predictions of new data in addition to

its superior fit relative to Model I. This issue for the particular case of arsenic and sulfate was the

subject of an extensive cross-validation study, provided in Lockwood (2001). After controlling for

substantial Monte Carlo variability in the cross-validation comparison criterion (predictive density

of the testing data), there was evidence that Model J provided a moderate predictive advantage rel-

ative to Model I. The degree of the advantage was commensurate with the relatively modest degree

of covariation between these contaminants. For the more highly correlated substances Mg and Ca,

Model J provides a stark predictive advantage relative to Model I. Figure 2 provides an example.

The left frame compares the joint posterior predictive distributions of the two contaminants in New

Jersey ground water systems based on the fit of Model I and Model J to the NAOS data. The

overlaid data in this case are the corresponding observations from the USGS database, for which

the data from New Jersey are most numerous. Hence, unlike Figure 1, the overlaid data were not
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used to fit the model; thus the plot exhibits the predictive abilities of the models rather than their

fit. Both models do an adequate job of predicting the marginal distributions of the substances,

but Model J capitalizes on the high correlations to predict more accurately their joint distribution.

Plots for other states represented in the USGS data display similar advantages for Model J, and

the net result is summarized in the right frame of Figure 2. This provides the log joint predictive

density in Equation (2) evaluated at the entire collection y1 of USGS Mg and Ca observations,

estimated by 1,000,000 posterior samples from the fit of Models I and J to the NAOS data. The

predictive density was estimated using three different methods under Model J (Lockwood 2001).

With each aggregate estimate marked on the horizontal axis is associated a density estimate pro-

viding some indication of the Monte Carlo variability based on blocks of 10,000 parameter vectors.

Although this variability is considerable, the plot provides convincing evidence that the predictive

density based on Model J is substantially larger than that based on Model I, complementing the

results provided for New Jersey.

5.3 Implications for Regulatory Inferences

As discussed in Section 1, the current study is motivated by the long-term goal of improving

the sequential regulatory process by one in which rules for larger, more diverse groups of contami-

nants are considered. In the existing structure, the EPA examines available data on contaminant

occurrence during the RIA process in order to form national estimates of contaminant occurrence.

What is meant by a “national estimate” is some indication of the fraction or number of all com-

munity water systems in the nation expected to have either raw or finished water contaminant

concentrations in excess of various concentrations of interest. Some measure of uncertainty about

these estimates also should be an integral part of the decision process.

A multi-contaminant RIA would require analogous quantities for the collection of contaminants

under consideration. For example, in the simplest case of two substances, it would be useful to

estimate the fraction of all community water systems expected to have a raw water concentration

of substance 1 in excess of concentration c1 and and a raw water concentration of substance 2 in

excess of c2 for selected values of c1 and c2. Moreover, for optimal utility to the RIA, it is imperative
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that such estimates be coupled with quantitative assessments of their uncertainties. Inferences of

this nature are available from estimated joint distributions of the contaminants, and estimated

uncertainties about these joint distributions, as a function of community water system attributes.

Without a formal structure in which to address contaminant covariations, estimated joint dis-

tributions would be based on either products of marginal distributions, or possibly some informal

mechanism for accounting for occurrence relationships among the contaminants. One would expect

that for contaminants that occur essentially independently, rigorous estimation of their joint distri-

butions based on multivariate modeling would provide little to no benefits relative to, for example,

concatenation of marginal models. On the other hand, for contaminants that covary strongly, the

differences could be pronounced, and proper estimation of contaminant joint distributions would

be required to maintain the integrity of the multi-contaminant RIA. The methods developed in

this paper provide a flexible structure with which to estimate contaminant joint distributions in

a manner that explicitly accounts for contaminant covariations. The purpose of this section is to

exhibit the power of these methods in making inferences about quantities of critical importance to

the regulatory process, and moreover, to demonstrate to what extent these inferences differ from

those based on simpler models.

The fundamental quantities of interest are percentages (or numbers) of systems expected to

have raw water concentrations in excess of various concentrations. In general, we assume that

these quantities can be expressed as functions of some model parameters θ; for example, those

from Model I, Model J, or some other parametric statistical model. For a given contaminant

m, a concentration cm, a fixed value of all model parameters θ, and a given water system s, let

P
(m)
s (θ, cm) be the probability that the system has raw water concentration for contaminant m in

excess of cm. Because P
(m)
s (θ, cm) is a function of θ, it has a posterior distribution conditional on

the raw water data, and features of this distribution are readily obtained via MCMC. The posterior

distributions used in this section are conditional on both the NAOS and USGS data.

In the current modeling framework, with differentiation only by source type and location (in

particular by U.S. state), systems in the same location using the same source water type have

identical values of this probability. We make this explicit by replacing the index s with ij, so that
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P
(m)
ij (θ, cm) is the probability that a system using source water type i in location (state) j has

raw water concentration for contaminant m in excess of cm. Under assumed lognormality of the

concentrations, as in Models I and J,

P
(m)
ij (θ, cm) = 1− Φ

(
log cm − µij(θ)

σij(θ)

)
, (15)

where µij(θ) and σij(θ) are the mean and standard deviation for the log contaminant distribution

source water type i and state j as a function of θ.

Inference at the national level is based on the EPA Safe Drinking Water Information System

(SDWIS) (EPA 2000), which provides comprehensive information about water system character-

istics for all systems in the country. The national estimates discussed in this section are based

on a 1998 SDWIS query which provided information for 10,637 surface water and 44,087 ground

water systems. Let nij be the number of the 54,724 SDWIS systems in source type i (i = 1, 2)

and state j (j = 1, . . . , 50), and let ni· denote the source water type marginal totals. These values

are summarized in Table 1. By the assumed conditional independence of the systems, P
(m)
ij (θ, cm)

in Equation (15) is the expected proportion of the nij systems having concentrations in excess of

cm. While location-specific estimates are of some interest for understanding local variations in con-

taminant occurrence, inferences aggregated across locations are more relevant due to the national

scope of regulations 1. Thus, we consider the marginal probabilities

P
(m)
i· (θ, cm) =

50∑
j=1

nij

ni·
P

(m)
ij (θ, cm), (16)

which for i = 1, 2 is the fraction of the ni· national systems using source water type i expected

to have raw water concentrations in excess of cm. These marginal probabilities are available from

either Model I or Model J, and similar to the marginal comparisons of model fit, inferences about

them are virtually identical for the two models. Figure 3 presents some summary results for arsenic

and sulfate. The frames provide posterior means and ±2 times posterior standard deviations of

P
(m)
i· (θ, cm) for arsenic (top row) and sulfate (bottom row) in surface water (left column) and

1In fact, there is considerable regional variability in contaminant levels for all of the contaminants discussed in
this paper. The most pervasive trend is that states in the eastern part of the U.S. have lower concentrations than
most states in the west.
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ground water (right column). The selected concentrations cm for each contaminant are reflective of

those considered during current regulatory activity. The historical MCL for arsenic was 50 µg/L,

and during the recent revision process, MCLs as low as 2 µg/L were suggested based on minimizing

health risks. For sulfate, a 500 mg/L MCL was proposed but was never adopted, and there is an

existing “secondary” standard of 250 mg/L. (Secondary standards are not motivated by health

impacts, but rather aesthetic concerns.) Estimates such as those presented in Figure 3, along with

their associated uncertainties, would be considered during the RIA process. It is interesting to note

the substantially higher uncertainties regarding the surface water marginal fractions, which derives

from the fact that only about 7% of the systems in the combined NAOS and USGS are surface

water systems.

In a multi-contaminant RIA, it would be necessary to estimate percentages of systems expected

to have raw water concentrations of two (or more) contaminants simultaneously exceeding two

(or more) given concentrations, in addition to the marginal percentages. For clarity, we focus on

the two contaminant case of arsenic and sulfate. Let P
(∗)
ij (θ, c1, c2) denote the probability that a

system using source water type i in state j simultaneously has a raw water arsenic concentration

greater than c1 and a raw water sulfate concentration greater than c2. Analogous to the discussion

for a single contaminant, a quantity that would be of particular interest in a multi-contaminant

RIA would be the estimated fraction of all national systems of a given source type that would

simultaneously exceed given concentrations for both contaminants. This is the marginal probability

P
(∗)
i· (θ, c1, c2) =

50∑
j=1

nij

ni·
P

(∗)
ij (θ, c1, c2). (17)

Credible estimation of P
(∗)
i· (θ, c1, c2) requires that the P

(∗)
ij (θ, c1, c2) reflect any covariations in

the occurrence of the contaminants. For example, under Model J and for a given value of θ,

P
(∗)
ij (θ, c1, c2) is a bivariate normal orthant probability based on the joint distribution of the con-

taminants in source type i and state j. On the other hand, when the contaminants are modeled

independently as in Model I, P
(∗)
ij (θ, c1, c2) = P

(As)
ij (θ, c1)P

(SO4)
ij (θ, c2). One would expect

P
(∗)
ij (θ, c1, c2) > P

(As)
ij (θ, c1)P

(SO4)
ij (θ, c2)
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when the contaminants are positively correlated. Thus, the posterior distributions of P
(∗)
i· (θ, c1, c2)

could be quite different for the two models, with greater differences for more highly correlated

contaminants. As before, these distributions are readily obtained with MCMC samples. The

calculations for Model J are based on samples from a single chain, while the results for Model I

derive from appropriate manipulation of samples from separate chains for the contaminants under

consideration.

Figure 4 shows the degree of disparity in these posterior distributions. The top row of the

figure compares the posterior distribution of 100P (∗)
i· (θ, c1, c2), i.e. the percentage of national

systems of a given source type that would exhibit raw water concentrations simultaneously in

excess of concentrations of c1 = 5 µg/L for arsenic and c2 = 100 mg/L for sulfate. The bottom

row provides analogous results for magnesium at 25 mg/L and calcium at 100 mg/L. In each

frame, the histogram depicts the posterior distribution obtained from Model J, while the dotted

density estimate gives that obtained from Model I. In all cases, the posterior distributions based

on Model I are shifted toward lower percentages than those based on Model J, with more striking

differences for the more highly correlated magnesium and calcium. For arsenic and sulfate, the

difference is somewhat more pronounced for surface water, which is consistent with the fact that

the contaminants are more highly correlated in surface water. Although the raw percentages are

small, these are precisely the sorts of percentages often faced in regulatory decisions because in

most cases, only a small fraction of systems are affected by a contaminant MCL.

The differences exhibited in Figure 4 have important implications for national cost estimates

performed during regulatory investigation. As a simple but instructive example, consider the

situation where there is only a single treatment, and this treatment can effectively remove both

arsenic and sulfate. Suppose that it is of interest to estimate the total cost, across all community

water systems, of implementing this treatment to bring finished water concentrations of the two

contaminants below pre-specified concentrations. The total cost estimate is roughly the sum of the

marginal costs for each contaminant, minus the costs for the systems requiring treatment for both

contaminants. When the contaminants are positively correlated, the marginal occurrence models

underestimate the latter quantity because they do not account for this correlation. Thus their
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estimated costs would be inflated artificially. On the other hand, the joint occurrence models would

produce more realistic cost estimates because they account for the contaminant covariations. The

primary conclusion is that the estimates of important regulatory quantities can be quite different

depending on whether the contaminants are considered jointly or independently, underscoring the

value of the methods presented in the current study.

6. DISCUSSION

Through extension of existing methods for modeling a single contaminant, this paper develops

and demonstrates an effective method for modeling joint distributions of contaminants in commu-

nity water system source waters. Especially for highly correlated contaminants, the necessity of a

joint modeling approach for integration into a multi-contaminant RIA process is clear. Modeling

contaminants individually, while convenient, results in a potentially severe loss of co-occurrence

information that can negatively impact predictive power and inferences about key regulatory quan-

tities. The framework presented here provides the requisite formal structure which is flexible enough

to handle any groups of contaminants, as well as covariances among contaminants and other quan-

tities that may affect cost estimates (e.g. pH).

Moreover, this study has identified issues with water quality modeling and available data sets

that limit the development of more effective statistical characterizations. Most water quality anal-

yses focus on data collected over a limited spatial scale, where intricate hydrodynamics can be

successfully modeled. However, because these models are unrealistic for data collected at more

expansive spatial scales, national data are typically not subjected to statistical modeling. The lack

of rigorous analyses at large spatial scales is detrimental to the process of setting drinking water

quality standards for two reasons. The first is that because EPA MCLs apply to all community

water suppliers, national occurrence distributions, as opposed to analyses of local chemistry, are

of paramount importance. The other is that an integral part of the RIA process is an analysis of

uncertainty, which is not properly obtainable without statistical modeling. The Bayesian hierar-

chical methods presented here provide a way to make national predictions and statements about

uncertainty based on spatially sparse data. In addition, for cross-sectional, spatial and multivariate
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data, most water quality analyses consist of either a sequence of univariate spatial analyses (e.g.

kriging) or a multivariate analysis that ignores spatial relationships (e.g. principal components).

The methods presented here simultaneously account for both aspects of the data. With appropriate

(albeit difficult) extensions, the methods could be used to examine temporal trends as well. Finally,

censored data are ubiquitous in water quality analyses, especially among trace substances such as

arsenic. Despite the existence of numerous methods for properly handling them, many analyses

revert to ad hoc treatment. Often censored observations are ignored or replaced with an arbitrary

constant, neither of which properly account for the actual information provided by the censored

observations. The data augmentation techniques used in the models presented here are both easy

to implement and theoretically justifiable, as they treat the missing data as any other unobserved

quantity in the Bayesian framework. In all, Bayesian hierarchical models provide a useful paradigm

from which to approach water quality analyses at the national level.

The methods presented here lend themselves to numerous extensions, some of which we are cur-

rently pursuing. Although this paper presents results for only bivariate cases, the multi-contaminant

model has been implemented successfully in estimating joint distributions for seven contaminants,

as mentioned previously. The model was used in conjunction with a statistical model of contam-

inant removal by water treatment processes to model finished water concentrations for multiple

contaminants, which in turn were used to conduct a multi-contaminant RIA (Gurian et al. 2001b).

Moreover, we are exploring modifications of Stage 2a in Equation (11) in which the fixed matrices

α
(m)
0 , α

(v)
0 , β

(m)
0 , and β

(v)
0 are replaced with more structured matrices that have some unknown pa-

rameters. This additional hierarchical level provides a more adaptive modeling structure by allowing

the data to inform the location parameters, and can be used to account for possible database hetero-

geneity in contaminant measurements. Preliminary results indicate that the extra adaptivity may

be beneficial, and some degree of systematic differences among the measurements for the NAOS and

USGS do exist. Finally, using the U.S. states as the location basis is acceptable for generally sparse

raw water data, where borrowing of strength across locations is of paramount concern. However,

the model is sufficiently general to handle the allocation of the systems to an arbitrary collection

of k locations, e.g. counties, watersheds, or the systems themselves, although such richer location
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bases entail additional complexity and possible difficulties. The simple distance–based correlation

structure is sufficient to capture large–scale spatial trends across states, but finer location bases

may warrant more careful consideration of the prior correlation structures. In addition, a greater

number of locations leads to larger matrices, introducing computational difficulties. As these types

of Gaussian process structures have wide applicability in statistical modeling, the development of

methods to deal efficiently with their computational aspects is of great importance.
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Table 1. Cross classification of 54,724 SDWIS community water systems by state and source water
type (nij).

FIPS FIPS
Code Surface Ground Code Surface Ground
AK 154 553 MT 89 581
AL 239 346 NC 340 1937
AR 246 482 ND 62 276
AZ 73 1074 NE 11 621
CA 776 2748 NH 51 615
CO 264 554 NJ 94 519
CT 59 537 NM 38 635
DE 3 229 NV 49 294
FL 418 2235 NY 750 1947
GA 195 1476 OH 297 1146
HI 29 155 OK 638 560
IA 124 1035 OR 209 685
ID 58 686 PA 437 1808
IL 551 1255 RI 24 62
IN 107 804 SC 178 548
KS 327 605 SD 115 385
KY 364 131 TN 295 257
LA 72 1211 TX 923 3620
MA 170 361 UT 96 363
MD 59 455 VA 265 1262
ME 97 317 VT 91 354
MI 281 1188 WA 201 2112
MN 38 964 WI 43 1152
MO 241 1180 WV 322 305
MS 9 1256 WY 65 206
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Figure 1. Comparison of posterior predictive distributions for NAOS data for Model I and Model
J, separately for surface water (left) and ground water (right) and for As/SO4 (top) and Mg/Ca
(bottom). Imaged values are the estimated log posterior predictive density ratio of Model J to Model
I, with the associated NAOS data overlaid. Estimate maxima for the joint predictive densities are
provided with colored circles. Censored observations fall along dotted lines.
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Figure 2. (Left frame) Comparison of posterior predictive distributions for Mg and Ca in New Jersey
groundwater based on fit to NAOS, with corresponding data from USGS overlaid. Imaged values
are the estimated log posterior predictive density ratios of Model J to Model I. Estimate maxima for
the joint predictive densities are provided with colored circles. (Right frame) Comparison of Model
I and Model J predictive densities based on one million MCMC samples. Three different methods
for the calculation of the Model J log predictive density are marked with “x”; the one for Model I is
marked with “o”. The associated histograms indicate Monte Carlo variability of the estimate based
on parameter blocks of size 10,000.
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Figure 3. Posterior distributions of P
(As)
i· (θ, cm) (top row) and P

(SO4)
i· (θ, cm) (bottom row) for

selected concentrations cm. Posterior means indicated by “o” and bars delimit ±2 posterior standard
deviations from the posterior means.
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Figure 4. Estimated posterior distributions of 100P
(∗)
i· (θ, c1, c2) based on Model I (density estimates)

and Model J (histograms), conditional on both the NAOS and USGS data. The top row considers
concentrations of c1 = 5 µg/L for arsenic and c2 = 100 mg/L for sulfate, and the bottom row
considers magnesium at 25 mg/L and calcium at 100 mg/L. Posterior means for Model J are
marked with “x”, and those for Model I are marked with “o”.
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