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Abstract

We propose a method for detecting differential gene expression that exploits the
correlation between genes. Our proposal averages the univariate scores of each fea-
ture with the scores in correlation neighborhoods. In a number of real and simulated
examples, the new method often exhibits lower false discovery rates than simple t-
statistic thresholding. We also provide some analysis of the asymptotic behavior of
our proposal. The general idea of correlation-sharing can be applied to other predic-
tion problems involving a large number of correlated features. We give an example in
protein mass spectrometry.

1 Introduction

We consider methods for detecting differentially expressed genes in from a set of microarray
experiments. Consider the simple case of m genes measured across two experimental condi-
tions. A number of authors have proposed methods for detecting differential gene expression,
including Dudoit et al. (2000), Newton et al. (2001) and Kerr et al. (2000). Storey (2006)
presents an interesting, more general approach.

One widely used approach to this problem is as follows. We compute a two-sample t-
statistic Ti for each gene, and then call a gene significant if |Ti| exceeds some threshold c.
Various values of c are tried, using permutations of the sample labels to estimate the false
discovery rate (FDR) for the procedure for each c. A threshold c is finally chosen based on
the estimates of FDR and other considerations, such as the ballpark number of significant
genes that is desirable. This recipe roughly describes the strategy used, for example, in the
Significance of Microarrays (SAM) procedure (Tusher et al. 2001).
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In this paper we propose a simple method for potentially improving on the thresholded
t-statistic approach defined above. The idea is to exploit correlation among the genes. In a
sense this general idea is not new, and exploratory methods based on clustering have been
proposed (e.g. Tibshirani et al. (2002)). These methods require choices like the clustering
metric and linkage, and hence are somewhat subjective. The proposal presented here is much
simpler, and hence it is easier to analyze and assess its performance.

We start with t-statistics computed for each gene. Then we assign to each gene a score
ri equal to the average of all t-statistics for genes having correlation at least ρ(i) with that
gene, choosing the best value of ρ(i) ∈ [0, 1] to maximize the average. Finally, we call a gene
significant if |ri| exceeds some threshold c. The idea is that differentially expressed genes are
likely to co-exist in a pathway, and hence will be correlated in our data. Hence use of the
score ri might provide a more accurate test of significance than that based on ti. We call
this approach “correlation sharing” Note that the choice ρ(i) = 1 yields no sharing, giving
ri = ti. Hence the correlation-sharing method contains the thresholded t-statistic approach
as a special case.

As a motivating example, we generated data with 1000 genes and 30 samples. The first
50 genes i ∈ P = {1, 2, . . . 50} are generated as

Xij = Zij + .75 · I(j > 15) (1)

with Zij ∼ N(0, 1) and corr(Zi, Zi′) + .0.8, where Zi = (Zi1, . . . Zin) The remaining genes
xij, i > 50 were generated as N(0, 1). The outcome variable Yj equaled 2 for 16 ≤ j ≤ 30
and 1 otherwise.

Figure 1 shows the t-statistics (top panel) and correlation-shared t-statistics (bottom
panel). We see that in the bottom panel the scores for the first 50 genes are magnified. This
leads to improved detection of the differentially expressed genes, as we show in the next
section.

The outline of this paper is a follows. Section 2 defines correlation-sharing. In section
3 we discuss the concept of residual correlation, and its impact on correlation-sharing. We
apply our method to four microarray cancer datasets. The skin data is examined more closely
in section 4. Some asymptotic results for correlation sharing are given in section 6. Section
5 applies the method to a different kind of data— protein mass spectra. Finally in section
7 we discuss the application of correlation sharing to other kinds of response variables, and
computational issues.

2 Correlation sharing

Let X be the m × n matrix of expression values, for m genes and n samples. We assume
that the samples fall into two groups j = 1 and 2. We start with th standard (unpaired)
t-statistic

Ti =
x̄i2 − x̄i1

si
(2)
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Figure 1: T-statistics and correlation-shared T-statistics for simulated example 1.
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Figure 2: Results for example 1. Left panel: Number of false positive genes versus number of
genes called significant. Right panel: Number of false negative genes versus number of genes called
significant.

Here x̄ij is the mean of gene i in group j and si = pooled within group standard deviation
of gene i.

Let xi denote the ith row of X. Define Cρ(i) = {k : corr(xi, xk) ≥ ρ}, the indices of the
genes with correlation at least ρ with gene xi Then we define

ui = max{0≤ρ≤1} avej∈Cρ(i)|Tj|
ri = sign(Ti) · ui (3)

We call this the “correlation-shared” t-statistic. The method calls significant all genes hav-
ing |ri| > c, and estimates the false discovery rate (FDR) of the resultant gene list by
permutations. We vary c and examine the estimated FDR.

Figure 2 shows the results for correlation sharing applied to the simulated data from
model (1) . As the threshold is varied, the number of genes called significant and the number
of false positive genes and false negative genes all change. We see that correlation sharing
generally yields fewer false positive and false negative genes genes than the t-statistic.

We can also think of correlation-sharing as a method for supervised clustering. Let ρ̂(i) be
the maximizing correlation for gene i, from definition (3). Then the set of genes with indices
Cbp(i)(i) is an adaptively chosen cluster, selected to maximize the average “signal” around
gene i. Unlike with most standard clustering methods, the clusters Cbp(i)(i) are overlapping,
rather than mutually disjoint. We examine these clusters in some examples later in this
paper.

As a second example, we changed the data generation so that the first 50 genes had
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Figure 3: Results for example 2. Here the non-null genes have no correlation before the group
effect is added.

no correlation, before the group effect was added. Figure 3 shows that the advantage of
correlation sharing has disappeared.

3 Residual correlation among non-null and null genes

The previous example suggests that a key assumption in for our proposal is that the corre-
lation between the non-null genes is higher than that for the null genes.

We need to say precisely what we mean by “correlation”. Suppose for a set of non-null
genes P, the expression is β units higher in group Yj = 2 than it is in group Yj = 1:

xij = β · I(Yj = 2) + εij for i ∈ P
= εij for i /∈ P (4)

Let xi = (xi1, xi2, . . . xin). Then even if the errors εij are all independent of one another,
we have corr(xi, xi′) > 0 for i, i′ ∈ P. That is, the treatment effect induces an overall
correlation between the genes in P. However we would expect that the t-statistic would
capture all of the information needed to decide if a gene is in P.

Instead, we assume that there is residual correlation among the genes in P:

corr(εi, εi′) > 0; for i, i′ ∈ P (5)

where εi = (εi1, . . . εin).
For the simulated data of Figure 1, the estimated residual correlation is the correlation

between genes, after having removed the estimated effect of treatment. Specifically, the
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Name Description # Samples # Features Source

Skin Two classes 58 12,625 Khan et al. (2001)
Duke breast cancer Two classes 49 7097 Huang et al. (2003)
BRCA Two classes 15 3226 Hedenfalk et al. (2001)
Lymphoma Survival 240 7399 Rosenwald et al. (2002)

Table 1: Summary of datasets for Figure 4.

residual correlation is corr(x∗
i , x

∗
i′) where x∗

ij = xij − x̂ij. For the two sample case, for
example, x̂ij = x̄i2 − x̄i1, x̄ik equaling the average of xij for samples in group k.

The average absolute residual correlation for the non-null genes (the first 50 genes)
equaled 0.47, while that for the null genes was 0.15, and the correlation between the non-null
and null genes was also 0.15.

Is there residual correlation in real microarray data? Biologically, genes will be correlated
if they are in the same pathway. However if that pathway is not active in the experimental
conditions under study, the genes in the pathway will not show large correlation. And the
same genes will tend to be null, i.e. will not differentially expressed in the experiment. The
opposite should be true for differentially expressed genes.

To see if this assumption is reasonable in practice, we examine four microarray datasets:
the skin data taken from Rieger et al. (2004), and Duke breast cancer data taken from (Huang
et al. 2003), the BRCA data taken from Hedenfalk et al. (2001) and the non-Hodgkins
lymphoma data from Rosenwald et al. (2002). These are summarized in Table 1.

The false discovery rates of both the t-statistic and correlation-shared statistics depend
on the total number of genes input into the corresponding procedure. Hence for fairness
(and computational speed) we started with the 2000 genes having largest overall variance in
each case.

To examine residual correlation, we computed the two-sample t-statistics Ti for each gene.
Then we computed the average absolute residual correlation for genes satisfying |Ti| > c,
with c varying from the 99th to the 75 quantiles of the |Ti| values. In the lymphoma data
the outcome is survival time; hence we instead computed the Cox’s partial likelihood score
statistic for each gene (see section 7).

The results are shown in Figure 4. For the skin and lymphoma datasets data, the non-
null genes have higher correlation with each other than they have with the null genes, and
also higher than that within the null-genes. But for the Duke and BRCA2 datasets, this is
not the case.

For the same four datasets, Figure 5 shows the estimated number of false positive genes is
plotted against the number of genes called significant, for both the t-statistic and correlation
shared t-statistic. Correlation sharing exhibits lower FDR for all datasets except the Duke
data, where neither method does much as all.
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Figure 4: Average absolute residual correlation as a function of the number of genes called signifi-
cant by the T or F-statistics.
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Figure 5: Results for four cancer datasets: plotted is the number of false positive genes versus
the number of genes called, for the standard t-statistic (red) and the correlation-shared t-statistic
(green). The broken line is the 45o line.
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Figure 6: Skin data: a closer look at gene 1127

4 Skin data example

We examine more closely the results for the skin data shown in the top left panel of Figure 5.
There are 12,625 genes and 58 patients: 44 normal patients and 14 with radiation sensitivity.

Figure 6 illustrates how correlation sharing can magnify the effect of a gene (#1127
chosen as an example). The figure shows all genes having correlation at least 0.5 with gene
# 1127. Its raw t-statistic is about 2.0 Notice that the genes most correlated with gene #
1127 have greater scores than this gene. In particular, gene #1127 has correlation > 0.6
with a gene having score about 4.7. Hence our procedure averages the scores of these two
genes to produce a new score of about 3.8.

Figure 8 shows the correlation-shared score versus the t-statistic score. Setting the cutoffs
so that each method yields 100 significant genes, there are 13 genes which are called by each
method and not called by the other. The red points represent the genes that are called
significant by correlation-sharing but not by the t-statistic. Many of these genes are highly
correlated with each other, and hence they boost up each other’s score.

In Figure 9 we do another test of our procedure. We randomly divided the samples
into equal-sized training and test sets. We computed the t-statistic and correlation sharing
statistics on the training set, and also evaluated on the test set. For each trial cutpoint
applied to the training set scores, we counted the number of genes with scores above or
below this cutpoint in the test set. Genes above the cutpoint in the training set but below
it in the test set were considered “false positives”, and conversely for false negatives. The
results in Figure 9 show that correlation sharing has fewer false negatives for the same
number of false positives.
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Figure 7: Skin data: correlation-shared score versus number of genes used in each gene average;
horizontal lines are drawn at cutpoints that yield 100 significant genes. Note that most of the
significant genes use no averaging, and none use a window of more than 10 genes
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Figure 8: Skin data: correlation-shared score versus t-statistic score. Broken lines are drawn at
the cutoffs yielding 100 significant genes for each method. The red points are the the genes that are
significant by correlation-sharing but not by t-statistic.
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Figure 9: Skin data test set results. Here we formed cutofff rules on the training set, and assessed
genes in in a separate test set. Shown are the number of false positive and negative genes in the
test set, as the cutpoint is varied.

5 Example: protein mass spectrometry

This example (taken from (Carlson et al. 2005)) consists of the intensities of 3160 peaks on
20 patients: 10 healthy patients and 10 with Kawasaki’s disease. They were measured on a
SELDI protein mass spectrometer.

Figure 10 shows that correlation sharing offers a mild improvement in the false positive
rate. For the 50 peaks having the top scores, 19 of these peaks were given neighborhoods
of more than a single feature by the correlation sharing procedure. The smallest correlation
chosen for neighborhood averaging was 0.7. Now in this example, each peak has an associated
m/z (mass over charge) location: this was not used in the correlation-sharing procedure, but
we can look posthoc at the these values within each averaging neighborhood. Figure 11 shows
the location of the each of the 19 peaks (horizontal axis) and the chosen neighbors (vertical
axis). The corresponding neighborhood correlation is indicated along the top of the plot.
We see that most often, the selected neighbors are close to the target peak. But in some
cases, they can be very far apart. Some biological insights might emerge from examination
of these groups of peaks.

6 Asymptotic Analysis

In this section we show that, under appropriate conditions, correlation sharing improves
power. More specifically, we show that for null genes, Ui has similar behavior to Ti, while
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Figure 10: Results for protein mass spectrometry example

.

for nonnull genes, Ui tends to be stochastically larger than Ti. For simplicity, we focus on
a one-sample, one-sided test. We denote by Xik the measurement for gene i in sample k.
Let Ti = n−1

∑n
k=1 Xik denote the test statistic for gene i and assume that Xik ∼ N(βi, σ

2)
where βi = 0 for null genes and that βi > 0 for non-nulls. Let ρ(i, j) = corr(Xik, Xjk) denote
the true residual correlation between gene i and gene j, ρ̂(i, j) denote the estimated residual
correlation.

The correlation-shared statistic is

Ui = max
ρ

1

|Cρ(i)|

∑

j∈Cρ(i)

Tj (6)

where Cρ(i) =

{
j : ρ̂(i, j) ≥ ρ

}
. (7)

Throughout this section we make a small modification to the statistic which simplifies the
analysis: we restrict the maximization in the definition of Ui to be over correlation neigh-
borhoods no larger than K, where K is some fixed integer.

Recall that there are m genes and n observations. We require both m and n to grow
in the asymptotic analysis. Typically, m is much larger than n so, to keep the asymptotics
realistic, we allow n to grow very slowly relative to m. Specifically, we assume:

Assumption (A1) : n ≡ n(m) > C log m for some sufficiently large C > 0. (8)

Let P denote the nonnull genes and let N = Pc denote the null genes. We will also need
the following:
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Assumption (A2): There exist 0 < δ < 1 such that

0 = max
i∈N
j∈P

ρ(i, j) = max
i,j∈N

ρ(i, j) < δ = min
i,j∈P

ρ(i, j). (9)

Thus we make the strong assumption that there is positive residual correlation among the
non-null genes, but no residual correlation among the null genes or between the non and
non-null genes. This simplifies our analysis. Later, we will relax this assumption.

LEMMA 1. Assume that (A1) holds. Fix ε > 0. Then, for all large m,

max
ij

|ρ̂(i, j) − ρ(i, j)| < ε a.s. (10)

and
max

i
|Ti − βi| < ε a.s. (11)

That is, ρ̂(i, j) = ρ(i, j) + o(1), uniformly over i, j, a.s. and Ti = β + o(1), uniformly over i,
a.s.

PROOF of Lemma 1. Kalisch and Bühlmann (2005) show that,

P(|ρ̂(i, j) − ρ(i, j)| > ε) ≤ c1(n − 1) exp
{
−(n − 3) log((4 + ε2)/(4 − ε2))

}
(12)

for some c1 > 0. So,

P(max
i,j

|ρ̂(i, j) − ρ(i, j)| > ε) (13)

≤ 2m2c1(n − 1) × exp
{
−(n − 3) log((4 + ε2)/(4 − ε2))

}
≤

1

mβ
(14)

where

β =
C

2
log((4 + ε2)/(4 − ε2)) −

log(4c1) − log C − log log m

log m
− 2 > 0. (15)

For C sufficiently large, β > 1. The first result then follows from the Borel-Cantelli Lemma.
For the second result, apply Mill’s inequality:

P(max
i

|Ti − βi| > ε) ≤ me−nε2/2σ2

. (16)

The result follows from assumption (8) and the Borel-Cantelli Lemma. �

LEMMA 2. Assume (A1) and (A2). Then, for all ρ > δ and each i ∈ P,

Cρ(i) ∩ N = ∅ a.s. (17)
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for all large m. Also, for every i ∈ N ,

Cρ(i) ∩ P = ∅ a.s. (18)

for all ρ > 0. Thus, there are no nulls in the correlation neighborhoods Cρ(i) of a non-
null gene, except possibly for small ρ. Similarly, there are no nonnulls in the correlation
neighborhoods Cρ(i) of a null gene.

6.1 The Oracle Statistic

To understand the behavior of the correlation sharing statistic, it is helpful to first consider
an oracle version of the statistic based on the true correlations. Let

κi = max
ρ

1

|νρ(i)|

∑

j∈Cρ(i)

Tj (19)

where νρ(i) =

{
j : ρ(i, j) ≥ ρ

}
. (20)

Let us fix some nonnull gene i ∈ P and without loss of generality, take i = 1. Without
loss of generality, label the genes so that

ρ(1, 2) > ρ(1, 3) > · · · > ρ(1, m). (21)

Then,

κ1 = max
r

1

r

r∑

i=1

Ti = max
r

1

r

r∑

i=1

1

n

n∑

j=1

Xij (22)

= max
r

1

r

r∑

i=1

1

n

n∑

j=1

(βi + εij) = max
r

(
β(r) +

1

rn

r∑

i=1

n∑

j=1

εij

)
(23)

= max
r

(
β(r) + Z(r)

)
(24)

where

β(r) =
1

r

r∑

i=1

βi (25)

is the Cesaro average and Z(·) is a mean zero Gaussian process with covariance kernel

J(r, s) =
σ2

nrs

r∑

j=1

s∑

k=1

ρ(j, k). (26)

The distribution of κ1 is thus the distribution of the maximum of a noncentered, nonstation-
ary Gaussian process.
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If β(r) is strongly peaked around some value r∗, then

κ1 ≈ β(r∗) + Z(r∗) ≡ V∗ ∼ N(β(r∗), J(r∗, r∗)). (27)

Hence,
P(κ1 > t) ≈ P(V∗ > t). (28)

In particular, suppose that ρ(1, i) = ρ for i ∈ P and ρ(1, i) = 0 for i ∈ N . Then,

V∗ ∼ N

(
β(r∗),

1 + 2ρ

r∗n

)
(29)

and so

P(κ1 > t) ≥ P

(
χ2

1(π) >
r∗nt2

1 + 2ρ

)
(30)

where χ2
1(π) is a noncentral χ2

1 with noncentrality parameter

π =
nr∗β

2
(r∗)

1 + 2ρ
. (31)

In contrast, T1 has noncentrality parameter nβ2
1 . These heuristics imply that correlation

sharing improves the power if

r∗β
2
(r∗)

1 + 2ρ
> β2

1 , where r∗ = argmaxrβ(r). (32)

Figures 12 and 13 illustrate this analysis. The top plot in each figure is β(r) and the
bottom plot is the noncentrality as a function of the size r of the correlation neighborhood.

Figures 12 shows a least favorable case in which β1 = 10 and βi = 1 for i > 1, i ∈ P.
(In all cases we took ρ = .5). We call this least favorable since T1 has the largest mean;
any averaging can only reduce its mean. Now, r∗ = 1 and T1 has noncentrality 50. The
randomness of ρ̂ can lead to a correlation neighborhood larger than r∗ = 1. If so, the
noncentrality parameter can be reduced as is evident from the steep decline of the curve in
the second plot.

Figure 13 shows a more realistic case. Here we used a random effects model and took
βi ∼ N(3, 1). This makes

∑
r βr a random walk. Correspondingly, β(r) behaves like a

random walk for small r but settles down to a constant for large r. In this case, r∗ tends to
be small but the noncentrality grows rapidly. The result is a dramatic gain in noncentrality.
Also, the gain is robust to the choice of r.

Now consider a null gene i ∈ N . Again take i = 1. Then, by assumption (A2), ρ(1, j) = 0
for all j > 1. Hence, νρ(1) = {1} for all ρ > 0 and κ1 = T1 so the null distribution is
unaffected by correlation sharing.

Let us now consider weakening (A2). Suppose we allow some small, nonzero correlation
∆ among null genes. Change the definition of Ui to

Ui = max
ρ>∆

|Cρ(i)|≤K

1

|Cρ(i)|

∑

j∈Cρ(i)

Tj (33)
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Figure 12: The non-centrality parameter as a function of neighborhood size; least favorable

case. The top plot is the cumulative average r−1
∑r

j=1 βj versus r. The bottom plot shows

the noncentrality parameter versus r. The horizontal line shows the noncentrality parameter

for T1. For 1 < r ≤ 80, the noncentrality parameter for T1 is larger than noncentrality

parameter for U1. Since the top plot is maximized at r = 1 we expect that the correlation

neighborhood for U1 shoule have r close to 1.
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Figure 13: The non-centrality parameter as a function of neighborhood size; typical case.

The top plot is the cumulative average r−1
∑r

j=1 βj versus r. The bottom plot shows the non-

centrality parameter versus r. The horizontal line near 0 shows the noncentrality parameter

for T1. The horizontal line near 100 shows the noncentrality parameter for U1 when the

correaltion neighborood is r = 20 corresponding to the maximum of the top plot. Not only is

there a large gain in noncentrality, but the gain is robust to fluctuations in r.
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Now replace (A2) with:

Assumption (A2’):
min
i∈P
j∈P

ρ(i, j) > max
i∈N
j∈P

ρ(i, j) (34)

and
max
i∈N
j∈P

ρ(i, j) < ∆. (35)

The analysis for nonnull genes is virtually unchanged. For null genes, condition (A2’)
ensures that κ1 = T1. An interesting extension is to estimate ∆ from the data. We leave
this to future work.

6.2 Relationship Between Ui and the Oracle

The analysis in the previous section ignores the variability of the ρ̂(i, j)′s. Now we relate κi

to Ui.
First, under appropriate assumptions, we will show that for nonnull genes, U1 is at least

as large as κ1. Suppose there exists a decreasing function f : [0, 1] → [0, 1] with f(0) = 1,
such that

ρ(1, i) = f(i/m). (36)

Suppose that f is a simple function, that is, f takes finitely many values a1 > a2 > · · · >
ak. The level sets νρ(1) = {j : ρ(1, j) ≥ ρ} can only be of the form As = {j : ρ(1, j) ≥ as}
for s = 1, . . . , k. Choose ε > 0 small. By Lemma 1, maxj |ρ̂(1, j) − ρ(1, j)| < ε a.s. Let
I = {ρ ∈ [0, 1] : mins|ρ − as| > ε}. For all ρ ∈ I, νρ(1) = Cρ(1) a.s. Then, for all large m,

U1 = max
ρ

1

|Cρ(1)|

∑

j∈Cρ(1)

Tj ≥ max
ρ∈I

1

|Cρ(1)|

∑

j∈Cρ(1)

Tj (37)

= max
ρ∈I

1

|νρ(1)|

∑

j∈Cρ(1)

Tj a.s. = max
ρ

1

|νρ(1)|

∑

j∈Cρ(1)

Tj (38)

= κ1 (39)

so that U1 is at least as large as κ1.
Now we drop the assumption that f is simple and instead assume it is continuous and

strictly decreasing. Similarly, assume there exists a continuous, integrable function g such
that

βi = g(i/m). (40)

Suppose that g(u) ≡ s−1
∫ s

0
g(u)du is maximized at some s∗ > 0. Let c = f(s∗) and

r = |νc(1)|. Then, a.s. for all large m,

κ1 = max
ρ

1

|νρ(1)|

∑

j∈νc(1)

Tj = max
ρ

1

|νρ(1)|

∑

j∈νρ(1)

βj + o(1) (41)
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= max
r

1

r

r∑

j=1

βj + o(1) = max
s

1

s

∫ s

0

g(u)du + o(1) (42)

=
1

s∗

∫ s∗

0

g(u)du + o(1) = g(s∗) + o(1). (43)

Hence,

κ1 ≈
1

|νc(1)|

∑

j∈νρ(i)

Tj =
1

r

∑

j: ρ(1,j)≥c

Tj. (44)

Let R = |Cc(1)|. From Lemma 1 and the assumptions on f , R/m = r/m + o(1) a.s. and

U1 = max
ρ

1

|Cρ(1)|

∑

j∈Cρ(1)

Tj ≥
1

|Cc(1)|

∑

j∈Cc(1)

Tj (45)

=
1

R

∑

j: bρ(1,j)≥c

Tj (46)

=
1

R

∑

ρ(1,i)≥c

Ti +
1

R

∑

bρ(1,i)≥c

ρ(1,i)<c

Ti −
1

R

∑

bρ(1,i)<c

ρ(1,i)≥c

Ti (47)

=
1

r

∑

ρ(1,i)≥c

Ti + o(1) (48)

= κ1. (49)

Thus, U1 ≥ κ1 + o(1).
Now suppose that i = 1 is a null gene. Fix a small ε > 0. Under (A2), we eventually,

have
|{j > 1 : ρ̂(1, j) > ε}| = 0 (50)

and hence
U1 = κ1 a.s. (51)

The same holds under (A2’).

7 Other issues

Computation of the correlation shared statistic can be challenging when the number of fea-
tures m is large. Brute force computation is O(m2). In principle, a KD tree can be used
to quickly find the neighbors of a given point with correlation at least ρ. The building of
the tree requires O(m log m) computations, while the nearest neighbor search takes O(log m)
computations. Hence the nearest neighbor search for all points requires O(m log m) compu-
tations. However, since the dimension of the feature space (n) is large n these problems (at
least 50 or 100), the KD tree approach is not likely to be effective in practice (J. Friedman,
personal communication).
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Hence we instead do a direct brute force computation, exploiting the sparsity of the set
of pairs of points with large correlation. The resulting procedure is quite fast, requiring for
example 2.7s on the proteomics example (m = 3160, n = 20).

The proposal of this paper can be applied to outcome measures other than two-class
problems. We have seen this earlier in the lymphoma example, where the outcome was
survival time. Other response types that may arise include a multi-class or quantitative
outcome. The modification to the correlation-sharing technique is simple: the t-statistic (2)
is simply replaced by a score that is appropriate for the outcome measure. For survival data,
for example, we use the partial likelihood score statistic for each gene. This was illustrated
in the lymphoma data of Table 1.

Correlation-sharing provides a recipe for supervised clustering of features. Hence one
might use correlation-sharing as a pre-processing step, by averaging the given features in the
prescribed clusters. Then these averaged features could be used as input into a regression or
classification procedure. This is a topic for future study.
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