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MINIMAX SPARSE PRINCIPAL SUBSPACE ESTIMATION

IN HIGH DIMENSIONS

By Vincent Q. Vu∗ and Jing Lei†

The Ohio State University and Carnegie Mellon University

We study sparse principal components analysis in high dimen-
sions, where p (the number of variables) can be much larger than n
(the number of observations), and analyze the problem of estimating
the subspace spanned by the principal eigenvectors of the popula-
tion covariance matrix. We prove optimal, non-asymptotic lower and
upper bounds on the minimax subspace estimation error under two
different, but related notions of ℓq subspace sparsity for 0 ≤ q ≤ 1.
Our upper bounds apply to general classes of covariance matrices,
and they show that ℓq constrained estimates can achieve optimal
minimax rates without restrictive spiked covariance conditions.

1. Introduction. Principal components analysis (PCA) was introduced
in the early 20th century (Pearson, 1901; Hotelling, 1933) and is arguably
the most well known and widely used technique for dimension reduction.
It is part of the mainstream statistical repertoire and is routinely used in
numerous and diverse areas of application. However, contemporary appli-
cations often involve much higher-dimensional data than envisioned by the
early developers of PCA. In such high-dimensional situations, where the
number of variables p is of the same order or much larger than the number
of observations n, serious difficulties emerge: standard PCA can produce
inconsistent estimates of the principal directions of variation and lead to
unreliable conclusions (Johnstone and Lu, 2009; Paul, 2007; Nadler, 2008).

The principal directions of variation correspond to the eigenvectors of
the covariance matrix, and in high-dimensions consistent estimation of the
eigenvectors is generally not possible without additional assumptions about
the covariance matrix or its eigenstructure. Much of the recent development
in PCA has focused on methodology that applies the concept of sparsity to
eigenvector estimation (some examples include Jolliffe, Trendafilov and Uddin,
2003; d’Aspremont et al., 2007; Zou, Hastie and Tibshirani, 2006; Shen and Huang,
2008; Witten, Tibshirani and Hastie, 2009). Theoretical developments on
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2 V. Q. VU AND J. LEI

sparsity and PCA include Johnstone and Lu (2009); Amini and Wainwright
(2009); Shen, Shen and Marron (2011); Ma (2011); Vu and Lei (2012a); Birnbaum et al.
(2012).

An open problem that has remained is whether sparse PCA methods can
optimally estimate the subspace spanned by the leading eigenvectors, i.e. the
principal subspace of variation. The subspace estimation problem is directly
connected to dimension reduction and is important when there is more than
one principal component of interest. Indeed, typical applications of PCA
use the projection on to the principal subspace to facilitate exploration and
inference of important features of the data. In that case the assumption
that there are distinct principal directions of variation is mathematically
convenient but unnatural.

In this paper we study principal subspace estimation by sparse PCA
in high-dimensions. We present non-asymptotic minimax lower and upper
bounds with optimal dependence on the parameters of the problem. As an
illustration, one consequence of our results is that the order of the minimax
mean squared estimation error of the d-dimensional principal subspace is,
ignoring constant factors,

Rq

(
σ2

n
(d+ log p)

)1− q
2

, 0 ≤ q ≤ 1 ,

where σ2 is a measure of the noise-to-signal ratio and Rq is a measure of
the sparsity in an ℓq sense defined in Section 2. The d+ log p factor is novel
and it reflects two complementary aspects of the problem: d for parametric
estimation and log p for variable selection.

We obtain the minimax upper bound by analyzing a sparsity constrained
principal subspace estimator and showing that it attains the optimal error
(up to a constant factor). In comparison to most existing analyses in the
literature, we show that the upper bound holds without assuming a spiked
covariance model. A key technical ingredient in our analysis of the subspace
estimator is a novel variational form of the Davis-Kahan sinΘ Theorem (see
Lemma 5.2) that allows us to bound the estimation error using some recent
advances in empirical process theory. The minimax lower bound follows the
standard Fano method framework, but involves nontrivial constructions of
packing sets in the Stiefel Manifold.

Our results provide the first and optimal minimax lower bound for sparse
principal subspace estimation. To our knowledge, the only other work that
has considered sparse principal subspace estimation is that of Ma (2011)
on the rate of convergence of an iterative thresholding estimator. However
their analysis depends on assuming a spiked covariance model and even then
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MINIMAX SPARSE PRINCIPAL SUBSPACE ESTIMATION 3

the rate of convergence has suboptimal dependence on the dimension of the
principal subspace.

The remainder of the paper is organized as follows. In the next section,
we introduce the sparse principal subspace estimation problem and formally
setup our minimax framework and estimator. In Section 3 we present our
main conditions and results, and provide a brief discussion about their con-
sequences and intuition. Sections 4 and 5 contain the major steps in proving
the lower and upper bounds. The major steps in the proofs require some
auxilliary lemmas whose proofs we defer to Appendices A and B. Section 6
closes the paper with discussion of our results and open problems.

2. Subspace estimation. Let X1, . . . ,Xn ∈ R
p be independent, iden-

tically distributed random vectors with mean µ and covariance matrix Σ. To
reduce the dimension of the Xi’s from p down to d, PCA looks for d mutually
uncorrelated, linear combinations of the p coordinates of Xi that have max-
imal variance. Geometrically, this is equivalent to finding a d-dimensional
linear subspace that is closest to the centered random vector Xi − µ in a
mean squared sense1, and it corresponds to the optimization problem

(2.1)
minimize E‖(Ip −ΠG)(Xi − µ)‖22
subject to G ∈ Gp,d ,

where Gp,d is the Grassmann manifold2 of d-dimensional subspaces of Rp,
ΠG is the projection onto G, and Ip is the p × p identity matrix. There is
always at least one d ≤ p for which eq. (2.1) has a unique solution. That
solution can be determined by the spectral decomposition

(2.2) Σ =

p∑

j=1

λjvjv
T
j ,

where λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 are the eigenvalues of Σ and v1, . . . , vp ∈ R
p,

orthonormal, are the associated eigenvectors. If λd > λd+1, then the d-
dimensional principal subspace of Σ is

(2.3) S = span{v1, . . . , vd} ,

and the projection onto S is given by ΠS = V V T , where V is the p × d
matrix with columns v1, . . . , vd.

1This is essentially the viewpoint of Pearson (1901).
2For background on Grassmann and Stiefel manifolds, see Edelman, Arias and Smith

(1998) and Chikuse (2003).
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4 V. Q. VU AND J. LEI

In practice, Σ is unknown, so S must be estimated from the data. Standard
PCA replaces eq. (2.1) with an empirical version. This leads to the spectral
decomposition of the sample covariance matrix

Sn =
1

n

n∑

i=1

(Xi − X̄)(Xi − X̄)T ,

where X̄ is the sample mean, and estimating S by the span of the leading d
eigenvectors of Sn. In high-dimensions, however, the eigenvectors of Sn can
be inconsistent estimators of the eigenvectors of Σ. Additional structural
constraints are necessary for consistent estimation of S.

2.1. Subspace sparsity. The notion of sparsity is appealing and has been
used successfully in the context of estimating vector valued parameters such
as the leading eigenvector in PCA. Extending this notion to subspaces re-
quires care because sparsity is inherently a coordinate-dependent concept
while subspaces are coordinate-independent. For a given d-dimensional sub-
space G ∈ Gp,d, the set of orthonormal matrices whose columns span G is a
subset of the Stiefel manifold Vp,d of p × d orthonormal matrices, and are
equal up to multiplication on the right by an orthogonal matrix. We will
consider two complementary notions of subspace sparsity defined in terms
of those orthonormal matrices: row sparsity and column sparsity.

Define the (2, q)-norm3, q ≥ 0, of a p× d matrix A as

‖A‖q2,q :=





∑p
j=1

[∑d
k=1 a

2
jk

] q
2

if q > 0, and
∑p

j=1 1{aj∗ 6=0} if q = 0 ,

where aj∗ denotes the jth row of A. Note that ‖·‖q2,q is coordinate-independent,
because ‖AO‖2,q = ‖A‖2,q for any orthogonal matrix O ∈ R

d×d. We define
the row sparse subspaces using this norm.

Definition (Row sparse subspaces). For q ≥ 0 and Rq ≥ d,

Mq(Rq) :=

{{
span(U) : U ∈ Vp,d and ‖U‖q2,q ≤ Rq

}
if q > 0, and{

span(U) : U ∈ Vp,d and ‖U‖2,0 ≤ R0

}
if q = 0 .

where span(U) denotes the span of the columns of U .

3To be precise, this is actually a pseudonorm when q < 1.
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MINIMAX SPARSE PRINCIPAL SUBSPACE ESTIMATION 5

Roughly speaking, row sparsity asserts that there is a small subset of
variables (coordinates of R

p) that generate the principal subspace. Since
‖·‖q2,q is coordinate-independent, every orthonormal basis of a row sparse G
has the same (2, q)-norm. Column sparsity, on the other hand, asserts that
there is some orthnormal basis of sparse vectors that spans the principal
subspace. Define the (∗, q)-norm, q ≥ 0, of a p× d matrix A as

‖A‖q∗,q :=
{
max1≤k≤d

∑p
j=1 |ajk|q if q > 0, and

max1≤k≤d
∑p

j=1 1{ajk 6=0} if q = 0 .

This is the maximum of the ℓq norms of the columns of A and is not
coordinate-independent. We define the column sparse subspaces to be those
that have some orthonormal basis with small (∗, q)-norm.

Definition (Column sparse subspaces). For q ≥ 0 and Rq ≥ 1,

M∗
q(Rq) :=

{{
span(U) : U ∈ Vp,d and ‖U‖q∗,q ≤ Rq,

}
if q > 0, and{

span(U) : U ∈ Vp,d and ‖U‖∗,0 ≤ R0,
}

if q = 0 .

The column sparse subspaces are the d-dimensional subspaces that have
some orthonormal basis whose vectors are ℓq sparse in the usual sense. Unlike
row sparsity, the orthonormal bases of a column sparse G do not all have
the same (∗, q)-norm, but if G ∈ M∗

q(Rq), then there exists some U ∈ Vp,d

such that G = span(U) and ‖U‖q∗,q ≤ Rq (or ‖U‖∗,0 ≤ R0 for q = 0).

2.2. Parameter space. We assume that there exists i.i.d. random vectors
Z1, . . . , Zn ∈ R

p, with EZ1 = 0 and Var(Z1) = Ip, such that

(2.4) Xi = µ+Σ1/2Zi and ‖Zi‖ψ2
≤ 1 ,

for i = 1, . . . , n, where ‖·‖ψα
is the Orlicz ψα-norm

4 defined for α ≥ 1 as

‖Z‖ψα
:= sup

b:‖b‖2≤1
inf

{
C > 0 : E exp

∣∣∣∣
〈Z, b〉
C

∣∣∣∣
α

≤ 2

}
.

This ensures that the distribution of the Xi’s is sub-Gaussian. We also as-
sume that the eigengap λd − λd+1 > 0 so that the principal subspace S is
well-defined. Intuitively, S is harder to estimate when the eigengap is small.
This is made precise by the noise-to-signal ratio

(2.5) σ2 :=
λ1λd+1

(λd − λd+1)2
.

4See van der Vaart and Wellner (1996, Chapter 2) for more information on the Orlicz
ψα-norm.
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6 V. Q. VU AND J. LEI

It turns out that σ2 is a key quantity in the estimation of S, and that it is
analogous to the noise variance in linear regression. Let

Pq(σ2, Rq)

denote the class of distributions onX1, . . . ,Xn that satisfy eq. (2.4), eq. (2.5),
and S ∈ Mq(Rq). Similarly, let

P∗
q (σ

2, Rq)

denote the class of distributions that satisfy eq. (2.4), eq. (2.5), and S ∈
M∗

q(Rq). Throughout this paper, we consider estimating S over Pq(σ2, Rq)
and P∗

q (σ
2, Rq).

2.3. Subspace distance. A notion of distance between subspaces is nec-
essary to measure the performance of a principal subspace estimator. The
canonical angles between subspaces generalize the notion of angles between
lines and can be used to define subspace distances. There are several equiva-
lent ways to describe canonical angles, but for our purposes it will be easiest
to describe them in terms of projection matrices.5 For a subspace E ∈ Gp,d

and its orthogonal projection E, we write E⊥ to denote the orthogonal pro-
jection onto E⊥ and recall that E⊥ = Ip − E.

Definition. Let E and F be d-dimensional subspaces of Rp with or-
thogonal projections E and F . Denote the singular values of EF⊥ by s1 ≥
s2 ≥ · · · . The canonical angles between E and F are the numbers

θk(E ,F) = arcsin(sk)

for k = 1, . . . , d and the angle operator between E and F is the d× d matrix

Θ(E ,F) = diag(θ1, . . . , θd) .

In this paper we will consider the following distance between subspaces
E ,F ∈ Gp,d.

‖sinΘ(E ,F)‖F
where ‖·‖F is the Frobenius norm. This distance is indeed a metric on Gp,d

(see Stewart and Sun, 1990, for example), and can be connected to the fa-
miliar Frobenius (squared error) distance between projection matrices by
the following following well-known fact from matrix perturbation theory.

5We refer the reader to Bhatia (1997, Chapter VII.1) and Stewart and Sun (1990) for
additional background on canonical angles.
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MINIMAX SPARSE PRINCIPAL SUBSPACE ESTIMATION 7

Proposition 2.1 (see Stewart and Sun (1990), Theorem I.5.5). Let E
and F be d-dimensional subspaces of Rp with orthogonal projections E and
F . Then

1. The singular values of EF⊥ are

s1, s2, . . . , sd, 0, . . . , 0 .

2. The singular values of E − F are

s1, s1, s2, s2, . . . , sd, sd, 0, . . . , 0 .

In other words, EF⊥ has at most d nonzero singular values and the nonzero
singular values of E − F are the nonzero singular values of EF⊥, each
counted twice.

Thus,

(2.6) ‖sinΘ(E ,F)‖2F = ‖EF⊥‖2F =
1

2
‖E − F‖2F = ‖E⊥F‖2F .

We will frequently use these identities. For simplicity, we will overload no-
tation and write

sin(U1, U2) := sinΘ
(
span(U1), span(U2)

)

for U1, U2 ∈ Vp,d. We also use a similar convention for sin(E,F ), where E,F
are the orthogonal projections corresponding to E ,F ∈ Gp,d The following
proposition, proved in the Appendix, relates the subspace distance to the
ordinary Euclidean distance between orthonormal matrices.

Proposition 2.2. If V1, V2 ∈ Vp,d, then

1

2
inf

Q∈Vd,d

‖V1 − V2Q‖2F ≤ ‖sin(V1, V2)‖2F ≤ inf
Q∈Vd,d

‖V1 − V2Q‖2F .

In otherwords, the distance between two subspaces is equivalent to the
distance between their orthonormal bases, up to some rotation.

2.4. Sparse subspace estimators. Here we introduce two estimators that
achieves the optimal (up to a constant factor) minimax error for sparse sub-
space estimation. To estimate a sparse subspace, it is natural to consider the
emprical minimization problem corresponding to eq. (2.1) with an additional
sparsity constraint corresponding to either Mq(Rq) or M∗

q(Rq).
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8 V. Q. VU AND J. LEI

We define the row sparse principal subspace estimator to be a solution of
the following constrained optimization problem.

(2.7)
minimize

1

n

n∑

i=1

‖(Ip −ΠG)(Xi − X̄)‖22

subject to G ∈ Mq(Rq) .

For our analysis it is more convenient to work on the Stiefel manifold.
Let 〈A,B〉 := Tr(ATB) for matrices A,B of compatible dimension. It is
straightforward to show that following optimization problem is equivalent
to eq. (2.7).

(2.8)
maximize 〈Sn, UUT 〉
subject to U ∈ Vp,d and ‖U‖q2,q ≤ Rq .

If V̂ is a solution of eq. (2.8). Then span(V̂ ) is a solution of eq. (2.7). The
feasible set of both problems is nonempty when Rq ≥ d and the sparsity
constraint is active only when Rq ≤ dq/2p1−q/2. When q = 1, the estimator
defined by eq. (2.8) is essentially a generalization to subspaces of the Lasso-
type sparse PCA estimator proposed by Jolliffe, Trendafilov and Uddin (2003).
A similar idea has also been used by Chen, Zou and Cook (2010) in the con-
text of sufficient dimension reduction. This estimator appears to be compu-
tationally intractable, because it involves a convex maximization problem.

In the column sparse case, we define the column sparse principal subspace
estimator analogously to the row sparse principal subspace estimator, using
the column sparse subspaces M∗

q(Rq) instead of the row sparse ones. This
leads to the following equivalent Grassmann and Stiefel manifold optimiza-
tion problems.

(2.9)
minimize

1

n

n∑

i=1

‖(Ip −ΠG)(Xi − X̄)‖22

subject to G ∈ Mq(Rq) .

(2.10)
maximize 〈Sn, UUT 〉
subject to U ∈ Vp,d and ‖U‖q∗,q ≤ Rq

Like the row sparse estimator, the column sparse principal subspace estima-
tor does not appear to be computationally tractable either.

3. Main results. In this section we present our main results on the
minimax lower and upper bounds of sparse principal subspace estimation
over the row sparse and column sparse classes.
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MINIMAX SPARSE PRINCIPAL SUBSPACE ESTIMATION 9

3.1. Minimax lower bounds. To highlight the key results with minimal
assumptions, we will first consider the simplest case where q = 0. Consider
the following two conditions.

Condition 1. There is a constant M > 0 such that

(Rq − d)

[
σ2

n

(
d+ log

(p− d)1−
q
2

Rq − d

)]1− q
2

≤M .

Condition 2. 4 ≤ p− d and 2d ≤ Rq − d ≤ (p − d)1−
q
2 .

Condition 1 is necessary for the existence of a consistent estimator (see
Theorems 4.1 and 4.2). Without Condition 1, the statements of our results
would be complicated by multiple cases to deal with the fact that the sub-
space distance is bounded above by

√
d. The lower bounds on p−d and Rq−d

are minor technical conditions that ensure our non-asymptotic bounds are
non-trivial. Similarly, the upper bound on Rq − d is only violated in trivial
cases.

Theorem 3.1 (Row sparse lower bound, q = 0). If Conditions 1 and 2
hold, then

inf
Ŝ

sup
P0(σ2,R0)

E‖sinΘ(Ŝ,S)‖2F ≥ c(R0 − d)
σ2

n

[
d+ log

p− d

R0 − d

]
.

Here, as well as in the entire paper, c denotes universal, positive con-
stant, not necessarily the same at each occurrance. This lower bound result
reflects two separate aspects of the estimation problem: variable selection
and parameter estimation after variable selection. Variable selection refers
to finding the variables that generate the principal subspace, while estima-
tion refers to estimating the subspace after selecting the variables. For each
variable, we accumulate two types of errors: one proportional to d that re-
flects the coordinates of the variable in the d-dimensional subspace, and one
proportional to log[(p − d)/(R0 − d)] that reflects the cost of searching for
the R0 active variables. We prove Theorem 3.1 in Section 4.

The non-asymptotic lower bound for 0 < q < 2 has a more complicated
dependence on (n, p, d, Rq, σ

2) because of the interaction between ℓq and
ℓ2 norms. Therefore, our main lower bound result for 0 < q < 2 will focus
on values of (n, p, d, Rq, σ

2) that correspond to the high-dimensional and
sparse regime. (We will state more general lower bound results in Section 4.)
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10 V. Q. VU AND J. LEI

Let

γ :=
(p− d)σ2

n
and T :=

Rq − d

(p− d)1−
q
2

.(3.1)

The interpretation for these two quantities is natural. First, T measures
the relative sparsity of the problem. It ranges between 0 and 1, though the
“sparse” regime generally corresponds to T ≪ 1. The second quantity, γ
corresponds to the classic mean squared error (MSE) of standard PCA. The
problem is low-dimensional if γ is small and there is not much sparsity. We
impose the following condition to preclude this case.

Condition 3. There is a constant a < 1 such that T a ≤ γ
q
2 .

This condition lower bounds the classic MSE in terms of the sparsity
and is mild in high-dimensional situations. When a = q/2, for example,
Condition 3 reduces to

Rq − d ≤ σ2

n
(p − d)2−

q
2 .

We also note that this assumption becomes milder for larger values of a and
it is related to conditions in other minimax inference problem involving ℓp
and ℓq balls (see Donoho and Johnstone, 1994, for example).

Theorem 3.2 (Row sparse lower bound, 0 < q < 2). Let q ∈ (0, 2). If
Conditions 1 to 3 hold, then

inf
Ŝ

sup
Pq(σ2,Rq)

E‖sinΘ(Ŝ,S)‖2F ≥ c(Rq − d)

{
σ2

n

[
d+ log

(p − d)1−
q
2

Rq − d

]}1− q
2

.

This result generalizes Theorem 3.1 and reflects the same combination
of variable selection and parameter estimation. When Condition 3 does not
hold, the problem is outside of the sparse, high-dimensional regime. As we
show in the proof, there is actually a “phase transition regime” between
the high-dimensional sparse and the classic dense regimes for which sharp
minimax rate remains unknown. A similar phenomenon has been observed
in Birnbaum et al. (2012).

By modifying the proof of Theorem 3.1 and Theorem 3.2 we can obtain
results for the column sparse case that are parallel to the row sparse case.
For brevity we present the q = 0 and q > 0 cases together. The analog of T
for the column sparse case is

(3.2) T∗ :=
d(Rq − 1)

(p − d)1−
q
2

,
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MINIMAX SPARSE PRINCIPAL SUBSPACE ESTIMATION 11

and the analogs of Conditions 2 and 3 are the following.

Condition 4. 4d ≤ p− d and d ≤ d(Rq − 1) ≤ (p − d)1−
q
2 .

Condition 5. There is a constant a < 1 such that T a∗ ≤ γ
q
2 .

Theorem 3.3 (Column sparse lower bound). Let q ∈ [0, 2). If Conditions 4
and 5 hold, then

inf
Ŝ

sup
P∗
q (σ

2,Rq)

E‖sin(Ŝ ,S)‖2F ≥ cd(Rq − 1)

{
σ2

n

[
1 + log

(p− d)1−
q
2

d(Rq − 1)

]}1− q
2

.

For column sparse subspaces, the lower bound is dominated by the vari-
able selection error, because column sparsity is defined in terms of the max-
imal ℓ0 norms of the vectors in an orthonormal basis and R0 variables must
be selected for each of the d vectors. So the variable selection error is inflated
by a factor of d. We prove Theorem 3.3 in Section 4.

3.2. Minimax upper bounds. Our upper bound results are obtained by
analyzing the estimators given in Section 2.4. The case where q = 0 is the
clearest, and we begin by stating a weaker, but simpler minimax upper
bound for the row sparse class.

Theorem 3.4 (Row sparse upper bound in expectation). Let Ŝ be any
solution of eq. (2.7). If 6

√
R0(d+ log p) ≤ √

n, then

sup
P0(σ2,R0)

E‖sinΘ(Ŝ,S)‖F ≤ c
√
R0

(
λ1
λd+1

σ2(d+ log p)

n

)1

2

.

Although eq. (2.7) may not have a unique global minimum, Theorem 3.4
shows that any global minimum will be within a certain radius of the princi-
pal subspace S. The proof of Theorem 3.4, given in Section 5.2, is relatively
simple but still nontrivial. It also serves as a prototype for the much more
involved proof of our main upper bound result stated in Theorem 3.5 below.
We note that the rate given by Theorem 3.4 is off by a

√
λ1/λd+1 factor

that is due to the specific approach taken to control an empirical processes
in our proof of Theorem 3.4.

To state the main upper bound result with optimal dependence on (n, p,
d, Rq,σ

2), we first describe some regularity conditions. Let

ǫn :=
√
2R

1

2
q

(
d+ log p

n

) 1

2
− q

4

.
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12 V. Q. VU AND J. LEI

The regularity conditions are

ǫn ≤ 1 ,(3.3)

c1

√
d

n
log nλ1 + c3ǫn(log n)

5/2λd+1 <
1

2
(λd − λd+1) ,(3.4)

c3ǫn(log n)
5/2λd+1 ≤

√
λ1λd+1

1−q/2
(λd − λd+1)

q/2 , and(3.5)

c3ǫ
2
n(log n)

5/2λd+1 ≤
√
λ1λd+1

2−q
(λd − λd+1)

−(1−q) ,(3.6)

where c1 and c3 are positive constants given.

Theorem 3.5 (Row sparse upper bound in probability). Let q ∈ [0, 1]
and Ŝ be any solution of eq. (2.7). If (X1, . . . ,Xn) ∼ P ∈ Pq(σ2, Rq) and
eqs. (3.3) to (3.6) hold, then

‖sinΘ(Ŝ,S)‖2F ≤ cRq

(
σ2(d+ log p)

n

)1− q
2

with probability at least 1− 4/(n − 1)− 6 log n/n− p−1.

Theorem 3.5 is presented in terms of a probability bound instead of an
expectation bound. This stems from technical aspects of our proof that
involve bounding the supremum of an empirical process over a set of random
diameter. The upper bound matches our lower bounds (Theorem 3.1 and
Theorem 3.2) for the entire tuple (n, p, d, Rq,σ

2) up to a constant if

R2/(2−q)
q ≤ pc

for some constant c < 1. The proof of Theorem 3.5 is in Section 5.2. By
observing that M∗

q(Rq) ⊆ Mq(dRq), we can reuse the proof of Theorem 3.5
to derive the following upper bound for the column sparse class.

Corollary 3.1 (Column sparse upper bound). Let q ∈ [0, 1] and Ŝ be
any solution of eq. (2.9). If (X1, . . . ,Xn) ∼ P ∈ P∗

q (σ
2, Rq) and eqs. (3.3)

to (3.6) hold with Rq replaced by dRq, then

‖sinΘ(Ŝ,S)‖2F ≤ cdRq

(
σ2(d+ log p)

n

)1− q
2

with probability at least 1− 4/(n − 1)− 6 log n/n− p−1

Corollary 3.1 is slightly weaker than the corresponding result for the row
sparse class. It matches the lower bound in Theorem 3.3 up to a constant if

(d(Rq − 1))2/(2−q) ≤ pc

for some constant c < 1, and d < C log p for some other constant C.
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4. Lower bound proofs. Theorems 3.1 to 3.3 are consequences of
three more general results stated below. An essential part of the strategy
of our proof is to analyze the variable selection and estimation aspects of
the problem separately. We will consider two types of subsets of the param-
eter space that capture the essential difficulty of each aspect: one where the
subspaces vary over different subsets of variables, and another where the
subspaces vary over a fixed subset of variables. The first two results give
lower bounds for each aspect in the row sparse case. Theorems 3.1 and 3.2
follow easily from them. The third result directly addresses the proof of
Theorem 3.3.

Theorem 4.1 (Row sparse variable selection). Let q ∈ [0, 2) and (p, d,Rq)
satisfy

4 ≤ p− d and 1 ≤ Rq − d ≤ (p − d)1−
q
2 .

There exists a universal constant c > 0 such that every estimator Ŝ satisfies
the following. If T < γ

q
2 , then

sup
Pq(σ2,Rq)

E‖sinΘ(Ŝ,S)‖F

≥ c

{
(Rq − d)

[
σ2

n

(
1− log

(
T/γ

q
2

))
]1− q

2

∧ 1

} 1

2
.(4.1)

Otherwise,

(4.2) sup
Pq(σ2,Rq)

E‖sinΘ(Ŝ,S)‖F ≥ c

{
(p − d)σ2

n
∧ 1

} 1

2

.

The case q = 0 is particularly simple, because T < γ
q
2 = 1 holds trivially.

In that case, Theorem 4.1 asserts that

sup
P0(R0,σ2)

E‖sinΘ(Ŝ,S)‖F

≥ c

{
(R0 − d)

σ2

n

(
1 + log

p− d

Rq − d

)
∧ 1

} 1

2

.

(4.3)

When q ∈ (0, 2) the transition between the T < γ
q
2 and T ≥ γ

q
2 regimes

involves lower order (log log) terms that can be seen in eq. (4.15). Under
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14 V. Q. VU AND J. LEI

Condition 3, eq. (4.1) can be simplified to

sup
P0(R0,σ2)

E‖sinΘ(Ŝ,S)‖F

≥ c

{
(Rq − d)

σ2

n

(
1 + (1− a) log

(p− d)1−
q
2

Rq − d

)
∧ 1

} 1

2
− q

2

.

(4.4)

Theorem 4.2 (Row sparse parameter estimation). Let q ∈ [0, 2) and
(p, d,Rq) satisfy

2 ≤ d and 2d ≤ Rq − d ≤ (p− d)1−
q
2 ,

and let T and γ be defined as in eq. (3.1). There exists an universal constant
c > 0 such that every estimator Ŝ satisfies the following. If T < (dγ)

q
2 , then

(4.5) sup
Pq(σ2,Rq)

E‖sinΘ(Ŝ,S)‖F ≥ c

{
(Rq − d)

(
dσ2

n

)1− q
2

∧ d
} 1

2

.

Otherwise,

(4.6) sup
Pq(σ2,Rq)

E‖sinΘ(Ŝ,S)‖F ≥ c

{
d(p− d)σ2

n
∧ d
} 1

2

.

This result with Equation (4.3) implies Theorem 3.1, and with Equation (4.4)
it implies Theorem 3.2.

Theorem 4.3 (Column sparse estimation). Let q ∈ [0, 2) and (p, d,Rq)
satisfy

4 ≤ (p− d)/d and d ≤ d(Rq − 1) ≤ (p− d)1−
q
2 ,

and recall the definition of T∗ in eq. (3.2). There exists a universal constant
c > 0 such that every estimator Ŝ satisfies the following. If T∗ < γ

q
2 , then

sup
P∗
q (σ

2,Rq)

E‖sinΘ(Ŝ,S)‖F

≥ c

{
d(Rq − 1)

[
σ2

n

(
1− log

(
T∗/γ

q
2

))
]1− q

2

∧ d
} 1

2

.

(4.7)

Otherwise,

(4.8) sup
P∗
q (σ

2,Rq)

E‖sinΘ(Ŝ,S)‖F ≥ c

{
(p − d)σ2

n
∧ d
} 1

2
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In the next section we setup a general technique, using Fano’s Inequal-
ity and Stiefel manifold embeddings, for obtaining minimax lower bounds
in principal subspace estimation problems. Then we move on to proving
Theorems 4.1 to 4.3.

4.1. Lower bounds for principal subspace estimation via Fano’s method.
Our main tool for proving minimax lower bounds is the generalized Fano
method. We quote the following version from (Yu, 1997, Lemma 3).

Lemma 4.1 (Generalized Fano method). Let N ≥ 1 be an integer and
{θ1, . . . , θN} ⊂ Θ index a collection of probability measures Pθi on a mea-
surable space (X ,A). Let d be a pseudometric on Θ and suppose that for all
i 6= j

d(θi, θj) ≥ αN

and, the Kullback-Leibler (KL) divergence

D(Pθi‖Pθj) ≤ βN .

Then every A-measurable estimator θ̂ satisfies

max
i

Eθid(θ̂, θi) ≥
αN
2

[
1− βN + log 2

logN

]
.

The calculations required for applying Lemma 4.1 are tractable when
{Pθi} is a collection of multivariate Normal distributions. Let A ∈ Vp,d

and consider the mean zero p-variate Normal distribution with covariance
matrix

(4.9) Σ(A) = bAAT + Ip = (1 + b)AAT + (Ip −AAT ) ,

where b > 0. The noise-to-signal ratio of the principal d-dimensional sub-
space of these covariance matrices is

σ2 =
1 + b

b2
.

We can choose b so that (1 + b)/b2 = σ2. The KL divergence between these
multivriate Normal distributions has a simple, exact expression given in
the following lemma. The proof is a straightforward and contained in the
appendix.
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16 V. Q. VU AND J. LEI

Lemma 4.2 (KL divergence). For i = 1, 2, let Ai ∈ Vp,d, b ≥ 0,

Σ(Ai) = (1 + b)AiA
T
i + (Ip −AiA

T
i ) ,

and Pi be the n-fold product of the N (0,Σ(Ai)) probability measure. Then

D(P1‖P2) =
nb2

1 + b
‖sin(A1, A2)‖2F .

The KL divergence between the probability measures in Lemma 4.2 is
equivalent to the subspace distance. In applying Lemma 4.1, we will need to
find packing sets in Vp,d that satisfy the sparsity constraints of the model and
have small diameter according to the subspace Frobenius distance. The next
lemma, proved in the appendix, provides a general method for constructing
such local packing sets.

Lemma 4.3 (Local Stiefel embedding). Let 1 ≤ k ≤ d < p and the
function Aǫ : Vp−d,k 7→ Vp,d be defined in block form as

(4.10) Aǫ(J) =



(1− ǫ2)1/2Ik 0

0 Id−k
ǫJ 0




for 0 ≤ ǫ ≤ 1. If J1, J2 ∈ Vp−d,k, then

ǫ2(1− ǫ2)‖J1 − J2‖2F ≤ ‖sin(Aǫ(J1), Aǫ(J2))‖2F ≤ ǫ2‖J1 − J2‖2F .

This lemma allows us to convert global O(1)-separated packing sets in
Vp−d,k into O(ǫ)-separated packing sets in Vp,d that are localized within a
O(ǫ)-diameter. Note that

‖Ji − Jj‖F ≤ ‖Ji‖F + ‖Jj‖F ≤ 2
√
k .

By using Lemma 4.3 in conjunction with Lemmas 4.1 and 4.2, we have the
following generic method for lower bounding the minimax risk of estimating
the principal subspace of a covariance matrix.

Lemma 4.4. Let ǫ ∈ [0, 1] and {J1, . . . , JN} ⊆ Vp−d,k for 1 ≤ k ≤ d < p.
For each i = 1, . . . , N , let Pi be the n-fold product of the N (0,Σ(Aǫ(Ji)))
probability measure, where Σ(·) is defined in eq. (4.9) and Aǫ(·) is defined
in eq. (4.10). If

min
i 6=j

‖Ji − Jj‖F ≥ δN ,
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then every estimator Â of Ai := span(Aǫ(Ji)) satisfies

max
i

Ei‖sinΘ(Â,Ai)‖F ≥ δNǫ
√
1− ǫ2

2

[
1− 4nkǫ2/σ2 + log 2

logN

]
,

where σ2 = (1 + b)/b2.

4.2. Proofs of the main lower bounds.

Proof of Theorem 4.1. The following lemma, derived from (Massart,
2007, Lemma 4.10), allows us to analyze the variable selection aspect.

Lemma 4.5 (Hypercube construction). Let m be an integer satisfying
e ≤ m and let s ∈ [1,m]. There exists a subset {J1, . . . , JN} ⊆ Vm,1 satisfy-
ing the following properties:

1. ‖Ji‖(2,0) ≤ s for all i,
2. ‖Ji − Jj‖22 ≥ 1/4 for all i 6= j, and
3. logN ≥ max{cs[1+log(m/s)] , log(m)}, where c > 1/30 is an absolute

constant.

Proposition 4.1. If J ∈ Vm,d and q ∈ (0, 2], then ‖J‖q2,q ≤ d
q
2 ‖J‖1−

q
2

(2,0).

Let ρ ∈ (0, 1] and {J1, . . . , JN} ⊆ Vm,1 be the subset given by Lemma 4.5
with m = p− d and s = max{1, (p − d)ρ}. Then

logN ≥ max{cs(1 + log[(p− d)/s]) , log(p− d)}
≥ max{(1/30)(p − d)ρ(1 − log ρ) , log(p− d)} .

Applying Lemma 4.4, with k = 1, δN = 1/2, and b chosen so that (1+b)/b2 =
σ2, yields

max
i

Ei‖sinΘ(Â,Ai)‖F ≥ ǫ

4
√
2

[
1− 4nǫ2/σ2

(1/30)(p − d)ρ(1 − log ρ)
− log 2

log(p− d)

]

=
ǫ

4
√
2

[
1− 120ǫ2

γρ(1− log ρ)
− log 2

log(p− d)

]

≥ ǫ

4
√
2

[
1

2
− 120ǫ2

γρ(1− log ρ)

]
,(4.11)
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18 V. Q. VU AND J. LEI

for every estimator Â and all ǫ ∈ [0, 1/
√
2], because p−d ≥ 4 by assumption.

Since Ji ∈ Vp−d,1, Proposition 4.1 implies

(4.12) ‖Aǫ(Ji)‖2,q ≤




d+ s , if q = 0 , and
(
d+ ǫqs

2−q
2

)1/q
, if 0 < q < 2 .

For every q ∈ [0, 2)

d+ ǫqs
2−q
2 ≤ Rq ⇐⇒ ǫ2q ≤ (Rq − d)2

s2−q
=

(Rq − d)2

max{1, (p − d)ρ}2−q .

Thus, eq. (4.12) implies that the constraint

(4.13) ǫ2q ≤ min
{
(T/ρ)2ρq , (Rq − d)2

}

is sufficient for Ai ∈ Mq(Rq) and hence Pi ∈ Pq(σ2, Rq). Now fix

ǫ2 =
1

480
γρ(1− log ρ) ∧ 1

2
.

If we can choose ρ ∈ (0, 1] such that eq. (4.13) is satisfied, then by eq. (4.11),

sup
Pq(σ2,Rq)

E‖sinΘ(Ŝ,S)‖F ≥ max
i

Ei‖sinΘ(Â,Ai)‖F ≥ ǫ

16
√
2
.

Choose ρ ∈ (0, 1] to be the unique solution of the equation

(4.14) ρ =

{
T
[
γ(1− log ρ)

]− q
2 , if T < γ

q
2 , and

1 , otherwise.

We will verify that ǫ and ρ satisfy eq. (4.13). The assumption that 1 ≤ Rq−d
guarantees that ǫ2q ≤ (Rq − d)2, because ǫ2q ≤ 1. If T < γ

q
2 , then

(T/ρ)2ρq =
[
γρ(1− log ρ)

]q ≥ ǫ2q .

If T ≥ γ
q
2 , then ρ = 1 and

(T/ρ)2ρq = T 2 ≥ γq ≥ ǫ2q .

Thus, eq. (4.13) holds and so

sup
Pq(σ2,Rq)

E‖sinΘ(Ŝ,S)‖F ≥ ǫ

16
√
2
≥ 1

496

[
γρ(1− log ρ)

] 1

2 ∧ 1

32
.
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Now we substitute eq. (4.14) and the definitions of γ and T into the above
inequality to get the following lower bounds. If T < γ

q
2 , then

γρ(1 − log ρ) = Tγ1−
q
2

{
1− log ρ

}1− q
2

= Tγ1−
q
2

{
1− log

(
T/γ

q
2

)
+
q

2
log(1− log ρ)

}1− q
2

(4.15)

≥ Tγ1−
q
2

{
1− log

(
T/γ

q
2

)
}1− q

2

and so

sup
Pq(σ2,Rq)

E‖sinΘ(Ŝ,S)‖F

≥ c0

{
(Rq − d)

[
σ2

n

(
1− log

(
T/γ

q
2

))
]1− q

2

∧ 1

} 1

2

.

If T ≥ γ
q
2 , then γρ(1 − log ρ) = γ and

sup
Pq(σ2,Rq)

E‖sinΘ(Ŝ,S)‖F ≥ c0
(
γ ∧ 1

) 1

2 = c0

{
(p− d)σ2

n
∧ 1

} 1

2

.

Proof of Theorem 4.2. For a fixed subset of s variables, the chal-
lenge in estimating the principal subspace of these variables is captured by
the richness of packing sets in the Stiefel manifold Vs,d. A packing set in
the Stiefel manifold can be constructed from a packing set in the Grassman
manifold by choosing a single element of the Stiefel manifold as a representa-
tive for each element of the packing set in the Grassmann manifold. This is
well-defined, because the subspace distance is invariant to the choice of ba-
sis. The following lemma specializes known results (Pajor, 1998, Proposition
8) for packing sets in the Grassman manifold.

Lemma 4.6 (see Pajor (1998)). Let k and s be integers satisfying 1 ≤
k ≤ s− k, and let δ > 0 There exists a subset {J1, . . . , JN} ⊆ Vs,k satisfying
the following properties:

1. ‖sin(Ji, Jj)‖F ≥
√
kδ for all i 6= j, and

2. logN ≥ k(s − k) log(c2/δ), where c2 > 0 is an absolute constant.
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20 V. Q. VU AND J. LEI

To apply this result to Lemma 4.4 we will use Proposition 2.2 to con-
vert the lower bound on the subspace distance into a lower bound on the
Frobenius distance between orthonormal matrices. Thus,

(4.16) ‖Ji − Jj‖F ≥ ‖sinΘ(Ji, Jj)‖F ≥
√
kδ .

Let ρ ∈ (0, 1] and s = max{2d, ⌊(p − d)ρ⌋}. Invoke Lemma 4.6 with k =
d and δ = c2/e, where c2 > 0 is the constant given by Lemma 4.6. Let
{J1, . . . , JN} ⊆ Vp−d,d be the subset given by Lemma 4.6 after augmenting
with rows of zeroes if necessary. Then

logN ≥ d(s− d) ≥ max{d(s/2), d2} ≥ max{(d/4)(p − d)ρ, d2}

and by eq. (4.16),
‖Ji − Jj‖2F ≥ d(c2/e)

2

for all i 6= j. The rest of this proof mirrors that of Theorem 4.1. Let ǫ ∈
[0, 1/

√
2] and apply Lemma 4.4 to get

max
i

E‖sinΘ(Â,Ai)‖F ≥ c2
√
dǫ

2
√
2e

[
1− 4ndǫ2/σ2

(d/4)(p − d)ρ
− log 2

d2

]

≥ c1
√
dǫ

[
1

2
− 16ǫ2

γρ

]
,(4.17)

where γ is defined in eq. (3.1) and we used the assumption that d ≥ 2. Since
Ji ∈ Vp−d,d, Proposition 4.1 implies

‖Aǫ(Ji)‖2,q ≤




d+ s , if q = 0 , and
(
d+ d

q
2 ǫqs

2−q
2

)1/q
, if 0 < q < 2 .

For every q ∈ (0, 2]

d+ d
q
2 ǫqs

2−q
2 ≤ Rq ⇐⇒ dqǫ2q ≤ (Rq − d)2

s2−q
=

(Rq − d)2

max{2d, (p − d)ρ}2−q .

So ǫ and ρ must satisfy the constraint

(4.18) dqǫ2q ≤ min

{
(T/ρ)2ρq ,

(Rq − d)2

(2d)2−q

}

to ensure that Pi ∈ Pq(σ2, Rq). Fix

(4.19) ǫ2 =
1

64
γρ ∧ 1

2
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and

(4.20) ρ =

{
T (dγ)−

q
2 if T < (dγ)

q
2 , and

1 , otherwise.

Since ǫ2 ≤ 1/2,

dqǫ2q ≤ (Rq − d)2

(2d)2−q
⇐⇒ 2qǫ2q ≤ (Rq − d)2

4d2
⇐= 2d ≤ Rq − d ,

where the right-hand side is an assumption of the lemma. That verifies one
of the inequalities in eq. (4.18). If T < (dγ)

q
2 , then

(T/ρ)2ρq = (dγρ)qρq ≥ dqǫ2q .

If T ≥ (dγ)
q
2 , then ρ = 1 and

(T/ρ)2ρq = T 2 ≥ (dγ)q ≥ dqǫ2q .

Thus, eq. (4.18) holds and by eq. (4.17),

sup
Pq(σ2,Rq)

E‖sinΘ(Ŝ,S)‖F ≥ max
i

Ei‖sinΘ(Â,Ai)‖F

≥ c1
√
dǫ

[
1

2
− 16ǫ2

γ
2−q
q ρ

]

≥ c1
4

√
dǫ

≥ c0

(
dγρ ∧ d

) 1

2

.

Finally, we substitute the definition of γ and eq. (4.20) into the above in-
equality to get the following lower bounds. If T < (dγ)

q
2 , then

sup
Pq(σ2,Rq)

E‖sinΘ(Ŝ,S)‖F ≥ c0

{
T (dγ)1−

q
2 ∧ d

} 1

2

= c0

{
(Rq − d)

(
dσ2

n

)1− q
2

∧ d
} 1

2

.

If T ≥ (dγ)
q
2 , then

sup
Pq(σ2,Rq)

E‖sin(V̂ , V )‖F ≥ c0
(
dγ ∧ d

) 1

2 = c0

{
d(p − d)σ2

n
∧ d
} 1

2

.
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Proof of Theorem 4.3. The proof is a modification of the proof of
Theorem 4.1. The difficulty of the problem is captured by the difficulty of
variable selection within each column of V . Instead of using a single hy-
percube construction as in the proof of Theorem 4.1, we apply a hypercube
construction on each of the d columns. We do this by dividing the (p−d)×d
matrix into d submatrices of size ⌊(p− d)/d⌋ × d, i.e. constructing matrices
of the form [

BT
1 BT

2 · · · BT
d 0 · · ·

]T

and confining the hypercube construction to the kth column of each ⌊(p −
d)/d⌋×d matrix Bk, k = 1, . . . , d. This ensures that the resulting (p−d)×d
matrix has orthonormal columns with disjoint supports.

Let ρ ∈ (0, 1] and s ∈ max{1, ⌊(p − d)/d⌋ρ}. Applying Lemma 4.5 with
m = ⌊(p − d)/d⌋, we obtain a subset {J1, . . . , JM} ⊆ Vm,1 such that

1. ||Ji||0 ≤ s for all i,
2. ||Ji − Jj ||22 ≥ 1/4 for all i 6= j, and
3. logM ≥ max{cs(1+ log(m/s)) , logm}, where c > 1/30 is an absolute

constant.

Next we will combine the elements of this packing set in Vm,1 to form a pack-
ing set in Vp−d,d. A naive approach takes the d-fold product {J1, . . . , JM}d,
however this results in too small a packing distance because two elements
of this product set may differ in only one column.

We can increase the packing distance by requiring a substantial number
of columns to be different between any two elements of our packing set
without much sacrifice in the size of the final packing set. This is achieved
by applying an additional combinatorial round with the Gilbert-Varshamov
bound on M -ary codes of length d with minimum Hamming distance d/2
(Gilbert, 1952; Varshamov, 1957). The kth coordinate of each code specifies
which element of {J1, . . . , JM} to place in the kth column of Bk, and so any
two elements of the resulting packing set will differ in at least d/2 columns.
Denote the resulting subset of Vp−d,d by Hs. We have

1. ||H||∗,0 ≤ s for all H ∈ Hs.
2. ||H1 −H2||22 ≥ d/8 for all H1,H2 ∈ Hs such that H1 6= H2.
3. logN := log|Hs| ≥ max{cds(1 + log(m/s)), logm}, where c > 0 is an

absolute constant.

Note that the lower bound of logm in the 3rd item arises by considering
the packing set whose N elements consist of matrices whose columns in
B1, . . . , Bd are all equal to some Ji for i = 1, . . . ,M . This ensures that
logN ≥ logM ≥ logm. From here, the proof is a straightforward modifica-
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tion of proof of Theorem 4.1 with the substitution of p− d by (p− d)/d. For
brevity we will only outline the major steps.

Recall the definitions of T∗ and γ in eq. (3.2). Apply lemma 4.4 with the
subset Hs, k = d, δN =

√
d/

√
8, and b chosen so that (1+ b)/b2 = σ2. Then

max
i

E‖sinΘ(Â,Ai)‖F ≥ c0
√
dǫ

[
1− 4nǫ2/σ2

cmρ(1− log ρ)
− log 2

logm

]

≥ c0
√
dǫ

[
1

4
− (8/c)dǫ2

γρ(1− log ρ)

]
,

by the assumption that (p− d)/d ≥ 4, and

‖Ai‖∗,q ≤




1 + s , if q = 0 , and
(
1 + ǫqs

2−q
2

)1/q
, if 0 < q < 2 .

The constraint

dqǫ2q ≤ min
{
(T∗/ρ)

2ρq , dq(Rq − 1)2
}

ensures that Pi ∈ P∗
q (σ

2, Rq). It is satisfied by choosing ǫ so that

dǫ2 = c1γρ(1− log ρ) ∧ 1

2
,

where c1 > 0 is a sufficiently small constant, the assumption that d <
d(Rq − 1), and letting ρ be the unique solution of the equation

ρ =

{
T∗[γ(1 − log ρ)]−

q
2 , if T∗ < γ

q
2 , and

1 , otherwise.

We conclude that every estimator V̂ satisfies

sup
P∗
q (σ

2,Rq)

E‖sinΘ(Ŝ,S)‖F ≥ c2

{
γρ(1− log ρ) ∧ d

} 1

2

,

and we have the following explicit lower bounds. If T∗ < γ
q
2 , then

sup
P∗
q (σ

2,Rq)

E‖sinΘ(Ŝ,S)‖F

≥ c3

{
d(Rq − 1)

[
σ2

n

(
1− log

(
T∗/γ

q
2

))
]1− q

2

∧ d
} 1

2

.
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If T∗ ≥ γ
q
2 , then

sup
P∗
q (σ

2,Rq)

E‖sinΘ(Ŝ,S)‖F ≥ c3

{
(p − d)σ2

n
∧ d
} 1

2

.

5. Upper bound proofs.

5.1. A variational approach to the perturbation of spectral subspaces. The
following result allows us to bound the curvature of the matrix functional
F 7→ 〈A,F 〉 at its point of maximum on the Grassmann manifold.

Lemma 5.1 (Curvature Lemma). Let A be a p× p positive semidefinite
matrix and suppose that its eigenvalues λ1(A) ≥ · · · ≥ λp(A) satisfy λd(A) >
λd+1(A) for d ≤ p. Let E be the d-dimensional subspace spanned by the
eigenvectors of A corresponding to its d largest eigenvalue, and let E denote
its orthogonal projection. If F is a d-dimensional subspace of Rp and F is
its orthogonal projection, then

‖sinΘ(E ,F)‖2F ≤ 〈A,E − F 〉
λd(A)− λd+1(A)

.

Using this lemma we have the following alternative to the traditional
matrix perturbation approach to bounding subspace distances using the
Davis-Kahan sinΘ Theorem and Weyl’s Inequality.

Lemma 5.2 (Variational sinΘ). In addition to the hypotheses of Lemma 5.1,
if F satisfies

(5.1) 〈B,E〉 − g(E) ≤ 〈B,F 〉 − g(F )

for some function g : Rp×p 7→ R, then

(5.2) ‖sinΘ(E ,F)‖2F ≤ 〈B −A,F − E〉 − [g(F ) − g(E)]

λd(A)− λd+1(A)
.

The lemma is different from the Davis-Kahan sinΘ theorem because the
orthogonal projection F does not have to correspond to a subspace spanned
by eigenvectors of B. F only has to satisfy

〈B,E〉 − g(E) ≤ 〈B,F 〉 − g(F ) .

This condition is suited ideally for analyzing solutions of regularized and/or
constrained maximization problems where E and F are feasible, but F is
optimal. Both Lemma 5.1 and Lemma 5.2 are proved in the appendix.
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5.2. Proofs of the main upper bounds. Σ and Sn are both invariant un-
der translations of µ. Since our estimators only depend on X1, . . . ,Xn only
through Sn, we will assume without loss of generality that µ = 0 for the
remainder of the paper. The sample covariance matrix can be written as

Sn =
1

n

n∑

i=1

(Xi − X̄)(Xi − X̄)T =
1

n

n∑

i=1

XiX
T
i − X̄X̄T .

It can be show that X̄X̄T is a higher order term that is negligble (see the
proofs in Vu and Lei, 2012a, for an example of such arguments). Therefore,
we will ignore this term and focus on the dominating 1

n

∑n
i=1XiX

T
i term in

our proofs below.

Proof of Theorem 3.4. We apply Lemma 5.2 taking A = Σ, B = Sn,
E = V V T , and F = V̂ V̂ T , where V̂ is a solution of eq. (2.8). Since V V T

and V̂ V̂ T are feasible and V̂ V̂ T is optimal,

〈Sn, V V T 〉 ≤ 〈Sn, V̂ V̂ T 〉 .

Thus,

ǫ̂2 := ‖sinΘ(Ŝ,S)‖2F ≤ 〈Sn −Σ, V̂ V̂ T − V V T 〉
λd − λd+1

and

(5.3) ǫ̂2 ≤
√
2

λd − λd+1

〈
Sn − Σ,

V̂ V̂ T − V V T

‖V̂ V̂ T − V V T ‖F

〉
ǫ̂ ,

because ‖V̂ V̂ T − V V T ‖2F = 2ǫ̂2 by eq. (2.6). Let

∆ =
V̂ V̂ T − V V T

‖V̂ V̂ T − V V T ‖F
.

Then ‖∆‖2,0 ≤ 2R0, ‖∆‖F = 1, and ∆ has at most d positive eigenvalues
and at most d negative eigenvalues (see Proposition 2.1). Therefore, we can
write ∆ = AAT −BBT where ‖A‖2,0 ≤ 2R0, ‖A‖F ≤ 1, A ∈ R

p×d, and the
same holds for B. Let

U(R0) = {U ∈ R
p×d : ‖A‖2,0 ≤ 2R0 and ‖U‖ ≤ 1} .

Equation (5.3) implies

Eǫ̂ ≤ 2
√
2

λd − λd+1
E sup
U∈U(R0)

|〈Sn − Σ, UUT 〉|.
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The empirical process 〈Sn−Σ, UUT 〉 indexed by U is a generalized quadratic
form, and a sharp bound of its supremum involves some recent advances in
empirical process theory due to Mendelson (2010) and extensions of his
results. By Corollary 4.1 of Vu and Lei (2012b), we have

E sup
U∈U(R0)

|〈Sn −Σ, UUT 〉|

≤ cλ1

{
E supU∈U(R0)〈Z, U〉

√
n

+

(
E supU∈U(R0)〈Z, U〉

√
n

)2
}
,

where Z is a p × d matrix of i.i.d standard Gaussian variables. To control
E supU∈U 〈Z, U〉, note that

〈Z, U〉 ≤ ‖Z‖2,∞‖U‖2,1 ≤ ‖Z‖2,∞
√

2R0 ,

because U ∈ U(R0). Using a standard δ-net argument (see Propositions B.1
and B.2), we have, when p > 5,

(5.4) ‖‖Z‖2,∞‖ψ2
≤ 4.15

√
d+ log p .

and hence
E sup
U∈U

〈Z, U〉 ≤ 6
√
R0(d+ log p) .

The proof is complete since we assume that 6
√
R0(d+ log p) ≤ √

n.

Proof of Theorem 3.5. Again, we start from Lemma 5.2, which gives

ǫ̂2 := ‖sinΘ(Ŝ,S)‖2F ≤ 〈Sn − Σ, V̂ V̂ T − V V T 〉
λd − λd+1

.

To get the correct dependence on λi and for general values of q, we need a
more refined analysis to control the random variable 〈Sn−Σ, V̂ V̂ T −V V T 〉.
Let

W := Sn − Σ, Π := V V T , and Π̂ := V̂ V̂ T .

For any projection matrix Π we write Π⊥ := I −Π, the projection onto the
orthogonal complement. By Proposition A.1 we have

〈W, Π̂ −Π〉 = 〈W,ΠΠ̂⊥Π〉+ 〈W,Π⊥Π̂Π〉+ 〈W,Π⊥Π̂Π⊥〉(5.5)

=: T1 + T2 + T3(5.6)

We will control T1 (the upper-quadratic term), T2 (the cross-product term),
and T3 (the lower-quadratic term) separately.

imsart-aos ver. 2012/08/31 file: minimax-sparsesubspace.tex date: November 5, 2012



MINIMAX SPARSE PRINCIPAL SUBSPACE ESTIMATION 27

Controlling T1.

T1 =〈W,ΠΠ̂⊥Π〉 = 〈ΠWΠ,ΠΠ̂⊥Π〉(5.7)

≤‖ΠWΠ‖2‖ΠΠ̂⊥Π‖∗ = ‖ΠWΠ‖2‖ΠΠ̂⊥Π̂⊥Π‖∗
=‖ΠWΠ‖2‖ΠΠ̂⊥‖2F ≤ ‖ΠWΠ‖2ǫ̂2,

where ‖·‖∗ is the nuclear norm (ℓ1 norm of the singular values) and ‖·‖2 is
the spectral norm (or operator norm). By Lemma B.5, we have (recall that
we assume ‖Z‖ψ2

≤ 1 and ǫn ≤ 1 for simplicity),

‖‖ΠWΠ‖2‖ψ1
≤ c1λ1

√
d/n,(5.8)

where c1 is a universal constant. Define

Ω1 =

{
T1 ≥ c1

√
d

n
log nλ1ǫ̂

2

}
.

Then, when n ≥ 2 we have

P(Ω1) ≤P

(
‖ΠWΠ‖2 ≥ c1λ1 log n

√
d/n

)
≤ (n− 1)−1 .(5.9)

Controlling T2.

T2 = 〈W,Π⊥Π̂Π〉 = 〈Π⊥WΠ,Π⊥Π̂〉(5.10)

≤ ‖Π⊥WΠ‖2,∞‖Π⊥Π̂‖2,1.

To bound ‖Π⊥Π̂‖2,1, let the rows of Π⊥Π̂ be denoted by φ1, . . . , φp and
t > 0. Using a standard argument of bounding ℓ1 norm by the ℓq and ℓ2
norms (e.g., Raskutti, Wainwright and Yu, 2011, Lemma 5), we have for all
t > 0, 0 < q ≤ 1,

‖Π⊥Π̂‖2,1 =
p∑

i=1

‖φi‖2(5.11)

≤
[

p∑

i=1

‖φi‖q2

]1/2[ p∑

i=1

‖φi‖22

]1/2
t−q/2+

[
p∑

i=1

‖φi‖q2

]
t1−q

= ‖Π⊥Π̂‖q/22,q ‖Π⊥Π̂‖F t−q/2 + ‖Π⊥Π̂‖q2,qt1−q

≤
√
2R1/2

q t−q/2ǫ̂+ 2Rqt
1−q ,
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where the last step uses the fact that

‖Π⊥Π̂‖q2,q = ‖Π⊥V̂ ‖q2,q = ‖V̂ −ΠV̂ ‖q2,q ≤ ‖V̂ ‖q2,q + ‖V V T V̂ ‖q2,q
≤ ‖V̂ ‖q2,q + ‖V ‖q2,q ≤ 2Rq .

Combining eqs. (5.10) and (5.11) we obtain, for all t > 0, 0 < q < 1,

(5.12) T2 ≤ ‖Π⊥WΠ‖2,∞
(√

2R1/2
q t−q/2ǫ̂+ 2Rqt

1−q
)
.

The case where q = 0 is simpler and omitted. Now define

Ω2 :=

{
T2 ≥ 20

(√
λ1λd+1

1−q/2
(λd − λd+1)

q/2ǫnǫ̂

+
√
λ1λd+1

2−q
(λd − λd+1)

−(1−q)ǫ2n

)}

=

{
T2 ≥ t2,1

(√
2Rqt

−q/2
2,2 ǫ̂+ 2Rqt

1−q
2,2

)}
,

t2,1 =20
√
λ1λd+1

√
d+ log p

n
,

t2,2 =

√
λ1λd+1

λd − λd+1

√
d+ log p

n
.

Taking t = t2,2 in eq. (5.12) and using the tail bound result in Lemma B.1,
we have

P(Ω2) ≤P(‖Π⊥WΠ‖2,∞ ≥ t2,1)(5.13)

≤2p5d exp

(
−

t22,1/8

2λ1λd+1/n+ t2,1
√
λ1λd+1/n

)

≤p−1.

Controlling T3. The bound on T3 involves a quadratic form empirical pro-
cess over a random set. Let ǫ ≥ 0 and define

φ(Rq, ǫ) := sup{〈W,Π⊥UUTΠ⊥〉 : U ∈ Vp,d , ‖U‖q2,q ≤ Rq , ‖Π⊥U‖F ≤ ǫ} .

Then by Lemma B.4, we have, with some universal constants c3, for x > 0

P
(
φ(Rq, ǫ) ≥ c3xλd+1

(
ǫnǫ

2 + ǫ2nǫ+ ǫ4n
))

≤ 2 exp(−x2/5).

Let T3(U) = 〈W,Π⊥UUTΠ⊥〉, for all U ∈ Up(Rq), where

Up(Rq) := {U ∈ Vp,d : span(U) ∈ Mp(Rq)} .
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Define function g(ǫ) = ǫnǫ
2 + ǫ2nǫ + ǫ4n. Then for all ǫ ≥ 0, we have g(ǫ) ≥

ǫ4n ≥ 4d3/n2. On the other hand, if ǫ = ‖sin(U, V )‖F , then ǫ2 ≤ 2d and
hence g(ǫ) ≤ g(

√
2d) = 2d+

√
2d+1. Let µ = ǫ4n and J = ⌈log2(g(

√
2d)/µ)⌉.

Then we have J ≤ 3 log n+ 6/5.
Note that g is strictly increasing on [0,

√
2d]. Then we have the following

peeling argument.

P

[
∃ U ∈ Up(Rq) : T3(U) ≥ 2c3(log n)

5/2g(‖sin(U, V )‖F )
]

≤P

[
∃1 ≤ j ≤ J, U ∈ Up(Rq) : 2j−1µ ≤ g(‖sin(U, V )‖F ) ≤ 2jµ,

T3(U) ≥ 2c3(log n)
5/2g(‖sin(U, V )‖F )

]

≤
J∑

j=1

P

[
φ(Rq, g

−1(2jµ)) ≥ c3(log n)
5/22jµ

]

≤J2n−1 ≤ 6 log n

n
+

3

n
.

Define

Ω3 :=
{
φ(Rq, ǫ̂) ≥ c3(log n)

5/2λd+1(ǫnǫ̂
2 + ǫ2nǫ̂+ ǫ4n)

}
.

Then we have proved that

P(Ω3) ≤
6 log n

n
+

3

n
.

Put things together. Now recall the conditions in Equations (3.3) to (3.6).
On Ωc1

⋂
Ωc2
⋂

Ωc3, we have, from eq. (5.5) that

(λd − λd+1)ǫ̂
2 ≤

(
c1

√
d

n
log nλ1 + c3ǫn(log n)

5/2λd+1

)
ǫ̂2

+ 21
√
λ1λd+1

1−q/2
(λd − λd+1)

q/2ǫnǫ̂

+ 21
√
λ1λd+1

2−q
(λd − λd+1)

−(1−q)ǫ2n ,

=⇒ 1

2
(λd − λd−1)ǫ̂

2 ≤ 21
√
λ1λd+1

1−q/2
(λd − λd+1)

q/2ǫnǫ̂

+ 21
√
λ1λd+1

2−q
(λd − λd+1)

−(1−q)ǫ2n ,

=⇒ ǫ̂ ≤ 9

(√
λ1λd+1

λd − λd+1

)1−q/2

ǫn .
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6. Discussion. We have derived non-asymptotic minimax upper and
lower bounds for principal subspace estimation over two classes of sparse
subspaces. In the row sparse case, our upper and lower bounds match up to
constants and are optimal in (n, p, d,Rq , σ

2) in the sparse, high-dimensional
regime. In the column sparse case, our upper and lower bounds match up to
constants and are optimal in (n, p,Rq, σ

2). We conjecture that the d+ log p
term that appears in the column sparse upper bound (Corollary 3.1) can
be improved to 1 + log p, and thus match the lower bound (Theorem 3.3).
It appears to us that the primary obstacle is tightening our analysis of a
cross-product term (T2 in eq. (5.6)) that roughly corresponds to the cross-
covariance of the principal subspace and its orthocomplement. This is an
interesting technical challenge, but after all, deriving non-asymptotic bounds
that are optimal in all five parameters (n, p, d,Rq, σ

2) seems too ambitious.
Interestingly, in the case d = 1 (where row and column sparsity coincide),

the form of the minimax optimal error for the principal subspace estima-
tion problem parallels that for the coefficient vector in the sparse linear
model (see Raskutti, Wainwright and Yu, 2011) with the noise-to-signal ra-
tio σ2 playing the same role in the error as the noise variance in the linear
model. For d > 1, we suspect that this parallel relationship will continue to
hold with the multivariate (or multiple response) sparse linear model un-
der appropriate sparsity conditions. However, minimax rates have yet to be
established for that problem.

The nature of this work is theoretical and it leaves open many challenges
for methodology and practice. The minimax optimal estimators that we
present appear to be computationally intractable because they involve con-
vex maximization rather than convex minimization problems. Even in the
case q = 1, which corresponds to a subspace extension of ℓ1 constrained
PCA, the optimization problem remains challenging as there are no known
algorithms to efficiently compute a global maximum. Finally, although the
minimax optimal estimators that we propose do not require knowledge of
the noise-to-signal ratio σ2, they do require knowledge of (or an upperbound
on) the sparsity Rq. It is not hard to modify our techniques to produce an es-
timator that gives up adaptivity to σ2 in exchange for adaptivity to Rq. One
could do this by using penalized versions of our estimators with a penalty
factor proportional to σ2. An extension along this line has already been con-
sidered by Lounici (2012) for the d = 1 case. A more interesting question is
whether or not there exists fully adaptive principal subspace estimators. In
other words, under what conditions can one find an estimator that achieves
the minimax optimal error without requiring knowledge of either σ2 or Rq?
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APPENDIX A: ADDITIONAL PROOFS

Proof of Proposition 2.2. Let γi be the cosine of the ith canonical
angle between the subspaces spanned by V1 and V2. By Theorem II.4.11 of
Stewart and Sun (1990),

inf
Q∈Vk,k

‖V1 − V2Q‖2F = 2
∑

i

(1− γi) .

The inequalities
1− x ≤ (1− x2) ≤ 2(1 − x)

hold for all x ∈ [0, 1]. So

1

2
inf

Q∈Vk,k

‖V1 − V2Q‖2F ≤
∑

i

(1− γ2i ) ≤ inf
Q∈Vk,k

‖V1 − V2Q‖2F .

Apply the trigonometric identity sin2 θ = 1− cos2 θ to the preceding display
to conclude the proof.

A.1. Proofs related to the lower bounds.

Proof of Lemma 4.2. Write Σi = Σ(Ai) for i = 1, 2. Since Σ1 and Σ2

are nonsingular and have the same determinant,

D(P1‖P2) = nD(N (0,Σ1)‖N (0,Σ2))

=
n

2
{Tr(Σ−1

2 Σ1)− p− log det(Σ−1
2 Σ1)}

=
n

2
Tr
(
Σ−1
2 (Σ1 − Σ2)

)
.

Now
Σ−1
2 = (1 + b)−1A2A

T
2 + (Ip −A2A

T
2 )

and
Σ1 − Σ2 = b(A1A

T
1 −A2A

T
2 ) .

Thus,

Tr
(
Σ−1
2 (Σ1 − Σ2)

)

=
b

1 + b

{
(1 + b)〈Ip −A2A

T
2 , A1A

T
1 〉 − 〈A2A

T
2 , A2A

T
2 −A1A

T
1 〉
}

=
b− 1

b
{b〈Ip −A2A

T
2 , A1A

T
1 〉 − 〈Ip, A2A

T
2 −A2A

T
2 A1A

T
1 〉}

=
b

1 + b

{
(1 + b)〈Ip −A2A

T
2 , A1A

T
1 〉 − 〈A2A

T
2 , Ip −A1A

T
1 〉
}

=
b2

1 + b
‖sin(A1, A2)‖2F ,
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by Proposition 2.1.

Proof of Lemma 4.3. By Proposition 2.1 and the definition of Aǫ(·),

‖sin(Aǫ(J1), Aǫ(J2))‖2F =
1

2
‖[Aǫ(J1)][Aǫ(J1)]T − [Aǫ(J2)][Aǫ(J2)]

T ‖2F

= ǫ2(1− ǫ2)‖J1 − J2‖2F +
ǫ4

2
‖J1JT1 − J2J

T
2 ‖2F

≥ ǫ2(1− ǫ2)‖J1 − J2‖2F .

The upper bound follows from Proposition 2.2:

‖sin(Aǫ(J1), Aǫ(J2))‖2F ≤ ‖Aǫ(J1)−Aǫ(J2)‖2F = ǫ2‖J1 − J2‖2F .

Proof of Lemma 4.5. Let s0 = ⌊min(m/e, s)⌋. The assumptions that
m/e ≥ 1 and s ≥ 1 guarantee that s0 ≥ 1. According to (Massart, 2007,
Lemma 4.10) (with α = 7/8 and β = 8/(7e)), there exists a subset Ωs0m ⊆
{0, 1}m satisfying the following properties:

1. ‖ω‖0 = s0 for all ω ∈ Ωs0m ,
2. ‖ω − ω′‖0 > s0/4 for all distinct pairs ω, ω′ ∈ Ωs0m , and
3. log|Ωs0m | ≥ cs0 log(m/s0), where c > 0.251.

Let
{J1, . . . , JN} :=

{
s
−1/2
0 ω : ω ∈ Ωs0m

}
.

Clearly, {J1, . . . , JN} ⊆ Vm,1 and

‖Ji‖(2,0) = ‖ω‖0 = s0 ≤ s

for every i. If i 6= j, then

‖Ji − Jj‖2F = s−1
0 ‖ωi − ωj‖0 > 1/4 .

The cardinality of {J1, . . . , JN} satisfies

logN = log|Ωs0m | ≥ cs0 log(m/s0) .

As a function of s0, the above right-hand side is increasing on the interval
[0,m/e]. Since min(m/e, s)/2 ≤ s0 belongs to that interval,

logN ≥ c(min(m/e, s)/2) log[m/(min(m/e, s)/2)]

≥ (c/2)min(m/e, s) log[m/min(m/e, s)] .
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It is easy to see that

min(m/e, s) log[m/min(m/e, s)] ≥ max{s log(m/s) , s/e}

for all s ∈ [1,m]. Thus,

min(m/e, s) log[m/min(m/e, s) ≥ (1 + e)−1s+ (1 + e)−1s log(m/s)

and

(A.1) logN ≥ (c/2)(1 + e)−1s(1 + log(m/s)) ,

where (c/2)(1+e)−1 > 1/30. If the above right-hand side is ≤ logm, then we
may repeat the entire argument from the beginning with {J1, . . . , JN} taken
to be the N = m vectors {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)} ⊆
{0, 1}m. That yields, in combination with eq. (A.1),

logN ≥ max{(1/30)s[1 + log(m/s)] , logm} .

A.2. Proofs related to the upper bounds.

Proof of Lemma 5.1. For brevity, denote the eigenvalues of A by λd :=
λd(A). Let A =

∑p
i=1 λiuiu

T
i be the spectral decomposition of A so that

E =
∑d

i=1 uiu
T
i and E⊥ =

∑p
i=d+1 uiu

T
i . Then

〈A,E − F 〉 = 〈A,E(I − F )− (I − E)F 〉
= 〈EA,F⊥〉 − 〈E⊥A,F 〉

=

d∑

i=1

λi〈uiuTi , F⊥〉 −
p∑

i=d+1

λi〈uiuTi , F 〉

≥ λd

d∑

i=1

〈uiuTi , F⊥〉 − λd+1

p∑

i=d+1

〈uiuTi , F 〉

= λd〈E,F⊥〉 − λd+1〈E⊥, F 〉 .

Since orthogonal projections are idempotent,

λd〈E,F⊥〉 − λd+1〈E⊥, F 〉 = λd〈EF⊥, EF⊥〉 − λd+1〈E⊥F,E⊥F 〉
= λd‖EF⊥‖22 − λd+1‖E⊥F‖2F .

Now apply Proposition 2.1 to conclude that

λd‖EF⊥‖22 − λd+1‖E⊥F‖2F = (λd − λd+1)‖sinΘ(E ,F)‖2F .
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Proof of Lemma 5.2. Equation (5.1) is equivalent to

0 ≤ 〈B,F − E〉 − [g(F ) − g(E)] .

Then by Lemma 5.1,

[λd(A)− λd+1(A)] ‖sinΘ(E ,F)‖2F ≤ −〈A,F −E〉
≤ 〈B −A,F − E〉 − [g(F ) − g(E)] .

Proposition A.1. If W is symmetric, and E and F are orthogonal
projections, then

(A.2) 〈W,F − E〉 = 〈E⊥WE⊥, F 〉 − 〈EWE,F⊥〉+ 2〈E⊥WE,F 〉 .

Proof. Using the expansion

W = E⊥WE⊥ + EWE + EWE⊥ +E⊥WE

and the symmetry of W , F and E, we can write

〈W,F − E〉 = 〈E⊥WE⊥, F − E〉+ 〈EWE,F − E〉
+ 2〈E⊥WE,F − E〉

= 〈E⊥WE⊥, E⊥(F − E)〉+ 〈EWE,E(F − E)〉
+ 2〈E⊥WE,E⊥(F − E)〉

= 〈E⊥WE⊥, F 〉+ 〈EWE,E(F − E)〉 + 2〈E⊥WE,F 〉 .

Now note that
E(F − E) = EF − E = −EF⊥ .

APPENDIX B: EMPIRICAL PROCESS RELATED PROOFS

B.1. The cross-product term. This section is dedicated to proving
the following bound on the cross-product term.

Lemma B.1. There exists a universal constant c > 0 such that

P(‖Π⊥WΠ‖2,∞ > t) ≤ 2p5d exp

(
− t2/8

2λ1λd+1/n + t
√
λ1λd+1/n

)
.

The proof of Lemma B.1 builds on the following two lemmas. They are
adapted from Lemmas 2.2.10 and 2.2.11 of van der Vaart and Wellner (1996).
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Lemma B.2 (Bernstein’s Inequality). Let Y1, . . . , Yn be independent ran-
dom variables with zero mean. Then

P

(∣∣∣∣∣

n∑

i=1

Yi

∣∣∣∣∣ > t

)
≤ 2 exp

(
− t2/2

2
∑n

i=1‖Yi‖2ψ1
+ tmaxi≤n‖Yi‖ψ1

)

Lemma B.3 (Maximal Inequality). Let Y1, . . . , Ym be arbitrary random
variables that satisfy the bound

P
(
|Yi| > t

)
≤ 2 exp

(
− t2/2

b+ at

)

for all t > 0 (and i) and fixed a, b > 0. Then
∥∥∥∥ max
1≤i≤m

Yi

∥∥∥∥
ψ1

≤ c
(
a log(1 +m) +

√
b log(1 +m)

)

for a universal constant c > 0.

We bound ‖Π⊥(Sn − Σ)Π‖2,∞ by a standard δ-net argument.

Proposition B.1. Let A be a p×d matrix, (e1, . . . , ep) be the canonical
basis of Rp and Nδ be a δ-net of Sd−1

2 for some δ ∈ [0, 1). Then

‖A‖2,∞ ≤ (1− δ)−1 max
1≤j≤p

max
u∈Nδ

〈ej , Au〉 .

Proof. By duality and compactness, there exists u∗ ∈ S
d−1 and u ∈ Nδ

such that
‖A‖2,∞ = max

1≤j≤p
‖eTj A‖2 = max

1≤j≤p
〈ej , Au∗〉 ,

and ‖u∗ − u‖2 ≤ δ. Then by the Cauchy-Schwarz Inequality,

‖A‖2,∞ = max
1≤j≤p

〈ej , Au〉+ 〈ej , A(u∗ − u)〉

≤ max
1≤j≤p

〈ej , Au〉+ δ‖eTj A‖2

≤ max
1≤j≤p

max
u∈Nδ

〈ej , Au〉+ δ‖A‖2,∞ .

Thus,
‖A‖2,∞ ≤ (1− δ)−1 max

1≤j≤p
max
u∈Nδ

〈ej , Au〉 .

The following bound on the covering number of the sphere is well-known
(see, e.g., Ledoux, 2001, Lemma 3.18).
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Proposition B.2. Let Nδ be a minimal δ-net of S
d−1
2 for δ ∈ (0, 1).

Then
|Nδ| ≤ (1 + 2/δ)d .

Proposition B.3. Let X and Y be random variables. Then

‖XY ‖ψ1
≤ ‖X‖ψ2

‖Y ‖ψ2
.

Proof. Let A = X/‖X‖ψ2
and Y/‖Y ‖ψ2

. Using the elementary inequal-
ity

|ab| ≤ 1

2
(a2 + b2)

and the triangle inequality, we have that

‖AB‖ψ1
≤ 1

2

(
‖A2‖ψ1

+ ‖B2‖ψ1

)
=

1

2

(
‖A‖2ψ2

+ ‖B‖2ψ2

)
= 1 .

Multiplying both sides of the inequality by ‖X‖ψ2
‖Y ‖ψ2

gives the desired
result.

Proof of Lemma B.1. Let Nδ be a minimal δ-net in S
d−1
2 for some

δ ∈ (0, 1) to be chosen later. By Proposition B.1 we have

‖Π⊥WΠ‖2,∞ ≤ 1

1− δ
max
1≤j≤p

max
u∈Nδ

〈Π⊥ej ,WV u〉,

where ej is the jth column of Ip×p. Taking δ = 1/2, by Proposition B.2 we
have |Nδ| ≤ 5d.

Now Π⊥ΣV = 0 and so

〈Π⊥ej ,WV u〉 = 1

n

n∑

i=1

〈Xi,Π
⊥ej〉〈Xi, V u〉

is the sum of independent random variables with mean zero. By Proposition B.3,
the summands satisfy

‖〈Xi,Π
⊥ej〉〈Xi, V u〉‖ψ1

≤ ‖〈Xi,Π
⊥ej〉‖ψ2

‖〈Xi, V u〉‖ψ2

= ‖〈Zi,Σ1/2Π⊥ej〉‖ψ2
‖〈Zi,Σ1/2V u〉‖ψ2

≤ ‖Z1‖2ψ2
‖Σ1/2Π⊥ej‖2‖Σ1/2V u‖2

≤ ‖Z1‖2ψ2

√
λ1λd+1 .
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Recall that ‖Z‖2ψ2
= 1. Then Bernstein’s Inequality (Lemma B.2) implies

that for all t > 0 and every u ∈ Nδ

P

(
‖Π⊥WΠ‖2,∞ > t

)
≤P

(
max
1≤j≤p

max
u∈Nδ

〈Π⊥ej ,WV u〉 > t/2

)

≤p5d P
(
|〈Π⊥ej,WV u〉| > t/2

)

≤2p5d exp

(
− t2/8

2λ1λd+1/n+ t
√
λ1λd+1/n

)
.

B.2. The quadratic terms.

Lemma B.4. Let ǫ ≥ 0, q ∈ (0, 1], and

φ(Rq, ǫ) = sup{〈Sn − Σ,Π⊥UUTΠ⊥〉 :U ∈ Vp,d , ‖U‖q2,q ≤ Rq ,

‖Π⊥U‖F ≤ ǫ} .

There exists a constant c > 0 such that

Eφ(Rq, ǫ) ≤ c‖Z1‖2ψ2
λd+1

{
ǫ
E(Rq, ǫ)√

n
+
E2(Rq, ǫ)

n

}
,

where

E(Rq, ǫ) = E sup{〈Z, U〉 : U ∈ Vp,d , ‖U‖q2,q ≤ 2Rq , ‖U‖F ≤ ǫ}

and Z is a (p− d)× d matrix with i.i.d. N (0, 1) entries. Moreover, we have,
for another numerical constant c′,

(B.1)
E(Rq, ǫ)√

n
≤ c′(R1/2

q t1−q/2ǫ+Rqt
2−q)

with t =
√

d+log p
n .

Proof. The first part follows from Corollary 4.1 of Vu and Lei (2012b).
It remains for us to prove the ‘moreover’ part. By the duality of the (2, 1)-
and (2,∞)−norms,

〈Z, U〉 ≤ ‖Z‖2,∞‖U‖2,1
and so

E(Rq, ǫ) ≤ E‖Z‖2,∞ sup{‖U‖2,1 : U ∈ Vp,d , ‖U‖q2,q ≤ 2Rq , ‖U‖F ≤ ǫ} .
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By eq. (5.4) and the fact that the Orlicz ψ2-norm bounds the expectation,

E‖Z‖2,∞ ≤ c′
√
d+ log p .

Now ‖U‖2,1 is just the ℓ1 norm of the vector of row-wise norms of U . So we
use a standard argument to bound the ℓ1 norm in terms of the ℓ2 and ℓq
norms for q ∈ (0, 1] (e.g., Raskutti, Wainwright and Yu, 2011, Lemma 5),
and find that for every t > 0

‖U‖2,1 ≤ ‖U‖q/22,q ‖U‖2,2t−q/2 + ‖U‖q2,qt1−q

= ‖U‖q/22,q ‖U‖F t−q/2 + ‖U‖q2,qt1−q .

Thus,

sup{‖U‖2,1 : U ∈ Vp,d , ‖U‖q2,q ≤ 2Rq , ‖U‖F ≤ ǫ} ≤ R1/2
q t−q/2 +Rqt

1−q .

Letting t = E‖Z‖2,∞/
√
n, and combining the above inequalities completes

the proof.

Lemma B.5. There exists a constant c > 0 such that

‖‖Π(Sn − Σ)Π‖2‖ψ1
≤ c‖Z1‖2ψ2

λ1

(√
d/n+ d/n

)
.

Proof. Let Nδ be a minimal δ-net of S
d−1
2 for some δ ∈ (0, 1) to be

chosen later. Then

‖Π(Sn − Σ)Π‖2 = ‖V T (Sn − Σ)V ‖2 ≤ (1− 2δ)−1 max
u∈Nδ

|〈V u, (Sn − Σ)V u〉| .

Using a similar argument as in the Proof of lemma B.1, for all t > 0 and
every u ∈ Nδ

P

(
|〈V u, (Sn − Σ)V u〉| > t

)
≤ 2 exp

(
− t2/2

2σ2/n+ tσ/n

)
,

where σ = 2‖Z1‖2ψ2
λ1. Then Lemma B.3 implies that

‖‖Π(Sn −Σ)Π‖2‖ψ1
≤ (1− 2δ)−1

∥∥∥∥max
u∈Nδ

|〈V u, (Sn − Σ)V u〉|
∥∥∥∥
ψ1

≤ (1− 2δ)−1Cσ

(√
log(1 + |Nδ|)

n
+

log(1 + |Nδ|)
n

)
,
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where C > 0 is a constant. Choosing δ = 1/3 and applying Proposition B.2
yields |Nδ| ≤ 7d and

log(1 + |Nδ|) ≤ log(8) log(d) .

Thus,

‖‖Π(Sn − Σ)Π‖2‖ψ1
≤ 7Cσ

(√
d/n + d/n

)
.
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