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ABSTRACT

The joint peristimulus time histogram (JPSTH) provides a visual representation of the

dynamics of correlated activity for a pair of neurons. There are many ways to adjust the

JPSTH for the time-varying firing-rate modulation of each neuron, and then to define

a suitable measure of time-varying correlated activity. Our approach is to introduce a

statistical model for the time-varying joint spiking activity so that the joint firing rate

can be estimated more efficiently. We have applied an adaptive smoothing method, which

has been shown to be effective in capturing sudden changes in firing rate, to the ratio of

joint firing probability to the probability of firing predicted by independence. A Boot-

strap procedure, applicable to both Poisson and non-Poisson data, was used to define a

statistical significance test of whether a large ratio could be due to chance alone. A nu-

merical simulation showed that the Bootstrap-based significance test has very nearly the

correct rejection probability, and can have markedly better power to detect departures

from independence than does an approach based on testing contiguous bins in the JPSTH.

In a companion paper (Cai et al. 2004b) we show how this formulation can accommo-

date latency and time-varying excitability effects, which can confound spike timing effects.

Keywords: Bootstrap, Correlation, Cross-correlogram, Excursion significance test, Fir-

ing rate, Gamma process, IMI process, Non-Poisson Spiking, Peri-Stimulus Time His-

togram, Point Process, Smoothing, Statistical model, Spike Train Analysis
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1 Introduction

Time-varying coincident spiking activity for a pair of neurons may be displayed with the

joint peri-stimulus time histogram (JPSTH). In order to take account of firing rate vari-

ation in the neurons, Aersten et al. (1989) proposed a normalized version of the JPSTH

and showed how statistical significance of joint spike counts could be assessed under the

hypothesis that the two neurons fired independently. Such examination of time trends

in neuronal activity necessarily involves estimation of instantaneous firing rates, and the

statistical efficiency of this estimation may be greatly increased by smoothing (Kass et

al. 2003). Furthermore, a statistical test for excessive (or deficient) synchronous spik-

ing, above that predicted by independence, can take advantage of the available smoothed

firing-rate functions. In this paper we use a smoothed version of the JPSTH to define an

alternative significance test, and report results that show the new test to be substantially

more powerful than the earlier test. The method developed here is based on the smoothed

ratio of joint spike rates to the product of smoothed individual spike rates. This ratio

would be 1, apart from random variation, under independence. The statistical test of

excess synchronous activity is based on the magnitude of the excursion, across time, of

this smoothed ratio outside certain bounds. When a ratio is either high above its expected

value of 1 for a brief period of time, or moderately above for a substantial period of time,

the magnitude of the excursion becomes large. We have used the Bootstrap (Davison and

Hinkley 1997; Efron and Tibshirani 1993) both to define the excursion boundaries and to

compute statistical significance. See Ventura (2004) for an overview of Bootstrap testing

and model selection in the analysis of spike train data.

The excursion test based on efficient smoothing procedures was developed with the goal

of being useful for small or moderate numbers of trials. In related work, Pipa and Grün

(2003) show how to use both a permutation test and a Bootstrap test to assess the signif-

icance of synchrony using the unitary event coincidence count as the test statistic. Their

approach, however, considers only the total coincidence count across the trial interval and
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does not attempt to assess time-varying excess firing. The method here provides temporal

information in the spirit of the normalized JPSTH, and may be extended to adjust for

excess trial-to-trial variability (Cai at al. 2004b). To smooth the joint spike rates and the

individual spike rates, we have applied a recently-developed method, called BARS, that

has been shown to perform very well in similar smoothing applications (DiMatteo et al.

2001; Kass and Wallstrom 2002; Zhang et al. 2003).

Suppose discharges from two neurons are recorded simultaneously over some time interval

across R repeated trials, and the interval is decomposed into small subintervals of length

∆t (such as 1 ms) at times t = 1, 2, . . . , tmax. Letting Y i(u), i = 1, 2 be the number of

trials during which neuron i fires at time u, Y i(u)/R estimates P i(u), the probabilities

that neuron i fires at time u. Similarly, letting Y 12(u, v) be the number of trials during

which neuron 1 fires at time u and neuron 2 fires at time v, for all combinations of u and

v, Y 12(u, v)/R is an estimate of P 12(u, v), the probability that both neuron 1 fires at time

u and neuron 2 fires at time v. (More precisely, P 12(u, v) is the probability that neurons

1 and 2 fire in the intervals (u − ∆u
2

, u + ∆u
2

) and (v − ∆v
2

, v + ∆v
2

).) The JPSTH is the

two-dimensional display of values Y 12(u, v)/R. The quantities Y 1(u)/R and Y 2(v)/R are

typically used to adjust the JPSTH for variations in firing rate.

The goal is to understand the time-varying relatedness of the firing of the two neurons.

In particular, if the two neurons were to fire independently we would have

P 12(u, v) = P 1(u) · P 2(v). (1)

The problems are (i) to measure departure from independence using probability, (ii) to

define a corresponding statistical assessment in terms of the data Y 12(u, v) rather than

the probabilities in (1), and (iii) to calibrate the assessment and understand how well it

works.

In Section 5.2 will consider a general point processes formulation (Barbieri et al. 2001;

Daley and Vere-Jones 2003; Johnson 1996) of our methodology but intially we will assume
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that the two individual neuron spike trains and the joint spike trains follow inhomogeneous

Poisson processes. These processes are determined by their firing-rate intensity functions,

which we write as λ1(t), λ2(t), and λ12(u, v), the latter defining the joint firing rate for

neuron 1 at time u and and time v for neuron 2. We thus have P 1(u) = λ1(u)∆u, P 2(v) =

λ2(v)∆v and, similarly, P 12(u, v) = λ12(u, v)∆u∆v. To capture potential departures from

independence in (1) we define ζ(u, v) by

λ12(u, v) = λ1(u) · λ2(v) · ζ(u, v). (2)

The quantity ζ(u, v) − 1 may be interpreted as the excess proportion, above what is

predicted by independence, in the probability that both neuron 1 and neuron 2 will fire

at respective times u and v. Ito and Tsuji (2000) observed that there is no uniquely

compelling normalization for the JPSTH, and that each normalization effectively models

the occurrence of excess joint spiking activity, beyond what would be predicted under

independence. We use the probability model (2) as a statistically convenient specification

of excess spiking activity.

In estimating ζ(u, v) we focus on the diagonals ζ(u, u + δ), each of which represents the

time-varying tendency for neuron 2 to fire more frequently than predicted by independence

at a time lag of δ following the firing of neuron 1. Let us write the diagonal at lag δ as a

function ζδ, i.e., ζδ(t) = ζ(t, t + δ). Rewriting Equation (2) as a ratio we have

ζδ(t) =
λ12(t, t + δ)

λ1(t)λ2(t + δ)
. (3)

This is the way we solve problem (i) outlined above: the function ζδ(t) measures time-

varying departure from independence. Such departures may vary rapidly, with onset of

excess joint firing ramping up over several milliseconds, but it is reasonable to assume

that ζδ(t) is a continuous function of t. This assumption motivates two features of the

statistical methodology presented here. First, smooth estimates ζ̂δ(t) of ζδ(t) are used.

Second, statistical significance is judged from the magnitude of contiguous excursions of

ζ̂δ(t) above (or below) ζδ(t) = 1.
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We next consider problem (ii). As we explain in detail in Sections 2–4, we begin by

smoothing across time the histograms for estimating each of fδ, λ1, and λ2, where

fδ(t) = λ12(t, t + δ), and apply (3) to obtain a smooth estimate ζ̂δ of ζδ. We then

must assess whether ζ̂δ(t) deviates from ζδ(t) = 1 more than would be found by chance,

under independence. To do this we compute 95% probability boundaries for ζ̂δ based

on the assumption of independence. This computation uses a set of Bootstrap samples.

We evaluate the magnitude of the excursion of ζ̂δ outside these boundaries and compute

a p-value for the excursion, thereby testing the hypothesis of independence, by re-using

the same Bootstrap samples. This provides our solution to problem (ii). We discuss in

Section 2 the smoothing method, and in Section 3 the bootstrap calculations.

Problem (iii) involves evaluation of the statistical procedure. We present in Section 4

results from simulation studies under the assumption of Poisson spiking. In Section 5 we

show how the procedure may be extended to non-Poisson spiking, which is important in

many settings, and we report additional simulation studies of the non-Poisson case.

2 The Statistical Efficiency of Smoothing

The function ζδ(t) was introduced in Equation (3) as a measure of time-varying departure

from independence. Figure 1 displays the result of a simulation of two correlated Poisson

neurons in which the correlated activity occurs at lag δ = 0, i.e., synchronously. The

algorithm used to generate the data is described in the Appendix. Figure 1 also shows

the estimate ζ̂0(t) of ζ0(t) obtained by smoothing the sequences Y 1(t)/R, Y 2(t)/R and

Y 12
0 (t)/R, where, for example, Y 12

0 (t) is the mean number of times neuron 1 fires at time

t and neuron 2 fires at time t = t + δ, with δ = 0, i.e.,

Y 12
0 (t) =

∑

r

X12
r (t, t)
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Figure 1: Simulated data. (A) and (B): PSTH based on 200 trials, together with true

firing rates λ1(t) and λ2(t) overlaid in bold. (C): Main diagonal of the JPSTH, with the

true joint firing rate taken from the right-hand side of Equation (2) with u = v overlaid

in bold. (D): The true function ζ0(t) defined in Equation (3). In each panel, the thick

line is the truth and the thinner line is its corresponding estimate.
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where X12

r (t, t) is 1 if both neurons fire at time t on trial r and is 0 otherwise. To do the

smoothing we prefer a spline-based method called BARS (DiMatteo at al. 2001) because

it produces relatively good statistical estimates in many contexts, and works particularly

well when a firing-rate function varies rapidly in some part of the time domain. However,

this particular smoothing method is not essential to the methodology presented here: any

other smoothing method could be used, such as Gaussian filtering (see Kass at al. 2003).
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Figure 2: The 95% simulation bands for diagonal with and without smoothing, based on

1000 simulated neuron pairs, each having 50 trials. Bands are shown for the raw JPSTH

diagonals (without smoothing) and for the smoothed version, using BARS. The bands

for BARS are much closer to the true diagonal, indicating much higher accuracy after

smoothing.

The advantage of introducing ζδ(t) is that we can estimate it relatively efficiently. That

is, the mean integrated squared error (MISE) of the estimator ζ̂δ(t),

MISE =
∫

(ζ̂δ(t) − ζδ(t))
2dt

will be smaller than the MISE of the corresponding diagonal of the JPSTH, which in

turn will provide increased power to detect synchrony. The gain in efficiency obtained
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from smoothing is illustrated in Figure 2, which shows the true diagonal of the JPSTH

we used in Figure 1, along with 95% simulation bands obtained from 1000 simulations

from our model for the raw diagonal of the JPSTH and for ζ̂0(t). The MISE values are

also indicated on the figure, and suggest that for the diagonal of the JPSTH to have the

same accuracy as ζ̂0(t), one would need to collect approximately 10 times as much data.

See also Kass at al. (2003) for additional examples. The increase in power of subsequent

statistical procedures is studied in Section 4.

3 Bootstrap Significance Test

Under the null hypothesis of independence ζ̂δ(t) will, because of random fluctuations,

differ from ζδ(t) = 1. Real departures of ζδ(t) from 1, the kind we wish to detect, will

be statistically substantial and will be sustained over some interval of time. We therefore

measure the deviation of ζ̂δ(t) from 1 by assessing the magnitude of its excursion beyond

95% probability boundaries for ζ̂δ based on the assumption of independence. Note that

some excursions beyond the boundaries remain likely to occur due to chance alone, under

the null hypothesis. We will evaluate the probability of large excursions.

The computation begins with a set of Bootstrap samples, which are first used to compute

the upper and lower 95% probability boundaries and are subsequently re-used to compute

the probability of large excursions. The upper boundary hU (t), at time t, is defined to be

the value such that the probability of ζ̂δ(t) > hU(t), under independence, is .025; similarly,

the lower boundary hL(t), at time t, is defined to be the value such that the probability

of hL(t) < ζ̂δ(t), under independence, is .025. We refer to these boundaries as pointwise

null bands. This is explained in Section 3.1. Section 3.2 defines a test statistic based

on the null bands, and then specifies how the Bootstrap sample drawn to compute the

bands is re-used to compute the p-value of the test statistic. Because this procedure is

computationally intensive, in Section 3.3 we also discuss the use of Normal approximations
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Figure 3: Estimated ζ̂δ(t) (dark curve) with 95% bootstrap confidence bands. The bands

hL=.025 and hU=.975 are shown. The excursion Ĝobs of ζ̂(t) beyond the bands is the area of

the shaded region.

in creating the null bands, based on a smaller Bootstrap sample.

3.1 Pointwise Null Bands for ζ̂δ(t)

Assuming the data set consists of R trials in which spiking events for a pair of neurons are

observed, the following steps may be used to obtain 95% pointwise null bands for ζδ(t):

1. Obtain smooth estimated firing rate functions λ̂1(t) and λ̂2(t);

2. Simulate R trials of spike trains for the two neurons independently using firing rate

functions λ̂1(t) and λ̂2(t);

3. Obtain a smooth estimate ζ̂δ(t) for each δ of interest;

4. Repeat steps 2-3 N times to get N estimates ζ̂δ(t);
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5. For each time t, define hL(t) and hU(t) to be the .025 and .975 quantiles of the N

values ζ̂δ(t) (so that, for example, 2.5% of the sampled ζ̂δ(t) values lie below hL(t)).

Note that Step 2 is an implementation of a parametric Bootstrap. An alternative nonpara-

metric Bootstrap procedure is also straightforward: form R joint spike trains by sampling

at random with replacement the observed spike trains of neuron 1, and separately of neu-

ron 2. This nonparametric option is appropriate if there are a large number of trials and

there is no excess trial-to-trial variability (discussed in Cai et al. 2004b).

To determine the bands accurately we used Bootstrap sample sizes of N = 1000. Figure

3 shows the 95% Bootstrap pointwise null bands for the estimated ζ0(t) of the simulated

neuron pairs in Figure 1. Here, in carrying out step 2, we assumed Poisson variation. Al-

though this is a simplification, as we discuss in Section 5, it is not an essential assumption

of the method. Of course, (1−Q)% bands could be used instead of 95% bands by taking

hL(t) and hU(t) to be the Q

2
and 1 − Q

2
quantiles.

3.2 Significance Test for Assessing Time-Varying Synchrony

Focusing on a particular diagonal specified by δ, the null hypothesis is that ζδ(t) = 1 for

all t. (The complete null hypothesis of independence is that ζδ(t) = 1 for all t and all δ).

A statistical test statistic is a formal ordering of the deviations from the null hypothesis,

that is, a way of saying which deviations are greater than others. Based on the assumption

that deviations of interest will be those that affect many contiguous values of time, we

define the test statistic to be the magnitude of the largest excursion either above the null

band hU(t) or below the null band hL(t), evaluated as the area between the fitted curve

and the null band. This is pictured as the shaded area in Figure 3 for our simulated

example. More precisely, we define the observed value of the test statistic

Gobs = max
(

maxts ,te

∫ te

ts

ζ̂δ(t) − hU(t)dt, maxts ,te

∫ te

ts

hL(t) − ζ̂δ(t)dt
)

(4)
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where ts and te are the starting and ending times of the periods during which ζ̂δ(t) is

outside the null bands, and the maximum is taken across all ts and te. Then Gobs is the

largest area of ζ̂(t) exceeding the band. To calculate the p-value, let ζ̂
(n)
δ (t), n = 1, . . . , N

stand for the estimate of ζδ(t) obtained from the nth bootstrap sample. For each Bootstrap

sample we compute G
(n)
boot, the value of the statistic defined in (4) with ζ̂

(n)
δ (t) replacing

ζ̂δ(t). We then calculate the p-value for Gobs

p =
number of Bootstrap samples for which G

(n)
boot > Gobs

N + 1
,

as is standard for Bootstrap tests. As an illustration, we obtained p < .0001 for the shaded

area in Figure 3, so we would conclude correctly that there exists synchrony between this

pair of neurons at time lag δ = 0.

3.3 Normal Approximations

As a rough guideline we would recommend N = 1000 Bootstrap samples to construct the

95% null bands. To reduce computing time, if desirable, a Normal approximation may

be used: for large R (large number of trials) one may assume ζ̂δ(t) ∼ Normal(0, σ2
z(t))

where σ2
z(t) is the variance of ζ̂δ(t), which can be estimated by the sample variance

of the ζ̂δ(t) computed from a small Bootstrap sample (e.g., N = 50). In practice, to

make Normal approximations more accurate a change of variable (or “transformation”)

is usually helpful. Our simulations suggest that the square root transformation improves

Normality, that is, we may use

√

ζ̂δ(t) ∼ Normal(0, σ2(t))

where, again, σ2(t) is estimated from a small Bootstrap sample. The adequacy of the

Normal approximation depends on neuronal firing rates, but we have found it to be quite

accurate for this purpose with R ≈ 50.
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4 Properties of the Excursion Test

In this section we evaluate the operating characteristics of the Bootstrap significance test,

and compare it to a simpler test based on the normalized JPSTH of Aertsen et al. (1989).

We consider first, in Section 4.1, whether the Bootstrap test produces nearly the correct

p-value, i.e., if α̂ is the proportion of newly simulated data samples for which p < α, we

see whether α̂ ≈ α. Then, in Section 4.2 we consider the power of the test (the probability

of rejecting the null when it is truly false) in comparison to that based on the normalized

JPSTH.

4.1 Significance Level – Probability of a False Negative

We examine only the case δ = 0, corresponding to synchrony, because we expect perfor-

mance for other values of δ to be similar: the procedures and data are essentially identical

(except that for large |δ| the data become sparse, as we would be examining data that go

into the upper left and lower right corners of the JPSTH, and there the statistical power

drops off sharply). We simulated 1000 pairs of independent neurons, i.e. ζ0(t) = 1 for

all t. The firing rates of the neuron pairs are as in the left panel of Figure 4. For each

simulated neuron pair, we calculated the p-value specified in Section 3.2. If we reject the

null hypothesis based on α = 0.05, then the percentage of the p-values less than 0.05 is

the empirical type I error α̂ of the test. The right panel of Figure 4 displays a plot of α̂

versus α, for values of α ranging up to .1. We find, in this case, that the empirical type I

error matches the actual α level quite closely.
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Figure 4: Type I error versus its nominal value for the excursion test. Having set the

nominal type I error to α (shown on the x-axis of the right-hand plot) we compute the

proportion among 1000 simulated data samples for which the p-value satisfies p < α. The

plot on the left panel shows the firing rate functions used for the two simulated neurons.

The plot on the right displays extremely good agreement between α̂ and the nominal type I

error α. The solid line corresponds to perfect agreement, and the irregular bands are 95%

confidence intervals for the simulated p values.

4.2 Power – Probability of a False Positive

To examine the power of significance tests for time-varying dependence we must define

time-varying alternatives to the null independence model. In our framework (and again

confining attention to δ = 0) this means we must define some set of functions ζ0(t) that are

not identically equal to 1. We continue to use two neurons with the firing rates displayed

in Figure 4A, and set ζ(t) = 1 + 4βf(t), where f(t) is a bell shaped function we took

to be the Normal density function with mean 350 msec and standard deviation 55, and

β is a gain coefficient taking increasing values 1, 2, 3, 4, 6, 8, and 12, which correspond

to a maximum percentage of excess joint firing rate of 2.9, 5.8, 8.7, 11.6, 17.4, 23.2, 34.8

respectively. The ζ0(t) functions we used here are proportional to the ζ0(t) plotted in
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Figures 1(D) and 2.

As a comparison, we used a significance test based on the normalized JPSTH of Aertsen

et al. (1989), the (u, v) pixel of which is defined to be

ρ(u, v) =
P 12(u, v) − P 1(u)P 2(v)

√

P 1(u)(1 − P 1(u))P 2(v)(1 − P 2(v))
. (5)

Let us define ρδ(t) = ρ(t, t+δ) and then take ρ̂δ(t) to be the value of ρδ(t) when P 1(t), P 2(t)

and P 12(t, t+δ) are replaced with their observed-data counterparts Y 1(t)/R, Y 2(t+δ)/R,

and Y 12(t, t + δ)/R. We consider the case δ = 0. Because large magnitudes |ρ̂0(t)| for

isolated values of t would likely be interpreted as chance fluctuations, we define the test

to reject the null hypothesis whenever |ρ̂0(t)| > ρ∗∗ for two contiguous values of t, where

ρ∗∗ is a threshold value so that the type I error of this procedure is α = .05. Note that in

order for two alternative statistical tests, here the Bootstrap-based excursion test versus

the contiguous-bin JPSTH test, to be comparable with respect to power they must be

defined to have the same type I error. The value ρ∗∗ is not the same as the .05-level

threshold for a single t: it is computed by comparing many alternatives thresholds under

the null hypothesis and choosing the value that rejects (falsely) 5% of the time.

Figure 5 displays the results of the power calculation. The Bootstrap test is able to

achieve very good power when the maximum percentage of excess joint spiking activity

is around 20%. The JPSTH-based method using (5) is very much less powerful. In fact,

when the maximum excess firing rate is 17.5%, four times as many trials would be needed

using the JPSTH-based method than using the Bootstrap significance test.

5 Non-Poisson Variability

The foregoing material assumed Poisson variation either implicitly, by ignoring spiking

history (timing of sequences of spikes) within trials, or explicitly, by generating from
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Poisson distributions, both within the Bootstrap procedure and in our simulation studies.

Two remaining issues are (1) the extent to which the Poisson-based Bootstrap p-value

becomes inaccurate in the presence of non-Poisson variability, and (2) the manner in which

the excursion test be modified for non-Poisson variability, and its resulting statistical

properties. We consider these issues in this section.

5.1 Simulation Study

To examine the effect of departures from Poisson spiking on the excursion test for syn-

chrony we performed further simulation studies. These consisted of applying the test to

non-Poisson data and recording the observed significance level α̂.

We considered two types of non-Poisson data. The first type were Poisson spike trains

with constant rate ranging from 25 to 125 Hz, that were pruned back to enforce a hard

refractory period of either 1, 2, 5, or 10 msec. The second type of non-Poisson data were

gamma spike trains with parameter q ranging from 0.05 (much more variable than Poisson

processes) to 16 (less variable). An easy way to understand a gamma process with q an

integer is to simulate one. A Poisson spike train is simulated as follows: divide the time

in small intervals of length dt, centered on times ti, and for all i, generate a spike in the

interval centered on ti with probability λ(ti)dt, where λ(ti) denotes the spiking rate at

time ti. A gamma process of order q is defined as the waiting time until the qth event

of a Poisson process; therefore to generate such a process with rate λ(t), we generate a

Poisson process with rate q · λ(t), and create the gamma spike train by retaining only

every qth spikes. For more general q’s (integer or not, above or below 1), we generate

gamma processes using the time rescaling theorem, as described in Brown et al. (2002).

To further illustrate the properties of gamma processes, note that for a Poisson process

with rate λ, the inter-spike intervals (ISI) have an exponential distribution with mean λ−1

and variance λ−2. For a gamma(q) process with same rate λ, the distribution distribution
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Figure 6: Properties of gamma processes. Left: raster plots of gamma(q) spike trains with

q = 0.25, 1 and 4, and firing rate 200 Hz. Right: simulated distributions of the number

of spikes in 10 msec windows. The black dots in the middle panel are the theoretical

distribution of the counts for a Poisson process; simulated and true distributions match.

of the ISI is 1/q times a gamma distribution with mean q ·λ−1 and variance q ·λ−2; hence

the ISI have mean λ−1, as do the ISI of the Poisson process, but variance λ−2/q that is

smaller/larger if q is larger/small than 1. Therefore the spikes of a gamma process with

q > 1 (q < 1) occur with more (less) regularity than the spikes of a Poisson process with

the same firing rate.

Figure 6 illustrates this. It shows raster plots, each based on 10 spike trains generated

from gamma processes with the same rate λ = 200 Hz, and q = 0.25, 1 (Poisson), and 4

respectively. The average ISI for all spike trains is 5 msec, so that on average, we would

expect to observe 2 spikes in a 10 msec window of time. The right panels of Figure 6 show

the distributions of the number of spikes in a 10 msec window; each distribution has a

mean of 2, as expected. The larger q becomes, the smaller the ISI variability about the

mean 2. On the other hand, when q is small, the variability increases, and the probability

of observing 10 spikes in a 10 msec window also increases.
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Figure 7 shows the observed significance level α̂ from the following simulations. In (A),

both neurons were Poisson with the same hard refractory period equal to 0, 1, 5, or 10

msec, and equal firing rates ranging from 25 to 125Hz. For each combination of the firing

rate and refractory period we simulated 1000 independent neuron pairs. We applied the

joint spiking model to those simulated neuron data, under the Poisson assumption, and

calculated the p-value of ζδ(t) for δ = 0. Note that when the hard refractory period is

equal to 0ms, the two spike trains follow Poisson processes and α̂ should not and indeed

does not differ significantly from α.

From (A) we can see that for firing rates up to 50Hz the type I error remains correct with

the Poisson model for non-Poisson spike trains having a hard refractory period as long as

10ms. With a hard refractory period of 5 ms the type I error does not go above .10 until

the firing rate exceeds 100Hz. We would conclude that for firing rates below 50Hz the

Poisson version of the test will perform well despite the presence of a refractory period,

while for higher firing rates the type I error begins to drift upward. For high firing rates

(above 100Hz) the test should not be trusted. Note that in Figure 7(A), we took both

neurons to have the same refractory period.

Figure 7(B) also shows α̂ for Poisson spike trains with hard refractory periods with the

following characteristics. Neurons 1 has a constant firing rate of 200 Hz and refractory

period of 10 msec, while neuron 2 has rate either 130 or 200 msec, and refractory period

ranging from 0 to 10 msec in steps on 1 msec. Figure 7(B), which uses different refractory

periods, suggests that the departure of α̂ from α is only acute under the conditions just

described, when the 2 neurons have similar refractory periods.

Figure 7(C) shows α̂ for a variety of gamma point processes. Neuron 1 is gamma(q1) with

rate 200Hz, while neuron 2 is gamma(q2) with rate 130Hz. We observe that the Poisson

procedure applied to gamma spike trains produces approximately the correct observed

significance level α̂, unless q1 and q2 are both either very large, or very small.
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Figure 7: Type I error of excursion test under the Poisson assumption when (A,B) the

data are non-Poisson due to a refractory period, and when (C) the data are gamma.

(A) Both neurons have the same firing rate (x-axis) and the same refractory period d.

The horizontal line at the bottom is at α = .05, the type I error the test is supposed to

achieve. Vertical bars show the simulation error in the form of 95% confidence intervals

for each plotted α̂. (The vertical bars have been separated horizontally to make them

more distinct.) (B) Neuron 1 has firing rate 200Hz and refractory period 10 msec; neuron

2 has firing rate 200Hz or 130Hz, and refractory period on the x-axis. (C) Neurons 1 is

gamma(q1) with rate 200Hz; neurons 2 is gamma(q2) with rate 130Hz. The x-axis is on

the log scale for clarity. (D) Type I error of excursion test for the Poisson spike trains

with hard refractory period of 10 ms in (A), when model (7) is used in the bootstrap

simulation. The dotted line is at α = .05, the type I error the test is supposed to achieve.

Vertical bars show the simulation error in the form of 95% confidence intervals for each

plotted α̂.
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5.2 Non-Poisson Models

For a general (not-necessarily Poisson) point process the firing rate is governed by the

conditional intensity function λ(t|H), where H is the spiking history (for a given trial) up

to time t. Various non-Poisson alternatives may be used, including the inhomogeneous

Markov interval (IMI) models discussed by Kass and Ventura (2001) or Gamma process

models or other inhomogeneous versions of renewal processes (Barbieri, et al., 2001; Brown

et al., 2002). The joint spiking model under the alternative non-Poisson assumption may

be fitted just as under the Poisson assumption except the form for the marginal firing

rate of each neuron must be changed. Equation (2) is replaced by

λ12(u, v) = λ1(u|H1) · λ2(v|H2) · ζ(u, v) (6)

where Hi for i = 1, 2 are the respective spiking histories for the two neurons up to time t.

Equation (6) assumes that while the overall joint spiking depends on the spiking history

for each neuron through their individual intensity functions, their excess joint spiking

above that predicted by independence ζ(u, v) is not itself mediated by recent spiking

activity. The smoothed estimate of ζδ(t) is obtained, as before, by smoothing the joint

spike counts to obtain a smoothed version of the numerator of (3) and then dividing by

the similarly estimated product λ1(t|H1)λ2(t + δ|H2). In our work we have again used

spline-based likelihood methods to estimate the conditional intensity functions.

In the special case of IMI models each neuron’s conditional intensity function may be

written in the form

λ(t | H) = λ(t, s∗(t))

where s∗(t) is the most recent spike time prior to t so that Equation (6) becomes

λ12(u, v) = λ1(u, s1
∗
(u)) · λ2(v, s2

∗
(v)) · ζ(u, v). (7)

We repeated the simulation study of the previous subsection, with a hard refractory period

of 10 ms, but we instead used (7) to define the Bootstrap excursion test. Figure 7 displays
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the results. We can see from the figure that the type I errors are now indistinguishably

close to the desired level α = .05, even for high firing rates.

6 Discussion

The function ζδ(t) uses probability to characterize theoretically the evolving dependence in

the firing of two neurons. A smooth estimate ζ̂δ(t), like a smoothed diagonal of the JPSTH,

describes evolving dependence in the data. Because the data are noisy, a statistical

procedure must be used to judge whether an observed deviations of ζ̂δ(t) away from the

value of 1, which would hold under independence, is due to chance fluctuations. The

magnitude of the excursion of ζ̂δ(t) beyond the 95% null bounds is intended to match the

intuition that increases in joint spiking activity over continuous intervals of time above

that expected under independence should provide evidence of dependence. Creation of

an approximately correct p-value for any excursion test of this type could be difficult.

With the Bootstrap, however, it is quite straightforward. A substantial literature on

the Bootstrap indicates that it has good statistical properties (e.g., Davison and Hinkley,

1997, Sections 2.6 and 5.4, and references therein), and the results presented here indicate

that the Bootstrap excursion test performs well in the sense of yielding accurate p-values

and having good power for moderate sample sizes.

The particular choice of ζδ(t) is not essential to the Bootstrap approach applied here,

and alternative measures of departure from independence could be used instead. As Ito

and Tsuji (2000) observed, there is no uniquely compelling normalization of the JPSTH

and each normalization effectively models the occurrence of excess joint spiking activity

beyond what would be predicted by independence. Thus, when dependence evolves over

time different measures could lead to distinct pictures of the phenomenon. For example,

in the presence of time-varying marginal firing rates, excess joint spiking activity that

is constant in time when measured in the ratio form of ζδ(t) would appear non-constant
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when measured in an additive form.

Non-Poisson neurons can produce a greater or smaller number of joint spikes than that

predicted under Poisson firing. We discussed and reported on applications of the Boot-

strap excursion test to non-Poisson spike trains. For mild departures from non-Poisson

spiking, and low firing rates, the effects on performance of the Poisson-based test are not

large. However, good data-analytical practice would involve checking for non-Poisson be-

havior by fitting non-Poisson models and, if indicated, applying the non-Poisson versions

of the Bootstrap excursion test discussed in Section 5.

The benefit of the statistical approach adopted here is that it used the information in the

data efficiently. In addition, the framework allows us to extend the significance test to

include effects such as excess trial-to-trial variation, which is discussed in the companion

paper (Cai at al. 2004b).

Appendix

We here describe how we simulated spike trains for two correlated neurons with marginal

rates λ1(t), λ2(t), and joint rate λ12(t) = λ1(t)λ2(t)ζ0(t). This extends immediately to

correlations at other lags. It does not extend to correlations that spread across several

lags.

1. Simulate a spike train for neuron A with firing rate λ1(t).

2. Simulate the spike train of neuron B conditional on the spike train of neuron A.

That is, if at time t, neuron A had a spike, generate a spike for neuron B at time t

from a Bernoulli distribution with probability

P 2(t | neuron A spiked at t) = λ2(t | neuron A spiked at t)∆t
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=
λ12(t, t)∆t∆t

λ1(t)∆t

=
λ1(t)∆tλ2(t)∆tζ0(t)

λ1(t)∆t

= λ2(t)ζ0(t)∆t.

If, on the other hand, neuron A did not fire at time t, generate a spike for neuron

B at time t from a Bernoulli distribution with probability

P 2(t | neuron A did not spike at t) =
(λ2(t) − λ2(t)λ1(t)ζ0(t))∆t

1 − λ1(t)∆t
.
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6 Properties of gamma processes. Left: raster plots of gamma(q) spike trains

with q = 0.25, 1 and 4, and firing rate 200 Hz. Right: simulated distribu-

tions of the number of spikes in 10 msec windows. The black dots in the
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7 Type I error of excursion test under the Poisson assumption when (A,B)

the data are non-Poisson due to a refractory period, and when (C) the data

are gamma. (A) Both neurons have the same firing rate (x-axis) and the

same refractory period d. The horizontal line at the bottom is at α = .05,

the type I error the test is supposed to achieve. Vertical bars show the

simulation error in the form of 95% confidence intervals for each plotted

α̂. (The vertical bars have been separated horizontally to make them more

distinct.) (B) Neuron 1 has firing rate 200Hz and refractory period 10

msec; neuron 2 has firing rate 200Hz or 130Hz, and refractory period on

the x-axis. (C) Neurons 1 is gamma(q1) with rate 200Hz; neurons 2 is

gamma(q2) with rate 130Hz. The x-axis is on the log scale for clarity.

(D) Type I error of excursion test for the Poisson spike trains with hard

refractory period of 10 ms in (A), when model (7) is used in the bootstrap

simulation. The dotted line is at α = .05, the type I error the test is

supposed to achieve. Vertical bars show the simulation error in the form
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