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ABSTRACT

Finding objective and effective thresholds for voxelwise statistics derived from
neuroimaging data has been a long-standing problem. With at least one test per-
formed for every voxel in an image, some correction of the thresholds is needed to
control the error rates, but standard procedures for multiple hypothesis testing
(e.g., Bonferroni) tend to not be sensitive enough to be useful in this context.
This paper introduces to the neuroscience literature statistical procedures for
controlling the False Discovery Rate (FDR). Recent theoretical work in statistics
suggests that FDR-controlling procedures will be effective for the analysis of neu-
roimaging data. These procedures operate simultaneously on all voxelwise test
statistics to determine which tests should be considered statistically significant.
The innovation of the procedures is that they control the expected proportion of
the rejected hypotheses that are falsely rejected. We demonstrate this approach
using both simulations and functional Magnetic Resonance Imaging data from

two simple experiments.
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1 Introduction

A common approach to identifying active voxels in a neuroimaging data set is to perform
voxelwise hypothesis tests (after suitable pre-processing of the data) and to threshold the
resulting image of test statistics. At each voxel, a test statistic is computed from the data,
usually related to the null hypothesis of no difference between specified experimental con-
ditions. The voxels for which the test statistics exceed the threshold are then classified as
active, relative to the particular comparison being made. While this approach has proved
reasonably effective for a wide variety of testing methods, a basic problem remains: choosing
the threshold.

When one uses theoretically-motivated thresholds for the individual tests, ignoring the
fact that many tests are being performed, the probability that there will be false positives
(voxels declared active when they are really inactive) among all the tests becomes very high.
For example, for a one-sided ¢-test with a 0.05 significance level, the threshold would be
1.645, which would lead to approximately 1433 voxels declared active on average out of the
28672 voxels in a 64 x 64 x 7 image when there is no real activity. The 5% error rate thus
leads to a very large number of false positives in absolute terms, especially relative to the
typical number of true positives.

The traditional way to deal with multiple testing is to adjust thresholds such that Type
I error is controlled for all voxels in the brain, simultaneously. There are two types of error
control, weak and strong. Weak control requires that, when the null hypothesis is true

everywhere, the chance of rejecting one or more tests is less than or equal to a specified level



a. Strong control requires that, for any subset of voxels where the null hypothesis is true, the
chance of rejecting one or more of the subset’s tests is less than or equal to a. As concisely
stated by Holmes et al. (1996), “A test with strong control declares nonactivated voxels as
activated with probability at most « ....” A significant result from a test procedure with
weak control only implies there is an activation somewhere; a procedure with strong control
allows individual voxels to be declared active — it has localizing power.

There is a variety of methods available for controlling the false-positive rate when per-
forming multiple tests. Among the methods, perhaps the most commonly used is the Bon-
ferroni correction (see, for example, Miller, 1981). If there are k tests being performed, the
Bonferroni correction replaces the nominal significance level « (e.g., 0.05) with the level a/k
for each test. It can be shown that the Bonferroni correction has strong control of Type I
error. This is a conservative condition, and in practice with neuroimaging data, the Bon-
ferroni correction has a tendency to wipe out both false and true positives when applied to
the entire data set. To get useful results, it is necessary to use a more complicated method
or to reduce the number of tests considered simultaneously. For instance, one could iden-
tify regions of interest (ROI) and apply the correction separately within each region. More
involved methods include random field approaches (such as Worsley et al., 1996) or permu-
tation based methods (such as Holmes et al., 1996). The random field methods are suitable
only for smoothed data and may require assumptions that are very difficult to check; the
permutation method makes few assumptions, but has an additional computational burden
and does not account for temporal autocorrelation easily. ROIs are labor intensive to create,

and further, they must be created prior to data analysis and left unchanged throughout, a
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rigid condition of which researchers are understandably wary.

Variation across subjects has a critical impact on threshold selection in practice. It has
frequently been observed that, even with the same scanner and experimental paradigm,
subjects vary in the degree of activation they exhibit, in the sense of contrast-to-noise.
Subjective selection of thresholds (set low enough that meaningful structure is observed, but
high enough so that appreciable random structure is not evident) suggests that different
thresholds are appropriate for different subjects. Without an objective method for selecting
these thresholds, however, the meaning of the statistical tests can be subverted by the
researcher by adjusting the thresholds, implicitly or explicitly, to give desirable results. Many
researchers using neuroimaging therefore tend to choose a single threshold consistently for
all data analyzed in an individual experiment. This choice is usually based on what has
“worked well” in the past. For example, a ¢t threshold of 6 and a p value of less than 0.001
are commonly used, though completely arbitrary, values for thresholding maps. This practice
avoids biases from ad hoc threshold adjustments, but its forced consistency can significantly
reduce sensitivity (and waste data).

There have been a number of efforts to find an objective and effective method for thresh-
old determination (Genovese, Noll, and Eddy, 1997; Worsley et al., 1996; Holmes et al.,
1996). While these methods are promising, they all involve either extra computational ef-
fort or extra data collection that may deter researchers from using them. In this paper, we
describe a recent development in statistics that can be adapted to automatic and implicit
threshold selection in neuroimaging: procedures that control the False Discovery Rate (FDR)

(Benjamini and Hochberg, 1995; Benjamini and Liu, 1999; Benjamini and Yekutieli, 2000).



Whenever one performs multiple tests, the FDR is the proportion of false positives (in-
correct rejections of the null hypothesis) among those tests for which the null hypothesis is
rejected. We believe that this quantity gets at the essence of what one wants to control, in
contrast to the Bonferroni correction, for instance, which controls the rate of false positives
among all tests whether or not the null is actually rejected. A procedure that controls the
FDR bounds the expected rate of false positives among those tests that show a significant
result. The procedures we describe operate simultaneously on all voxels in a specified part of
the data (e.g., the entire data set) and identify in which of those voxels the test is rejected.
This implicitly corresponds to a threshold selection method that adapts to the properties of
the given data set. These methods work for any statistical testing procedure for which one
can generate a p-value. FDR methods also offer an objective way to select thresholds that
is automatically adaptive across subjects.

An outline of the paper is as follows. In Section 2, we describe the FDR in more detail
and present a family of FDR-controlling procedures that have been studied in the statistics
literature. In Section 3, we present simple simulations that illustrate the performance of
the FDR-controlling procedures. In Section 4, we apply the methods to two data sets, one
describing a simple motor task (Kinahan and Noll, 1999), and the other from a study of
auditory stimulation. Finally, in Section 5, we discuss some of the practical issues in the use

of FDR.



2 The False Discovery Rate

In a typical functional Magnetic Resonance Imaging (fMRI) data analysis, one computes, for
each voxel of interest, a test statistic that relates to the magnitude of a particular contrast
among experimental conditions. A voxel is declared active if the corresponding test statistic
is sufficiently extreme with respect to the statistic’s distribution under the null hypothesis.

Let V' denote the total number of voxels being tested in such an analysis. Each voxel can
be classified into one of four types, depending on whether or not the voxel is truly active

and whether or not it is declared active, as shown in Table 1.

Declared Active Declared Inactive

Truly Active Vaa Vai 1,
Truly Inactive Vi Vii T;
D, D, Vv

Table 1. Classifications of voxels in V simultaneous tests.

For example, V;, denotes the number of false positives and D, = V,, + V;, denotes the
number of voxels declared active. In any data analysis, we only observe D,, D;, and V; the
remaining counts are unknown.

The False Discovery Rate (FDR) is given by the ratio

Via Via
FDR = —*  — i, 1
Vie+Vaa  Da’ M

that is, the proportion of declared-active voxels which are false positives. If none of the tests

is rejected, the FDR is defined to be 0.



A procedure controlling the FDR specifies a rate g between 0 and 1 and ensures that
on average the FDR is no bigger than ¢q. This works even though V;,, the number of false
positives, is unknown. The phrase “on average” here is important to the interpretation of
the procedure. The guarantee is that if one were to replicate the experiment many times,
then the average FDR over those replications would be no bigger than ¢. For any particular
data analysis, the actual FDR might be larger than gq.

In contrast to FDR, the Bonferroni procedure controls the probability of having any false
positives: one specifies an error rate «, and the procedure ensures that P {V;, > 0} < a.
While this does a good job of reducing false positives, it is conservative, meaning that
P {Vie > 0} is much less than «, and in general the method has low power.

The FDR-controlling techniques introduced by Benjamini and Hochberg (1995) are easily
implemented, even for very large data sets. These procedures guarantee control of the FDR

in the sense that

)

E(FDR) < —¢<g, (2)

=5

where E denotes expected value and where the first inequality is an equality when the p-values
are obtained from a continuous distribution. The unknown factor 7;/V', the proportion of
truly inactive voxels, shows that the procedure somewhat overcontrols the expected FDR.
In analyses of the entire data set, this factor will in practice be very close to 1 and can
reasonably be ignored. For analyses of smaller ROIs, however, it might be useful to estimate
T;/V, and choose ¢q accordingly.

For the V' voxels being tested, the general procedure is as follows:



1. Select a desired FDR bound ¢ between 0 and 1. This is the maximum FDR that the

researcher is willing to tolerate on average.

2. Order the p-values from smallest to largest:

Pa) < Pe) < - <Py
Let v(;) be the voxel corresponding to p-value py;).

3. Let r be the largest ¢ for which

i q
VeV

i) <
where ¢(V') is a predetermined constant described below.
4. Reject the null hypothesis of inactivity for voxels v(y), ..., v).

The choice of the constant ¢(V') depends on assumptions about the joint distribution of
the p-values across voxels. The following choices control FDR under different conditions:
(i) ¢(V) = 1 and (ii) ¢(V) = £V, 1/i. The size of the constant in (i) is larger than that
in (i). Hence, all else being equal, the corresponding cut-off for significance and number of
voxels declared active are smaller. The first choice of ¢(V') applies under the assumption of
independence among the p-values at different voxels. The second choice of ¢(V') applies for
any joint distribution of the p-values across voxels. As voxels are rarely strictly independent,
even in unsmoothed data, we generally favor (ii) for imaging data. Note that ¢(V) =
SV 1/i =In(V) + v+ 7(V) where v ~ 0.5772 is Euler’s constant and 7(V') < 1/V. Hence,
for large V', one can approximate the harmonic sum with In(V") + ~.
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A graphical perspective can be helpful to understanding the procedure. One plots the
ordered p-values p(; and the line through the origin with slope ¢/c(V’) and finds the last
undercrossing of the line by the p-values. All null hypotheses corresponding to p-values less
than or equal to this undercrossing point are rejected. See Figure 1.

To implement the procedure, one must choose a value for the parameter ¢, but one
strength of the method is that this is not an arbitrary choice. From equation (2), ¢ has
a meaningful and rigorous interpretation that can be relied on in selecting its value and
that makes it comparable across studies. While it is common to set ¢ to conventional
levels for significance testing (e.g., 0.01-0.05), this is by no means required. For instance,
values of ¢ in the range of 0.10-0.20 are reasonable in many problems (Benjamini, personal
communication).

Another advantage of this method is that it is adaptive, in the sense that the chosen
thresholds are automatically adjusted to the strength of the signal. The researcher chooses a
tolerable rate of false discoveries, and the specific thresholds are determined from the data.
This solves the threshold selection problem automatically, even for multiple subjects: there is
no need to find an arbitrary and ad hoc threshold that works for all subjects simultaneously,

or to use a complicated method of targeting the threshold to each subject.

3 Simulation Studies

To show how the FDR-controlling procedures perform, we give in this section the results of

simulations in which some of the basic parameters (V, T,, etc.) are systematically varied.
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There are two important points about FDR to keep in mind. First, the procedures
guarantee that the FDR will be below the specified bound on average over many replications
of an experiment. For any given data set, the FDR need not be below the bound. Second,
the FDR by itself does not tell us what proportion of the truly active voxels were detected.
To find this we would need also the dual quantity, the False Nondiscovery Rate (FNR)), which

is the proportion of voxels declared inactive that are truly active. That is,

Vai V;zi
FNR= —— = — 3
Vai + Vi D;’ 3)

with FNR = 0 if all voxels are declared active. The simulations enable us to find the
underlying distribution of the FDR and to compute the FNR to assess power.

In our simulations, we generate random two-sample ¢-statistics (one-sided) that corre-
spond to those computed from a time series of 98 images. We consider two image sizes,
64 x 64 and 128 x 128, which determines the number of tests performed. Within each image,
we include four square blocks of active voxels. The effect size as measured by the shift in
the t-distribution of the statistic is 0.5, 1, 2, and 3 across the blocks, providing a range of
magnitudes for the task-related signal changes from barely detectable to easily detectable.
We vary the block size (0, 10, 20, 30) across simulation runs, thus changing the proportion
of truly active voxels. Within each run, we obtain 2500 samples using ¢ = 0.05. Table 2
shows the simulation results. Figure 2 shows voxel-by-voxel proportions of rejections across
one simulation run, with the truly active voxels delineated for comparison.

The expected FDRs follow the pattern predicted by equation 2 quite closely, in that

they are all quite close to T;q/V = 0.05. As the proportion of active voxels increases, the

11



Image Size Block Size E(FDR) L ¢ P{FDR>q} E(FNR)

64 x 64 0 0.046  0.050 0.046 0.000
10 0.047  0.045 0.430 0.057

20 0.038  0.030 0.187 0.211

32 0.000  0.006 0.000 1.000

128 x 128 0 0.054  0.050 0.054 0.000
10 0.049  0.049 0.432 0.023

20 0.048  0.045 0.441 0.057

30 0.038  0.039 0.036 0.211

Table 2. Summaries of FDR and FNR over replications of simulated data, with
g = 0.05. Each row in the table represents a different simulation run. In each
run, the data set generated at each iteration consists of four blocks of the stated

size with different degrees of activation and surrounding non-activating voxels.

distribution of the FDR becomes more concentrated, less skewed, and seems to approach
a Gaussian. For the 32 block size of the 64 x 64 simulations, there are virtually no false
discoveries (E(FDR) & 0), because there are virtually no discoveries (E(FNR) =~ 1); this
suggests that FDR is most powerful with sparse signals. The probability that the FDR
is larger than the tolerance ¢ drops precipitously as the number of active voxels increases.
Figure 2 shows that the FNR decreases with the effect size. A shift of 0.5 in the ¢-statistics
is barely detectable over the background, but a shift of 3 is almost completely recovered.
The FDR-controlling procedure indicates which voxels should be declared active. The

largest p-value among these voxels corresponds to a threshold on the original test statistics.
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Figure 3 shows the distribution of these equivalent ¢ thresholds across simulation runs for
the 128 x 128 image with 10 x 10 active blocks. The distribution is centered on the value
4.16 with a standard deviation of approximately 0.21. This variation from data set to data

set, shows the FDR-based method adapting to local variations in the contrast-to-noise ratio.

4 Data Example

In this section, we consider the effectiveness of the FDR approach on real data examples.
We demonstrate the methods on two datasets. One dataset was described by Kinahan and
Noll (1999), where PET and fMRI studies of finger opposition were compared; we use the
fMRI data from one subject. The other dataset is from a study of auditory stimulation; it
is available on the web, at http://www.fil.ion.ucl.ac.uk/spm/data. Both datasets are
used here with the kind permission of the respective authors.

For the finger opposition task, subjects sequentially touched their thumb to the fingers
of the right hand, starting with the little finger. The movements were synchronized to a
numeric visual cue presented at 2-Hz rate for 60 seconds. The control condition was the
same visual cue for 60 seconds, though no movement was made. Data from 12 pairs of task-
control blocks were collected. A GE 1.5T scanner was used, collecting T2*-weighted EPI
images. The acquired volumes had dimensions 128 x 64 x 20, with voxels of size 3.125mm
x 3.125mm x 4.0mm (no skip); TR was 6 seconds, TE 45 ms. Images were trimmed to
64 x 64 x 20. There were 10 images per block, 12 pairs of blocks and hence a total of 240

images. A t-test statistic image was created by comparing the rest to active blocks.
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The auditory stimulation experiment consisted of 14 42-second blocks, the blocks alter-
nating between silent rest and presentation of bi-syllabic words. Words were paced at 60 per
minute. A modified 2T Siemens scanner was used to collect T2*-weighted EPI images. The
acquired volumes had dimensions 64 x 64 x 64, with voxel size 3.0mm X 3.0mm X 3.0mm (no
skip); TR was 7 seconds. There were 6 images per block, 14 blocks and hence a total of 84
images. For this data we fit the authors’ recommended model, a linear regression consisting
of a boxcar function convolved with a canonical hemodynamic response, global image inten-
sity and a 7 element discrete cosine basis effecting a high-pass filter with cutoff periodicity
of 168 seconds. A t-statistic image was created based on the experimental covariate.

Three thresholding methods were applied — the arbitrary cutoff point of 4 in a -map, the
basic FDR procedure (with ¢(V) = 1) and the FDR procedure for arbitrary p-value distri-
butions (¢(V) = )., 1/i). Both FDR procedures used ¢ = 0.05. Prior to implementation
of the FDR method, images were cropped to exclude air outside the head, where no activity
should be observed.

As seen in Figures 4 and 5, there is a noticeable difference between the FDR, results with
and without the independence assumption, with the independence version of FDR leading
to many more active voxels. The comparison with the ¢-maps thresholded at 4 in both
figures shows that the distribution-free version of FDR highlights basically the same regions,
although slightly fewer voxels. These relations are consistent across all the slices. The ad

hoc threshold of 4 tends to resemble the results under the independence assumption.
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5 Discussion

We have examined methods to control the False Discovery Rate as a solution to the thresh-
old selection problem in neuroimaging data. These provide an interpretable and adaptive
criterion with higher power than other methods for multiple comparisons, such as the Bon-
ferroni correction. In contrast to purely subjective threshold selection, the threshold varies
automatically across subjects with a consequent gain in sensitivity. In contrast to compli-
cated threshold-selection schemes, the methods are simple to implement and computationally
efficient even for large data sets.

Although the procedure for controlling the FDR was not developed for the case of many
thousands of tests and has not often been used in that context, the method gives sensible
results with both simulated and real data from two fMRI experiments. As seen in the
reported studies, controlling the FDR offers no guarantee that the activation maps will
reveal some new structure. What then is the advantage? We see three main strengths of
FDR-based methods, all of which derive from the additional information provided about the
proportion of voxels falsely declared active.

First, any single choice of threshold across data sets will give an error rate that is too
high for some data and too low for others. The FDR method adapts its threshold to the
features of the data, eliminating an unnecessary excess of errors. Second, the parameter ¢
has a definite and clear meaning that is comparable across studies. Researchers might obtain
different thresholds through their personal choice of ¢, but because the criterion is clear, we

can understand the differences that will result. Third, since the FDR-controlling procedure
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works on the p-values, and not on the test statistics themselves, it can be applied with any
valid statistical test.

Choosing ¢ is only one of the implementation issues that the researcher needs to consider.
We have presented two slight variations on the basic procedure that differ in the assumptions
they require about the joint distribution of the p-values across voxels. Which of these should
be used in a given situation will in general be determined by the nature of the data and
the willingness of the researcher to make assumptions about the p-values. When it applies,
the independence procedure will have the highest power. However, strict independence is
hard to verify and will often fail with neuroimaging data. Indeed, our analysis suggests that
the independence FDR procedure is perhaps too liberal for fMRI data, including too many
voxels as above threshold. The distribution-free procedure ¢(V) = Y1, 1/i therefore seems
a reasonable default choice.

A second consideration relates to data smoothing. The FDR method becomes more con-
servative as correlations increase, and hence, it is most powerful for unsmoothed data. This
is in contrast to random field methods which are typically more conservative for unsmoothed
data.

A third issue is that because FDR procedures operate simultaneously on all voxels in-
cluded in the analysis, it is important to remove those voxels (e.g., air, CSF in the ventricles)
for which we already know the truth. While it is common practice to remove voxels outside
the head, it is still a somewhat discretionary step when thresholding voxelwise statistics. For
FDR-methods this is a necessary step. However, it is not necessary to be too exacting at

boundaries; a few extra voxels here or there will likely have little impact on the results.
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We have presented the FDR-controlling procedures here as part of the process of identi-
fying active voxels. More generally, the procedures apply to any multiple testing situation.
Many recent methods for the analysis of fMRI data rely on fitting sophisticated statistical
models to the data (see, for example, Friston et al., 1994; Genovese, 2000; Lange and Zeger,
1997). Part of such analyses inevitably involves examining the values of fitted parameters at
each voxel to test hypotheses about the underlying value of those parameters. FDR-based

methods can also be used to perform these voxelwise statistical tests.
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Figure Captions

Figure 1. A graphical display of the FDR-controlling procedures. Sorted p-values are
plotted in order (with index i at i/(V 4+ 1) for i = 1,...,V). The point of last undercrossing
of the line through the origin with slope ¢ determines that tests with smaller p-values reject
their null hypotheses.

Figure 2. Proportions of tests rejected, by voxel, in the simulation runs with image size
128 and block size 20. See also Table 2. Boxes delineate voxels that are truly active. The
true shift of the ¢ statistic increases from 0.5, 1, 2, 3, going counter-clockwise from the
bottom left. False discoveries correspond to non-zero values outside the delineated boxes;
false non-discoveries correspond to non-one values inside the delineated boxes.

Figure 3. Histogram of equivalent ¢ thresholds generated by the FDR-controlling proce-
dure across simulation runs.

Figure 4. Coronal slice of suprathreshold pixels overlayed on mean T2* image. Colored
pixels are — log,, of the p-value. Top, ¢t > 4 threshold. Middle, threshold controling FDR at
5% based on independence assumption. Bottom, threshold controling FDR at 5% making
no assumptions on p-value distribution.

Figure 5. Axial slice of suprathreshold pixels overlayed on T1 structural image. Colored
pixels are — log,, of the p-value. Top, ¢t > 4 threshold. Middle, threshold controling FDR at
5% based on independence assumption. Bottom, threshold controling FDR at 5% making

no assumptions on p-value distribution.
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