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ABSTRACT

The joint peristimulus time histogram (JPSTH) and cross-correlogram provide a visual

representation of correlated activity for a pair of neurons, and the way this activity may

increase or decrease over time. In a companion paper (Cai et al. 2004a) we showed how a

Bootstrap evaluation of the peaks in the smoothed diagonals of the JPSTH may be used

to establish the likely validity of apparent time-varying correlation. As noted by Brody

(1999a,b) and Ben-Shaul et al. (2001), trial-to-trial variation can confound correlation

and synchrony effects. In this paper we elaborate on that observation, and present a

method of estimating the time-dependent trial-to-trial variation in spike trains that may

exceed the natural variation displayed by Poisson and non-Poisson point processes. The

statistical problem is somewhat subtle because relatively few spikes per trial are available

for estimating a firing-rate function that fluctuates over time. The method developed here

uses principal components of the trial-to-trial variability in firing rate functions to obtain

a small number of parameters (typically two or three) that characterize the deviation of

each trial’s firing rate function from the across-trial average firing rate, represented by the

smoothed PSTH. The Bootstrap significance test of Cai et al. (2004a) is then modified to

accommodate these general excitability effects. This methodology allows an investigator

to assess whether excitability effects are constant or time-varying, and whether they are

shared by two neurons. It is shown that trial-to-trial variation can, in the absence of

synchrony, lead to an increase in correlation in spike counts between two neurons as the

length of the interval over which spike counts are computed is increased. In data from two

V1 neurons we find that highly statistically significant evidence of dependence disappears

after adjustment for time-varying trial-to-trial variation.

Keywords: Bootstrap, Correlation, Cross-correlogram, Excitability Effects, Firing Rate,

Latency Effects, Non-Poisson Spiking, Peri-Stimulus Time Histogram, Point Process,

Principal Components, Smoothing, Spike Train Analysis, Trial-to-Trial Variability
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1 Introduction

Spike trains recorded from behaving animals display variation in spike timing both within

and across repeated trials. In some cases, variation within and across repeated trials is

consistent with the random variation (“noise variation”) observed in repeated sequences of

events that follow Poisson or non-Poisson point process models (see Barbieri et al. 2001,

Johnson 1996, Kass and Ventura 2001, and the references therein). In many contexts,

however, the conditions of the experiment or the subject may vary across repeated trials

enough to produce discernible trial-to-trial spike train variation beyond that predicted

by Poisson or other point processes. Such trial-to-trial variation may be of interest not

only for its physiological significance (Azouz and Gray 1999; Hanes and Schall 1996) but

also because of its effects on statistical procedures. In particular, as observed by Brody

(1999a,b), Ben-Shaul et al. (2001), and Grün et al. (2003), trial-to-trial variation can

affect the assessment of correlated firing in a pair of simultaneously-recorded neurons.

In this paper we present a statistical procedure for testing and estimating trial-to-trial

variation in time-varying firing rate, and apply it to the problem of assessing time-varying

dependence between spike trains from two neurons. We also demonstrate that trial-to-

trial variation can lead to an increase in correlation in spike counts between two neurons

as the length of the interval over which spike counts are computed is increased (as appears,

for example, in Figure 2B in Reich et al. 2001).

One aspect of trial-to-trial variation is the tendency for neuronal response to shift in time.

That is, a neuron may tend to fire earlier or later on some trials than on others, so that

re-alignment of trials becomes desirable (Baker and Gerstein 2001; Ventura 2004). It is

useful to distinguish such latency effects from variation in the amplitude of firing rate,

which is sometimes called “excitability.” It is possible to describe trial-to-trial amplitude

variation by applying a kernel smoother to each trial’s spike train (using a Gaussian filter

or something similar; Nawrot et al. 1999). That method, however, implicitly treats the

spike train as Poisson and it ignores a special feature of this situation: while there is
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substantial information on the general shape of the firing-rate function obtained from the

aggregated trials (i.e, the smoothed PSTH), there is relatively little information per trial

from which to estimate a time-varying function, at least for smaller firing rates (e.g., less

than 40 Hz). This creates an especially difficult problem for statistical inference proce-

dures because standard errors and confidence intervals become very wide and statistical

tests have little power. To improve estimation and inference, simple representations that

take account of the aggregate pattern are needed. One such statistical model was dis-

cussed by Brody (1999a,b). He took the firing rate on each trial to be the sum of two

components: a background constant firing rate multiplied by a trial-dependent coefficient

and a stimulus-induced time-varying function multiplied by a second trial-dependent co-

efficient. While likely to capture some dominant features of trial-to-trial variation, this

model may be too simple for many situations: it requires an experimental period during

which the neuron fires at a constant background rate, and it assumes a single multi-

plicative constant describes the fluctuation in stimulus-induced firing rate. Additional

statistical issues concerned the identification of the end of the background period and be-

ginning of the stimulus-induced period, the use of the raw PSTH rather than a smoothed

version of it to estimate the stimulus-induced firing rate, and the assumption of Poisson

spiking. The method described here avoids the use of a background period, allows two

or more coefficients to describe the fluctuation in firing rate, and may be applied with

non-Poisson spiking. It also may be used to assess whether excitability effects are shared

by two or more neurons.

2 Methods

The phenomenon we wish to describe is illustrated in Figure 1A, which displays five trials

of spike trains from a simulated neuron. In this case the spike trains are all assumed

to follow inhomogeneous Poisson processes, but the firing-rate intensity functions (shown
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on the right-hand side of the figure) are distinct for the different trials. The firing-rate

intensity function for the rth trial may be written λr(t), so that the probability the neuron

will fire in the interval (t, t + dt) on trial r is λr(t)dt. In Figure 1B, the five functions

λr(t), are related to the firing-rate intensity averaged across trials, λ(t), according to

λr(t) = gr(t)λ(t) (1)

where gr(t) represents the deviation in time-varying amplitude from the common rate on

trial r. Thus, the variability of the spike trains in Figure 1A is due partly to the stochastic

variation of Poisson processes and partly to the extra variation caused by the factor gr(t),

which would represent trial-dependent changes in the state of the subject (due to such

things as attention or motivation effects).

In Sections 2.1 and 2.2 we address the statistical problem of recovering the factors gr(t).

We will use a somewhat more elaborate framework, but to explain the approach let us

begin with (1) and assume spike times are recorded at a resolution, such as 1 ms, such that

it is acceptable to represent them as a binary sequence across very small time intervals.

We write the time resolution as ∆t, the sequence for trial r (with r = 1, . . . , R), as

Xr(t1), Xr(t2), . . . , Xr(tmax), (i.e., Xr(t) = 1 if there is a spike at time t and Xr(t) = 0

otherwise), and also set

pr(t) = P (Xr(t) = 1) = λ(t)gr(t)∆t. (2)

If instead of binary data we were using quantitative data treated using regression methods,

to fit such a deviation it would be reasonable to examine the residual obtained after first

removing λ(t). Therefore, we first fit λ(t) and then use a binary-data analogue to fitting

the residuals. This is achieved by introducing the fit λ̂(t) (a smoothed version of the

PSTH) as an “offset.” In the terminology of generalized linear modeling, an offset is an

explanatory variable whose coefficient is set equal to 1. The offset replaces the intercept

in a linear model or generalized linear model (see, for example, McCullagh and Nelder,
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1990). We thus fit the statistical model

Xr(t) ∼ Ber(pr(t))

log pr(t) = log λ̂(t) + fr(t) (3)

where Ber(p) stands for Bernoulli with probability p, i.e., Xr(t) = 1 with probability p

and is 0 otherwise. Here, fr(t) will capture the deviation of log pr(t) from log λ̂(t).

The necessary elaborations of this simple idea are as follows. First, because the spike

train for a single trial is relatively sparse, it is important to reduce the dimensionality

of the functional representation. As explained in detail in Section 2.1, we reduce dimen-

sionality in two ways. We begin by fitting (3) with splines having a small number of

knots (e.g., 1 to 3 knots). We then introduce a principal component decomposition of

the functional variation. This serves in part to reduce dimensionality further, and in part

to provide additional interpretation of the variability. The second elaboration, provided

in Section 2.2, is to extend the method to non-Poisson data. In Section 2.3 we consider

the joint spiking activity of a pair of neurons and show how to adjust the time-varying

dependence functions ζδ(t) used by Cai et al. (2004a), and also the cross-correlogram, for

trial-to-trial variation. In Section 2.4 we extend the Bootstrap excursion test of Cai et al.

(2004a) to the case where there exists trial-to-trial variation. Finally, in Section 2.5 we

show how to assess whether the trial-to-trial variation is shared across two neurons; the

extension to more than two neurons is immediate.

2.1 Time-varying Excitability

For inhomogeneous Poisson processes the trial-to-trial fluctuation in firing-rate intensity

will be assumed to have the following form:

λr(t) = gr(t − τr)λ(t − τr) (4)

log gr(t) = w0r +
J

∑

j=1

wjrφj(t) (5)
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where τr is a shift (latency) parameter for trial r and the φj(t) functions are suitably

chosen curves. We have introduced the shift parameters τr for completeness, due to the

availability of methods for estimating these parameters (see Ventura 2004) but otherwise

(4) is the same as (1). By restricting the form and number of the φj(t) functions we obtain

an interpretable low-dimensional representation of the trial-to-trial variation, in which the

coefficients wjr may be estimated from the limited data (relatively small number of spikes)

available per trial. As discussed below, the φj(t) functions will be taken to be principal

components of the trial-to-trial variation. A special case of (5) is the constant excitability

model, in which log gr(t) = w0r; this case was illustrated in Figure 1.

Using the statistical model specified by equations (4) and (5), estimation may be carried

out in several steps: first, as already indicated above, we estimate the common rate λ(t)

and, second, estimate the deviations gr(t). The third step is to identify a suitable low-

dimensional representation of these deviations, and finally in the fourth step each trial’s

data is fitted as a function of this low dimensional representation. We do not discuss

here the estimates of latency effects, which may be obtained by the procedure of Ventura

(2004) as a preliminary step.

To obtain the smoothed estimate λ̂(t) of λ(t) we prefer a spline-based method called

BARS (DiMatteo et al. 2001; Kass et al. 2003) for this purpose, but many alternative

smoothing techniques would work well for typical data sets. This accomplishes the first

step in the procedure. The second step is to apply binary nonparametric regression to

the data from each trial, using (3). Note, however, that in using (4) and (5), fr(t) is not

the same as log gr(t) because in (3) the principal component representation in equation

(5) has not yet been imposed.

There are again many possible ways to perform the nonparametric regression in (3),

but for the sake of statistical efficiency the number of parameters (the effective degrees

of freedom) defining fr(t) should be kept relatively small. We therefore have in our

applications assumed fr(t) may be adequately represented as a natural cubic spline with a
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Figure 1: Simulated spike trains with time-varying excitability effects. (A) The raster

plot of 5 trials of a simulated neuron having an excitability effect described by model (4)

and (5). (B) The firing rate functions λr(t) corresponding to the trials in (A). Note that

both the magnitude and shape of the firing rate function vary from trial to trial.

very small number of knots. Fits f̂r(t) again may be obtained from BARS, which attempts

to find optimal locations for the knots. In the applications reported here, however, we

have simplified by using a single knot and fixing its location. The fitting of f̂r(t) is then

obtained from generalized linear model software, available in most commercial statistical

analysis packages. These regression and smoothing methods are discussed in many sources

(e.g., McCullagh and Nelder 1990, and Hastie and Tibshirani 1990).

These first two steps have obtained a fit λ̂(t) for the trial-averaged intensity and a col-

lection of fitted deviations f̂r(t) for each trial. The third and fourth steps replace f̂r(t)

with log ĝr(t), thereby representing the variability in terms of the coefficients of principal

components. The third step is to compute the covariance matrix Σ̂f of the T -dimensional

vectors (f̂r(t1), . . . , f̂r(tmax)), where tmax is the total number of time points, and to obtain

the first few principal components of Σ̂f . These principal components are taken to be the

functions φj(t) in (5). As we indicated earlier, only a few of these principal components

are likely to be useful. A natural cubic spline with k knots has k + 2 free parameters.
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Therefore, in principle, at most k + 2 eigenvalues should be nonzero and at most k + 2

principal components will be meaningful.

The fourth step is to determine J and obtain the coefficients {wjr} in (5). This will

effectively project each trial’s deviation from the PSTH onto the space of principal com-

ponents. To carry this out, a binary regression is performed as in step 2, except that in

equation (5) fr(t) is replaced by w0r +
∑J

j=1 wjrφj(t). Assuming there are J∗ principal

components, there are J∗ + 1 coefficients wjr including the constant w0r. To determine

whether the contribution of some of the principal components is negligible, J ∗ + 2 dis-

tinct regression models should be considered: the regression model involving only the

offset λ̂(t), that involving the offset and the trial-dependent constants ew0r , that involv-

ing the offset, the constants, and the first principal component, etc., up to the model

involving the onset, the constants, and all J∗ principal components. These models can be

fit sequentially and the deviance difference compared to a chi-squared distribution with

R degrees of freedom, where R is the number of trials. Principal components may be

included sequentially until the deviance difference is no longer statistically significant.

This four-step procedure will determine an expression for the trial-to-trial variability of

the form (5). The resulting set of weights wr = (w0r, w1r, w2r, . . . , wJr) describes the

variation specific to trial r.

2.2 Non-Poisson Data

For general point process data that are not necessarily Poisson the intensity must be

replaced by a conditional intensity, λr(t | Hr) where Hr is the spiking history of trial r up

to time t. That is, the probability the neuron will fire in the interval (t, t+dt) on trial r is

λr(t | Hr)dt, and this probability depends on the spike times prior to time t (e.g., Barbieri

et al., 2001; Daley and Vere-Jones, 2003). In addition, the firing-rate intensity averaged

across trials λ(t) must be replaced by its history-dependent counterpart, which we write as
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λ(t | Hr) (now omitting the subscript r on λ). This function is the conditional intensity

that would occur on trial r if there were no excess trial-to-trial variation. Following

Brillinger (1988), Kass and Ventura (2001) have shown how standard software may be

used to fit a particular class of non-Poisson models they called inhomogeneous Markov

interval (IMI) models. These models assume

λ(t | Hr) = λ(t, s∗r(t)) (6)

where s∗r(t) is the time of the last spike previous to time t on trial r. IMI models can also

be extended to include spike times going further into the past (Kass and Ventura 2001).

In practice, the function λ(t | Hr) specified by equation (6) is fitted using all available

trials, but the dependence on the trial is of a highly specific form: the only way the firing-

rates at time t differ on different trials is from the timing of the last spike previous to

time t. Similarly, the notation λ(t | Hr) without a subscript r on λ is intended to denote

dependence on trial only through the spiking history Hr.

With this replacement the statistical model for trial-to-trial variability now must specify

the relationship between λr(t | Hr) and λ(t | Hr). The model (4) becomes

λr(t | Hr) = gr(t − τr)λ(t − τr | Hr) (7)

and λ(t | Hr) must be substituted for λ(t) in Equation (2), so that the fitting of the

nonparametric regression model (3) is altered. By combining models (7) and (6) we have

λr(t | Hr) = gr(t)λ(t, s∗r(t))

so that generalized linear modeling software may be used (as in Kass and Ventura 2001)

and the four-step procedure presented in Section 2.1 remains straightforward.
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2.3 Adjustment of Joint Spiking Activity for Trial-to-Trial Vari-

ability

Suppose two neurons are recorded simultaneously across multiple trials, and the task is

to assess the time-varying dependence between their spike trains. Writing the joint firing

rate for neuron 1 at time t and neuron 2 at time t + δ as λ12(t, t + δ), and the individual

firing rate functions as λi(t) for i = 1, 2, using the definition

ζδ(t) =
λ12(t, t + δ)

λ1(t)λ2(t + δ)
, (8)

Cai et al. (2004a) presented and studied a Bootstrap significance test for time-varying

dependence in the absence of trial-to-trial variability. The form (8) applies to Poisson

data. It is a special case of the more general form

ζδ(t) =
λ12(t, t + δ | H)

λ1(t | H1)λ2(t + δ | H2)
, (9)

where H1 and H2 are the spiking history of neuron 1 and 2 up to time t and t + δ

respectively, and H is the combined history, may be applied to non-Poisson data. Cai,

et al. (2004a) showed how the Bootstrap significance test could be applied to data that

follow non-Poisson models.

To take account of trial-to-trial variability, the formulas (4) and (5) must be used to

replace λi(t) with its trial-dependent counterpart λi
r(t), for i = 1, 2, in (8) when applying

the Bootstrap procedure to Poisson data, and the sampling scheme must be modified

accordingly. Similarly (7) and (5) must be used in (9) to accommodate non-Poisson data.

In the general case (which applies to both Poisson and non-Poisson data), we will assume

λ12
r (t, t + δ | Hr) = λ1

r(t | H
1
r) λ2

r(t + δ | H2
r) ζδ(t), (10)

that is, ζδ(t), the time-varying excess joint firing of the two neurons, above that predicted

by independence after allowing for trial-to-trial variation, does not itself depend on the

trial. To estimate ζδ(t), we begin with the joint spiking data. Let us set X12
δ,r(t) = 1 if on
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trial r neuron 1 spikes at time t and neuron 2 spikes at time t + δ, so that we obtain a

binary sequence X12
δ,r(t1), . . . , X

12
δ,r(tmax,δ) for each δ and r. For a given δ we use the data

from all R trials to fit the nonparametric regression model

X12
δ,r(t) ∼ Ber

(

λ12
r (t, t + δ | Hr)

)

log λ12
r (t, t + δ | Hr) = log

(

λ̂1
r(t | H

1
r) · λ̂

2
r(t + δ | H2

r)
)

+ log ζδ(t) (11)

which is similar to the model in (3) except that now ζδ(t) does not vary with the trial

(as did fr(t) in (3)). That is, the trial-to-trial variation is already captured in the factors

λ̂1
r(t | H

1
r) and λ̂2

r(t+δ | H2
r), which are here treated as offsets in the generalized regression.

The result of this fitting process is an estimate ζ̂δ(t).

Once we have estimates of the trial-specific firing rates λi
r(t | H

i
r) it is also straightforward

to adjust the JPSTH and cross-correlogram to remove the general excitability effects. Let

Yδ,r(t) be 1 if neuron 1 fires at time t and neuron 2 fires at time t + δ, on trial r, and 0

otherwise. Then the corrected JPSTH at times t and t + δ is

JC(t, t + δ) =
1

R

∑

r

(

Yδ,r(t) − λ̂1
r(t | H

1
r) · λ̂

2
r(t | H

2
r)

)

(12)

and the corrected cross-correlogram at lag δ may be defined as

C(δ) =
∑

t

JC(t, t + δ). (13)

Note that (13) does not include a divisor to produce an average value of JC(t, t + δ), nor

is a normalization used, as in Aertsen et al. (1989). These could be included without

substantially changing the methodology.

2.4 Bootstrap Excursion Test

As in Cai, et al. (2004a), the Bootstrap significance test uses null bands, obtained under

the null hypothesis of independence. The following algorithm generates null bands:
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1. Obtain fits of the firing rates λ̂i

r(t), for i = 1, 2 and for all trials r = 1, . . . , R.

2. Sample at random and with replacement R numbers from the integers 1, . . . , R, to

identify a set of R trials that will be used to create the bands.

3. Simulate pairs of spike trains with firing-rate functions λ̂1
r(t) and λ̂2

r(t), where r runs

through the set of trials sampled in step 2.

4. For the sample of R spike trains obtained in step 3, obtain new fits of the firing

rates. For the sampled trial k, the new fitting firing rates may be written λ̂i
(k)(t),

for i = 1, 2 to distinguish it from λ̂i
k(t) obtained in step 1. The procedure used to

obtain λ̂i
(k)(t) from sampled trial k in step 3 is the same as that used to obtain λ̂i

k(t)

from the actual data.

5. Obtain a fitted function ζ̂δ(t) by fitting (11) for the simulated sample.

6. Repeat step 2-5 N times to get N estimates ζ̂δ(t).

7. Calculate .025 and .975 quantiles for each t to obtain 95% null bands for ζδ(t).

The remainder of the Bootstrap testing procedure is the same as the original procedure

of Cai et al. (2004a): we compute

Gobs = max|
∫ te

ts
(ζ̂δ(t) − 1)dt|, (14)

where ts and te are the starting and ending time of the period during which ζ̂δ(t) is outside

the null bands, and the maximum is taken across all ts and te. Then Gobs is the largest

area of ζ̂δ(t) exceeding the band. To calculate the p-value, let ζ̂
(n)
δ (t), n = 1, . . . , N stand

for the estimate of ζδ(t) obtained from from the nth bootstrap sample. For each Bootstrap

sample we compute

G
(n)
boot = max|

∫ te

ts
(ζ

(n)
δ (t) − 1)dt| (15)
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and then we calculate the p-value of Gobs as

p =
number of Bootstrap samples for which G

(n)
boot > Gobs

N + 1
.

2.5 Trial-to-trial Variation Shared Across Neurons

In Section 2.3 the fitted firing-rate functions λ̂1
r(t) and λ̂2

r(t) were not restricted to have

any relationship to each other. It is, however, plausible that the two neurons might either

have the same trial-to-trial effects or proportional trial-to-trial effects. These possibilities

may be also examined with standard generalized linear model methodology.

We will write the equality and proportionality cases as g1
r(t) = g2

r(t) and g1
r(t) = α · g2

r(t),

where α is a scalar constant. A further special case is the constant excitability model

gi
r(t) = w0r, for which equality and proportionality become w1

0r = w2
0r and w1

0r = α · w2
0r.

As explained in many texts on linear regression (the generalized linear model context being

analogous), fitting these models is straightforward: in the case of equality, the data and

explanatory variables for the two models are concatenated, and then the fitting proceeds

as before; in the case of proportionality, indicator variables ui, i = 1, 2, are introduced

for which u = 0 when the data come from neuron 1 and ui = 1 when the data come

from neuron 2, and these multiply the relevant explanatory variables. In each case, the

appropriate offset is the concatenation of the individual offsets used for the two neurons

separately. Because the degrees of freedom equals the number of free parameters, separate

effects contribute double the number of degrees of freedom that shared effects contribute.

This is illustrated in Table 4.
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Neuron Excitability effect gr(t) Global rate λ(t)

A gr(t) = 1 for all t and all r λ(t) = 0.02 + 4f(t, 90, 20)

B gr(t) = ew0r = ar ∼ Gamma(0.5, 0.5) λ(t) = 0.05 + 6f(t, 90, 30)

C gr(t) = 1 + crf(t, 100, 25)

cr = br − b̄, br ∼ Gamma(1, 0.025) λ(t) = 0.05 + 6f(t, 90, 30)

D gr(t) = 1 + 60crf(t, 150, 70) λ(t, s) = λ1(t)λ2(s)

cr = br − b̄, br ∼ Gamma(1, 0.5) λ1(t) = 0.05 + 7f(t, 135, 40)

λ2(s) = f(s, 5.5, 1.5)

Table 1: Firing rates λr(t) given by (1) for neurons A (no trial-to-trial variation), B

(constant trial-to-trial variation), and C (time-varying trial-to-trial variation). f(t, a, b)

denotes the normal density function with mean a and standard deviation b. “ ∼ ” means

“randomly generated from”. The firing rates of all trials are shown in Figure 2.

3 Results

In Sections 3.1 and 3.2 we illustrate our methods for fitting excitability effects based

on simulated Poisson and non-Poisson spike trains. In Section 3.3, we illustrate how to

correct synchrony detection plots and measures, and how to carry bootstrap inferences.

3.1 Simulated Data: Poisson Spike Trains

We simulate Poisson spike train data with firing rate λr(t) given by (1) under three

scenarios: no trial-to-trial variation (neuron A), constant trial-to-trial variation (neuron
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Figure 2: (A), (B) and (C): true firing rates λr(t) = gr(t)λ(t) for each trials of simulated

neurons A, B, and C described in Table 1. For neuron D, we show gr(t)λ1(t) for all trials

r = 1 . . .R in (A), and λ2(s) in (B).
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B), and time-varying trial-to-trial variation (neuron C). Specifics of the firing rates are

summarized in Table 1, and shown in Figure 2. All three simulated neurons have 60 trials

of spike trains, and there are 200 time bins for each trial.

Table 2 lists the deviance of the fits to the simulated data for Neurons A-C. For neuron A

using, first, only the offset (i.e., the smoothed PSTH λ̂(t), setting fr(t) = 0, in (3)) and,

second, both the offset and the trial-dependent constants ew0r . The deviance difference

(1525 − 1482 = 43) is compared to a χ2 distribution with degrees of freedom equal to

the difference between the degrees of freedom in the two models (60 − 0 = 60). Because

the p-value is much larger than .05 we would conclude, correctly, that no trial-to-trial

variation is present for Neuron A. For Neuron B the results indicate extremely strong

evidence for trial-to-trial variability (p < 10−5), but no evidence for time-dependent trial-

to-trial variability (p = .59 > .05), and we would therefore correctly conclude that there

is only constant trial-to-trial variability for Neuron B. Figure 3 displays the true and the

fitted firing rate functions for a representative subset of trials, graphically demonstrating

the good fit of the constant excitability model for Neuron B. The fitted rates for all 60

trials can be found in the appendix, Figure 9. Note that the no trial-to-trial variation

model would have fitted the same firing rate for all trials. For neuron C the results indicate

extremely strong evidence for time-dependent trial-to-trial variability that is captured by a

single principal component (p < 10−5) but no evidence that a second principal component

is required to describe this variability (p > .05). Figure 3 displays, for a representative

subset of trials, the true firing rate functions, the incorrect constant-excitability fits, and

the correct time-varying fits. The fitted rates for all 60 trials can be found in the appendix,

Figure 10.
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Neuron B

Neuron C

Neuron D

Figure 3: True and fitted firing rates for Neurons B, C and D for a representative sample

of trials. For each neuron and trial, the bold and thin lines are, respectively, the true and

fitted firing rates. For Neuron C, we also plotted (dashed curves) the fits of the constant

excitability model, which was rejected by the deviance test in Table 2. The fits for all

trials can be found in the appendix.
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3.2 Simulated Data: Non-Poisson Spike Trains

Data were also simulated from a non-Poisson neuron (Neuron D) that followed an IMI

model as in (6), with the multiplicative form λ(t, s∗(t)) = β1(t)β2(s∗(t)). Neuron D had

32 trials and 300 time bins. Figure 2 shows the functions gr(t)β1(t) for all 32 trials, and

λ2(s∗(t)); specifics are in Table 1.

The four-step estimation procedure was followed (as in the Poisson case), with deviances

and p-values recorded in Table 2, and the resulting fitted firing rate functions for six trials

are displayed in Figure 3. The fits follow the true firing rate functions on each trial quite

well. The fitted rates for all 32 trials can be found in the appendix, Figure 11.

3.3 Simulated Data: Adjustment of Dependence Assessment

We simulated data from pairs of neurons in two situations. In the first scenario the two

neurons (Neurons E1 and E2) had independent spike trains, and both had trial-to-trial

variation and latency effects; details are given in Table 3. In the second scenario the two

neurons (Neurons F1 and F2) were similar to Neurons E1 and E2, but they also had an

excess of synchronous spikes, described by ζ0(t) in Table 3 and shown in Figure 4. The

firing rates of these four neurons are not shown because they are similar to neuron C in

Figure 2.

Before we can assess whether synchrony is present, we must fit an appropriate firing rate

model to each of the four neurons. First, the latency test of Ventura (2004) detected the

presence of latency effects in the firing rates of the four neurons, each with p-values less

than 10−5. We therefore estimated the latency effects as in Ventura (2004), and shifted

the trials according to the latency estimates.

The excitability tests described in Section 2.1 and illustrated in Section 3.1 were applied
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to the four neurons separately. We found that both neurons in the pair E1/E2 had firing

rates suitably described by two PCAs, whereas both neurons in the pair F1/F2 had firing

rates suitably described by just one PCA. To assess whether the excitability effects are

shared by the two neurons, the test introduced in Section 2.5 was used. The p-values

given in Table 4 lead to the correct conclusion that the same latency and excitability

effects should be fitted to each pair of simulated neurons.

Figure 4 shows the cross-correlogram and the fitted ζ̂0(t) for pairs of neurons E1/E2 and

F1/F2, with Bootstrap bands, before and after correction for latency and excitability

effects.

For neurons E1/E2 (no synchrony), after the latency effect is corrected in Figure 4(B),

when there still exists the excitability effect, most of the cross-correlogram values are still

outside the 95% bootstrap band. After both the latency and excitability effect is corrected

in Figure 4(C), the cross-correlogram indicates that the two neurons are independent.

Figure 4(E) shows the estimated ζ0(t) of the joint spiking model for the diagonal of the

JPSTH. Before being corrected for the latency effect, the estimated ζ0 has a peak in the

middle beyond the Bootstrap band. The area outside the band has p-value < 0.0001.

After the latency effect is screened out but still with the excitability effect, the magnitude

of the ζ̂ is reduced but still outside the band with p-value of the largest area outside band

equal to 0.001; all p-values are recorded in Table 5. After both the latency and excitability

effect are corrected, the magnitude of ζ̂ is further reduced and the largest area outside

the bands has p-value 0.63. This leads correctly to the conclusion that the two neurons

are independent.

The same procedure also yields the correct conclusion for the correlated pair F1/F2.
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Neurons F1/F2 : synchrony
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Figure 4: Neurons pairs with latency and excitability effects, and no synchrony (E1/E2)

or synchrony (F1/F2). (A) Shuffle corrected cross-correlogram before correction for la-

tency and excitability, (B) after correction for latency, and (C) after correction for latency

and excitability, with 95% Bootstrap bands. (D), (E) and (F) Corresponding panels for

ζ̂0(t) of the joint spiking model, with 95% bootstrap bands; the p-values for the excursion

of ζ̂0(t) outside the bands are in Table 5.
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Figure 5: Raster plot and PSTH for (A–B) neuron 380506.s and (C–D) neuron 380506.u.

The time bins are 2.8 msec wide.

3.4 Application to a Pair of V1 Neurons

We assessed the effect of trial-to-trial variability on the correlation of two neurons recorded

simultaneously in the primary visual cortex of an anesthetized macaque monkey (Aronov

et al. 2003, units 380506.st, 90 deg spatial phase). The data consist of 64 trials shown in

Figure 5. The stimulus was identical for all trials, and consisted of a standing sinusoidal

grating that appeared at time 0, and disappeared at 237 ms.

Figure 6(A), which displays the rate adjusted CC with bins 2.8 ms wide1, suggests that

spike time synchronization may occur at many time lags, but it may be masked by effects

of trial-to-trial variation. The estimated time course synchrony at lag 2× 2.8 = 5.6 msec,

ζ̂5.6(t) is also displayed in Figure 6(C), along with 95% Bootstrap bands; ζ̂5.6(t) exceeds

1The choice of 2.8 ms is due to a limitation in spike recording during the experiment: if the spike of

one neuron occurred immediately (less than roughly 1.3 - 2 ms) after the firing of the other neuron, it

could not be recorded. Because it is impossible to detect a joint spike for for a time lag less than 2.8 we

analyze time lags greater than 2.8 ms or less than −2.8 ms.
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Figure 6: Cross-correlograms for two neurons in Aronov et al. (2003), (A) adjusted for

firing rate modulations only and (B) adjusted for both firing rate modulation and time-

varying excitability effects. The dashed curves are pointwise 95% probability bands com-

puted under the null hypothesis of independence. (C) The time-varying synchrony curve

ζ̂5.6(t) before (thin solid curve) and after (bold curve) the adjustment for time-varying ex-

citability effects. The dashed curves are pointwise 95% Bootstrap bands computed under

the null hypothesis ζ5.6(t) = 1 for all t.

the upper band for most values of t, suggesting that lagged synchrony between the two

neurons is significant for almost for the entire duration of the experiment.

To adjust for trial-to-trial variability we applied the latency test of Ventura (2004) and

the tests for excitability effects described above. Before doing so a preliminary check on

the Poisson assumption was carried out. Based on a mean versus variance plot, there

appeared to be a small amount of extra variability above that predicted by the Poisson

assumption. The Poisson test of Brown et al. (2002), based on the time rescaling theorem

for Poisson processes, also confirmed a very slight departure from Poisson. These effects

may have been due to trial-to-trial variation and were not large enough to warrant the

more complicated procedures required for non-Poisson spike trains. When these analyses

were repeated after removal of the trial-to-trial effects (described below), the Poisson

assumption was judged to be adequate.
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The test for latency effects in Ventura (2004) suggested that no latency effects were

present, with p-values P = 0.096 and P = 0.174 for the two neurons respectively. How-

ever, the test for excitability effects were highly statistically significant (P = 0.00014 and

P = 0.00019 respectively). Consideration of shared excitability models showed that the

most appropriate model was the shared non-constant excitability model (P < 0.00001

against the constant excitability model, P = 0.752 for different versus same excitability

effects). Applying the sequential fitting procedure we then determined that two principal

components should be used to capture the non-constant excitability effects, with each

principal component explaining respectively 83% and 14% of the variability in the ob-

served pairs of spike trains. Therefore, the firing rate of neuron i = 1, 2 on trial r, λi
r(t),

can be summarized as

λi
r(t) = λi(t) exp (wr0 + wr1φ1(t) + wr2φ2(t)) (16)

where the two principal components φ1(t) and φ2(t) are displayed in Figure 7.

An interesting additional interpretation is obtained by examining the relationship of the

coefficients wr0, wr1, wr2 across trials. Figure 7, suggests that w1 and w2 are almost equal

across trials, and that (w1 + w2)/2 is close to −w0, so that the firing rate model in (16)

is close to

λi
r(t) = λi(t) αr0 exp(φ(t)), (17)

where αr
0 = exp(wr

0) and φ(t) = 1 − φ1(t) − φ2(t) is also plotted in Figure 7. That is, the

trial-to-trial variability is reasonably well represented by a function that itself resembles

the individual firing rate intensities (but is statistically distinguishable from them).

Figure 6 (B) shows the corrected cross-correlogram, with Bootstrap bands obtained as

in Section 2.3. We conclude that the correlation indicated by the uncorrected cross-

correlogram (in Part (A)) is due entirely to excitability effects. Figure 6(C) displays

the estimates of ζ5.6(t) (corresponding to the second bin to the right of 0 in the cross-

correlograms) before and after the adjustment for excitability. Before excitability adjust-
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Figure 7: Shared excitability effects for two neurons from Aronov et al. (2003). (A)

First and (B) second principal components, φ1(t) and φ2(t). (C) The function φ(t) =

1− φ1(t)− φ2(t) in (17). Bottom panel, left: Plot of the coefficients w1 against w2. Each

point in the plot represents a coefficient pair on a particular trial. Bottom panel, right:

Plot of w1+w2

2
against w0.

ment, the p-value for synchrony at lag 5.6 ms is less than 10−5 while after the adjustment

ζ̂(t) lies within the Bootstrap bands. There is, therefore, no evidence of synchrony at that

lag, beyond the correlations induced by rate and excitability modulations. We reached

similar conclusion at all lags; Figure 12 in the appendix display the same as Figure 6(C)

for all lags.

Based all the analysis in this section, we conclude that (1) there is very strong evidence

of time-varying excitability for these two neurons, (2) the excitability effects appear to be

shared by the two neurons, and (3) there is no evidence of spike timing synchronization

between these neurons.
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3.5 The Effect of Trial-to-trial Variation on Spike Count Corre-

lation as the Measurement Interval Length Increases

We now investigate the way excitability effects influence spike count correlation, as a

function of the length of interval over which the count is recorded. Consider random

variables Y 1
r and Y 2

r representing theoretical spike counts over an interval of length c for

two neurons, and for simplicity assume they follow the same probability distribution. We

will also assume the following:

1. The spike counts tend to increase proportionally to c in the sense that the expecta-

tion of Y i
r (i = 1, 2) is proportional to c.

2. The constant excitability model holds, so that the expected spike count for each

neuron is multiplied by a random variable eXr . We may then write the expectation

conditionally on the trial effect Xr in the form

E(Y i
r |Xr) = c · β · eXr

where β is the expected spike count when c = 1 and Xr = 0.

3. After conditioning on the trial r, Y 1
r and Y 2

r are independent.

4. The conditional variance is proportional to the conditional expectation:

V (Y i
r |Xr) = k · E(Y i

r |Xr).

Under these assumptions the correlation of Y 1
r and Y 2

r may be computed in terms of

c. Note that in this situation, because of Assumption 3, the correlation is due entirely

to trial-to-trial variation. Also, in the case of Poisson counts we would have k = 1.

Under-dispersion occurs when k < 1 and over-dispersion when k > 1.
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We now compute the correlation of Y 1

r and Y 2
r under these assumptions. We omit the

subscript r and use standard (elementary) formulas for the variances and covariance in

terms of the conditional variances, covariance, and expectations. For i = 1, 2 we have

V (Y i) = E(V (Y i|X)) + V (E(Y i|X))

= E(kcβeX) + V (cβe+X)

= kcβE(eX) + c2β2V (eX)

and

COV (Y1, Y2) = E(COV (Y 1, Y 2|X)) + COV (E(Y 1|X), E(Y 2|X))

= 0 + c2β2V (eX)

and, writing µ = E(eX) and σ2 = V (eX) we therefore obtain

COR(Y 1, Y 2) =
c2β2σ2

kcβµ + c2β2σ2

=
cβ

k
γ

+ cβ
(18)

where γ = σ2/µ. This shows that the correlation will increase as c increases.

To see the implication of Equation (18), suppose that the constant excitability eXr has a

log-Normal distribution, i.e., log Xr has a Normal distribution. It is easily verified that if

Z has a Normal distribution with mean 0 and variance 1 then

E(ea+bZ) = ea+b2/2

and

V (ea+bZ) = e2a+b2(eb2 − 1).

These give the ratio

γ = ea+b2/2(eb2 − 1).
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Figure 8: Correlation across trials between the spike counts for the two neurons from

Aronov et al. (2003), as a function of the bin size (×2.8 msec). For each bin size, we

plotted the box plot (10th, 90th quantiles and quartiles) of the correlations obtained by

sliding the bin along experimental time. The bold curve is (18) with k
βγ

= 34.

Using this formula we may compute the correlation for various scenarios. For example,

with a mean firing rate of 50 spikes per second (β = 50), for k = 1, in the presence of 25%

trial-to-trial variation (Xr has mean a = 0 and standard deviation b = .25), the correlation

of two spike counts in intervals of length 2ms, 20ms, and 200ms (c = .002, .02, .2) will

be .007, .06, and .4. With a firing rate of 20 spikes per second and 12.5% trial-to-trial

variation, correlations for counts in intervals of length 2ms, 100ms, and 1000ms become

.0006, .03, and .24, which are roughly consistent with those reported by Reich et al.

(2001). Figure 8 displays the correlation of spike counts as a function of bin size for the

pair of V1 neurons analyzed above (in Figure 5). Overlayed is a plot of the function in

Equation (18), which agrees well with the data.
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4 Discussion

The statistical methodology presented here uses a small number of parameters to describe

time-varying trial-to-trial variation, or “excitability” effects. It provides assessments of

whether these effects (i) are present, (ii) are constant or time-varying, (iii) are shared by

two neurons, and (iv) are adequately described by one or two parameters. In addition, the

methodology allows the trial-to-trial to be removed, so that assessments of correlation and

synchrony, or lagged time-locked firing, may be suitably adjusted. The fitting procedures

may be implemented with widely-available software for generalized linear models, and the

Bootstrap is easily implemented in high-level programming languages such as MATLAB

or R. The use of model (3), with insertion of the appropriate offset for each neuron, allows

the assessment of whether excitability effects are shared across neurons, which may be

of substantial interest. The models (4) (and their non-Poisson generalization) allows

excitability effects to be removed so that correlation and synchrony assessments may be

adjusted, and the restriction in (5) reduces the noise in the fitting, making the inference

procedures more powerful.

One limitation of the method used here is that we have ignored variability introduced in

steps 1 and 2 of the fitting process when we make statistical inferences, subsequently. More

complicated Bayesian or Bootstrap methods could provide more comprehensive inference

procedures. Similarly, it would be possible to incorporate estimation of latency into a

general procedure, rather than to rely on a preliminary assessment using the method of

Ventura (2004).

We showed that multiplicative excitability effects produce spike count correlations that

grow as the spike count interval increases. This result does not hold for additive excitabil-

ity effects (following a similar approach). For realistic firing rates spike count correlations

that are very small on time scales of tens of milliseconds become non-negligible on scales

of hundreds of milliseconds. This may help explain correlations that have been reported
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and discussed (Shadlen and Newsome 1998). The method presented here has been ap-

plied to two neurons, but the general approach may, in principle, be extended to allow

consideration of shared effects among many neurons recorded simultaneously.

Excess trial-to-trial variability, beyond that predicted by stochastic variation of point

processes that have no latency or excitability effects, may be common in brain regions

involved in higher-order processing. One way to relate trial-to-trial variation in neuronal

activity to behavioral measures, such as reaction time, is to record large numbers of trials

and then aggregate them into groups according to levels of the behavioral response, as

in Hanes and Schall (1996). The methods used here, however, are applicable with much

smaller numbers of trials.

5 Appendix: Supplementary Figures
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Figure 9: Neuron B: true (bold curves) and fitted (thin curves) rates for all simulated

trials.
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Figure 10: Neuron C: true (bold curves) and fitted (thin curves) rates for all simulated

trials. The dashed curves are the fits from the constant excitability models, which was

rejected by the deviance test.
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Figure 11: Neuron D: true (bold curves) and fitted (thin curves) rates for all simulated

trials.
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Figure 12: The estimated ζδ(t) for neuron pair 380506.s/380506.u before and after ad-

justment for the excitability covariation. Panels from left to right and top to bottom

correspond to lags δ from -33.6 msec to 33.6 msec in steps of 2.8 msec. The synchrony

plot for δ = 0 was omitted due to the limitations of the recording of joint spikes.
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Deviance

(p-value)

Neuron

Model df A B C D

No excitability 0 1525 * 3090 2205 2983

Constant excitability R 1482 1572 * 2018 2920

(0.94) (< 10−5) * (< 10−5) (0.001)

1 PCA excitability 2R 1420 1515 1862 * 2872 *

(0.5) (0.59) (< 10−5) * (0.034) *

2 PCAs excitability 3R × × 1801 2872

× × (0.44) (1)

Table 2: Deviances and significance tests p-values for Poisson neurons A, B, and C,

and non-Poisson neuron D: smoothed-PSTH model (no excitability) λ(t) vs. con-

stant excitability model ew0rλ(t) vs. time-varying single-principal component model

ew0r+w1rφ1(t)λ(t) vs. time-varying two-principal component model ew0r+w1rφ1(t)+w2rφ2(t)λ(t).

R is the number of trials; we used R = 60 for neurons A, B, and C, and R = 32 for neuron

D. The “*” indicates the model of choice.
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Neuron Excitability effect gr(t) Global rate λ(t)

E1 / F1 g1
r(t) = g2

r(t) = 1 + crf(t, 390, 35) λ1(t) = 0.04 + 24f(t, 390, 40)

E2 / F2 cr = br − b̄, br ∼ Gamma(1, 0.5) λ2(t) = 0.04 + 24f(t, 390, 60)

Common latencies : τr ∼ f(t, 0, 40)

ζ0(t) = 1 + 45f(t, 380, 30)

Table 3: Firing rates λr(t) given by (1) for neurons E1/E2 and F1/F2. f(t, a, b) de-

notes the normal density function with mean a and standard deviation b. “ ∼ ” means

“randomly generated from”.
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Deviance

(p-value)

Neuron pair

Model df E1/E2 F1/F2

1 PCA Same excitability 2R × 4447 *

models (< 10−5) *

Proportional excitability 2R + 1 × 4447

(0.96)

Different excitability 4R × 4344

(0.40)

2 PCAs Same excitability 3R 4270 * ×

models (< 10−5) *

Proportional excitability 3R + 1 4270 ×

(0.9 6)

Different excitability 6R 4232 ×

(1)

Table 4: Deviances and p-values for neuron pairs E1/E2 and F1/F2. This table records the

deviance and p-values of the tests that determines if the two neurons in the pair have the

same, proportional, or different excitability effects. The two neurons of the pair are fitted

together with models: same excitability model ew0r+w1rφ1(t)λ1(t) and ew0r+w1rφ1(t)λ2(t)

vs. proportional excitability model ew0r+w1rφ1(t)λ1(t) and ew0r+w1rφ1(t)λ2(t)α vs. different

excitability model ew1

0r
+w1

1r
φ1

1
(t)λ1(t) and ew2

0r
+w2

1r
φ2

1
(t)λ2(t) (note that for this last model,

ew1

0r and ew2

0r , ew1

1r and ew2

1r , and φ1
1(t) and φ2

1(t) are not constrained to be equal). The

same sequences of models are fitted for the 2 PCAs models. Here, R = 60, the number of

trials for one neuron. The “*” indicates the model of choice.
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Model corrected P-values for ζ0(t)

for modulations in Neurons E1/E2 Neurons F1/F2

firing rate < 10−5 < 10−5

firing rate, latencies 0.001 < 10−5

firing rate, latencies, excitability 0.63 < 10−5

Table 5: P-values of the excursion of ζ̂0(t) outside the Bootstrap bands.


