

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

 A Faster Iterative Scaling Algorithm For Conditional Exponential Model

Rong Jin RONG+@CS.CMU.EDU
Rong Yan YANRONG@CS.CMU.EDU
Jian Zhang JIAN.ZHANG@CS.CMU.EDU
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 USA

Alex G. Hauptmann ALEX@CS.CMU.EDU
Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 USA

Abstract
Conditional exponential model has been one of
the widely used conditional models in machine
learning field and improved iterative scaling
(IIS) has been one of the major algorithms for
finding the optimal parameters for the
conditional exponential model. In this paper,
we proposed a faster iterative algorithm named
FIS that is able to find the optimal parameters
faster than the IIS algorithm. The theoretical
analysis shows that the proposed algorithm
yields a tighter bound than the traditional IIS
algorithm. Empirical studies on the text
classification over three different datasets
showed that the new iterative scaling
algorithm converges substantially faster than
both the IIS algorithm and the conjugate
gradient algorithm (CG). Furthermore, we
examine the quality of the optimal parameters
found by each learning algorithm in the case of
incomplete training. Experiments have shown
that, when only a limited amount of
computation is allowed (e.g. no convergence is
achieved), the new algorithm FIS is able to
obtain lower testing errors than both the IIS
method and the CG method.

1. Introduction

Conditional exponential model has been one of the
popular conditional models in machine-learning field
and has been successfully applied to many different
machine-learning problems, such as automatic speech
recognition (Rosenfeld, 1996), text classification
(Nigam, Lafferty & McCallum, 1999), text
segmentation (Beefman, Berger & Lafferty, 1997 &
1999), name identity extraction (Borthwick et. al, 1998)
and part-of-speech (POS) tagging (Ratnaparkhi, 1996).
One advantage of the conditional exponential model

versus the other models is that it is able to combine
many correlated input evidences for predicting the class
labels without requiring input features to be
independent from each other. Furthermore, by assigning
high weights to the relevant features and low weights to
those irrelevant ones, the conditional exponential model
can be quite resilient to the introduction of irrelevant
features. Another interesting aspect of the conditional
exponential model is that it is strongly associated with
Maximum Entropy (ME) model (Jelinek, 1997; Berger,
Pietra & Pietra, 1996). More precisely, it has been
shown that the conditional exponential model is
actually a dual problem of ME model and therefore has
the unique global maximum.

To find the optimal conditional exponential model for
given training data, two groups of approaches have
been used in the past research. One is named iterative
scaling approach (Brown, 1959), including the
Generalized Iterative Scaling (GIS) (Darroch & Ratcli,
1972) and the Improved Iterative Scaling (IIS) (Berger,
1997). The underlying idea for iterative scaling
approaches is similar to the idea of Expectation-
Maximization (EM) approach: by approximating the
log-likelihood function of the conditional exponential
model as some kind of ‘simple’ auxiliary function, the
iterative scaling methods are able to decouple the
correlation between the parameters and the search for
the maximum point can be operated along many
directions simultaneously. By carrying out this
procedure iteratively, the approximated optimal point
found over the ‘simplified’ function is guaranteed to
converge to the true optimal point due to the convexity
of the objective function. The distinction between GIS
and IIS is that the GIS method requires the sum of input
features to be a constant over all the examples while the
IIS method doesn’t. This constraints can limits the
application of GIS, particularly when the sum of
features is not bounded. Furthermore, in the previous
studies, people have found that the IIS method is able to

find the optimal parameters for the conditional
exponential model significantly faster than the GIS
method, particularly for the applications of natural
language processing. Therefore, we will only consider
the IIS method as the comparison peer for the proposed
method.

The second group of approaches are mainly the generic
approaches for nonlinear optimization, including the
conjugate gradient approach (CG) (Shewchuk, 1994)
and the quasi-Newton method (Liu & Norcedal, 1989).
Previous studies have shown that both the conjugate
gradient and the quasi-Newton method are able to find
the optimal parameters for the conditional exponential
model much faster than the iterative scaling methods
(Minka, 2001;Malbouf, 2002). One advantage of the
conjugate gradient approach versus the quasi-Newton
approach is that the quasi-Newton method requires the
explicit computation of the approximate Hessian matrix
while the conjugate gradient approach does not. Since
the number of elements within a Hessian matrix is
equal to the square of the number of parameters for the
problem, the storage of a Hessian matrix can be
extremely expensive if the problem involves hundreds
of thousands of parameters. Therefore, in the paper, we
will only include the conjugate gradient approach for
the comparison.

In this paper, we propose a new iterative scaling
method, which shares the similar idea with the previous
iterative scaling methods, namely for each iteration,
approximating the original log-likelihood function with
a lower bound auxiliary function and find the optimal
point over the auxiliary function as the approximation
to the global optimal solution for the original log-
likelihood function. The only difference between this
work and previous work on iterative scaling methods is
that, this work provides a better approximate auxiliary
function that is able to bounds the original log-
likelihood function tighter. Therefore, we would expect
this new iterative scaling method is able to converge to
the global optimium faster than the previous iterative
scaling methods. Empirical studies on the text
classification over three different collections have
shown that the new iterative scaling method is able to
achieve significantly faster convergence rate than IIS
method. Furthermore, we compared the proposed
iterative scaling method to CG method over the same
testbed and found that the new algorithm also runs
faster than the CG method over all three collections.

The rest of the paper is arranged as follows: The formal
description and analysis of the new iterative scaling
method will be presented in Section 2. The empirical
studies on the effectiveness of the new iterative
algorithm are presented in Section 3. Within it, we will
examine the convergence rate of the new algorithm
with respect to IIS method and CG method,
respectively. Conclusion and future works will be
presented in Section 4.

2. A Faster Iterative Scaling Algorithm: FIS

As already mentioned in the introduction section, the
basic idea of the IIS algorithm is to approximate the
log-likelihood function with a lower bound auxiliary
function and compute the optimal point over the
auxiliary function as the approximation of the global
optimal solution for the true log-likelihood function.
Therefore, a lower bound auxiliary function that is able
to bound the log-likelihood function tighter than the IIS
method will lead to a faster convergence rate. In order
to propose a better lower bound auxiliary function, we
first examine how the IIS algorithm bounds the log-
likelihood function in Section 2.1 and then a better
auxiliary function is proposed in Section 2.2.

For the sake of simplicity, throughout the rest of this
paper, we assume that all the features are nonnegative.

2.1 Overview of Improved Iterative Scaling (IIS)
Algorithm

The key component for a conditional model is to
compute the p(y|x), namely the likelihood for an
instance to have a class label y given the input x. For a
conditional exponential model, p(y|x) is usually written
as:

∑= i ii yxfe
xZ

xyp),(

)(
1)|(λ (1)

where fi(x,y) stands for the ith feature extracted from the
input x and the output y, and λi stands for the
corresponding weight. Symbol Z(x) is the normalization
constant, which enforces the sum of p(y|x) over
different class labels y to be one, i.e.

∑ ∑=
y

yxfi iiexZ),()(λ

For the purpose of simplicity, let’s assume that every
class uses the same set of features {fi(x)}. Under that
assumption, the general form (1) can be rewritten as

()∑= i iiy xf
xZ

xyp)(exp
)(

1)|(,λ (1’)

As seen from Equation (1’), the weight λy,i has two
indices, with y for the class index and i for the feature
index.

The goal of the training procedure is to find the set of
weights {λ y,i} that maximizes the log-likelihood of the
training data. Given the empirical data distribution

),(~ yxp obtained from the training examples, the log-
likelihood will be written as:

∑ ∑∑ ∑

∑









−=

=

∑

x y

xf

yx i
iiy

yx

i
iiy

expxfyxp

xypyxpL

)(

,
,

,

,
log)(~)(),(~

)|(log),(~

λ
λ

 (2)

where)(~ xp stands for the empirical data distribution
for input x. Since directly optimizing Equation (2) can
be difficult, people take the iterative approach, namely
dividing the procedure of maximization into many steps
and each iteration will only increase the log-likelihood
slightly from the previous iteration. Let δy,i stands for
change in the weight λy,i between two consecutive
iterations. Then, the difference in the log-likelihood L
for two consecutive iterations will be expressed as the
function of δy,i, which is

∑ ∑

∑ ∑









−

=∆

∑

x y

xf

yx i
iiy

i
iiy

exypxp

xfyxp
L

)(

,
,

,
)|(log)(~

)(),(~

δ

δ
(3)

As seen from Equation (3), the complexity in
maximizing ∆L comes from the second term where the
set of parameters {δy,i} are coupled with each other
through the exponential function and the logarithm
function. The IIS method uses the inequality

αα −≥− 1log to decouple the interaction between
parameters {δy,i} due to the logarithm function and
Jensen’s inequality, namely

∑∑ ≤ xx xqxpxqxp))(exp()())()(exp(for any p.d.f.
p(x), to decouple the correlation caused by the
exponential function. With these two inequalities, the
resulted lower bound auxiliary function for ∆L is
written as:

∑
∑

∑



















−
+

=≥∆

iy
x

xfi

x
iiy

iyIIS

iye
xf
xf

xypxp

xfyxp

QL

,
)(

#

,

,

#
,

)(
)(

)|()(~

)(),(~

1

})({

δ

δ

δ

 (4)

where symbol #f stands for the sum of all the features,
i.e. ∑i i xf)(. With the inequality (4), instead of
optimizing the true log-likelihood function ∆L, we can
maximize the auxiliary function QIIS. Since the
auxiliary function QIIS has all the interaction between
variables {δy,i} removed, we can simply optimize it
with respect to each variable δy,i independently from
other variables. Furthermore, since QIIS low bounds the
difference in log-likelihood function ∆L, by
maximizing QIIS, we can make sure ∆L to be at least
non-negative, which means that the log-likelihood
function will never decrease in the iterative procedure.
One of the usual procedure used for optimizing QIIS is
the univariate Newton method.

2.2 A New Low Bound Auxiliary Function

2.2.1 BASIC IDEA
The lower bound auxiliary function QIIS for the IIS
method in Equation (4) can be rewritten as a sum of a
set of functions {gy,i} and each function gy,i only
depends on a single variable δy,I, i.e.,

∑∑ −

=

x

xfi

x
iiy

iyiy

iye
xf
xf

xypxpxfyxp

g

)(
#,

,,

#
,

)(
)(

)|()(~)(),(~

)(

δδ

δ

Therefore, the correlation between variables {δy,i} has
been completely decoupled in the IIS method.
However, the price paid for the full decoupling is that,
the auxiliary function may not be able to bound the
original log-likelihood function tightly enough. In
particular, inequalities αα −≥− 1log and

∑∑ ≤ xx xqxpxqxp))(exp()())()(exp(have been used
in the IIS method. As a result, many iterations are
required in order to reach the true optimal solution.
Clearly, there is a tradeoff between the complexity of
auxiliary function and number of iteration. On one
hand, by bounding the log-likelihood function with a
simple auxiliary function, we are able to obtain the
optimal solution over the auxiliary function quickly
however we may have to run through the iterative
procedure many times. On the other hand, a
complicated auxiliary function may be able to bound
the log-likelihood function more tightly however
computing the optimal solution of the complicated
bounding function may be expensive.

The basic idea of improving the IIS algorithm is to
introduce an auxiliary function, which only decouples
part of the interaction between parameters. Unlike the
IIS method, where QIIS consists of functions only with a
single variable, the new auxiliary function will be the
sum of functions {gi} related to multiple variables. By
keeping some of the interaction between variable alive
in the approximation, we are able to achieve an
auxiliary function that bounds the original log-
likelihood function more tightly than the IIS algorithm.
Meanwhile, only a small number of variables are
related to each gi in the auxiliary function. Therefore
the optimization of each function gi can still be solved
efficiently by using traditional numerical methods such
as the method of multivariate Newton.

2.2.2 HOLDER INEQUALITY
The most critical component in the derivation of the
proposed auxiliary function is so called ‘Holder Sum
Inequality’ (Abramowitz & Stegun, 1972). In this
subsection, we will give a brief introduction of this
inequality and its extension.

The original version of Holder Inequality can be stated
as follows:

For a set of non-negative variables {ak}k=1
n and {bk}k=1

n,
the following inequality will always hold

qn

k

q
k

pn

k

p
k

n

k
kk baba

/1

1

/1

11
















≤ ∑∑∑

===

(5)

for any p>1, q>1 and 111 =+ −− qp . Clearly, Cauchy
Inequality is a special case of this inequality when both
p and q are set to be 2.

Furthermore, the Holder Inequality can be extended to a
more general form. Considering the function form
∑ ∏i k ki,α , where all variable ki,α are nonnegative. It
is not difficult to show that the following inequality will
always hold, i.e.

∏ ∑∑∏








≤
k

q

i
ki

i k
ki

k
kq

/1

,, αα (6)

for any set of {qk}, as long as all the qk are positive and
satisfies the constraint 11 =∑ −

k kq . A proof of the
extension of Holder Inequality is provided in the
Appendix.

To understand why inequality in (6) is useful in
building up auxiliary function, we can simply take the
logarithm of the both sides of the inequality, i.e.









=























≤








∑∑

∏ ∑∑∏

i
ki

k k

k

q

i
ki

i k
ki

kq

k
kq

q ,

/1

,,

log1

loglog

α

αα
 (6’)

On the LHS of the above inequality, we have all the
variables ki,α couple due to the existence of product
and the logarithm function. However, on the RHS of
this inequality, we only have ki,α with same index k
interacted with each other and all the other couplings
between variables { ki,α } are removed from the object
function. Therefore, by applying inequality (6), we are
able to delete part of the interaction between variables
so that the original optimization problem is simplified.

2.2.3 A FASTER ITERATIVE SCALING ALGORITHM: FIS
Now consider how to apply the extension of Holder
Inequality to find a better lower bound auxiliary
function for the log-likelihood function in (3). Notice
that, the most complicated term within (3) is term ()∑ ∑y i iiy xfxyp))(exp()|(log ,δ . Similar to the IIS
algorithm, let)(# xf stands for the sum of all the
features. If we denote

))(/)())|(log()(exp(#
, xfxfxypxf iiiy +δ as iy,α , the

log-likelihood function can be rewritten as:

()










=
















=

∑ ∏

∑ ∏

∑ ∑

y
i

iy

y
i

iiy
xf
xf

y i iiy

xfxyp

xfxyp

i

,

,
)(
)(

,

log

))(exp()|(log

))(exp()|(log

#

α

δ

δ

Then, according to the extension of Holder Inequality,
we have an upper bound for the log-likelihood function
as:

()














=









≤









=

∑∑

∑∑

∑ ∏∑ ∑

y

xfqxf
xfq

i i

y

q
iy

i i

y
i

iyy i iiy

iiyi

ii

i

exyp
q

q

xfxyp

)()(
)(

,

,,

,
#

)|(log1

log1

log))(exp()|(log

δ

α

αδ

 (7)

By setting)(/)(# xfxfq ii = , we have Equation (7)
simplified as:

()









=














≤

∑∑

∑∑

∑ ∑

y

xf

i

i

y

xfqxf
xfq

i i

y i iiy

iy

iiyi

ii

exyp
xf
xf

exyp
q

xfxyp

)(
#

)()(
)(

,

#
,

,
#

)|(log
)(
)(

)|(log1

))(exp()|(log

δ

δ

δ

 (7’)

By substituting Equation (7’) for the term ()∑ ∑y i iiy xfxyp))(exp()|(log ,δ in Equation (3), we
will have the following inequality

∑

∑
∑ ∑

∑

=




























−

=

≥∆

i
i

i

x y

xfi

yx
iiy

iyFIS

g

exyp
xf
xf

xp

xfyxp

QL

iy)(
#

,
,

,

#
,)|(log

)(
)(

)(~

)(),(~
})({

δ

δ

δ

 (8)

According to Equation (8), the auxiliary function QFIS is
a sum of a set of functions gi and each gi only involved
in variables δy,i with same feature index i. In general,
the number of features is substantially larger than the
number of classes. Therefore, the lower bound auxiliary
function in (8) is able to remove most of the correlation
between variables and only the interaction between
variables δy,i with the same feature index i are kept.
Furthermore, it is not difficult to see that each function
gi within Equation (8) is a convex function by simply
checking if the Hessian matrix of each function gi is
semi-positive definite. Therefore, simple methods such
as a Newton method can be employed for finding the
optimal solution of function gi because each gi function
only contains a small number of parameters (equal to
the number of classes).

Comparing QFIS in (8) to QIIS in (4), we can show that
QFIS is an upper bound of QIIS by using inequality

αα −≥− 1log . The sketch of proof is shown in
Equation (9). Therefore, the new iterative scaling
algorithm forms a tighter lower bound for the original
log-likelihood function. As a result, we would expect
the new algorithm is able to converge to the global
optimal solution in a significantly smaller number of
iteration than the IIS method. However, as mentioned
before, the computation complexity of each iteration

and the number of iteration form a tradeoff pair. The
new algorithm may use a smaller number of iterations
but each iteration could consume more computation
cycles. In order to account for the total amount of
computation complexity, in the experiment, we simply
use the total amount of time consumed CPU by both
algorithms, which can be obtained by the matlab
command ‘cputime’. The algorithm that is able to find
the set of good parameters within a smaller amount of
CPU time is deemed as a faster algorithm.

IIS

i yx

ixf
iiy

i

x y

xfi

yx
iiy

i

x y

xfi

yx
iiy

iyFIS

Q
xf
xf

exypxpxfyxp

exyp
xf
xfxp

xfyxp

exyp
xf
xf

xp

xfyxp

Q

iy

iy

iy

=













−+=



























−

+

≥




























−

=

∑ ∑

∑
∑ ∑

∑

∑
∑ ∑

∑

,
#

)(
,

)(
#

,
,

)(
#

,
,

,

)(
)(

)|()(~)(),(~1

)|(1
)(
)()(~

)(),(~

)|(log
)(
)(

)(~

)(),(~

})({

#
,

#
,

#
,

δ

δ

δ

δ

δ

δ

δ

 (9)

Finally, it may be attractive to think that, the inequality
(8) can be obtained by simply applying Jensen
inequality to both the exponential function and
logarithm function. However, that is not true because
the Jensen inequality for logarithm function only leads
to a lower bound for logarithm function, namely

∑∑ ≥ xx xqxpxqxp))(log()())()(log(

for any p.d.f p(x). Instead, in the above derivation, we
need an upper bound function for logarithm as
illustrated in Equation (7’). Therefore, using Jensen
inequality for logarithm won’t lead to the results in (8).

3. Experiments

3.1 Experiment Design

The goal of this experiment is to examine the efficiency
of the proposed algorithm on the text classification task.
The efficiency issue involves in two aspects:

1) Whether the proposed algorithm is able to increase
the log-likelihood function more efficiently than other
learning algorithms? As pointed out before, though the
new algorithm yields a better auxiliary function that
bounds the original log-likelihood function more tightly
than the IIS method, it may still not be as efficient as
the IIS method because in the new algorithm each
iteration consumes more computation cycles.
Therefore, we need to examine whether the introduction
of a tightly bound but complicated auxiliary function is

worthwhile. Furthermore, since the conjugate gradient
method has been shown to be more efficient than the
iterative scaling methods in some of previous studies,
we will also compare the proposed iterative scaling
method to the conjugate gradient method.

2) Whether the solution found by the proposed method
results in lower classification error when the model is
not full trained? In many cases, due to the limitation of
time, we may have to stop the learning algorithm when
it is still far from the global optimal solution. Under
that circumstance, we need to know the quality of the
parameters found by the learning algorithm. A learning
algorithm is preferred when it is able to find ‘decent’
parameters that result in low testing errors even it is far
from the convergence point. Notice that it is not always
true that parameters that result in a larger value of log-
likelihood function of training data will definitely lead
to a lower testing error, particularly in case that the
model is not fully trained.

For the first efficiency issue, we compute the value of
the likelihood function versus the accumulative CPU
time for every iteration. An algorithm that is able to
achieve a large value of log-likelihood function within a
small amount of CPU time is deemed to be a good
algorithm. To determine the quality of learned
parameters in the middle of learning process, for every
20 iterations, we compute the classification errors on a
separate testing dataset using the learned parameters.
An algorithm that achieves lower testing error within
smaller amount of CPU time is believed to be a better
algorithm. Three collections of text classification are
used in this experiment and for each collection. For
each collection, we split it into a training set and a
testing set by 70% vs. 30% shares. The details are
described in Table 1.

Data Set # Vocabulary #Class #Training #Testing

WebKB 19676 6 2398 1355

Industry
Sector

28915 38 2215 1021

NewsGroup 47411 11 7149 3298

Table 1: Description of datasets

For comparison methods, we will mainly compare the
proposed algorithm to the previous iterative scaling
algorithm, namely the IIS method, because both of
them use very similar techniques except for the
auxiliary function. Meanwhile, previous studies on the
conditional exponential model have indicated that the
CG method appears to be more efficient than IIS
algorithm for learning an exponential model (Minka,
2001; Malbouf, 2002). Therefore, we will also compare
the proposed algorithm with respect to the CG method.

In terms of implementation, we try to make each
algorithm as efficiently as possible. For the IIS

algorithm, the key computation complexity is on the
optimization of the auxiliary function QIIS in (4).
Usually, a uni-variate Newton method is used for
finding the optimal solution over QIIS. Since Newton
method is an iterative method, it usually requires at
least several iterations to find the optimal solution over
the auxiliary function. However, it may not be
worthwhile to find the optimal point over the auxiliary
function since it is just an approximation of the original
log-likelihood function and our goal is to find the
optimal solution over the likelihood function not the
auxiliary function. In fact, as long as the solution δy,i in
(4) is able to increase the log-likelihood, the whole
iterative scaling method is guaranteed to find the global
optimal solution. Therefore, in practice, instead of
running the Newton method through many iterations,
we simply run it once over the auxiliary function.
Furthermore, a linear search is applied in order to
guarantee that the new point found in each iteration is
always better than the previous one. Our empirical
studies have found that this implementation is able to
find the global optimal solution substantially faster than
the implementation of running the Newton method till it
converges. The same strategy applies to the
implementation of the proposed FIS algorithm. For the
CG method, the choice of search direction has great
impact on the convergence speed. In our
implementation, we choose Hestenes-Stiefel (Moller,
1993) method since it has been found very efficiently in
practice.

3.2 Conditional Exponential Model for Text
Classification

The conditional exponential model has been found to be
an effective method for text classification in the
previous study (Nigram et al., 1999). The main idea is
to treat each unique word as a separate feature and try
to find the appropriate weights of words for different
classes using the conditional exponential model. In
addition to the standard practice for conditional
exponential model, two main issues need to be
considered for the case of text classification:

1) Feature selection. As indicated in Table 1, the
vocabulary size of each collection is considerably large,
around the order of 10,000. Apparently, most of words
will not be informative to indicate the category of
documents. Thus, it is important to remove those
uninformative words and only leave the informative
words as the representation features. We use
Information Gain (Nigram et al., 1999) as the feature
selection criterion, and the top 300 features with the
highest information gain are selected. For each feature,
the corresponding unigram probability, namely the term
frequency of the corresponding word divided by the
document length, is used as its value. In addition, we
also conducted the same experiments but with top 500
and 1000 selected features. The results are extremely

similar to the experiment with only 300 selected
features. Due to the limited space, we will only show
the results for 300 features.

2) Regularization. The conditional exponential model
sometimes can give overly large weights to words,
particularly those rare words. Consider the case that a
word only appears in one document within the whole
training corpus. According to the conditional
exponential model, this word can have an infinitive
large weight. However, this is definitely undesirable
since the word may be accidentally used for that
document and may not be informative at all. A general
practice to avoid this kind of disaster is to introduce
some kind of regularization factor. For text
classification, people have tried the Gaussian prior as
the regularization factor and found it is quite effective
(Nigram et al., 1999), which prevents weights from
growing too large. Furthermore, people have found that
by introducing the regularization factor into the
conditional exponential model, we are able to even
improve the classification accuracy. We use the similar
regularization approach for all the learning algorithms
to be compared.

3.3 Results And Discussions

3.3.1 COMPARISON OF CONVERGENCE SPEED
Figure 1 shows the results for IIS, CG and the proposed
method FIS over three datasets for text classification.
Among all the diagrams, the horizontal axis is the
number of seconds used by CPU and the vertical axis
represents the log-likelihood. The parameters are

Figure 1: Convegence behaviors of the proposed iterative
scaling algorithm FIS and other algorithms namely the IIS
and CG method.

initialized to be zeros for all three algorithms. Due to
the large negative values of log-likelihood for the first
several iterations (on the order –log(num_of_class)), we
only show the curve of log-likelihood since the 20
iterations. The same strategy applies to the Figure 2,
when the curve of testing errors is displayed. Clearly,
the curve of the FIS algorithm is able to reach the
maximum of likelihood much more quickly than the
other two algorithms. In addition, the experiments with
500 and 1000 selected features are conducted and the
similar behavior is observed, namely the FIS algorithm
reaches the maximum of likelihood much faster than
both the IIS method and CG. These observations
indicate that in the text classification task, the proposed
algorithm ‘FIS’ is a more efficient algorithm in learning
the conditional exponential model than both the IIS
algorithm and the CG algorithm.

The other interesting observation from Figure 1 is that,
the IIS algorithm performs at least as well as the CG
algorithm over all the three datasets, which is quite
different from what other researchers have claimed
(Minka, 2001; Malouf, 2002). We think that it can be
attributed either to the special characteristics of the text
classification task or to the particular implementation of
IIS algorithm used in this paper such as how to find the
optimal point over the auxiliary function.

3.3.2 QUALITY OF LEARNED MODEL IN CASE OF
INCOMPLETELY TRAINING

In addition to the convergence rate, we are also
concerned with the quality of parameters learned from
the algorithm particularly when the model is not fully
trained. Figure 2 plots the behavior of the testing errors

with respect to the amount of CPU time devoted to
computing. Similar to the previous experiment,
parameters are set to be zeros for all three algorithms
and the plotted curves start from 20 iterations due to the
large testing errors at the beginning of the learning.

According Figure 2, the FIS algorithm is able to reach
the lower classification error much faster than the other
two algorithms. Meanwhile, for the collection ‘Industry
Sector’, we can see the overfitting problem for the FIS
algorithm. By varying the regularization constant, we
are able to avoid the overfitting problem but obtain the
same classification error at the end. This fact of
overfitting in the FIS algorithm indicates the
importance of regularization in learning the conditional
exponential model. The same experiment with 500 and
1000 selected features are conducted and the similar
behaviors are observed, namely the FIS algorithm is
able to achieve lower testing errors faster than the IIS
algorithm and the CG algorithm. Thus, we conclude
that the proposed algorithm FIS is able to not only
optimize the log-likelihood function faster than the
other two algorithms but also find ‘decent’ parameters
faster. The other interesting observation is that, for
collection ‘Industry Sector’, according to Figure 1, it
seems that both the IIS and the CG algorithms have
very similar behavior in the convergence of log-
likelihood. However, according to Figure 2, for most of
time, the IIS algorithm appears to achieve lower testing
errors than the CG algorithm in collection ‘Industry
Sector’. This fact again indicates that a larger log-
likelihood of training data may not necessarily lead to a
lower testing error, particularly when the model is not
fully trained.

4. Conclusions

In this paper, we propose a novel iterative scaling
algorithm, named ‘FIS’. Compared to the previous
work on iterative scaling method, the FIS algorithm
uses an auxiliary function that is able to bound the
original log-likelihood function tighter. In our empirical
studies of text classification problems over three
datasets, the FIS method is able to converge
significantly faster than the IIS algorithm and the CG
algorithm. Furthermore, the new algorithm FIS is able
to obtain ‘decent’ estimation of parameters (e.g.
parameters resulting in low testing error) even when the
learning process is still far away from the convergence
point. As a future work, we would like to examine the
effectiveness of this new iterative scaling algorithm on
other tasks such as part of speech tagging.

References
Abramowitz, M. and Stegun, C. A. (Eds.) (1972)

Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, 9th printing. New
York: Dover, p. 11, 1972.

Figure 2: The behavior of testing errors with respect to
the running time for the proposed algorithm FIS and
other algorithms namely IIS and CG methods.

D. Beeferman, A. Berger and J. Lafferty (1999),
Statistical Models for Text Segmentation. In Machine
Learning, 34:177-210, 1999.

A. Berger, V. Pietra and S. Pietra (1996), A Maximum
Entropy Approach to Natural Language Processing.
In Computational Linguistics, 22:39--71, 1996.

A. Berger (1997), The improved iterative scaling
algorithm: A gentle introduction,
www.cs.cmu.edu/afs/~aberger/www/ps/scaling.ps

A. Borthwick, J. Sterling, E. Agichtein and R.
Grishman (1998), Exploiting diverse knowledge
sources via maximum entropy in named entity
recognition. In Proceedings of the Sixth Workshop on
Very Large Corpora, 1998.

J. Darroch and D. Ratcli (1972), Generalized iterative
scaling for log-linear models. Annals of Math.
Statistics, 43(5):1470-1480, 1972.

F. Jelinek (1997). Statistical Methods for Speech
Recognition. The MIT Press, Cambridge,
Massachusetts, London, England, 1997.

T. Minka (2001), Algorithms for maximum-likelihood
logistic regression, CMU Statistics Tech Report 758,
http://www.stat.cmu.edu/~minka/papers/logreg.html,
2001.

K. Nigam, J. Lafferty and A. McCallum (1999), Using
Maximum Entropy for Text Classification. In IJCAI-
99 Workshop on Machine Learning for Information
Filtering, 1999.

A. Ratnaparkhi (1996), A Maximum Entropy Model for
Part-of-Speech Tagging. In Proceedings of the
Conference on Empirical Methods in Natural
Language Processing, 1996.

R. Rosenfeld (1996), A Maximum Entropy Approach to
Adaptive Statistical Language Modeling. In
Computer, Speech and Language, 10:187-228, 1996.

J. Shewchuk(1994), An Introduction to the Conjugate
Gradient Method Without the Agonizing Pain, 1994.

M. Moller (1993), A Scaled Conjugate Gradient
Algorithm for Fast Supervised Learning, Neural
Network, 6, 525-533.

R. Malouf (2002), A Comparison of Algorithms for
Maximum Entropy Parameter Estimation,
Proceedings of CoNLL-2002

D.C. Liu & J. Nocedal (1989) On the Limited
Memory BFGS Method for Large Scale
Optimization, Math. Prog. 45, 503-528, 1989

Appendix: Proof of the Extension of Holder
Sum Inequality

The extension of Holder Sum Inequality claims that the
following inequality will always hold

∏ ∑∑∏








≤
k

q

i
ki

i k
ki

k
kq

/1

,, αα

for any set of {qk}, as long as all the qk are positive and
satisfies the constraint 11 =∑ −

k kq . The above
inequality can simply be proved by the induction on k:
(1) k=1: inequality in (6) holds because the RHS of the
inequality is identical to the LHS of the inequality.

(2) Assuming inequality in (6) holds for any k≤l and
need to prove when k=l+1. Using Holder Sum
Inequality, we have the following inequality hold

q

i

ql

k
ki

p

i

p
li

i

l

k
kili

i

l

k
ki

/1

1
,

/1

1,

1
,1,

1

1
,































≤









≤

∑ ∏∑

∑ ∏∑∏

=
+

=
+

+

=

αα

ααα

 (A1)

for any p>1, q>1 and 111 =+ −− qp . Now by letting
q=ql+1 and p=1/(Σk=1

lqk), we will have inequality (A1)
further expanded as:

∑








 ∑







=

∑













 ∑

















≤































≤

=
−

=
−+

+

=
−

=
−

+

+

∑∏∑

∑ ∏∑

∑ ∏∑∑∏

=
+

=
+

=
+

+

=

l
j jl

j j
l

l

l
j jl

j jl
l

q

i

l

k

q
ki

q

i

q
li

q

i

ql

k
ki

q

i

q
li

q

i

ql

k
ki

p

i

p
li

i

l

k
ki

1
1

1
11

1

1
1

1
1

1
1

1

/1
,

/1

1,

/1

1
,

/1

1,

/1

1
,

/1

1,

1

1
,

αα

αα

ααα

 (A2)

According to the induction assumption, the extension of
Holder Sum Inequality holds for any k≤l. Therefore, we
can use it to upper bound the second item in the RHS of
above equation, i.e.

∏ ∑

∏ ∑

∑∏

=

=

=

−

=
−

=
−

=
−

=
−

=
−

=
−









=

∑


















∑















 ∑








 ∑≤

∑








 ∑

l

k

q

i

q
ki

q

l

k

qq

i

qq
q

ki

q

i

l

k

q
ki

i
i

l
j j

l
j ji

l
j jil

j j

l
j jl

j j

1
,

1

1

/1
,

1

/1
,

1

1
1

1
1

1
1

1
1

1
1

1
1

α

α

α

 (A3)

By merging inequality (A3) and (A2) together, we have
extension of Holder Sum Inequality proved when
k=l+1. With this induction step, we proved the
extension of Holder Sum Inequality is true for any k.

