
A Linear Spine Calculus∗

Iliano Cervesato

Advanced Engineering and Sciences Division
ITT Industries, Inc.

Alexandria, VA 22303
iliano@itd.nrl.navy.mil

Frank Pfenning

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213
fp@cs.cmu.edu

November 28, 2003

Abstract

We present the spine calculusS→−◦&> as an efficient representation for the linearλ-calculusλ→−◦&> which
includes unrestricted functions (→), linear functions (−◦), additive pairing (&), and additive unit (>). S→−◦&>

enhances the representation of Church’s simply typedλ-calculus by enforcing extensionality and by incorporat-
ing linear constructs. This approach permits procedures such as unification to retain the efficient head access that
characterizes first-order term languages without the overhead of performingη-conversions at run time. Appli-
cations lie in proof search, logic programming, and logical frameworks based on linear type theories. It is also
related to foundational work on term assignment calculi for presentations of the sequent calculus. We define the
spine calculus, give translations ofλ→−◦&> into S→−◦&> and vice-versa, prove their soundness and complete-
ness with respect to typing and reductions, and show that the typable fragment of the spine calculus is strongly
normalizing and admits unique canonical,i.e.βη-normal, forms.

Keywords: Linear Lambda Calculus, Term Assignment Systems, Uniform Provability.

∗This work was sponsored by NSF Grants CCR-9303383 and CCR-9988281, and partially supported by NRL under contract N00173-00-
C-2086.

Contents

1 Introduction 1

2 The Simply-Typed Linear Lambda Calculusλ→−◦&> 2
2.1 Syntax .2

2.2 Typing Semantics .3

2.3 Reduction Semantics .5

3 The Spine CalculusS→−◦&> 6
3.1 Syntax .6

3.2 Typing Semantics .7

3.3 Reduction Semantics .9

4 Relationship betweenλ→−◦&> and S→−◦&> 10
4.1 The Simply-Typed Lambda Calculus with Explicit CoercionsC→−◦&> 10

4.2 CS: A Translation fromC→−◦&> to S→−◦&> . 14

4.3 Soundness ofCS with respect to Reduction .15

4.4 SC: A Translation fromS→−◦&> to C→−◦&> . 19

4.5 Soundness ofSC with respect to Reduction .20

4.6 Relatingλ→−◦&> andS→−◦&> . 22

5 Properties ofS→−◦&> 24
5.1 Properties ofNIL -Reducibility .24

5.2 Properties of Reducibility .26

5.3 Other Properties .28

6 Further Remarks 28
6.1 Implementations of the Spine Calculus .28

6.2 Relations to Uniform Provability .28

6.3 Interaction with Polymorphism .30

6.4 Related Work .30

7 Conclusions 31

References 31

A The Coercion CalculusC→−◦&> 33
A.1 Meta-Theory ofAC-Reducibility . 34

A.2 λC: A Translation fromλ→−◦&> to C→−◦&> . 35

A.3 Cλ: A Translation fromC→−◦&> to λ→−◦&> . 40

A.4 Properties ofC→−◦&> . 43

i

List of Figures

2.1 Typing forη-longλ→−◦&> Terms . 3

2.2 Reduction Semantics forλ→−◦&> . 5

3.1 Typing forη-longS→−◦&> Terms . 8

3.2 Reduction Semantics forS→−◦&> . 8

4.1 Typing forη-longC→−◦&> Terms .11

4.2 Reduction Semantics forC→−◦&> . 12

4.3 Translation ofC→−◦&> into S→−◦&> . 15

4.4 Translation ofS→−◦&> into C→−◦&> . 19

4.5 CS andSC .21

4.6 λS .23

4.7 Sλ .24

6.1 Uniform Derivability .29

A.1 Translation ofλ→−◦&> into C→−◦&> . 36

ii

1 Introduction

The internal representation ofλ-calculi, logics and type theories has a direct impact on the efficiency of systems for
symbolic computation that implement them such as theorem provers and logic programming languages. In partic-
ular, major gains can be achieved from even small improvements of procedures that manipulate terms extensively:
unification, for instance, is a well-known bottleneck in the execution time of a logic program. For languages based
on first-order terms,Prolog, for example, the natural representation of terms supports simple and fast unification
algorithms. Indeed, a function symbolf applied to three argumentsa, b andc, writtenf(a, b, c) in the syntax of
Prolog, is encoded as a record consisting of the headf and the list of its arguments. This is sensible from the point
of view of unification since the head of a terms must be analyzed before its arguments. Early implementations
of systems embedding a higher-order term language, such as the logic programming languagesElf [Pfe94] and
λProlog [Mil89, Mil01], typically represented terms in a way that mimics the traditional definition of aλ-calculus.
Ignoring common orthogonal optimizations such as the use of de Bruijn indices [dB72] or explicit substitutions
[ACCL91], the above term is parsed and encoded as(((f a) b) c). During unification, three applications (here rep-
resented as juxtaposition) must be traversed before accessing its head, possibly just to discover that it differs from
the head of the term being unified. This representation is similarly inefficient when normalizing a term: in order
to reduce((λx. λy. λz. f x y z) a b c) to the above term, we need again to go through three applications before
exposing the first redex.

Apparently, adopting an internal representation that treats nested applications as in the first-order case (i.e.,
as a head together with a list of arguments) but permitsλ-abstraction would significantly improve the efficiency
of higher-order unification algorithms. This approach has been studied extensively for different purposes [Bar80,
Her95, DP98, DP99, Sch99, San00, DU01]. However, the complex equational theory that characterizes aλ-
calculus leads to difficulties in procedures such as unification and normalization. In particular,η-conversion rules
can yield instances of a same function symbol applied to a different number of arguments. This might even lead
to fragmented lists of argument as the result ofβ-reduction (e.g., while performing unification) that need to be
monitored and compacted regularly. Ultimately, such a representation may turn out to be even more complex to
deal with than traditionalλ-expressions. Instead, no such difficulty emerges with the trivial equational theory of
first-order terms.

In this paper, we propose a variant of this idea that supports efficient head accesses, but that does not suffer
from the drawbacks we just mentioned. This representation ofλ-terms, that we call generically aspine calculus, is
based on the observation that, in a typedλ-calculus, the use of the troublesomeη-conversion rules can be limited
to a preprocessing phase that expands terms to uniqueη-long forms, which are preserved byβ-reduction. Insisting
on η-long terms has the advantage of simplifying the code for procedures such as unification and normalization,
of permitting easier informal descriptions of these algorithms, and more generally of reducing the complexity of
studying the meta-theory of such formalisms. Moreover,λ-calculi featuring a unit type and a unit element do not
admit a Church-Rosser theorem unless all terms areη-expanded [JG95]: this means that typing information must
be stored and maintained in otherwise type-free procedures such as pattern unification [Mil91, Pfe91].

The benefits of the spine calculus representation, in conjunction with explicit substitutions, have been exploited
in a new implementation of the logical frameworkLF [HHP93] as the higher-order logic programming language
Twelf [PS99]. LF is based on the type theoryλΠ, a refinement of Church’s simply-typedλ-calculusλ→ with
dependent types. In this paper, we will instead focus on the simply-typed linearλ-calculusλ→−◦&>, which
extendsλ→ with the type constructors−◦, & and>, derived from the identically denoted connectives of linear
logic [Gir87]. We will define the corresponding spine calculusS→−◦&>, present translations between the two, and
prove the meta-theoretical properties ofS→−◦&> that make it adequate as an internal representation language for
λ→−◦&>. Notice that our analysis applies to any sublanguage ofλ→−◦&>, in particular toλ→ and its extension
with extensional products and a unit type,λ→&>; moreover, it can easily be extended to the treatment of dependent
types.

A similar proposal for term representation was already mentioned in passing by Howard in his seminal paper
[How80]. The normal forms of the spine calculus also arise as a term assignment language for uniform proofs,
which form the basis for abstract logic programming languages and is based on a much richer set of connectives
[MNPS91]. A thorough investigation of a related calculus on theλ→ fragment has been conducted by Herbelin
[Her95]. Schwichtenberg [Sch99], Dyckhoff and colleagues [DP98, DP99, DU01], and Espı́rito Santo [San00]
study a version of the intuitionistic spine representation and ordinaryλ-calculi in a single system which incorpo-

1

rates commutative conversions, instead of the wholesale translation investigated here (which is closer to an efficient
implementation).

λ→−◦&> corresponds, via a natural extension of the Curry-Howard isomorphism, to the(→−◦&>) fragment
of intuitionistic linear logic, which constitutes the propositional core of the logic programming languageLolli
[HM94] and of the linear logical frameworkLLF [Cer96, CP02].λ→−◦&> is also the simply-typed variant of the
term language ofLLF. Its theoretical relevance derives from the fact that it is the biggest linearλ-calculus that
admits unique longβη-normal forms.λ→−◦&> shares similarities with the calculus proposed in [Bar96] and with
the term language of the systemRLF [IP98].

The implementation of a language based on linear type theories such asLLF andRLF raises new challenges
that emerge neither for non-linear languages such asTwelf [PS99], nor for linear logic programming languages
featuring plain (non-linear) terms such asLolli [HM94] or Forum [Mil94]. In particular, the implementation of
formalisms based on a linearλ-calculus must perform higher-order unification on linear terms in order to instan-
tiate existential variables [CP97a]. The spine calculusS→−◦&> was designed as an efficient representation for
unification and normalization over the linearλ-expressions that can appear in anLLF specification.

The adoption of linear term languages inLLF and RLF has been motivated by a number of applications.
Linear terms provide a statically checkable notation for natural deductions [IP98] or sequent derivations [CP02]
in substructural logics. In the realm of programming languages, linear terms naturally modelcomputationsin
imperative languages [CP02] or sequences of moves in games [Cer96]. When we want to specify, manipulate, or
reason about such objects (which is common in logic and the theory of programming languages), then internal
linearity constraints are critical in practice (see, for example, the first formalizations of cut-elimination in linear
logic and type preservation forMini-ML with references [CP02]).

The principal contribution of this work is the definition of spine calculi (1) as a new representation technique
for genericλ-calculi that permits both simple meta-reasoning and efficient implementations, and (2) as a term
assignment system for the logic programming notion of uniform provability.

Our presentation is organized as follows. In Section 2, we defineλ→−◦&> and present its main properties.
We introduce the syntax and the typing and reduction semantics ofS→−◦&> in Section 3. In Section 4, we give
translations from the traditional presentation to the spine calculus and vice-versa and show that they are sound
and complete with respect to the typing and reduction semantics of both languages. In Section 5, we state and
prove the major properties ofS→−◦&>. Further remarks are made in Section 6. Finally, Section 7 summarizes the
work done, discusses applications and hints at future development. In order to facilitate our description, we must
assume the reader familiar with linear logic [Gir87]. Appendix A studies the intermediatecoercion calculusused
in Section 4.

2 The Simply-Typed Linear Lambda Calculusλ→−◦&>

In this section, we introduce the linear simply-typedλ-calculusλ→−◦&>, which augments Church’s simply-typed
λ-calculusλ→ [Chu40] with a number of operators from linear logic [Gir87]. More precisely, we give its syntax
in Section 2.1, present its typing semantics in Section 2.2 and its reduction semantics and some properties in
Section 2.3. It is the simply-typed variant of the linear type theoryλΠ−◦&>, thoroughly analyzed in [Cer96]. We
refer the interested reader to this work for the proofs of the properties ofλ→−◦&> stated in this section.

2.1 Syntax

The simply-typed linearλ-calculusλ→−◦&> extends Church’sλ→ with the three type constructors−◦ (linear
function), & (additive product) and> (additive unit), derived from the identically denoted connectives of linear
logic [Gir87]. The language of terms is augmented accordingly with constructors and destructors, devised from
the natural deduction style inference rules for these connectives. Although not strictly necessary at this level of the
description, the inclusion of unrestricted constants is convenient in developments of this work that go beyond the
scope of this paper. We present the resulting grammar in a tabular format to relate each type constructor (left) to the
corresponding term operators (center), with constructors preceding destructors. Clearly, constants and variables

2

Pre−canonical terms

Γ; ∆ `Σ M ↓ a
lλ atm

Γ; ∆ `Σ M ⇑ a

lλ unit

Γ;∆ `Σ 〈〉 ⇑ >

Γ;∆ `Σ M ⇑ A Γ;∆ `Σ N ⇑ B
lλ pair

Γ; ∆ `Σ 〈M, N〉 ⇑ A & B

Γ;∆, x :A `Σ M ⇑ B
lλ llam

Γ;∆ `Σ λ̂x :A. M ⇑ A−◦B

Γ, x :A;∆ `Σ M ⇑ B
lλ ilam

Γ; ∆ `Σ λx :A. M ⇑ A → B
. .
Pre−atomic terms

Γ;∆ `Σ M ⇑ A
lλ redex

Γ; ∆ `Σ M ↓ A

lλ con

Γ; · `Σ,c:A c ↓ A
lλ lvar

Γ; x :A `Σ x ↓ A
lλ ivar

Γ, x :A; · `Σ x ↓ A

(No rule for>)
Γ; ∆ `Σ M ↓ A & B

lλ fst

Γ;∆ `Σ FSTM ↓ A

Γ;∆ `Σ M ↓ A & B
lλ snd

Γ; ∆ `Σ SND M ↓ B

Γ;∆′ `Σ M ↓ A−◦B Γ; ∆′′ `Σ N ⇑ A
lλ lapp

Γ;∆′, ∆′′ `Σ MˆN ↓ B

Γ; ∆ `Σ M ↓ A → B Γ; · `Σ N ⇑ A
lλ iapp

Γ; ∆ `Σ M N ↓ B

Figure 2.1: Typing forη-longλ→−◦&> Terms

can have any type.

Types: A ::= a Terms: M ::= c | x
| A1 → A2 | λx :A.M | M1 M2 (unrestricted functions)
| A1−◦A2 | λ̂x :A.M | M1ˆM2 (linear functions)
| A1 &A2 | 〈M1,M2〉 | FSTM | SND M (additive pairs)
| > | 〈〉 (additive unit)

Herex, c anda range over variables, constants and base types, respectively. In addition to the names displayed
above, we will often useN andB for terms and types, respectively.

The notions of free and bound variables are adapted fromλ→. As usual, we identify terms that differ only by
the name of their bound variables and write[M/x]N for the capture-avoiding substitution ofM for x in the term
N .

2.2 Typing Semantics

As usual, we rely on signatures and contexts to assign types to constants and free variables, respectively.

Signatures: Σ ::= · | Σ, c : A Contexts: Γ ::= · | Γ, x : A

We will also use the letter∆, possibly subscripted, to indicate a context. We require variables and constants to be
declared at most once in a context and in a signature, respectively. Contexts and signatures are treated as sets; we
promote “,” to denote their disjoint union and omit writing “·” when unnecessary.

Recall that, inλ→, a termM is in η-long formonly if every function appearing inM (either as a symbol or as
a redex) occurs applied to as many arguments as dictated by its type. For example, iff : a → a → a andc : a, the
termλy :a. f c y is η-long, butf c is not. This idea extends naturally toλ→−◦&> by requiring that every symbol
be enclosed by as many destructors as necessary to expose a base type. For example, given the constantp : a& a,
the term〈FSTp, SND p〉 is in η-long form, butp by itself is not. It also follows that〈〉 is the onlyη-long term of
type>.

3

Operating solely on well-typed terms inη-long form is particularly convenient when implementing operations
such as unification since it strongly restricts the structure that a term of a given type can assume (see the Surjectivity
Lemma 2.1 later in this section). Instead, untypedη-conversion rules are often included in the reduction semantics
of a λ-calculus in order to expand or contract terms as needed. In the presence of a unit element,〈〉 in λ→−◦&>,
this approach is unsound. We cleanly realize the above desideratum by distinguishing a pre-canonical typing
judgment, which validates precisely the well-typed terms ofλ→−◦&> in η-long form (pre-canonical terms), from
a pre-atomic judgment, which handles intermediate stages of their construction (pre-atomic terms) such asf c and
p above. These judgments are respectively denoted as follows:

Γ;∆ `Σ M ⇑ A M is a pre-canonical term of typeA in Γ;∆ andΣ
Γ;∆ `Σ M ↓ A M is a pre-atomic term of typeA in Γ;∆ andΣ

whereΓ and∆ are called theunrestrictedand thelinear context, respectively. Whenever a property holds uni-
formly for the pre-canonical and pre-atomic judgments above, we will writeΓ;∆ `Σ M ⇑↓ A and then refer to the
termM and the typeA if needed. Moreover, if two or more such expressions occur in a statement, we assume that
the arrows of the actual judgments match, unless explicitly stated otherwise. We writeC andA, possibly super-
and/or sub-scripted, for derivations of the above pre-canonical and pre-atomic typing judgments, respectively.

The rules displayed in the upper part of Figure 2.1 validate pre-canonical termsM by deriving judgments of
the formΓ;∆ `Σ M ⇑ A. Ruleslλ unit, lλ pair, lλ llam andlλ ilam allow the construction of terms of the
form 〈〉, 〈M1,M2〉, λ̂x :A.M , and λx :A.M , respectively (the constructors of our language). The manner they
handle their context is familiar from linear logic. Notice in particular thatlλ unit is applicable with any linear
context and that the premises of rulelλ pair share the same context, which also appears in its conclusion. Rules
lλ llam andlλ ilam differ only by the nature of the assumption they add to the context in their premise: linear in
the case of the former, unrestricted for the latter. The remaining rule defining the pre-canonical judgment,lλ atm,
is particularly interesting since it is the reason why all terms derivable in the pre-canonical system are inη-long
form: a pre-atomic term must be fully applied (i.e., have base type) before it can be considered pre-canonical.
Observe that the rules defining the pre-canonical judgment are type-directed.

The rules defining the pre-atomic judgment,Γ;∆ `Σ M ↓ A, are displayed in the lower part of Figure 2.1.
They validate constants (rulelλ con) and linear and unrestricted variables (ruleslλ lvar andlλ ivar, respectively).
They also allow the formation of the termsFSTM , SND M , MˆN and M N that start with one of the destructors
of λ→−◦&> (rules lλ fst, lλ snd, lλ lapp and lλ iapp, respectively). The role played by linear assumptions in
λ→−◦&> is particularly evident in these rules. Indeed, an axiom rule (lλ con, lλ lvar andlλ ivar) can be applied
only if the linear part of its context is empty, or contains just the variable to be validated, with the proper type.
Linearity appears also in the elimination rule for−◦, where the linear context in the conclusion of rulelλ lapp is
split and distributed among its premises. Observe also that the linear context of the argument part of an unrestricted
application, in rulelλ iapp, is constrained to be empty. The presence of rulelλ redex accounts for the possibility
of validating terms containingβ-redices, as defined below: it allows arbitrary pre-canonical terms in positions
where only pre-atomic objects could otherwise appear. If we remove it, onlyη-longβ-normal (or, more succinctly,
canonical) terms can be derived.

This formulation of the typing semantics ofλ→−◦&> is the simply-typed variant of the pre-canonical system
which defines the semantics of the linear type theory underlyingLLF [Cer96, CP02]. We direct the interested
reader to these references for the proofs of the statements in this section.

If we ignore the terms and the distinction between the pre-canonical and the pre-atomic judgments, the rules in
Figure 2.1 correspond to the specification of the familiar inference rules for the (→−◦&>) fragment of intuition-
istic linear logic,ILL→−◦&> [HM94], presented in anatural deductionstyle. It is easy to prove the equivalence to
the usual sequent formulation.λ→−◦&> andILL→−◦&> are related by a form of the Curry-Howard isomorphism:
the terms that appear on the left of the types in the above judgments record the structure of a natural deduction
proof for the corresponding linear formulas. Note that the interactions of ruleslλ unit andlλ lapp can collapse
proofs with the same structure but different linear contexts to the sameλ→−◦&> term.

We say a constructor for a type issurjectiveif its image includes all canonical members of the type. For
example, if every canonical object of typeA → B has the formλx : A.M for someM , thenλ is surjective.
Since this notion refers to objects that are canonical (i.e.do not containβ-redices and every pre-canonical subterm
appears inη-long form), surjectivity is intimately related to the notionextensionality: intuitively, two members
of a type are extensionally equal if they cannot be distinguished by applying elimination rules to them. We will

4

β−reductions

lr beta fst

FST〈M, N〉 −→ M
lr beta snd

SND 〈M, N〉 −→ N

lr beta lin

(λ̂x :A. M)ˆN −→ [N/x]M
lr beta int

(λx :A. M) N −→ [N/x]M

Figure 2.2: Reduction Semantics forλ→−◦&>

not investigate these properties in detail, but it is worth noting that both surjectivity and extensionality are critical
in applications ofλ-calculi in logical frameworks and logic programming languages. In our language, we make
an a priori commitment to extensionality, which is partially expressed by the surjectivity property below. Note
that the constructors are surjective already for pre-canonical terms, not only canonical terms. It is this property,
together with the subject reduction lemma, that allows an implementation to drop type information entirely during
algorithms such as unification [CP97a]. Surjectivity is formalized in the following lemma, whose proof can be
easily adapted from [Cer96].

Lemma 2.1 (Surjectivity)

i. If Γ;∆ `Σ M ⇑ a, then M is one ofc, x, FSTN, SND N, N1ˆN2, N1 N2;

ii. If Γ;∆ `Σ M ⇑ >, thenM = 〈〉;
iii. If Γ;∆ `Σ M ⇑ A &B, thenM = 〈N1, N2〉;
iv. If Γ;∆ `Σ M ⇑ A−◦B, thenM = λ̂x :A.N ;

v. If Γ;∆ `Σ M ⇑ A → B, thenM = λx :A.N . 2

This result, like the many to follow, adopts the convention that all meta-variables appearing in the antecedant
of an if-then sentence are implicitely universally quantified, while the remaining variables (occurring only in the
consequent) are existentially quantified.

2.3 Reduction Semantics

The reduction semantics ofλ→−◦&> is given by the congruence relation on terms,−→, based on theβ-reduction
rules in Figure 2.2. In addition we have straightforward congruence rules that allow a reduction to take place at an
arbitrary subterm occurrence, but which we do not show explicitly. IfM −→ N is derivable, thenN differs from
M by the reduction of exactly one redex. We denote its reflexive and transitive closure as−→∗, and use≡ for
the corresponding equivalence relation. We writeE , possibly variously decorated, for derivations of any of these
judgments. It is easy to show that the rules obtained from Figure 2.2 by replacing−→ with −→∗ (or even with≡)
are admissible. We adopt the standard terminology and call a termM that does not containβ-redicesnormal, or
β-normal. When emphasizing the fact that our well-typed terms areη-long, we will instead use the termcanonical.
Similarly, we reserve the wordatomicfor a pre-atomic term that does not contain anyβ-redices.

Similarly to λ→, λ→−◦&> enjoys a number of highly desirable properties [Cer96]. In particular, confluence
and the Church-Rosser property hold for this language, as expressed by the following lemma:

Theorem 2.2 (Church-Rosser)

Confluence: IfM −→∗ M ′ and M −→∗ M ′′, then there is a termN such that
M ′ −→∗ N and M ′′ −→∗ N .

Church-Rosser: IfM ′ ≡ M ′′, then there is a termN such thatM ′ −→∗ N and M ′′ −→∗ N . 2

Moreover,λ→−◦&> enjoys the following substitution principle (also known astransitivity lemma), that, among
many interpretations, permits viewing variables as unspecified hypothetical derivations to be instantiated with
actual derivations. Notice the different treatment of unrestricted and linear variables.

5

Lemma 2.3 (Transitivity)

i. If Γ;∆, x :B `Σ M ⇑↓ A and Γ;∆′ `Σ N ⇑ B, then Γ;∆,∆′ `Σ [N/x]M ⇑↓ A.

ii. If Γ, x :B;∆ `Σ M ⇑↓ A and Γ; · `Σ N ⇑ B, then Γ;∆ `Σ [N/x]M ⇑↓ A. 2

An important computational property of a typedλ-calculus is subject reduction: it states that reductions do not
alter the typability (and the type) of a term. The lemma below also implies thatβ-reductions do not interfere with
surjectivity: reducing a redex rewritesη-long terms toη-long terms.

Lemma 2.4 (Subject reduction)

If Γ;∆ `Σ M ⇑↓ A and M −→∗ N , then Γ;∆ `Σ N ⇑↓ A. 2

Our calculus also enjoys strong normalization,i.e., a well-typed term cannot undergo an infinite sequence of
β-reductions. Said in another way, a normal form will eventually be reached no matter whichβ-redex we choose
to reduce first.

Theorem 2.5 (Strong normalization)

If Γ;∆ `Σ M ⇑↓ A, thenM is strongly normalizing. 2

Finally, well-typed terms have unique normal forms, up to the renaming of bound variables. Since every
extension ofλ→−◦&> (for example with⊗ and multiplicative pairs) introduces commutative conversions, this
language is the largest linearλ-calculus for which strong normalization holds and yields unique normal forms.

Corollary 2.6 (Uniqueness of normal forms)

If Γ;∆ `Σ M ⇑↓ A, then there is a unique normal termN such thatM −→∗ N . 2

We write Can(M) for the canonical formof the termM , which is well-defined by the above corollary. A
calculus that validates only canonical terms can easily be obtained from the system in Figure 2.1 by removing rule
lλ redex.

3 The Spine CalculusS→−◦&>

In this section, we present an alternative formulation ofλ→−◦&>, the spine calculusS→−◦&>, that contributes
to achieving more efficient implementations of critical procedures such as unification [CP97a]. We describe the
syntax, typing and reduction semantics ofS→−◦&> in Sections 3.1, 3.2 and 3.3, respectively. We will formally
state the equivalence ofλ→−◦&> andS→−◦&> in Section 4 and prove major properties of the spine calculus in
Section 5.

3.1 Syntax

Unification algorithms base a number of choices on the nature of the heads of the terms to be unified. The head
is immediately available in the first-order case, and still discernible inλ→ since everyη-long normal or weak
head-normal term has the form

λx1 :A1. . . . λxn :An. h M1 . . .Mm

where the headh is a constant or a variable and(h M1 . . .Mm) has base type. The usual parentheses saving
conventions hide the fact thath is indeed deeply buried in the sequence of application and therefore not immediately
accessible. A similar notational trick would be difficult forλ→−◦&>, since on the one hand a term of composite
type can have several heads (e.g., 〈c1ˆx, c2ˆx〉), possibly none (e.g., 〈〉), and on the other hand destructors can be
interleaved arbitrarily in a term of base type (e.g., FST((SND c)ˆx y)).

6

Thespine calculusS→−◦&> permits recovering both efficient head accesses and notational convenience. Every
atomic termM of λ→−◦&> is written in this presentation as aroot H · S, whereH corresponds to the head ofM
and thespineS collects the sequence of destructors applied to it. For example,M = (h M1 . . .Mm) is written
U = h · (U1; . . . Um; NIL) in this language, where “;” represents application,NIL identifies the end of the spine,
andUi is the translation ofMi. Application and “;” have opposite associativity so thatM1 is the innermost subterm
of M while U1 is outermost in the spine ofU . This approach was suggested by an empirical study of higher-order
logic programs based onλ→ terms [MP92] and is reminiscent of the notion of abstract Böhm trees [Bar80, Her95].
Its has been employed in experimental implementation of a unification algorithm forLLF [Cer96, CP02] and
Twelf [PS99]. A similar technique has been independently applied in the recentTeyjusimplementation [Nad01] of
λProlog [Mil89, Mil01].

The following grammar describes the syntax ofS→−◦&>: we write constructors as inλ→−◦&>, but use new
symbols to distinguish a spine operator from the corresponding term destructor.

Terms: U ::= H · S Spines: S ::= NIL Heads: H ::= c | x | U
| λx :A.U | U ;S
| λ̂x :A.U | U ;̂S
| 〈U1, U2〉 | π1S | π2S
| 〈〉

We adopt the same syntactic conventions as inλ→−◦&> and often writeV for terms inS→−◦&>. Generic terms
are allowed as heads in order to constructβ-redices. Indeed, normalS→−◦&> terms have either a constant or a
variable as their heads.

We conclude this section by giving a few examples of howλ→−◦&> terms (left) appear, once rendered in the
syntax ofS→−◦&> (right), with a few parentheses added for clarity:

c ! c · NIL

〈c, d〉 ! 〈c · NIL , d · NIL〉
λy :a. (f c y) ! λy :a. f · ((c · NIL); (y · NIL); NIL)
FST((SND c)ˆx y) ! c · (π2 (x · NIL) ;̂ (y · NIL);π1NIL)

Admittedly, it takes some practice to familiarize oneself to the syntax ofS→−◦&>. However, we do not promote it
as a replacement forλ→−◦&>, but as an internal syntax aimed at expediting execution. We will describe translations
from λ→−◦&> andS→−◦&>, and vice versa, in Section 4.

3.2 Typing Semantics

The typing judgments for terms and spines are denoted as follows:

Γ;∆ `Σ U : A U is a term of typeA in Γ;∆ andΣ
Γ;∆ `Σ S : A > a S is a spine from heads of typeA to terms of typea in Γ;∆ andΣ

The latter expresses the fact that given a headH of type A, the rootH · S has typea. Notice that the target
type of a well-typed spine is a base type. This has the desirable effect of permitting onlyη-long terms to be
derivable in this calculus: allowing arbitrary types on the right-hand side of the spine typing judgment corresponds
to dropping this property. Abstract Böhm trees [Bar80, Her95] are obtained in this manner since more destructors
could legitimately be applied to it. We will further comment on this point later.

The mutual definition of the two typing judgments ofS→−◦&> is given in Figure 3.1. The rules concerning
terms resemble very closely the definition of the pre-canonical judgment ofλ→−◦&>, except for the treatment of
heads. The rules for the spine typing judgment are instead related to pre-atomic typing inλ→−◦&>. The opposite
associativity that characterizes the spine calculus with respect to the more traditional formulation is reflected in
the manner types are managed in the lower part of Figure 3.1. We writeU andS, possibly super-/sub-scripted, for
derivations of the typing judgments for terms and spines respectively.

We conclude this section by showing that, as forλ→−◦&>, the typing relation ofS→−◦&> validates only terms
in η-long form, as expressed by the lemma below.

7

Terms

Γ;∆′ `Σ U : A Γ; ∆′′ `Σ S : A > a
lS redex

Γ;∆′, ∆′′ `Σ U · S : a

Γ;∆ `Σ,c:A S : A > a
lS con

Γ;∆ `Σ,c:A c · S : a

Γ; ∆ `Σ S : A > a
lS lvar

Γ;∆, x :A `Σ x · S : a

Γ, x :A; ∆ `Σ S : A > a
lS ivar

Γ, x :A;∆ `Σ x · S : a

lS unit

Γ;∆ `Σ 〈〉 : >

Γ;∆ `Σ U1 : A1 Γ;∆ `Σ U2 : A2
lS pair

Γ; ∆ `Σ 〈U1, U2〉 : A1 & A2

Γ;∆, x :A `Σ U : B
lS llam

Γ;∆ `Σ λ̂x :A. U : A−◦B

Γ, x :A; ∆ `Σ U : B
lS ilam

Γ; ∆ `Σ λx :A. U : A → B
. .
Spines

lS nil

Γ; · `Σ NIL : a > a

(No spine rule for>)
Γ;∆ `Σ S : A1 > a

lS fst

Γ;∆ `Σ π1S : A1 & A2 > a

Γ;∆ `Σ S : A2 > a
lS snd

Γ; ∆ `Σ π2S : A1 & A2 > a

Γ;∆′ `Σ U : A Γ; ∆′′ `Σ S : B > a
lS lapp

Γ;∆′, ∆′′ `Σ U ;̂ S : A−◦B > a

Γ; · `Σ U : B Γ;∆ `Σ S : B > a
lS iapp

Γ; ∆ `Σ U ; S : A → B > a

Figure 3.1: Typing forη-longS→−◦&> Terms

NIL−reduction

Sr nil

(H · S) · NIL
S−→ H · S

. .
β−reductions

Sr beta fst

〈U, V 〉 · (π1S)
S−→ U · S

Sr beta snd

〈U, V 〉 · (π2S)
S−→ V · S

Sr beta lin

(λ̂x :A. U) · V ;̂ S
S−→ [V/x]U · S

Sr beta int

(λx :A. U) · V ; S
S−→ [V/x]U · S

Figure 3.2: Reduction Semantics forS→−◦&>

Lemma 3.1 (Surjectivity)

i. If Γ;∆ `Σ U : a, thenU = H · S;

ii. If Γ;∆ `Σ U : >, thenU = 〈〉;
iii. If Γ;∆ `Σ U : A &B, thenU = 〈V1, V2〉;
iv. If Γ;∆ `Σ U : A−◦B, thenU = λ̂x :A. V ;

v. If Γ;∆ `Σ U : A → B, thenU = λx :A. V .

Proof: By inversion on the first rule applied in the given derivations. 2X

Notice how the structure ofS→−◦&> terms, in particular the availability of roots, permits a leaner statement of
surjectivity as compared with the traditional formulation in Lemma 2.1.

8

3.3 Reduction Semantics

We will now concentrate on the reduction semantics ofS→−◦&>. The natural translation of theβ-rules ofλ→−◦&>

(right) yields theβ-reductionsdisplayed on the left-hand side of the following table:

〈U, V 〉 · (π1S) S−→β U · S ! FST〈M,N〉 −→ M

〈U, V 〉 · (π2S) S−→β V · S ! SND 〈M,N〉 −→ N

(λ̂x :A.U) · (V ;̂S) S−→β [V/x]U · S ! (λ̂x :A.M)ˆN −→ [N/x]M
(λx :A.U) · (V ;S) S−→β [V/x]U · S ! (λx :A.M) N −→ [N/x]M

The trailing spine in the reductions forS→−◦&> is a consequence of the fact that this language reverses the nesting
order ofλ→−◦&> destructors:S accounts for the operators that possiblyenclosethe correspondingλ→−◦&> object.
We call the expression patterns on the left-hand side of the arrowβ-redices. We write

S−→β for the congruence
relation based on these rules and overload this notation to apply to both terms and spines. We denote the reflexive

and transitive closure of this relation as
S−→∗

β . Finally, we write
S≡β for the associated equivalence relation. Formal

inference rules for
S−→β are obtained by considering the lower segment of Figure 3.2 and the straightforward

congruence rules that allow a reduction to be applied to an arbitrary subterm. We writeFβ , possibly superscripted,
for derivations of these judgments.

It takes little experimentation to realize that the aboveβ-reduction rules do not produce exactly the same
effects as the notion of reducibility ofλ→−◦&>. Consider for example the simple projection redexFST〈c, d〉,
which reduces toc in just one step inλ→−◦&>. Applying ruleSr beta fst to the correspondingS→−◦&> term,
〈c · NIL , d · NIL〉 · π1NIL , yields(c · NIL) · NIL rather than the expectedc · NIL . A similar phenomenon arises with
functional redices, as schematized on the right-hand side of the following figure.

FST〈c, d〉 ! 〈c · NIL , d · NIL〉 · π1NIL (λx :a. f x) c ! (λx :a. f · (x · NIL ; NIL)) · (c · NIL ; NIL)

−→ S
−→

β

−→ S
−→

β

?
! (c · NIL) · NIL

?
! (f · ((c · NIL) · NIL ; NIL)) · NIL

99K

99K

c ! c · NIL f c ! f · (c · NIL ; NIL)

In both cases, the gap represented by the dashed arrow (99K) can be bridged if we consider terms of the form
(H ·S) ·NIL as additional redices that reduce toH ·S. The projection redex on the left requires one such reduction
(underlined), while the functional redex on the right would make two uses of it.

Thus, the structure of roots in the spine calculus makes one more reduction rule necessary, namely:

(H · S) · NIL
S−→NIL H · S

We call this ruleNIL -reduction, its left-hand side aNIL -redexand write
S−→NIL for the corresponding congruence

relation. We denote its reflexive and transitive closure as
S−→∗

NIL and the corresponding equivalence relation as
S≡NIL . We writeFNIL , possibly decorated, for derivations of any of these judgments.

We will investigate the nature and properties ofNIL -reductions in Sections 4 and 5. Meanwhile, we shall
provide an informal explanation of its origin. The roots and spines ofS→−◦&> act as a syntactic discriminant
between pre-canonical and pre-atomic objects. Instead,λ→−◦&> requires a typing derivation to distinguish them:
rules lλ atm and lλ redex play an essential role in this process, but are not syntactically accounted for within
λ→−◦&> terms. We will see in Section 4 that observingλ→−◦&> reductions at the level of typing derivations
reveals the formation of alternations of ruleslλ atm andlλ redex which correspond precisely to occurrences of
NIL -redices.

We write
S−→ for the union of

S−→β and
S−→NIL . It is the congruence relation obtained by allowing the use of

bothβ-reductions and theNIL -reduction. This is the relation we will use as the basis of the reduction semantics

of S→−◦&>. We reserve
S−→∗ for its reflexive and transitive closure, and

S≡ for the corresponding equivalence
relation. We denote derivations of these judgments asF , possibly decorated. The definition of

S−→ is displayed

9

in Figure 3.2, except for the obvious congruence rules. As forλ→−◦&>, the rules obtained from this figure by
replacing

S−→ with
S−→ ∗ are admissible. This fact will enable us to lift every result below mentioning

S−→
(possibly as

S−→β or
S−→NIL) to corresponding properties of

S−→∗ (
S−→∗

β or
S−→∗

NIL , respectively).

Finally, aS→−◦&> term or spine that does not contain anyβ- or NIL -redex is callednormal. We use instead
the adjectivecanonicalwhen emphasizing that this object is inη-long form. By the above surjectivity property,
every well-typed normal term is canonical.

It is interesting to observe that ruleSr nil is not sufficient in the presence of terms that are not inη-long form.
Consider for example the redex(λx : a. f x) c d wheref has typea → a → a. This term is not inη-long form
(its η-expansion is(λx : a. λy : a′. f x y) c d), but still reduces tof c d in λ→−◦&>. The equivalentS→−◦&>

expression reduces to(f · (c · NIL); NIL)) · (d · NIL ; NIL) after oneβ- and oneNIL -reduction, but cannot be further
reduced to the expectedf · (c · NIL ; d · NIL ; NIL). Such a step would require a reduction of the form:

(H · S) · S′ S−→ H · (S @ S′)

where the meta-level operationS@S′ has the effect ofconcatenatingspinesS andS′, i.e., it replaces the trailing
NIL of S with S′. Notice thatSr nil is an instance of this rule whereS′ = NIL . Observe also that the more general
rule is not needed when operating exclusively withη-long terms:(λx :a. λy :a′. f ·(x·NIL ; y ·NIL ; NIL))·(c·NIL ; d·
NIL ; NIL) reduces tof · (c · NIL ; d · NIL ; NIL) by two applications of ruleSr beta int and threeNIL -reductions.
Since we are primarily interested inη-long terms in this paper, we will not pursue the meta-theory of this more
general setting any further, except incidentally. We refer the interested reader to [CP97a] for a precise development
of this observation.

4 Relationship betweenλ→−◦&> and S→−◦&>

There exists a structural translation of terms inλ→−◦&> to terms inS→−◦&> and vice versa. As we will see
in this section, this translation preserves typing andβ-reductions, so thatλ→−◦&> andS→−◦&> share the same
properties on well-typed (η-long) terms, and are therefore equivalent for practical purposes. Although a direct
translation between the two languages is possible (see [CP97b]), a more elegant and instructive approach breaks
this endeavor at the intermediatecoercion calculusC→−◦&>, which differs fromλ→−◦&> by its syntactic account
of the application of the rules that bridge the pre-canonical and pre-atomic terms. The translation betweenλ→−◦&>

andC→−◦&> captures in full the dynamics of what appears asNIL -reductions in the spine calculus.C→−◦&> is
defined and its main properties are summarized in Section 4.1 (a detailed study is the object of Appendix A).
The rest of this section relates the coercion and the spine calculi. More precisely, in Section 4.2 we introduce a
mapping ofC→−◦&> to S→−◦&> and prove its soundness with respect to typing. In Section 4.3, we will instead
develop the machinery to prove the soundness of this translation with respect to the reduction semantics of the two
languages. We introduce the reverse translation in Section 4.4 and establish its soundness with respect to reduction
in Section 4.5. Sections 4.3 and 4.5 are rather technical; the casual reader should be able to skip them and still
follow the overall discussion. Finally, in Section 4.6, we adapt these results to relateλ→−◦&> andS→−◦&>.

4.1 The Simply-Typed Lambda Calculus with Explicit CoercionsC→−◦&>

As we observed in [CP97b],NIL -reductions appear as an omnipresent nuisance when investigating the meta-theory
of S→−◦&>, and even more so when relating it to the traditional formulation. In this section, we isolate the source
of these difficulties in a mismatch between the syntax ofλ→−◦&> and the inference rules that define its typing
semantics. The typing rules ofλ→−◦&>, as given in Figure 2.1, do not force a one-to-one correspondence between
the structure of a well-typed term and the shape of a derivation tree for it. For example, givenc of typea& a, a
derivation for the termFSTc may start with the application of ruleslλ fst, lλ atm, or evenlλ redex. In the first
and last case,FSTc would be considered pre-atomic, while in the second case it would be pre-canonical. Moreover,
there are infinitely many valid typing derivations of either kinds for this term. We can easily trace the source of this
multiplicity to ruleslλ atm andlλ redex, the only ones that are not bound to a specific construct in the language,
making the rules in Figure 2.1 not syntax-directed. In this section, we will slightly alter the definition ofλ→−◦&>

to obtain a perfect mapping.

10

Pre−canonical terms

Γ; ∆ `C
Σ R ↓ a

lC atm

Γ; ∆ `C
Σ ⇑R ⇑ a

lC unit

Γ;∆ `C
Σ 〈〉 ⇑ >

Γ; ∆ `C
Σ Q1 ⇑ A Γ; ∆ `C

Σ Q2 ⇑ B
lC pair

Γ; ∆ `C
Σ 〈Q1, Q2〉 ⇑ A & B

Γ;∆, x :A `C
Σ Q ⇑ B

lC llam

Γ;∆ `C
Σ λ̂x :A. Q ⇑ A−◦B

Γ, x :A;∆ `C
Σ Q ⇑ B

lC ilam

Γ; ∆ `C
Σ λx :A. Q ⇑ A → B

. .
Pre−atomic terms

Γ;∆ `C
Σ Q ⇑ A

lC redex

Γ; ∆ `C
Σ ↓Q ↓ A

lC con

Γ; · `C
Σ,c:A c ↓ A

lC lvar

Γ; x :A `C
Σ x ↓ A

lC ivar

Γ, x :A; · `C
Σ x ↓ A

(No rule for>)
Γ;∆ `C

Σ R ↓ A & B
lC fst

Γ;∆ `C
Σ FSTR ↓ A

Γ;∆ `C
Σ R ↓ A & B

lC snd

Γ; ∆ `C
Σ SND R ↓ B

Γ;∆′ `C
Σ R ↓ A−◦B Γ;∆′′ `C

Σ Q ⇑ A
lC lapp

Γ;∆′, ∆′′ `C
Σ RˆQ ↓ B

Γ;∆ `C
Σ R ↓ A → B Γ; · `C

Σ Q ⇑ A
lC iapp

Γ; ∆ `C
Σ R Q ↓ B

Figure 4.1: Typing forη-longC→−◦&> Terms

The coercion calculusC→−◦&> extends the syntax ofλ→−◦&> with the twocoercion operators⇑ and↓ ,
intended to witness the application of ruleslλ atm andlλ redex, respectively. This allows syntactically discrimi-
nating terms that are either pre-canonical or pre-atomic (when at all typable). In order to avoid confusion, we use
the letterQ, variously annotated, for the former and the letterR for the latter. We will write the other constructs
as inλ→−◦&>. We definepre-canonicalandpre-atomic termsmutually recursively by means of the following
grammar:

Pre-canonical Pre-atomic
terms: Q ::= terms: R ::= c | x

| λx :A.Q | R Q (unrestricted functions)
| λ̂x :A.Q | RˆQ (linear functions)
| 〈Q1, Q2〉 | FSTR | SND R (additive pairs)
| 〈〉 (additive unit)
| ↓R | ⇑Q (coercions)

We adopt the same syntactic conventions as forλ→−◦&>, but writeT for a term that can be either pre-canonical or
pre-atomic. As forλ→−◦&> andS→−◦&>, we write[R/x]T for the substitution ofR for x in T . Observe however
that, sincex is pre-atomic, so must be the substituting termR.

The typing semantics ofC→−◦&> is expressed by the judgments

Γ;∆ `C

Σ Q ⇑ A Q is a pre-canonical term of typeA in Γ;∆ andΣ
Γ;∆ `C

Σ R ↓ A R is a pre-atomic term of typeA in Γ;∆ andΣ

and is given in Figure 4.1. It differs from the typing rule set ofλ→−◦&> only by the fact that ruleslC atm and
lC redex are only applicable to terms of the form⇑R and↓Q, respectively. Whenever a property holds uniformly
for the pre-canonical and pre-atomic judgments above, we will writeΓ;∆ `C

Σ T ⇑↓ A and then refer to the term
T and the typeA if needed. Moreover, if two or more such expressions occur in a statement, we assume that
the arrows of the actual judgments match, unless explicitly stated otherwise. Observe that the typing rules of our

11

AC−reduction

Cr AC

↓(⇑R)
C−→ R

. .
β−reductions

Cr beta fst

FST(↓〈Q1, Q2〉)
C−→ ↓Q1

Cr beta snd

SND (↓〈Q1, Q2〉)
C−→ ↓Q2

Cr beta lin

(↓(λ̂x :A. Q))ˆQ′ C−→ ↓[↓Q′/x]Q

Cr beta int

(↓(λx :A. Q)) Q′ C−→ ↓[↓Q′/x]Q

Figure 4.2: Reduction Semantics forC→−◦&>

intermediate language are syntax-directed. We writeQ andR for pre-canonical and pre-atomicC→−◦&> typing
derivations, respectively.

Not surprisingly,C→−◦&> satisfies an surjectivity principle similar toλ→−◦&>, but the stricter form of its
typing rules limits the form of a pre-canonical term of atomic type to just⇑R:

Lemma 4.1 (Surjectivity)

i. If Γ;∆ `C

Σ Q ⇑ a, then Q = ⇑R;

ii. If Γ;∆ `C

Σ Q ⇑ >, thenQ = 〈〉;
iii. If Γ;∆ `C

Σ Q ⇑ A &B, thenQ = 〈Q1, Q2〉;

iv. If Γ;∆ `C

Σ Q ⇑ A−◦B, thenQ = λ̂x :A.Q′;

v. If Γ;∆ `C

Σ Q ⇑ A → B, thenQ = λx :A.Q′.

Proof: By inversion on the given derivations. 2X

Porting the reduction semantics ofλ→−◦&> toC→−◦&> requires some care since invisible coercions need to be
made explicit in the calculus considered in this section. This process is eased by observing howβ-reductions op-
erate inλ→−◦&> at the level of derivations. Consider first a typing derivation for the two sides of rulelr beta fst:

C1

Γ;∆ `Σ M1 ⇑ A

C2

Γ;∆ `Σ M2 ⇑ B
lλ pair

Γ;∆ `Σ 〈M1,M2〉 ⇑ A &B
lλ redex

Γ;∆ `Σ 〈M1,M2〉 ↓ A &B
lλ fst

Γ;∆ `Σ FST〈M1,M2〉 ↓ A
−→

C1

Γ;∆ `Σ M1 ⇑ A
lλ redex

Γ;∆ `Σ M1 ↓ A

We need to account for the uses of rulelλ redex in devising the correspondingC→−◦&> reduction rule by includ-
ing the↓ coercion in the appropriate places. So, ifMi correspond toRi, for i = 1, 2, we obtain the following
rule:

FST(↓〈Q1, Q2〉)
C−→β ↓Q1

We similarly adapt rulelr beta snd as follows:

SND (↓〈Q1, Q2〉)
C−→β ↓Q2

We constructC→−◦&> reduction rules for the functional forms ofβ-reduction in a similar way and obtain the
following C→−◦&> reduction rules corresponding tolr beta int andlr beta lin, respectively:

(↓(λx :A.Q)) Q′ C−→β ↓[↓Q′/x]Q
(↓(λ̂x :A.Q))ˆQ′ C−→β ↓[↓Q′/x]Q

12

We write
C−→β for the congruence relation based on these four rules. We overload this notation to apply to

both pre-atomic and pre-canonical terms. We denote the reflexive and transitive closure of this relation as
C−→∗

β

and write
C≡β for the associated equivalence relation. Formal inference rules for

C−→β are given in the lower
segment of Figure 4.2, augmented by the straightforward congruence rules. We writeEβ , possibly superscripted,
for derivations of these judgments.

The presence of explicit coercions inC→−◦&> makes one more reduction necessary. In the traditional formula-
tion, alternations of ruleslλ atm andlλ redex can be eliminated without affecting the derivability of a judgment:

A
Γ;∆ `Σ M ↓ a

lλ atm

Γ;∆ `Σ M ⇑ a
lλ redex

Γ;∆ `Σ M ↓ a
99K

A
Γ;∆ `Σ M ↓ a

This transformation, invisible at the level ofλ→−◦&> terms, is captured by the followingAC-reductionin S→−◦&>:

βac : ↓(⇑R) C−→AC R

We call the expression on the left-hand side of the arrow acoercion redexor anAC-redex. We write
C−→AC for the

congruence relation induced by this rule,
C−→∗

AC for its reflexive and transitive closure,
C≡AC for the corresponding

equivalence relation, andEAC for their derivations. The upper part of Figure 4.2 formalizes
C−→AC.

AC-redices and the reduction they induce are closely related to theNIL -redices and theNIL -reduction rule of
S→−◦&>, as we will see in what faollows.C→−◦&> offers a simple setting where to study the meta-theory of this
relation, which we will port to the more complex world of spines and roots in Section 5. In order to keep the size
of this section reasonable, we limit the present discussion to listing the main properties of

C−→AC. The interested
reader can find formal statements and proofs in Appendix A.

AC-reduction enjoys many of the desirable properties of a reduction relation for a typedλ-calculus. Not only
doesAC-reduction preserve typing (Lemma A.1), but this property holds also when using ruleCr AC as an
expansion rule (Lemma A.2). Viewed as a rewrite system,

C−→AC and its derivatives are strongly normalizing
(Lemma A.3) and confluent (Lemma A.5), and therefore admit unique normal forms (Lemma A.6). A termT
is AC-normal if it does not contain anyAC-redex,i.e., a subterm of the form↓⇑R. We writeC→−◦&>

0 for the
sublanguage ofC→−◦&> that consists only ofAC-normal terms.

We conclude our present discussion of the semantics ofC→−◦&> by analyzing how ruleCr AC interacts with
β-reductions. First observe that performing aβ-reduction has often (but not always) the effect of exposing an
AC-redex:

FST(FST↓〈〈⇑c, ⇑d〉, ⇑e〉) C−→β FST↓〈⇑c, ⇑d〉 C−→β ↓(⇑c) C−→AC c

The reverse property does not hold in general, but aβ-reduction can be blocked by the presence of anAC-redex:

FST↓⇑↓〈⇑c, ⇑d〉 C−→AC FST↓〈⇑c, ⇑d〉 C−→β ↓(⇑c) C−→AC c

We write
C−→ for the union of

C−→β and
C−→AC. It is the congruence relation obtained by allowing the use of

bothβ- andAC-reductions. This is the relation we will use as the basis of the reduction semantics ofC→−◦&>,

which is studied in detail in Appendix A. We reserve
C−→ ∗ for its reflexive and transitive closure, and

C≡ for
the corresponding equivalence relation. We writeE , possibly decorated, for derivations of these judgments. The
definition of

C−→ is displayed in Figure 4.2, except for the straightforward congruence rules. As forλ→−◦&>

andS→−◦&>, the rules obtained from this figure by replacing
C−→ with

C−→∗ are admissible. AC→−◦&> term
that does not contain anyβ- or AC-redex is callednormal. By the above surjectivity property, every well-typed
normal term isη-long (and as usual we will writecanonicalwhen emphasizing this point). It is easy to prove that
a pre-canonical termQ is normal if and only if it does not contain any occurrences of the coercion↓ . Normal
pre-atomic terms may mention this construct, but only as their outermost operator.

Extendingλ→−◦&> with coercions to obtainC→−◦&> can be motivated independently from typing considera-
tions: we insert the atomic-to-canonical coercion⇑ every time the immediate subterm of a constructor starts with

13

a destructor (or is a constant or a variable). Dually, the canonical-to-atomic coercion↓ mediates the transition
from destructors to constructors (except for the argument of the applications).

The type-free translationλC of λ→−◦&> into C→−◦&>, given in Appendix A, formalizes this idea by means
of the judgments

M λC−→ Q M translates to pre-canonical termQ
M λC−→ R N translates to pre-atomic termR

We prove in Appendix A that these mutually recursive judgments transform anyλ→−◦&> term into anAC-normal
pre-canonical and pre-atomicC→−◦&> object, respectively (Lemma A.10). Therefore, the range of this func-
tion is C→−◦&>

0 rather than the fullC→−◦&>. Other important properties ofλC are that it preserves typing: if
M λC−→ T and eitherM or T is well-typed, then the other side of the arrow is typable as well (Theorem A.8
and Corollary A.19). This translation preserves reducibility (Theorem A.13 and Corollary A.27), but exposes the
interplay ofβ- andAC-reductions inC→−◦&>. The soundness ofλC with respect to reducibility (Theorem A.13)
is described by the following diagram:

M

T

M ′

T ∗ T ′

-

?

λC

................R

λC

...........-C...........-
β

...........-C...........-
AC

-

where derivations given as assumptions are represented with full lines, while derivations whose existence is pos-
tulated are displayed using dotted edges. For typographic reasons, we use a double arrow rather than a star (∗) in
order to denote the reflexive and transitive closure of a relation. Here,T is AC-normal, but emulating the reduction
M −→ M ′ occurring inλ→−◦&> may produce a termT ∗ that is not inAC-normal form: it takes one or more
AC-reductions to reconcile this term with the translation ofM ′.

The reverse translationCλ, fromC→−◦&> to λ→−◦&>, simply erases every coercion. We show in Appendix A
that it is the inverse ofλC moduloAC-equivalence (Corollary A.18), and that it preserves typing (Theorem A.14
and Corollary A.19) and reductions (Corollaries A.23 and A.26). In particular,AC-equivalent terms are mapped to
the sameλ→−◦&> term (Lemmas A.21 and A.22).

Readers interested inC→−◦&>, its relation toλ→−◦&> and its meta-theory can find additional information in
Appendix A.

4.2 CS: A Translation from C→−◦&> to S→−◦&>

The translation fromC→−◦&> to S→−◦&>, abbreviatedCS, maps the pre-canonical and pre-atomic terms of
C→−◦&> to the roots, terms and spines ofS→−◦&>. CS is specified by means of the following judgments:

Q CS−→ U Pre-canonical termQ translates toU
R \S CS−→ U Pre-atomic termR translates toU , given spineS

The rules defining them are displayed in Figure 4.3. We will denote derivations of either judgments withCS,
possibly annotated. When translating a pre-atomicC→−◦&> termR by means of the second judgment, the spine
S acts as an accumulator for the destructors appearing inR. This indirection is needed to cope with the opposite
associativity of spines inS→−◦&> and destructor nesting inC→−◦&>. Notice that, for each of the two judgments
of CS, the structure of the first argument determines uniquely which rule can be used in the translation process.
This, together with the fact that every production in grammar ofC→−◦&> is covered, ensures that these judgments
implement a function,i.e., that every term has a unique translation:

Lemma 4.2 (Functionality ofCS)

i. For every pre-canonical termQ in C→−◦&>, there is a unique termU in S→−◦&> such thatQ CS−→ U .

ii. For every pre-atomic termR in C→−◦&> and every spineS there is a unique termU in S→−◦&> such that
R \S CS−→ U .

14

Pre−canonical terms

R \ NIL
CS−→ H · S

CS atm

⇑R CS−→ H · S

CS unit

〈〉 CS−→ 〈〉

Q1
CS−→ U1 Q2

CS−→ U2
CS pair

〈Q1, Q2〉 CS−→ 〈U1, U2〉

Q CS−→ U
CS llam

λ̂x :A. Q CS−→ λ̂x :A. U

Q CS−→ U
CS ilam

λx :A. Q CS−→ λx :A. U
. .
Pre−atomic terms

Q CS−→ U
CS redex

↓Q \S CS−→ U · S

CS con

c \S CS−→ c · S
CS var

x \S CS−→ x · S

R \π1S
CS−→ V

CS fst

FSTR \S CS−→ V

R \π2S
CS−→ V

CS snd

SND R \S CS−→ V

Q CS−→ U R \U ;̂ S CS−→ V
CS lapp

RˆQ \S CS−→ V

Q CS−→ U R \U ; S CS−→ V
CS iapp

R Q \S CS−→ V

Figure 4.3: Translation ofC→−◦&> into S→−◦&>

Proof: By induction on the structure ofQ andR. 2X

We can immediately prove the faithfulness of this translation with respect to typing. This result expresses the
adequacy of the system in Figure 3.1 as an emulation of the typing semantics ofC→−◦&>. Here and below, we
abbreviate the phrases “the judgmentJ has derivationJ ” and “there is a derivationJ of the judgmentJ” as
J :: J .

Theorem 4.3 (Soundness ofCS for typing)

i. If Q :: Γ; ∆ `C

Σ Q ⇑ A and Q CS−→ U , then Γ;∆ `Σ U : A;

ii. if R :: Γ; ∆1 `C

Σ R ↓ A, Γ;∆2 `Σ S : A > a andR \S CS−→ V , thenΓ;∆1,∆2 `Σ V : a.

Proof: By simultaneous induction on the structure ofQ andR. 2X

Notice that this statement implies not only that types are preserved during the translation process, but also, by
virtue of surjectivity, thatη-long objects ofC→−◦&> are mapped toη-long terms in the spine calculus. We will
obtain an indirect proof of the completeness ofCS with respect to typing in Section 4.4.

4.3 Soundness ofCS with respect to Reduction

We have seen in the previous section thatCS is sound with respect to the typing semantics ofC→−◦&> and
S→−◦&>. We dedicate the present section to proving that it also preserves reductions. This task is complicated by
the fact that the reduction semantics ofS→−◦&>, in particular ruleSr nil is specialized toη-long forms. Consider
for example theC→−◦&> term

R = (↓λx :a. ⇑(f ⇑x)) ⇑c ⇑d

for a signature withf : a → a → a, c : a andd : a. This term is not inη-long form (its η-expansion is
(↓λx :a. λy :a. ⇑(f ⇑x ⇑y)) ⇑c ⇑d). Oneβ- and twoAC-reductions rewriteR to the canonical form

R′ = f ⇑c ⇑d

15

whose translation inS→−◦&> (given the initial auxiliary spineNIL) is

V = f · ((c · NIL); (d · NIL); NIL)

On the other hand,CS would translateR to theS→−◦&> term

U = (λx :a. f · (x · NIL); NIL) · ((c · NIL); (d · NIL); NIL)

which cannot be reduced further than

(f · (c · NIL); NIL) · ((d · NIL); NIL),

a different term fromV . We can recoverV by appending the spines, as described at the end of Section 3.

As we can see from this example,CS does not commute with reduction in the general case. We can track the
problem to the fact that, whileβ-reduction and surjectivity are orthogonal concepts inλ→−◦&> and to a large extent
in C→−◦&> (see Appendix A), they are intimately related inS→−◦&>. However, as long as we are interested only
in η-long terms, the definitions given in the previous section ensure theCS is sound with respect to the reduction
semantics of our calculi. Therefore, we need to pay particular attention to operating only onη-long terms. We
achieve this purpose indirectly by requiring that certainC→−◦&> terms in our statements be well-typed. This is
stricter than needed, but typing is the only way we can enforce surjectivity and extensionality.

RulesCr beta lin andCr beta int generate their reduct by means of a meta-level substitution. The corre-
sponding reduction inS→−◦&> operate in a similar way. Therefore, we need to show thatCS commutes with
substitution.

Lemma 4.4 (Substitution inCS)

i. If CS :: Q′ CS−→ U and CSQ :: Q CS−→ V , then [↓Q/x]Q′ CS−→ [V/x]U .

ii. If CS :: R \S CS−→ U and CSQ :: Q CS−→ V , then [↓Q/x]R \ [V/x]S CS−→ [V/x]U .

Proof:
The proof proceeds by induction on the structure ofCS. All cases are quite simple. We will analyze the cases

whereCS ends with rulesCS redex andCS var (limited to the subcase where the variable in question is precisely
x) to familiarize the reader with reasoning within the spine calculus.

CS redex CS =

CS ′

Q′ CS−→ U ′

CS redex
↓Q′ \S CS−→ U ′ · S

where R = ↓Q′ and U = U ′ · S.

CS∗∗ :: [↓Q/x]Q′ CS−→ [V/x]U ′ by induction hypothesis (i) onCS ′,
CS∗ :: [↓Q/x](↓Q′) \ [V/x]S CS−→ [V/x]U ′ · [V/x]S by ruleCS redex onCS∗∗,

[↓Q/x](↓Q′) \ [V/x]S CS−→ [V/x](U ′ · S) by definition of substitution.

CS var CS = CS var

x \S CS−→ x · S
whereR = x and U = x · S.

CS∗ :: ↓Q \ [V/x]S CS−→ V · [V/x]S by ruleCS redex onCSQ,

[↓Q/x]x \ [V/x]S CS−→ [V/x](x · S) by definition of substitution. 2X

16

We need one more technical result prior to tackling the main theorem of this section. More precisely, we
show that, when translating a pre-atomic term, reductions within the corresponding spine are mapped directly to
reductions in the resultingS→−◦&> term, as expressed by the diagram on the right. In particular,β-reductions are
mapped toβ-reductions andNIL -reductions yieldNIL -reductions.

Lemma 4.5 (Spine reduction)

If CS :: R \S CS−→ V and F :: S
S−→ S′, then there is a termV ′ such that

R \S′ CS−→ V ′ and V
S−→ V ′.

Proof:
This straightforward proof proceeds by induction on the structure ofF . 2X

R \ S

R \ S′

V

V ′

-CS

?

S

...........-CS

...........?
S

It is easy to show that this result remains valid when considering the transitive and reflexive closure of the involved
relations.

At this point, we are in a position to prove thatCS is sound with respect to the reduction semantics ofC→−◦&>

andS→−◦&>, one of the few points where we need typing to ensure surjectivity. Note that in applications this
property will always be satisfied. It is expressed by the diagram on the right.

Theorem 4.6 (Soundness ofCS for reducibility)

i. If E :: Q
C−→ Q′ and CS :: Q CS−→ U with Q :: Γ; ∆ `C

Σ Q ⇑ A, then there is a

termU ′ such thatU
S−→ U ′ and Q′ CS−→ U ′.

ii. If E :: R
C−→ R′ and CS :: R \S CS−→ U with R :: Γ;∆ `C

Σ R ↓ A and

S :: Γ; ∆′ `Σ S : A > a, then there is a termU ′ such thatU
S−→ U ′ and

R′ \S CS−→ U ′.

Q

U

Q′

U ′

-C

?

CS

..........?
CS

...........-S

Proof:
This simple proof proceeds by induction on the structure ofE and inversion onCS. We will develop the

cases where the last rule applied inE is Cr beta lin, Cr AC or Cr lapp2, the second congruence rule for linear
application.

Cr beta lin E = Cr beta lin

(↓(λ̂x :A.Q1))ˆQ2
C−→ ↓[↓Q2/x]Q

where R = (↓(λ̂x :A.Q1))ˆQ2 and R′ = ↓[↓Q2/x]Q.

By inversion on the structure ofCS, we obtain that there exist termsU1 and U2 such thatU = (λ̂x :
A.U1) · (U2 ;̂S) and there are derivationsCS1 andCS2 such thatCS1 :: Q1

CS−→ U1 andCS2 :: Q2
CS−→ U2:

CS =

CS2

Q2
CS−→ U2

CS1

Q1
CS−→ U1

CS llam

λ̂x :A.Q1
CS−→ λ̂x :A.U1

CS redex

↓λ̂x :A.Q1 \U2 ;̂S CS−→ (λ̂x :A.U1) · (U2 ;̂S)
CS lapp

(↓(λ̂x :A.Q1))ˆQ2 \S CS−→ (λ̂x :A.U1) · (U2 ;̂S)

CS∗∗ :: [↓Q2/x]Q1
CS−→ [U2/x]U1 by the Substitution Lemma 4.4 onCS1 andCS2,

CS∗ :: ↓[↓Q2/x]Q1 \S CS−→ [U2/x]U1 · S by ruleCS redex onCS∗∗,

F :: (λ̂x :A.U1) · (U2 ;̂S) S−→ [U2/x]U1 · S by ruleSr beta lin.

Cr AC E = Cr AC

↓(⇑R′) C−→ R′

where R = ↓(⇑R′).

17

By inversion on the structure ofCS, we have thatU = (H · S′) · S for spinesS andS′ and there is a
derivationCS such thatCS ′ :: R′ \ NIL

CS−→ H · S′:

CS =

CS ′

R′ \ NIL
CS−→ H · S′

CS atm
⇑R′ CS−→ H · S′

CS redex
↓(⇑R′) \S CS−→ (H · S′) · S

A = a′ and

Q′ :: Γ;∆ `C

Σ R′ ↓ a′ by inversion on rulelC redex andlC atm for R,

a′ = a and

S = NIL by inversion onS,

F :: (H · S′) · NIL
S−→ H · S′ by ruleSr nil.

Cr lapp2 E =

E ′

Q2
C−→ Q′

2
Cr lapp2

R1ˆQ2
C−→ R1ˆQ′

2

where R = R1ˆQ2 and R′ = R1ˆQ′
2.

CS2 ::Q2
CS−→ U2 and

CS1 ::R1 \U2 ;̂S CS−→ U by inversion on ruleCS iapp for CS,

A = A2−◦A1 and

Q′ :: Γ;∆2 `C

Σ Q2 ⇑ A2 by inversion on rulelC lapp for R,

F ′ :: U2
S−→ U ′

2 and

CS ′2 ::Q′
2

CS−→ U ′
2 by induction hypothesis (i) onE ′, CS2 andQ′,

F ′′ :: U2 ;̂S S−→ U ′
2 ;̂S by rule congruence fromF ′,

CS ′1 ::R1 \U ′
2 ;̂S CS−→ U ′ and

F :: U
S−→ U ′ by the Spine Reduction Lemma 4.5 onCS1 andF ′′,

CS∗ ::R1ˆQ′
2 \S CS−→ U ′ by ruleCr lapp2 onCS ′1 andCS ′2. 2X

The typing assumptions appearing in the statement of this theorem would be unnecessary if we were to replace
our NIL -reduction with the generalized version that allows appending spines,i.e., if we were to give up on our
surjectivity requirements.

A careful inspection of this proof revealsCS mapsβ-reductions inC→−◦&> to β-reductions inS→−◦&>, and
AC-reductions toNIL -reductions; moreover, no typing derivation is needed in the former case:

Corollary 4.7 (Soundness ofCS for reducibility)

i. If Q
C−→β Q′ and Q CS−→ U , then there is a termU ′ such thatU

S−→β U ′ and Q′ CS−→ U ′.

ii. If Q
C−→AC Q′ and Q CS−→ U with Γ;∆ `C

Σ Q ⇑ A, then there is a termU ′ such that U
S−→NIL U ′

and Q′ CS−→ U ′.

The notion of soundness we adopted relative to the reduction semantics of our calculi ensures that every re-
duction in the source language correspond to one reduction in the target language. We define completeness dually:
every reduction in the target language should correspond to some reduction in the source language. We will give
an indirect proof of the completeness ofCS with respect to the reduction semantics of our calculi in Section 4.5,
when considering the inverse of our translation.

18

Terms

S \ c SC−→ Q
SC con

c · S SC−→ Q

S \x SC−→ Q
SC var

x · S SC−→ Q

U SC−→ Q′ S \ ↓Q′ SC−→ Q
SC redex

U · S SC−→ Q

SC unit

〈〉 SC−→ 〈〉

U1
SC−→ Q1 U2

SC−→ Q2
SC pair

〈U1, U2〉 SC−→ 〈Q1, Q2〉

U SC−→ Q
SC llam

λ̂x :A. U SC−→ λ̂x :A. Q

U SC−→ Q
SC ilam

λx :A. U SC−→ λx :A. Q
. .
Spines

SC nil

NIL \R SC−→ ⇑R

S \ FSTR SC−→ Q
SC fst

π1S \R SC−→ Q

S \ SND R SC−→ Q
SC snd

π2S \R SC−→ Q

U SC−→ Q′ S \RˆQ′ SC−→ Q
SC lapp

U ;̂ S \R SC−→ Q

U SC−→ Q′ S \R Q′ SC−→ Q
SC iapp

U ; S \R SC−→ Q

Figure 4.4: Translation ofS→−◦&> into C→−◦&>

4.4 SC: A Translation from S→−◦&> to C→−◦&>

In this section and in the next, we consider the problem of translating terms fromS→−◦&> back toC→−◦&>, an
essential operation to interpretS→−◦&> objects in the usual notation.CS cannot be used for this purpose since
the rules at the bottom of Figure 4.3 are not syntax-directed with respect toS→−◦&> spines. The approach we take
is instead to define an independent translation,SC, that maps entities inS→−◦&> to terms inC→−◦&>. We will
prove later that it is precisely the inverse ofCS. TheSC translation is specified by means of the judgments

U SC−→ Q U translates to pre-canonical termQ
S \R SC−→ Q S translates to pre-canonical termQ, given pre-atomic seedR

and defined in Figure 4.4. We writeSC, possibly annotated, for derivations of either judgments. The notion of
spine does not have a proper equivalent inC→−◦&>: it corresponds indeed to a term with ahole as its head.
Therefore, when translating a spine, we need to supply a head in order to generate a meaningfulC→−◦&> term.
This is achieved by the judgmentS \R SC−→ Q: the auxiliary termR (theseed) is initialized to the translation of
some head for the spineS (rulesSC con, SC var andSC redex); it is successively used as an accumulator for the
translation of the operators appearing inS (rulesSC fst, SC snd, SC lapp andSC iapp); when the empty spine
is eventually reached (ruleSC nil), the overall translation has been completed andQ is returned. As inCS, the
use of an accumulator handles the opposite associativity ofS→−◦&> andC→−◦&>.

The faithfulness ofSC with respect to typing is formally expressed by the following theorem. Again, we shall
stress the fact that the translation process preserves not only types, but also surjectivity.

Theorem 4.8 (Soundness ofSC for typing)

i. If U :: Γ; ∆ `Σ U : A, and SC :: U SC−→ Q, then Γ;∆ `C

Σ Q ⇑ A.

ii. If S :: Γ; ∆1 `Σ S : A > a, R :: Γ; ∆2 `C

Σ R ↓ A andSC :: S \R SC−→ Q, then Γ;∆1,∆2 `C

Σ Q ⇑ a.

Proof: By simultaneous induction on the structure ofU andS. 2X

We dedicate the remainder of this section to proving thatSC is the inverse ofCS. Besides getting the comfort-
ing formal acknowledgment that our two translations do behave as expected, we will take advantage of this result
to obtain straightforward proofs of the completeness ofCS andSC with respect to typing and reduction.

We begin our endeavor by proving thatSC is actually a function fromS→−◦&> to C→−◦&>.

19

Lemma 4.9 (Functionality ofSC)

i. For everyS→−◦&> termU , there is a unique pre-canonicalC→−◦&> termQ such thatU SC−→ Q.

ii. For every spineS and pre-atomic seedR, there is a unique pre-canonicalC→−◦&> term Q such that
S \R SC−→ Q.

Proof: By induction on the structure ofU andS. 2X

Based on this fact, it is easy to show thatSC andCS are each other’s inverse.

Lemma 4.10 (Bijectivity)

CS andSC are bijections between the set ofC→−◦&> terms and the set ofS→−◦&> terms. Moreover, they
are each other’s inverse. More precisely, we have that

i. If SC :: U SC−→ Q, then Q CS−→ U .

ii. If SC :: S \R SC−→ Q and CS :: R \S CS−→ U , then Q CS−→ U .

iii. If CS :: Q CS−→ U , then U SC−→ Q.

iv. If CS :: R \S CS−→ U and SC :: S \R SC−→ Q, then U SC−→ Q.

Proof:
The proof thatSC is the right-inverse ofCS (itemsi andii) proceeds by induction on the structure ofSC (and

inversion onCS when present). The proof thatCS is the right-inverse ofSC (itemsiii andiv) is similarly done by
induction on the structure ofCS (and possible inversion onSC).

It then is an easy exercise in abstract algebra to show that, given two functionsf : X → Y andg : Y → X, if
f ◦ g = IdY andg ◦ f = IdX , thenf andg are bijections and moreoverg = f−1. 2X

This property opens the door to easy proofs of the completeness direction of every soundness theorem achieved
so far. We first consider the completeness ofCS with respect to typing. In this and other results below, we refrain
from presenting an auxiliary proposition relating pre-atomic terms and spines.

Corollary 4.11 (Completeness ofCS for typing)

If Q CS−→ U and Γ;∆ `Σ U : A, then Γ;∆ `Σ Q ⇑ A.

Proof:
By the Bijectivity Lemma 4.10,U SC−→ Q. Then, the soundness ofSC for typing yields a derivation of

Γ;∆ `C

Σ Q ⇑ A. 2X

In a similar fashion, we prove the completeness ofSC with respect to typing.

Corollary 4.12 (Completeness ofSC for typing)

If U SC−→ Q and Γ;∆ `C

Σ Q ⇑ A, then Γ;∆ `Σ U : A.

Proof: Similar to the proof of Corollary 4.11. 2X

4.5 Soundness ofSC with respect to Reduction

We will now analyze the interaction betweenSC as a translation fromS→−◦&> andC→−◦&>, and the notion
of reduction inherent to these two languages. The main results of our investigation will be thatSC preserves
β-reductions and mapsNIL -reductions inS→−◦&> to AC-reductions inC→−◦&>. We will also take advantage of
the fact that this translation is the inverse ofCS to prove the completeness counterpart of these statements.

The discovery in the previous section thatCS andSC are bijective accounts for a simple proof of the com-
pleteness of the latter translation with respect to the reduction semantics of the involved calculi.

20

C→−◦&>
0 S→−◦&>

NIL

S→−◦&>C→−◦&>
CS/SC

Figure 4.5:CS andSC

Corollary 4.13 (Completeness ofSC for reduction)

i. If Q
C−→β Q′ and U SC−→ Q, then there is a termU ′ such thatU

S−→β U ′

and U ′ SC−→ Q′.

ii. If U SC−→ Q, Q
C−→AC Q′, and Γ;∆ `Σ U : A, then there is a termU ′

such thatU
S−→NIL U ′ and U ′ SC−→ Q′.

U

Q

U ′

Q′
?

SC

-C

...........?
SC

...........-S

Proof:
We rely on the Bijectivity Lemma 4.10 and the soundness ofSC with respect to typing (Theorem 4.8) to reduce

the above statement to the Soundness Corollary 4.7 forCS. 2X

We conclude this section by showing thatSC is sound with respect to the reduction semantics ofS→−◦&>. The
required steps in order to achieve this result are reminiscent of the path we followed when proving the analogous
statement forCS. There is however one difference: the statements below do not need to mention any typing
information.

The first step towards the soundness ofSC with respect to (β-)reduction is given by the following substitution
lemma, needed to cope with functional objects, both linear and unrestricted.

Lemma 4.14 (Substitution inSC)

i. If Q :: U SC−→ Q and QV :: V SC−→ R, then [V/x]U SC−→ [R/x]Q.

ii. If Q :: S \R′ SC−→ Q and QV :: V SC−→ R, then [V/x]S \ [R/x]R′ SC−→ [R/x]Q.

Proof: By induction on the structure ofQ. 2X

In order to handle the translation rules for the two forms of application ofS→−◦&>, we need the following
technical result, akin to the spine reduction lemma presented in Section 4.3.

Lemma 4.15 (Seed reduction)

If SC :: S \R SC−→ Q and E :: R
C−→ R′, then there is a termQ′ such

that S \R′ SC−→ Q′ and Q
C−→ Q′.

Proof: By induction on the structure ofSC. 2X

S \ R Q

S \R′ Q′

-SC

?
...........-SC

..........?

Finally, we have the following soundness theorem, that states thatSC preserves reductions.

21

Theorem 4.16 (Soundness ofSC for reducibility)

i. If F :: U
S−→ U ′ and SC :: U SC−→ Q, then there is a termQ′ such that

Q
C−→ Q′ and U ′ SC−→ Q′.

ii. If F :: S
S−→ S′ and SC :: S \R SC−→ Q, then there is a termQ′ such that

Q
C−→ Q′ and S′ \R SC−→ Q′.

U U ′

Q Q′

-S

?

SC

...........-C

...........?
SC

Proof: By induction on the structure ofSC. 2X

Clearly, the above result holds also relatively to the reflexive and transitive closure of
S−→.

As in the case ofCS, a close inspection of this proof reveals thatSC maps theβ-reductions ofS→−◦&> to
theβ-reductions ofC→−◦&>, and faithfully relatesNIL -reductions toAC-reductions. We express this fact in the
following corollary.

Corollary 4.17 (Soundness ofSC for reducibility)

i. If U
S−→NIL U ′ and U SC−→ Q, then there is a termQ′ such thatQ

C−→AC Q′ and U ′ SC−→ Q′.

ii. If U
S−→β U ′ and U SC−→ Q, then there is a termQ′ such thatQ

C−→β Q′ and U ′ SC−→ Q′. 2

Therefore,CS andSC constitute an isomorphism betweenC→−◦&> andS→−◦&> that faithfully respects reduc-
tions. The operations of this translation are depicted in Figure 4.5.

The previous theorem, together with the fact thatSC andCS form a pair of inverse functions, allows us to
achieve a simple proof of the completeness ofCS with respect to the reduction semantics ofS→−◦&>.

Corollary 4.18 (Completeness ofCS for reduction)

If Q CS−→ U and U
S−→ U ′, then there is a termQ′ such thatQ

C−→ Q′

and Q′ CS−→ U ′.

Q

U

Q′

U ′
?

CS

-S

...........-C

..........?
CS

Proof:
By the Bijectivity Lemma 4.10, there is a derivation ofU SC−→ Q. By the soundness ofSC with respect to

reduction, there is a termQ′ such thatQ
C−→ Q′ andU ′ SC−→ Q′. Again by bijectivity, we have that thatQ′ CS−→ U ′

is derivable. 2X

4.6 Relatingλ→−◦&> and S→−◦&>

In Section 4.1 we introducedC→−◦&> as an intermediate formal language aimed at simplifying the analysis of
the relation betweenλ→−◦&> andS→−◦&>. We displayed two pairs of inverse translations between the coercion
calculus and each ofλ→−◦&> andS→−◦&> and proved that they preserved the typing and reduction semantics of
these languages. In this section, we will chain these results to relateλ→−◦&> andS→−◦&> directly.

We write the translationλS betweenλ→−◦&> andS→−◦&> by means of the following judgments:

M λS−→ U TermM translates toU
M \S λS−→ U TermM translates toU , given spineS

λS is defined as the composition ofλC andCS by the following clauses:

M λS−→ U iff M λC−→ Q and Q CS−→ U
M \S λS−→ U iff M λC−→ R and R \S CS−→ U

for appropriateC→−◦&> termsQ andR, that exist sinceλC is functional in its first argument (Lemma A.9).
SinceCS is functional as well, our translation is a function. It should be noted that, sinceλC producesAC-
normalC→−◦&> terms (Lemma A.10) andCS faithfully preserves reductions (Corollary 4.7), the range ofλS is
to well-typedS→−◦&> terms inNIL -normal form. These properties are summarized in Figure 4.6.

The soundness ofλS for typing is a direct consequence of this definition and of the analogous results proved
for λC andCS:

22

λ→−◦&> S→−◦&>

S→−◦&>
NIL

λS

Figure 4.6:λS

Theorem 4.19 (Soundness ofλS for typing)

If Γ;∆ `Σ M ⇑ A and M λS−→ U , then Γ;∆ `Σ U : A. 2

The associated completeness result is obtained in a similar way.

The soundness ofλS with respect to reductions requires some additional care since on the one hand the similar
property forλC maps each reduction ofλ→−◦&> into a combination of aβ-reduction and zero or moreAC-
reductions inC→−◦&>, and on the other handCS relies on typing to ensure surjectivity. With these considerations
in mind, we obtain the following statement:

Theorem 4.20 (Soundness ofλS for reducibility)

If M −→ M ′, M λS−→ U , and Γ;∆ `Σ M ⇑ A, then there are
termsU∗ andU ′ such thatU

S−→β U∗, U∗ S−→∗
NIL U ′ and M ′ λS−→ U ′.

2

M

U

M ′

U∗ U ′

-

?

λS

................R

λS

...........-S...........-
β

..........-S..........-
NIL

-

Again, the corresponding completeness result is obtained analogously

The definition and analysis of the reverse translationSλ, fromS→−◦&> back toλ→−◦&>, proceeds in the same
way. We rely on the judgments

U Sλ−→ M U translates toM
S \N Sλ−→ M S translates toM , given seedN

defined by

U Sλ−→ M iff U SC−→ Q and Q Cλ−→ M
S \N Sλ−→ M iff N λC−→ R, S \R SC−→ Q and Q Cλ−→ M

Observe that the translation of spines relies on the mapλC, from λ→−◦&> from C→−◦&>. In practice,i.e., when
this judgment is invoked as a subroutine ofU Sλ−→ M , this step is bypassed altogether, as one can observe from
the rules in Figure 4.4.

By lemmas 4.9 and A.15,Sλ is a function and it mapsNIL -equivalent objects inS→−◦&> to the same object in
λ→−◦&> (by lemmas A.21 and A.22). This is shown in Figure 4.7. Furthermore, Lemmas 4.10 and A.18 entail that
Sλ andλS form a pair of inverse bijections, when the domain of the former and the range of the later is restricted
to well-typedS→−◦&>

NIL terms.

The soundness and completeness ofSλ for typing is a consequence of the analogous properties ofSC andCλ.
We report here only the statement of soundness.

23

S→−◦&> λ→−◦&>

Sλ

Figure 4.7:Sλ

Theorem 4.21 (Soundness ofSλ for typing)

If Γ;∆ `Σ U : A, then U Sλ−→ M and Γ;∆ `Σ M ⇑ A. 2

Finally, Sλ enjoys the following soundness result as far as reducibility is concerned.

Theorem 4.22 (Soundness ofSλ for β-reducibility)

If U
S−→β U ′ and U Sλ−→ M , then there is a termM ′ such that M −→ M ′

and U ′ Sλ−→ M ′. 2

The associated completeness statement is obtained similarly.

U U ′

M M ′

-S -
β

?

Sλ

..........-

...........?
Sλ

5 Properties ofS→−◦&>

In this section, we will deduce the main properties ofS→−◦&> from the analogous results presented forλ→−◦&> in
Section 2, or more precisely from the adaptation of those properties toC→−◦&> analyzed in Appendix A. We will
first examineNIL -reducibility and ultimately the existence and uniqueness ofNIL -normal forms in Section 5.1.
Then, in Section 5.2, we will turn to properties such as the existence of unique normal forms for the complete
reduction semantics ofS→−◦&>. Finally, in Section 5.3, we hint at further properties related to weak head-normal
forms,η-expansion, and equality inS→−◦&>.

5.1 Properties ofNIL -Reducibility

In this section, we study the notion ofNIL -reducibility, an omnipresent nuisance when directly investigating the
meta-theory ofS→−◦&>, and when studying direct translations fromλ→−◦&>. In doing so, we will take advantage
of our detailed study ofAC-reducibility forC→−◦&> in Appendix A.

The analysis of the interplay between typing andNIL -reduction reveals that this relation enjoys the subject
reduction property. Moreover, the use ofNIL -reduction in the reverse direction,i.e., as an expansion rule, preserves
typing too. We combine these two results in the following lemma.

Lemma 5.1 (NIL -reduction/expansion preserves typing)

i. If U
S−→NIL U ′, then Γ;∆ `Σ U : A if and only if Γ;∆ `Σ U ′ : A.

ii. If S
S−→NIL S′, then Γ;∆ `Σ S : A > a if and only if Γ;∆ `Σ S′ : A > a.

24

Proof:
SinceSC mapsNIL -reductions toAC-reductions (Corollary 4.17), we make use of the analogous results for

C→−◦&> (Lemmas A.21 and A.22) followed by the soundness ofCS for typing (Theorem 4.3) to obtain the
desired result. 2X

We now concentrate on the properties ofS→−◦&> and
S−→NIL as a rewriting system. An application of rule

Sr nil reduces aNIL -redex by eliminating a trailingNIL spine. Therefore, only as manyNIL -reductions can be
chained starting from a given term as the number ofNIL -redices present in it. This implies that any sequence of
NIL -reductions is terminating inS→−◦&>.

Lemma 5.2 (StrongNIL -normalization)

Every maximal sequence ofNIL -reductions starting at a termU (spineS) is finite.

Proof:
Again, we rely on the fact thatSC andCS faithfully relateNIL - andAC-reductions to map this property to

C→−◦&>. It then reduces to lemma A.3. 2X

This property entails also that, given a termU , there is only a finite number of termsV such thatU
S−→∗

NIL V is
derivable. Therefore checking whetherU

S−→∗
NIL V has a derivation is decidable. Clearly, these results hold also

for spines.

If the NIL -reduction rule is applicable in two positions in a term, the resulting terms can be reduced to a common
reduct by a further application unless they are already identical. This property can be iterated, as expressed in the
following confluence lemma, that applies equally to terms and spines.

Lemma 5.3 (Confluence)

If U
S−→∗

NIL U ′ and U
S−→∗

NIL U ′′, then there is a termV such that U ′ S−→∗
NIL V and U ′′ S−→∗

NIL V , and
similarly for spines.

Proof:
Again, we rely on the faithfulness ofCS andSC to express this property inC→−◦&>, which is then resolved

by the corresponding result in corollary A.5. 2X

As already defined in Section 3, we say that a term or a spine is inNIL -normal formif it does not contain any
NIL -redex. Since

S−→NIL eliminates aNIL -redex, an exhaustive application to a termU (a spineS) yields aNIL -
normal term (spine, respectively). A combination of the results above ensures that aNIL -normal form is eventually
found (by the termination lemma), and that it is unique (by confluence). This is the essence of the uniqueness
lemma below.

Lemma 5.4 (Uniqueness ofNIL -normal forms)

For every termU (spineS) there is a uniqueNIL -normal termV (spineS′) such thatU
S−→∗

NIL V (S
S−→∗

NIL S′,
respectively).

Proof:
This is again an immediate consequence of the analogous result forC→−◦&> (lemma A.6). 2X

As said, we denotethe NIL -normal form of a termU and a spineS asNFNIL (U) andNFNIL (S), respectively,
and writeS→−◦&>

NIL for the sublanguage ofS→−◦&> that consists only ofNIL -normal terms.

We will take advantage of the following technical result below that states that substitution preservesNIL -
reducibility.

Lemma 5.5 (Substitution)
i. If F :: U

S−→∗
NIL U ′ and FV :: V

S−→∗
NIL V ′, then [V/x]U S−→∗

NIL [V ′/x]U ′.

ii. If F :: S
S−→∗

NIL S′ and FV :: V
S−→∗

NIL V ′, then [V/x]S S−→∗
NIL [V ′/x]S′.

Proof: By induction on the structure ofF . 2X

25

5.2 Properties of Reducibility

We will now present the main properties ofS→−◦&>, ultimately strong normalization and the uniqueness of normal
forms. In order to do so, we will take advantage of the fact that similar results hold forC→−◦&>, and that we have
well-behaved translations to and from this calculus. TheC→−◦&> results cited in this section are the subject of
Appendix A, where they are deduced from the analogous properties ofλ→−◦&> given in Section 2. An alternative
would have been to give direct proofs of these properties.

We begin by showing thatS→−◦&> admits confluence and the Church-Rosser property. Differently from
λ→−◦&> but similarly toC→−◦&>, the statement of this property must include typing assumptions in order to

express certain surjectivity requirements. For typographic reasons, we model the equivalence relation
S≡ with a

double arrow.

Theorem 5.6 (Church-Rosser)

Confluence: Assume thatU :: Γ; ∆ `Σ U : A.
If F ′ :: U

S−→∗ U ′ and F ′′ :: U
S−→∗ U ′′, then there is a termV

such thatU ′ S−→∗ V and U ′′ S−→∗ V .

Similarly for spines

U

U ′ U ′′

V

@
@R
S

R
�

�	

S

	

.........	
S

	

.........R
S
R

Church-Rosser: Assume thatU ′ :: Γ; ∆ `Σ U ′ : A and U ′′ :: Γ; ∆ `Σ U ′′ : A.

If F :: U ′ S≡ U ′′, then there is a termV such that U ′ S−→∗ V and
U ′′ S−→∗ V .

Similarly for spines

U ′ U ′′

V

-S�
.........	

S
	

.........R
S
R

Proof:
We will carry out a detailed proof in the case of confluence only by mapping this property toC→−◦&> thanks

to the existence of a reduction- and typing-preserving isomorphism betweenS→−◦&> and this language, and then
relying on the analogous property of the coercion calculus proved in Appendix A. The Church-Rosser property is
handled similarly.

Since, by Lemma A.15,SC is a total function overS→−◦&>, there is a unique termQ such thatU SC−→ Q is
derivable. By typing soundness (Theorem 4.8), we obtain thatΓ;∆ `C

Σ Q ⇑ A. By iterated applications of the
soundness ofSC over reduction (theorem 4.16), we deduce that there are termsQ′ andQ′′ such thatQ

C−→∗ Q′ and
U ′ SC−→ Q′, and similarlyQ

C−→∗ Q′′ andU ′′ SC−→ Q′′. By the confluence property ofC→−◦&> (corollary A.5),
we know that there exists a termQ∗ such thatQ′ C−→∗ Q∗ andQ′′ C−→∗ Q∗ are derivable.

By the bijectivity ofSC (Lemma 4.10),Q′ CS−→ U ′ andQ′′ CS−→ U ′′. By the soundness ofCS with respect
to reductions (theorem 4.6), there are termsV ′ andV ′′ such thatU ′ S−→ ∗ V ′ andQ∗ CS−→ V ′, and similarly
U ′′ S−→∗ V ′′ andQ∗ CS−→ V ′′. However, sinceCS is a function (Lemma 4.2),V ′ = V ′′; let us call this termV .
By composing the various reductions above, we obtain the desired derivations ofU ′ S−→∗ V andU ′′ S−→∗ V . 2X

Next, we consider theS→−◦&> equivalent of the transitivity Lemma 2.3 discussed in Section 2. As inλ→−◦&>

andC→−◦&>, we must distinguish the linear and the unrestricted cases, but we have no convenient notation that
spans uniformly over terms and spines. Therefore, the lemma below has four parts.

Lemma 5.7 (Transitivity)

i. If U :: Γ; ∆, x :B `Σ U : A and UV :: Γ; ∆′ `Σ V : B, then Γ;∆,∆′ `Σ [V/x]U : A.

ii. If S :: Γ; ∆, x :B `Σ S : A > a and UV :: Γ; ∆′ `Σ V : B, then Γ;∆,∆′ `Σ [V/x]S : A > a.

iii. If U :: Γ, x :B;∆ `Σ U : A and UV :: Γ; · `Σ V : B, then Γ;∆ `Σ [V/x]U : A.

iv. If S :: Γ, x :B;∆ `Σ S : A > a and UV :: Γ; · `Σ V : B, then Γ;∆ `Σ [V/x]S : A > a.

Proof:
We prove this lemma by means of a technique similar to the one we just sketched in the case of the Church-

Rosser property. We illustrate the manner spines are handled by presenting the full treatment of case (ii). The
treatment of the other parts is similar or simpler.

26

Let z be a variable that does not appear in neitherΓ, ∆, nor ∆′, and that is different fromx. We will use
it as a generic head forS. By rule lC lvar, there is a (trivial) typing derivation ofΓ; z : A `C

Σ z ↓ A. On the
basis of this fact, by the soundness ofSC for typing (Theorem 4.8), there is a termQ such thatS \ z SC−→ Q and
Γ;∆, x :B, z :A `C

Σ Q ⇑ a are derivable. By the same theorem, there is a termQ′ and derivations ofV SC−→ Q′

andΓ;∆′ `C

Σ
↓Q′ ↓ B. By the transitivity lemma A.29 forC→−◦&>, Γ;∆,∆′, z : A `C

Σ [↓Q′/x]Q ⇑ a is
derivable.

By rule CS var, there is a derivation ofz \S CS−→ z · S. By the bijectivity lemma 4.10, there is a derivation
of Q CS−→ z · S. Again by the bijectivity lemma, there is a derivationQ′ CS−→ V is derivable. By the substitution
lemma 4.4, there is a derivation of[↓Q′/x]Q CS−→ z · ([V/x]S) (remember thatx 6= z). By the soundness ofCS
with respect to typing (theorem 4.3),Γ;∆,∆′, z :A `Σ z · ([V/x]S) : a is derivable. By inversion on rulelS lvar,
Γ;∆,∆′ `Σ [V/x]S : A > a is derivable as well. 2X

The next property we are interested in proving forS→−◦&> is subject reduction. Again, we must deal separately
with terms and with spines. Remember that we have already proved this property in the subcase ofNIL -reduction
as Lemma 5.1.

Lemma 5.8 (Subject reduction)

i. If U :: Γ; ∆ `Σ U : A and F :: U
S−→ V , then Γ;∆ `Σ V : A.

ii. If S :: Γ; ∆ `Σ S : A > a and F :: S
S−→ S′, then Γ;∆ `Σ S′ : A > a.

Proof:
Again, we rely on the fact thatCS/SC are a typing- and reduction-preserving isomorphism betweenS→−◦&>

andC→−◦&> to reduce this statement to the analogous result for the coercion calculus (lemma A.30). 2X

We now tackle strong normalization which, as in the case ofλ→−◦&>, states that no infinite chain of (either
NIL - or β-) reductions can start from a well-typedS→−◦&> term. Therefore, we can reduce a well-typed term to
normal (actually canonical) form by exhaustively reducing randomly selected redices.

Theorem 5.9 (Strong normalization)

i. If U :: Γ; ∆ `Σ U : A, thenU is strongly normalizing.

ii. If S :: Γ; ∆ `Σ S : A > a, thenS is strongly normalizing.

Proof:
We rely again on the techniques already deployed for theorem 5.6 and lemmas 5.7 and 5.8 to reduce this

statement to the strong normalizability ofC→−◦&> (theorem A.31). 2X

Strong normalization ensures that exhaustive reductions of a well-typedS→−◦&> term (or spine) will eventu-
ally produce an object in normal form. Depending on which redex is selected at each step, this procedure might
yield different normal objects. The uniqueness corollary below guarantees that every reduction path will lead to
the same normal term (or spine), up to the renaming of bound variables.

Corollary 5.10 (Uniqueness of normal forms)

i. If U :: Γ; ∆ `Σ U : A, then there is a unique normal termV such thatU
S−→∗ V .

ii. If S :: Γ; ∆ `Σ S : A > a, then there is a unique normal spineS′ such thatS
S−→∗ S′.

Proof: Again, this is a consequence of the analogous result forC→−◦&> (Corollary A.32). 2X

As in the case ofλ→−◦&> and C→−◦&>, the above results allow us to speak aboutthe normal form (or
equivalentlythecanonical form) of a termU or a spineS, whenever these objects are well-typed. We denote this
term and spineCan(U) andCan(S), respectively. A calculus that accepts only canonical objects can be obtained
from the typing system displayed in Figure 3.1 by simply removing rulelS redex.

27

5.3 Other Properties

A number of other properties of the spine calculus are investigated in [CP97a]. Although aimed at the specific task
of proving the soundness and completeness of a linear higher-order unification algorithm expressed inS→−◦&>,
many are of general interest. In that paper, we formally define and analyze the notion of (weak) head-normal
reduction for the spine calculus [CP97a, Section 2.3]. This relation reduces the superficial redices of a generic term,
but is not defined within spines. We show that it is confluent in general and strongly normalizing for well-typed
terms, and therefore that typable objects have unique head-normal forms consisting of a superficial layer that is
redex-free and a deeper layer that is arbitrary. We also define a lazy algorithm based on them to efficiently check the
equality of twoS→−◦&> terms and spines, and prove its correctness with respect to the simple-minded procedure
that relies on canonical forms [CP97a, Section 2.4]. Finally, we study in detail the notion ofη-expansion [CP97a,
Section 2.5].

6 Further Remarks

In this section, we briefly report on important relationships between our spine calculus and other formal systems in
the literature. More precisely, we briefly discuss the implementation (Section 6.1), point out a relationship between
the spine calculus and the logic programming notion of uniform derivability (Section 6.2), raise the issue of adding
polymorphism (Section 6.3), and discuss related work (Section 6.4).

6.1 Implementations of the Spine Calculus

The most frequent operations onλ-terms in a logical framework or logic programming language are type-checking,
equality testing, and unification. While in principle the cost of such operations is dominated by the time required
to normalize the terms involved, in practice we mostly deal with terms that are in canonical form. This means term
traversal is the most important and time-critical operation. All three principal algorithms (type-checking, equality
testing, unification) have to access first the head of an atomic term and then its arguments. As a result we visit
each subterm at each layer twice: once while descending to the head, and once when we recursively traverse the
arguments. In the spine representation, the term is laid out in the order it is traversed, roughly saving a constant
factor of two.

In addition, in an implementation with binary application, we may have to save pointers to the unprocessed
arguments on a stack while accessing the head of a term. Recursively, this means we have to maintain a stack of
sizeO(n) instead of orderO(log(n)) as for the spine calculus.

The spine calculus has been used in the reimplementation ofElf [Pfe94] in theTwelf system [PS99], and also
in an experimental implementation of LLF [CP02]. A similar representation with other optimizations is also used
in theTeyjusimplementation [Nad01] ofλProlog. The technique was originally suggested by an empirical study of
higher-order logic programs [MP92]. We did not carry out a systematic study to compare the spine representation
with the traditional representation in terms of binary application, since we simultaneously improved other aspects
of the system (in particular by the introduction of explicit substitutions and a crude form of compilation). On the
other hand, on first-order programs (which are mostly orthogonal to the other implementation improvements), we
did indeed observe a constant-factor speed-up roughly consistent with the predicted factor of two.

6.2 Relations to Uniform Provability

An abstract logic programming language[MNPS91] is a fragment of a logic such that every derivable sequent has
a uniform derivation. An intuitionistic cut-free sequent derivation is uniform if it is constructed in the following
way, from the bottom up: right introduction rules are applied until the formula on the right-hand side of the sequent
(thegoal formula) is atomic, then a formula on the left-hand side (theprogram) of the sequent is selected (thefocus
or stoup) and left introduction rules are applied to it until the same atomic formula is exposed, possibly spawning
subgoals that are to have uniform proofs.

The fragment of linear logic obtained by considering the types ofλ→−◦&> andS→−◦&> as logic formulas
is known as the language of (propositional) linear hereditary Harrop formulas [HM94, Cer96]. We denoted it

28

Uniform provability

Γ;∆
u−→ A � a

u lin

Γ;∆, A
u−→ a

Γ, A;∆
u−→ A � a

u int

Γ, A;∆
u−→ a

u top

Γ;∆
u−→ >

Γ; ∆
u−→ A1 Γ;∆

u−→ A2
u with

Γ; ∆
u−→ A1 & A2

Γ;∆, A
u−→ B

u lolli

Γ;∆
u−→ A−◦B

Γ, A;∆
u−→ B

u imp

Γ; ∆
u−→ A → B

Immediate entailment

i atm

Γ; · u−→ a � a

(No rule for>)
Γ;∆

u−→ A1 � a
i with1

Γ;∆
u−→ A1 & A2 � a

Γ;∆
u−→ A2 � a

i with2

Γ; ∆
u−→ A1 & A2 � a

Γ;∆′ u−→ B � a Γ;∆′′ u−→ A
i lolli

Γ;∆′, ∆′′ u−→ A−◦B � a

Γ;∆
u−→ B � a Γ; · u−→ A

i imp

Γ; ∆
u−→ A → B � a

Figure 6.1: Uniform Derivability

ILL→−◦&> in Section 2. This formalism is an abstract logic programming language and a uniform proof system
for it, adapted from [Cer96], is reported in Figure 6.1. Theuniform provability judgment

Γ;∆ u−→ A

is subject to the application of the right introduction rules of a sequent calculus presentation ofILL→−◦&>. When
an atomic formulaa is exposed (rulesu lin andu int), a program formulaA is selected and isolated in the central
part of theimmediate entailment judgment

Γ;∆ u−→ A � a

and left introduction rules are applied to it.

There is a striking correspondence between the proof system displayed in Figure 6.1 and the typing inference
system forS→−◦&> given in Figure 2.1. Indeed, deleting every trace of terms from the typing rules of our spine
calculus yields precisely the above derivability rules forILL→−◦&>, except for ruleslS con andlS redex that do
not have any match. A uniform provability equivalent of rulelS con can be obtained by partitioning the left-hand
side of a sequent into an unrestrictedprogram, corresponding to the concept of signature, and a collection of
dynamic assumptions, corresponding to the notion of context inS→−◦&>. If we ignore the terms in rulelS redex,
we recognize an analogue of the cut rule.

Γ;∆ u−→ A Γ;∆ u−→ A � a

Γ;∆,∆′ u−→ a

Clearly, since uniform derivations are cut-free, the system in Figure 6.1 is not supposed to contain such an inference
figure.

The similarity between the inference rules of uniform provability and the typing rules ofS→−◦&> indicates
that our spine calculus is a natural term assignment system for uniform derivations inILL→−◦&>. This sets the
basis for a form of the Curry-Howard isomorphism [How80] between normal, well-typedS→−◦&> terms and valid
uniform derivations inILL→−◦&>. Other authors have come to similar conclusions, as described in Section 6.4
below.

The underlying relation between spine representation and focusing is of foundational significance as it general-
izes to any abstract logic programming language. Namely, we postulate that for every logic that admits a uniform
proof system there is a spine calculus that can be used as a term assignment system for it.

29

In practice, this correspondence is of little use for logic programming languages that do not return proof-terms
as an account of their execution, for exampleProlog, Lolli [HM94] andλProlog [Mil89, Mil01]. The situation
is different for logic programming languages based on a type theory likeLF [HHP93] orLLF [CP02] rather than
a logic. It is currently exploited in theTwelf implementation ofLF to efficiently construct proof-terms directly
in spine form during execution. Previous implementations essentially wove in a transformation akin to that in
Figure 4.4 at each step, including when visiting portions of the search tree that would later be discarded.

6.3 Interaction with Polymorphism

One of the important features of our spine calculus is that it keeps terms in long normal form, even if substitution
introduces newβ-redices. This means that types do not need to be passed around in many algorithms that would
otherwise require it, such as equality testing or pattern unification. In the presence of polymorphism,η-long forms
are still well-defined [DHW93] and exist in many expressiveλ-calculi [Gha97], but they are no longer preserved
by β-reduction or substitution. This is true even in the absence of linearity. For example,

`Σ Λα. λx :α. x ⇑ ∀α. α → α,
but 6`Σ λx :a → a. x ⇑ (a → a) → (a → a),
and 6`Σ λx :>. x ⇑ > → >.

In both cases we have toη-expandx in order to obtain a long-normal form.

`Σ λx :a → a. λy :a. x y ⇑ (a → a) → (a → a)
`Σ λx :>. 〈〉 ⇑ > → >

We conjecture that in case of the polymorphicλ-calculus (possibly augmented with linear functions, products, and
unit) it is sufficient to store the typeα for each rootH · S of variable type. During substitution for a type variable
α, we locallyη-expand the spineS in rootsH · S : α. In a calculus with explicit substitutions this effect can
be achieved when descending into the spine of a root of variable type. The overhead of such an implementation
appears minimal when compared to the cost of having to carry types explicitly when traversing a term for the
purpose of equality testing or unification in the presence of extensionality. We conjecture that it is possible to
generalize this technique further to calculi with variable type constructors and dependencies by storing types with
roots whenever the head of the type is a variable.

6.4 Related Work

The uniform derivation system given in Figure 6.1 is a presentation of the sequent calculus forILL→−◦&> that
embeds restrictions on the applicability of inference rules. The strong relationship between intuitionistic frag-
ment of sequent calculi (not necessarily linear) and term languages akin to our spine calculus has been already
noticed in the literature. A first indirect reference appears in the seminal work of Howard on the types-as-formulas
correspondence [How80], although a formal spine-like calculus is not defined.

Barendregt [Bar80] relies on an term language akin to our spine calculus to study the notion of normalization
in the untypedλ-calculus. Terms in this language are called Böhm trees. Huet’sconstructive engine[Hue89] uses
some ideas reminiscent of the spine calculus in an implementation of the Calculus of Construction.

In [Her95], Herbelin presents a systematic account of the relationship between the systemLJT and the term
languagēλ, which extends theλ→ restriction of our spine calculus with a spine concatenation operator and explicit
substitutions with named variables.LJT is a variant of the implicational fragment of Gentzen’s intuitionistic
sequent calculus with ideas similar to the uniform provability system from the previous section: in particular the
left-hand side of a sequent contains a stoup and left rules are restricted to operate only on the formula currently
in focus. Since no extensionality requirement is made onλ̄ terms, the calculus relies on concatenation to append
fragmented spines. The presence of explicit substitutions provides a direct handling of the two cut-rules of this
calculus.λ̄ is defined for foundational reasons, as the targetλ-calculus of a derivations-as-terms correspondence
for LJT. Indeed, its reduction rules correspond to the steps in a cut-elimination procedure forLJT, so that the
strong normalization theorem for̄λ subsumes the cut-elimination property for this logic.

In [DP98, DP99], Dyckhoff and Pinto use the work of Herbelin to investigate the meta-theory of the sequent
calculus and natural deduction presentations of intuitionistic implicational logic. They obtain a simple proof of

30

a classical equivalence result for them by relating terms in theλ-calculus and in̄λ [Her95]. In [DP98], they
furthermore propose a simplification of Herbelin’s proof of strong cut-elimination forLJT .

Schwichtenberg [Sch99] adopts a similar approach relative to a richer logic consisting of implication, con-
junction and universal quantification. He starts from a more traditional presentation of the sequent calculus. In
particular the absence of a stoup forces him to consider commutative conversions. The term calculus he proposes
differs from Herbelin’s by the absence of explicit concatenation operators and substitutions. It is therefore more
similar to our spine calculus.

A Curry-Howard-like correspondence between a calculus akin to Herbelin’sλ̄ [Her95] and the calculus of
explicit substitution [ACCL91] is further pursued by Dyckhoff and Urban in [DU01]. They show in particular that
the studied language is strongly normalizing. Espı́rito Santo conducts similar investigation in [San00] with an eye
onη-long terms.

7 Conclusions

In this paper, we have formalized an alternative presentation of the linearλ-calculusλ→−◦&> which can be used
to improve the efficiency of critical procedures such as unification in the implementation of languages based
on (linear)λ-calculi. The resulting language, the spine calculusS→−◦&>, strengthens the the studies of term
assignment systems for sequent calculi [Her95, DP98, DP99, Sch99, San00, DU01] to encompass extensional
products (&), a unit type (>) and linearity (−◦), with the further requirement that well-typed terms be inη-long
form. S→−◦&> terms of base type are structured similarly to the objects found in first-order term languages. In
particular, their head is immediately available, an important benefit for procedures such as unification that base a
number of choices on the nature of the heads of the terms they operate upon. Having extensionality built-in permits
avoiding the overhead, both in terms of bookkeeping and execution time, of performingη-conversions at run time.

The intended applications of this work lie in proof search, logic programming, and the implementation of
logical frameworks based on linear type theories. In particular, the spine calculusS→−◦&> has been designed
as a first approximation of an internal representation for the type theoryλΠ−◦&> underlying the linear logical
frameworkLLF [Cer96, CP02]. An extension to the full language, which includes dependent types, does not
appear to be problematic. The adoption of a spine calculus as an internal representation device appears to integrate
well with the simultaneous use of explicit substitutions [ACCL91]. However, the details of the amalgamation of
these two techniques in the presence of linearity still need to be worked out formally.

Acknowledgments

We would like to thank Carsten Schürmann for the insight he provided as a co-implementor ofTwelf and through
numerous discussions. We are also indebted to Helmut Schwichtenberg for the fruitful discussions and for pointing
out literature relevant to the topics treated in this paper. Finally, this paper profited from insightful input from Roy
Dyckhoff and Randy Pollack at a recent Dagstuhl seminar.

References

[ACCL91] Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit substitutions.
Journal of Functional Programming, 1(4):375–416, October 1991.

[Bar80] H. P. Barendregt.The Lambda-Calculus: Its Syntax and Semantics. North-Holland, 1980.

[Bar96] Andrew Barber. Dual intuitionistic linear logic. Technical Report ECS-LFCS-96-347, Laboratory for
Foundations of Computer Sciences, University if Edinburgh, 1996.

[Cer96] Iliano Cervesato.A Linear Logical Framework. PhD thesis, Dipartimento di Informatica, Università
di Torino, February 1996.

[Chu40] Alonzo Church. A formulation of a simple theory of types.Journal of Symbolic Logic, 5:56–68, 1940.

31

[CP97a] Iliano Cervesato and Frank Pfenning. Linear higher-order pre-unification. Technical Report CMU-
CS-97-160, Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, July 1997.

[CP97b] Iliano Cervesato and Frank Pfenning. A linear spine calculus. Technical Report CMU-CS-97-125,
Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, April 1997.

[CP02] Iliano Cervesato and Frank Pfenning. A linear logical framework.Information & Computation,
179(1):19–75, November 2002.

[dB72] N. G. de Bruijn. Lambda-calculus notation with nameless dummies: a tool for automatic formula
manipulation with application to the Church-Rosser theorem.Indag. Math., 34(5):381–392, 1972.

[DHW93] Gilles Dowek, Ǵerard Huet, and Benjamin Werner. On the definition of the eta-long normal form in
type systems of the cube. In Herman Geuvers, editor,Informal Proceedings of the Workshop on Types
for Proofs and Programs, Nijmegen, The Netherlands, May 1993.

[DJ90] Nachum Dershowitz and Jean-Pierre Jouannaud.Handbook of Theoretical Computer Science, vol-
ume B, chapter Rewrite Systems, pages 243–320. MIT Press, 1990.

[DP98] Roy Dyckhoff and Luis Pinto. Cut-elimination and a permutation-free sequent calculus for intuition-
istic logic. Studia Logica, 60:107–118, 1998.

[DP99] Roy Dyckhoff and Luis Pinto. Permutability of proofs in intuitionistic sequent calculi.Theoretical
Computer Science, 212:141–155, 1999.

[DU01] Roy Dyckhoff and Christian Urban. Strong normalization of Herbelin’s explicit substitution calculi
with substitution propagation. In Pierre Lescanne, editor,Proceedings of the Fourth Workshop on
Explicit Substitutions Theory and Applications — WESTAPP 01, pages 26–45, Utrecht, the Nether-
lands, 2001. Logic Group Preprint series No 210, Institute of Philosophy, University of Utrecht, ISBN
90-393-2764-5.

[Gha97] Neil Ghani. Eta-expansions in dependent type theory — the calculus of constructions. In P. de Groote
and J.R. Hindley, editors,Proceedings of the Third International Conference on Typed Lambda Calcu-
lus and Applications (TLCA’97), pages 164–180, Nancy, France, April 1997. Springer-Verlag LNCS
1210.

[Gir87] Jean-Yves Girard. Linear logic.Theoretical Computer Science, 50:1–102, 1987.

[Her95] Hugo Herbelin. Aλ-calculus structure isomorphic to Genzten-style sequent calculus structure. In
L. Pacholski and J. Tiuryn, editors,Computer Science Logic, Eighth Workshop — CSL’94, pages 61–
75, Kazimierz, Poland, 1995. Springer Verlag LNCS 933.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.Journal of the
Association for Computing Machinery, 40(1):143–184, January 1993.

[HM94] Joshua Hodas and Dale Miller. Logic programming in a fragment of intuitionistic linear logic.Infor-
mation and Computation, 110(2):327–365, 1994. A preliminary version appeared in the Proceedings
of the Sixth Annual IEEE Symposium on Logic in Computer Science, pages 32–42, Amsterdam, The
Netherlands, July 1991.

[How80] W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R. Hindley, editors,
To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, 1980, pages 479–
490. Academic Press, 1980. Hitherto unpublished note of 1969, rearranged, corrected, and annotated
by Howard, 1979.

[Hue89] Gérard Huet. The constructive engine. In R. Narasimhan, editor,A Perspective in Theoretical Com-
puter Science. World Scientific Publishing, 1989. Commemorative Volume for Gift Siromoney.

[IP98] Samin Ishtiaq and David Pym. A relevant analysis of natural deduction.Journal of Logic and Com-
putation, 8(6):809–838, 1998.

32

[JG95] C. Barry Jay and Neil Ghani. The virtues of eta-expansion.Journal of Functional Programming,
2(5):135–154, 1995.

[Mil89] Dale Miller. A logic programming language with lambda-abstraction, function variables, and simple
unification. In Peter Schroeder-Heister, editor,Proceedings of the International Workshop on Exten-
sions of Logic Programming, pages 253–281, T̈ubingen, Germany, 1989. Springer-Verlag LNAI 475.

[Mil91] Dale Miller. A logic programming language with lambda-abstraction, function variables, and simple
unification.Journal of Logic and Computation, 1(4):497–536, 1991.

[Mil94] Dale Miller. A multiple-conclusion meta-logic. In S. Abramsky, editor,Ninth Annual IEEE Symposium
on Logic in Computer Science, pages 272–281, Paris, France, July 1994.

[Mil01] Dale Miller. Lambda Prolog: An introduction to the language and its logic. Current draft available
from http://www.cse.psu.edu/˜dale/lProlog , 2001.

[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as a foundation
for logic programming.Annals of Pure and Applied Logic, 51:125–157, 1991.

[MP92] Spiro Michaylov and Frank Pfenning. An empirical study of the runtime behavior of higher-order
logic programs. In D. Miller, editor,Proceedings of the Workshop on theλProlog Programming Lan-
guage, pages 257–271, Philadelphia, Pennsylvania, July 1992. University of Pennsylvania. Available
as Technical Report MS-CIS-92-86.

[Nad01] Gopalan Nadathur. The metalanguage lambda prolog and its implementation. In Herbert Kuchen and
Kazunori Ueda, editors,Proceedings of the Fifth International Symposium on Functional and Logic
Programming — FLOPS 2001, pages 1–20, Tokyo, Japan, 2001. Springer Verlag, LNCS 2024.

[Pfe91] Frank Pfenning. Unification and anti-unification in the Calculus of Constructions. InSixth Annual
IEEE Symposium on Logic in Computer Science, pages 74–85, Amsterdam, The Netherlands, July
1991.

[Pfe94] Frank Pfenning. Elf: A meta-language for deductive systems. In A. Bundy, editor,Proceedings of the
12th International Conference on Automated Deduction, pages 811–815, Nancy, France, June 1994.
Springer-Verlag LNAI 814. System abstract.

[PS99] Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-logical framework
for deductive systems. In H. Ganzinger, editor,Proceedings of the 16th International Conference on
Automated Deduction (CADE-16), pages 202–206, Trento, Italy, July 1999. Springer-Verlag LNAI
1632.

[San00] Jośe Esṕırito Santo. Revisiting the correspondence between cut elimination and normalisation. In
Ugo Montanari, Jośe D. P. Rolim, and Emo Welzl, editors,Proceedings of the 27th International
Colloquium on Automata, Languages and Programming — ICALP’ 2000, pages 600–611, Geneva,
Switzerland, 2000. Springer Verlag LNCS 1853.

[Sch99] Helmut Schwichtenberg. Termination of permutative conversions in intuitionistic Gentzen calculi.
Theoretical Computer Science, 212:247–260, 1999.

A The Coercion CalculusC→−◦&>

The syntax and the typing and reduction semantics of the coercion calculusC→−◦&> have been given in Sec-
tion 4.1. In this appendix, we define and analyze the translationsλC andCλ betweenλ→−◦&> andC→−◦&>

in Sections A.2 and A.3, respectively. Before this, we spend Section A.1 studying the main properties of the
AC-reduction of the coercion calculus. We conclude in Section A.4 by deducing the main results forC→−◦&>

reductions from the analogous properties forλ→−◦&> listed in Section 2.

33

A.1 Meta-Theory of AC-Reducibility

AC-reduction (↓⇑R
C−→AC R) is closely related to theNIL -reduction ofS→−◦&> ((H · S) · NIL

S−→NIL H · S),
but does not have an equivalent inλ→−◦&>. This complicates proving the correctness of a direct translation
between this language and the spine calculus [CP97b]. Fortunately, we can isolate the main properties of

C−→AC

and therefore achieve simple proofs of these results. We will apply them in Sections A.2 and A.3 to ascertain the
correctness ofλC andCλ, and in Section 5 to deduce the analogous properties ofNIL -reducibility.

The analysis of the interplay between typing andAC-reduction reveals that this relation enjoys the subject
reduction property, as stated by the following lemma.

Lemma A.1 (AC-reduction preserves typing)

If Q :: Γ; ∆ `C

Σ T ⇑↓ A and E :: T
C−→AC T ′, then Γ;∆ `C

Σ T ′ ⇑↓ A.

Proof: By induction on the structure ofE and inversion onQ. 2X

A further property, that we use in Section A.4 of this appendix and also in Section 5 of the body of this paper,
is that the use ofAC-reduction in the reverse direction,i.e., as an expansion rule, preserves typing too.

Lemma A.2 (AC-expansion preserves typing)

If E :: T
C−→AC T ′ and Q′ :: Γ; ∆ `C

Σ T ′ ⇑↓ A, then Γ;∆ `C

Σ T ⇑↓ A.

Proof: By induction on the structure ofE and inversion onQ′. 2X

We now concentrate on the properties ofC→−◦&> and
C−→AC as a rewriting system. An application of rule

Cr AC reduces anAC-redex by eliminating adjacent↓and⇑coercions. Therefore, only as manyAC-reductions can
be chained starting from a given term as the number ofAC-redices present in it. This implies that any sequence of
AC-reductions is terminating inC→−◦&>.

Lemma A.3 (StrongAC-normalization)

Every maximal sequence ofAC-reductions starting at a termT is finite.

Proof: A formal proof goes by induction on the structure ofT . 2X

This property entails also that, given a termT , there is only a finite number of termsT ∗ such thatT
C−→∗

AC T ∗ is
derivable. Therefore checking whetherT

C−→∗
AC T ∗ has a derivation is decidable.

If the AC-reduction rule is applicable in two positions in a term, the resulting terms can be reported to a common
reduct by a further application (unless they are already identical). This property is formalized in the following local
confluence lemma, that applies equally to pre-canonical and pre-atomic terms.

Lemma A.4 (Local confluence)

If E ′ :: T
C−→AC T ′ and E ′′ :: T

C−→AC T ′′, then eitherT ′ = T ′′ or there is a termT ∗ such that
T ′ C−→AC T ∗ and T ′′ C−→AC T ∗.

Proof: By simultaneous induction on the structure ofE ′ andE ′′. 2X

Well-known results in term rewriting theory [DJ90] allow lifting this property, in the presence of termination,
to the reflexive and transitive closure of

C−→AC.

Corollary A.5 (Confluence)

If T
C−→∗

AC T ′ and T
C−→∗

AC T ′′, then there is a termT ∗ such thatT ′ C−→∗
AC T ∗ and T ′′ C−→∗

AC T ∗. 2

34

We say that a term is inAC-normal formif it does not contain anyAC-redex. Since
C−→AC eliminates anAC-

redex, an exhaustive application to a pre-canonical termQ or pre-atomic termR yields anAC-normal term. A
combination of the results above ensures that anAC-normal form is eventually found (by the termination lemma),
and that it is unique (by confluence). This is the essence of the uniqueness lemma below.

Lemma A.6 (Uniqueness ofAC-normal forms)

For every termT there is a uniqueAC-normal termT ∗ such thatT
C−→∗

AC T ∗.

Proof:
Since

C−→∗
AC is terminating, there is at least one termT ∗ such thatT

C−→∗
AC T ∗ is derivable and such thatT ∗

does not admit furtherAC-reductions. ThenT ∗ cannot contain anyAC-redex.

Assume that there are two such term,T ∗
1 andT ∗

2 say. Then by confluence, they must have a commonAC-reduct
T ∗∗. However, since neitherT ∗

1 norT ∗
2 admitAC-reductions, it must be the case thatT ∗

1 = T ∗
2 = T ∗∗. 2X

We denotethe AC-normal form of a pre-canonical termQ (pre-atomic termR) asNFAC(Q) (NFAC(R), re-
spectively). Furthermore, we writeC→−◦&>

0 for the sublanguage ofC→−◦&> that consists only ofAC-normal
terms.

In Section A.4, we will take advantage of the following technical result that states that substitution preserves
AC-reducibility.

Lemma A.7 (Substitution)

If E :: T
C−→∗

AC T ′ and ER :: R
C−→∗

AC R′, then [R/x]T C−→∗
AC [R′/x]T ′.

Proof: By induction on the structure ofE . 2X

Observe that the substituted term ought to be pre-atomic, while the term on which the substitution is performed
can be either pre-canonical or pre-atomic.

A.2 λC: A Translation from λ→−◦&> to C→−◦&>

The translation fromλ→−◦&> to C→−◦&>, abbreviatedλC, mapsλ→−◦&> terms to objects inC→−◦&>. λC is
specified by means of the following judgments:

M λC−→ Q M translates to pre-canonical termQ
N λC−→ R N translates to pre-atomic termR

The rules defining them are displayed in Figure A.1. The side conditions in rulesλC atm andλC redex specify
the admissible structure of their first argument (M or N); they could be avoided by specializing these rules to
take into account the different possibilities they encompass. Notice that, for each of the two judgments ofλC, the
structure of the first argument determines uniquely which rule can be used in the translation process. We writeLC,
possibly annotated, for derivations of either judgments.

We can immediately prove the faithfulness of this translation with respect to typing. This result expresses the
adequacy of the system in Figure 4.1 as an emulation of the typing semantics ofλ→−◦&>. We will take advantage
of this fact below.

Theorem A.8 (Soundness ofλC for typing)

If C :: Γ; ∆ `Σ M ⇑↓ A and LC :: M λC−→ T , then Γ;∆ `C

Σ T ⇑↓ A;

Proof:
This proof proceeds by simultaneous induction on the structure ofC. Most cases are resolved by simple

invocations of the induction hypothesis. However, ruleslλ atm andlλ redex require some care in order to satisfy
the side conditions in rulesλC atm and λC redex, respectively. We will focus our analysis on these proof
patterns.

35

Pre−canonical terms

N λC−→ R
λC atm

N λC−→ ⇑R
(for N = c, x, FSTN ′, SND N ′, N ′ˆM, N ′ M)

λC unit

〈〉 λC−→ 〈〉

M1
λC−→ Q1 M2

λC−→ Q2
λC pair

〈M1, M2〉 λC−→ 〈Q1, Q2〉

M λC−→ Q
λC llam

λ̂x :A. M λC−→ λ̂x :A. Q

M λC−→ Q
λC ilam

λx :A. M λC−→ λx :A. Q
. .
Pre−atomic terms

M λC−→ Q
λC redex

M λC−→ ↓Q
(for M = 〈〉, 〈M ′, M ′′〉, λ̂x :A. M ′, λx :A. M ′)

λC con

c λC−→ c
λC var

x λC−→ x

N λC−→ R
λC fst

FSTN λC−→ FSTR

N λC−→ R
λC snd

SND N λC−→ SND R

N λC−→ R M λC−→ Q
λC lapp

NˆM λC−→ RˆQ

N λC−→ R M λC−→ Q
λC iapp

N M λC−→ R Q

Figure A.1: Translation ofλ→−◦&> into C→−◦&>

lλ atm: C =

A′

Γ;∆ `Σ M ↓ a
lλ atm

Γ;∆ `Σ M ⇑ a

where A = a.

M = c, x, FSTM ′, SND M ′, M ′ˆM ′′ or M ′ M ′′ by the Surjectivity Lemma 2.1 onC,

T = ⇑R and

LC′ :: M λC−→ R by inversion on ruleλC atm,

R′ :: Γ;∆ `C

Σ R ↓ a by induction hypothesis onA′ andLC′,
Q′ :: Γ;∆ `C

Σ
⇑R ⇑ a by ruleλC atm onR′.

lλ redex: C =

C′

Γ;∆ `Σ M ⇑ A
lλ redex

Γ;∆ `Σ M ↓ A

This case is more delicate than the previous situation because we have no tool such as the Surjectivity
Lemma to invoke the induction hypothesis. We must instead distinguish subcases on the structure of the
typeA. More precisely, the major discriminant is whetherA is an atomic or a composite type:

SubcaseA 6= a:
M = 〈〉, 〈M ′,M ′′〉, λ̂x :A.M ′ or λx :A.M ′ by the Surjectivity Lemma 2.1 onC′,
T = ↓Q and

LC′ :: M λC−→ Q by inversion on ruleλC redex,

Q′ :: Γ;∆ `C

Σ Q ⇑ A by induction hypothesis onC′ andLC′,
R′ :: Γ;∆ `C

Σ
↓Q ↓ A by ruleλC redex onQ′.

36

SubcaseA = a:
A′ :: Γ;∆ `Σ M ↓ a by inversion on ruleλC atm onC′,
R′ :: Γ;∆ `C

Σ R ↓ a by induction hypothesis onA′ andLC.

This last subcase cancels occurrences of rulelλ redex immediately followed bylλ atm in a typing deriva-
tion. In this way, it essentially removes an implicitAC-redex from the original derivation. 2X

Notice that this statement implies not only that types are preserved during the translation process, but also, by
virtue of surjectivity, thatη-long objects ofλ→−◦&> are mapped toη-long terms in the coercion calculus.

We will obtain an indirect proof of the completeness ofλC with respect to typing in Section A.3. As a
preparatory step, we get some insight in the mannerλC operates.

We first show thatλC is a function,i.e., that every term has a unique translation, as established by the following
lemma.

Lemma A.9 (Functionality ofλC)

i. For everyM in λ→−◦&>, there is a unique pre-canonical termQ in C→−◦&> such thatM λC−→ Q.

ii. For everyM in λ→−◦&>, there is a unique pre-atomic termR in C→−◦&> such thatM λC−→ R.

Proof: This simple proof proceeds by induction on the structure ofM . 2X

λC translates every term inλ→−◦&> to an object inAC-normal form. Therefore, the range of this function is
the set of terms inC→−◦&>

0 :

Lemma A.10 (Range ofλC)

If LC :: M λC−→ T , thenT is in AC-normal form.

Proof: The proof proceeds by induction on the structure ofLC. 2X

We have just seen thatλC is sound with respect to the typing semantics ofλ→−◦&> andC→−◦&>. We dedicate
the remainder of this section to proving that it preserves also reductions. This task is complicated by the fact that
β-reductions inλ→−◦&> do not correspond toβ-reductions inC→−◦&>, but in general toβ-reductions followed
by zero or moreAC-reductions.

Consider for example the simpleλ→−◦&> redex(λ̂x : a. fˆx) ĉ which reduces in one (β-)step tof ĉ. Its
pre-atomic translation toC→−◦&> according toλC is

(↓(λ̂x :a. ⇑(f (̂⇑x)))) (̂⇑c)

(Its pre-canonical translation wraps this expression with one more occurrence of⇑). Oneβ-reduction step yields

↓(⇑(f (̂⇑(↓(⇑c)))))

It then takes twoAC-reductions to simplify this term intof (̂⇑c), which is the pre-atomic image off ĉ according
to λC.

Ruleslr beta lin andlr beta int generate their reduct means of a meta-level substitution. The corresponding
reduction inC→−◦&> operate in a similar way. Therefore, we need to show thatλC commutes reasonably well
with substitution. This is achieved in the next lemma.

Lemma A.11 (Substitution inλC)

Assume thatC is a derivation of eitherΓ;∆, x : A `Σ M ⇑↓ B or Γ, x : A;∆ `Σ M ⇑↓ B, and moreover
A :: Γ; ∆′ `Σ N ↓ A.

If LC :: M λC−→ T and LCN :: N λC−→ R, then [N/x]M λC−→ [R/x]T .

37

Proof:
The proof proceeds by induction on the structure ofLC. All cases are quite simple except for the situation

whereM is precisely the variablex (subcase of ruleλC atm).

λC var: LC = λC var

x λC−→ x

where M = x and T = x.

LCN ::[N/x]x λC−→ [R/x]x by definition of substitution

λC atm: LC =

LC′

x λC−→ x
λC atm

x λC−→ ⇑x

where M = x and T = ⇑x.

A = a by inversion on rulelλ atm for C,

N = c, y, FSTN ′, SND N ′, N ′ˆN ′′ or N ′ N ′′ by a simple induction onA,

LC′ :: N λC−→ ⇑R by ruleλC atm onLCN ,

[N/x]x λC−→ [R/x]⇑x by definition of substitution. 2X

The presence of typing derivations in the above result are needed to ensure that the termsM andN are in
η-long form. When this property does not hold, our set of reductions in the coercion calculus are not sufficient to
support our translation. An example shall clarify this point: consider the termsM = 〈c, x〉 andN = 〈d, e〉. Then,
clearly[N/x]M = 〈c, 〈d, e〉〉. Now λC (pre-atomically) translatesM andN to Q = 〈⇑c, ⇑x〉 andR = ↓〈⇑d, ⇑e〉,
respectively. Then, by performing the substitution at the level ofC→−◦&>, we obtain[R/x]Q = 〈⇑c, ⇑↓〈⇑d, ⇑e〉〉,
while [N/x]M λC−→ 〈⇑c, 〈⇑d, ⇑e〉〉. Notice however that[R/x]Q embeds the sequence of operators⇑↓ , which is
not handled by any of the reduction rules ofC→−◦&> (in particular not bySr AC, which expects these constructs
to occur in reverse order). Schematically,

[

[

〈d, e〉

↓〈⇑d, ⇑e〉

/x]

/x]

〈c, x〉

〈⇑c, ⇑x〉
?

λC

?

λC

=

=

〈c, 〈d, e〉〉

〈⇑c, ⇑↓〈⇑d, ⇑e〉〉 〈⇑c, 〈⇑d, ⇑e〉〉

PPPPPPPPPq
λC

.............................-??

Anomalies of this type do not arise when operating onη-long terms only since a variablex of composite type
would not occur immediately prefixed by the⇑ coercion.

In a functional redex, both the substituting and the substituted terms are pre-canonical. The following corollary
adapts the above lemma to handle this situation. Observe that it may introduceAC-reductions

Corollary A.12 (Substitution inλC)

LetA :: Γ; ∆′ `Σ N ↓ A.
1. Assume there is a derivation of eitherΓ;∆, x : A `Σ M ⇑ B or Γ, x : A;∆ `Σ M ⇑ B. Then,

if LC :: M λC−→ Q′ and LCN :: N λC−→ Q, then [N/x]M λC−→ Q∗ where [↓Q/x]Q′ C−→∗
AC Q∗.

2. Assume there is a derivation of eitherΓ;∆, x : A `Σ M ↓ B or Γ, x : A;∆ `Σ M ↓ B. Then,
if LC :: M λC−→ R and LCN :: N λC−→ Q, then [N/x]M λC−→ Q∗ where ↓[↓Q/x]R C−→∗

AC Q∗.

Proof:

1. We distinguish cases on the basis of the last proof rule applied inLCN .

38

• If this derivation ends in ruleλC atm, thenQ = ⇑R and there is a derivation ofN λC−→ R. By the pre-
vious lemma,[N/x]M λC−→ [R/x]Q′. Then a simple induction shows that[↓(⇑R)/x]Q′ C−→∗

AC [R/x]Q′.

• Otherwise, by the Surjectivity Lemma 2.1, we can extendLCN with an application of ruleλC redex.
The desired result then follows by a direct application of the above Substitution Lemma.

2. We proceed similarly to the first part of this corollary, but by cases on the structure ofLC. 2X

At this point, we are in a position to prove thatλC is sound with respect to the reduction semantics ofλ→−◦&>

andC→−◦&>. This property is schematized by the diagram on the right.

Theorem A.13 (Soundness ofλC for reducibility)

Assume thatC :: Γ; ∆ `Σ M ⇑↓ A.

If D :: M −→ M ′ and LC :: M λC−→ T , then there are termsT ∗ and
T ′ such thatT

C−→β T ∗, T ∗ C−→∗
AC T ′ and M ′ λC−→ T ′.

M

T

M ′

T ∗ T ′

-

?

λC

................R

λC

...........-C...........-
β

...........-C...........-
AC

-

Proof:
The proof proceeds by induction on the structure ofD. All cases are straightforward with the exception of the

treatment of theβ-reduction steps ofλ→−◦&> (rules lr beta fst, lr beta snd, lr beta lin and lr beta int). We
develop in full the cases where the last rule applied inD is lr beta lin .

lr beta lin: D = lr beta lin

(λ̂x :A.M1)ˆM2 −→ [M2/x]M1

where M = (λ̂x :A.M1)ˆM2 and N = [M2/x]M1.

C1 :: Γ;∆1, x : A `Σ M1 ⇑ B and

C2 :: Γ;∆2 `Σ M2 ⇑ A by inversion onC,

By inversion onLC, there are termsQ1 andQ2, and derivationsLC1 andLC2 that allow expandingLC as
follows:

LC =

LC1

M1
λC−→ Q1

λC llam

λ̂x :A.M1
λC−→ λ̂x :A.Q1

λC redex

λ̂x :A.M1
λC−→ ↓(λ̂x :A.Q1)

LC2

M2
λC−→ Q2

λC lapp

(λ̂x :A.M1)ˆM2
λC−→ (↓(λ̂x :A.Q1))ˆQ2

where T = (↓(λ̂x :A.Q1))ˆQ2.

Eβ :: (↓(λ̂x :A.Q1))ˆQ2
C−→β ↓[↓Q2/x]Q1 by ruleCr beta lin,

EAC :: ↓[↓Q2/x]Q1
C−→∗

AC Q′ and

LC′ :: [M2/x]M1
λC−→ Q′ by the Substitution Corollary A.12 onC1,

C2, LC1, andLC2. 2X

This result can be lifted to the reflexive and transitive closures of the mentioned reduction relations.

The notion of soundness we adopted relative to the reduction semantics of our calculi requires that every reduc-
tion in the source language correspond to one (or more) reductions in the target language. We define completeness
dually: every reduction in the target language should correspond to some reduction in the source language, possi-
bly none. We will give an indirect proof of the completeness ofλC with respect to the reduction semantics of our
calculi in Section A.3, when considering the inverse of our translation.

39

A.3 Cλ: A Translation from C→−◦&> to λ→−◦&>

In this section, we consider the problem of translating terms fromC→−◦&> back toλ→−◦&>. λC cannot be used
for this purpose since its co-domain isC→−◦&>

0 , the subset ofC→−◦&> consisting only ofAC-normal forms.

The approach we take is instead to define an independent translation,Cλ, that maps entities inC→−◦&> to
terms inλ→−◦&>. We will prove later that it is the inverse ofλC in a sense to be made precise.Cλ is specified by
means of the judgments

Q Cλ−→ M Q translates toM
R Cλ−→ N R translates toN

that simply erase the coercions⇑ and↓ from a term. We omit the obvious inference rules defining this translation
We will write CL, variously annotated, for derivations of either of these judgments.

The faithfulness ofCλ with respect to typing is formally expressed by the following theorem. Again, we shall
stress the fact that the translation process preserves not only types, but also surjectivity.

Theorem A.14 (Soundness ofCλ for typing)

If Q :: Γ; ∆ `C

Σ T ⇑↓ A and CL :: T Cλ−→ M , then Γ;∆ `Σ M ⇑↓ A.

Proof: By induction on the structure ofQ. 2X

Prior to showing thatCλ preserves reductions, we will prove thatCλ is the inverse ofλC. Besides getting the
comforting formal acknowledgment that our two translations do behave as expected, we will take advantage of this
result to obtain straightforward proofs of the completeness ofλC andCλ with respect to typing and reduction.

We begin our endeavor by proving thatCλ is actually a function fromC→−◦&> to λ→−◦&>.

Lemma A.15 (Functionality ofCλ)

i. For every pre-canonicalC→−◦&> termQ, there is a uniqueλ→−◦&> termM such thatQ Cλ−→ M .

ii. For every pre-atomicC→−◦&> termR, there is a uniqueλ→−◦&> termM such thatR Cλ−→ M .

Proof: By induction on the structure ofQ andR. 2X

We wishCλ to be the inverse ofλC. This property does not hold in its full strength. The problem is that these
two functions have different domains and ranges. Indeed,λC produces elements inC→−◦&>

0 , a strict subset or
C→−◦&>. On the other hand,Cλ accepts arbitrary terms inC→−◦&>. We bridge these differences in the lemma
below by relying onAC-reduction.

Lemma A.16 (Right invertibility)

Assume thatQ :: Γ; ∆ `C

Σ T ⇑↓ A.

If CL :: T Cλ−→ M , then M λC−→ T ′ where T
C−→∗

AC T ′.

T

M

T ′

@
@

@@RCλ ...
...

...
...

..�

λC

.........................-C.........................-
AC
-

Proof:
The proof proceeds by induction on the structure ofLC and inversion onQ. We rely on the same reasoning pat-

tern already used in the proofs of the substitution lemma forλC (Lemma A.11) and in the soundness theorem A.13.
The most complex cases involve rulesCλ redex andCλ atm. 2X

Again, the typing assumption in the statement of this lemma is aimed at enforcing surjectivity. Consider for
example theC→−◦&> term⇑↓〈⇑c, ⇑d〉, which is not inη-long form. Cλ would translate it to〈c, d〉, which would
in turn be mapped to the (η-long) term〈⇑c, ⇑d〉. However, none of our reduction rules can bridge the gap between
the twoC→−◦&> expressions. No such problems arise when working exclusively withη-long terms.

The reverse of this property holds in a much stronger sense: translating aλ→−◦&> term toC→−◦&> and then
back yields the very same original term, without any need for a typing derivation. We have the following lemma.

40

Lemma A.17 (Left invertibility)

If LC :: M λC−→ T , then T Cλ−→ M .

Proof: By induction on the structure ofLC. 2X

The left-invertibility lemma states that composingCλ with λC transforms aλ→−◦&> term to itself; therefore
it corresponds to the identity function onλ→−◦&>. On the other hand, the right-invertibility lemma A.16 states
thatCλ is the right inverse ofλC on well-typedC→−◦&>

0 terms. On the basis of this observation and of previously
proved properties, we easily deduce that they form a pair of inverse functions between the well-typed fragments of
λ→−◦&> andC→−◦&>

0 .

Corollary A.18 (Bijectivity)

λC and Cλ are bijections between the set of well-typedλ→−◦&> terms and the set of well-typedC→−◦&>
0

terms. Moreover, they are each other’s inverse.

Proof:
It is an easy exercise in abstract algebra to show that, given two functionsf : X → Y andg : Y → X, if

f ◦ g = IdY andg ◦ f = IdX , thenf andg are bijections and moreoverg = f−1.

By Lemmas A.9, A.10 and Theorem A.13, we know thatλC is a function from the well-typed portion of
λ→−◦&> to the well-typed subset ofC→−◦&>

0 . By the functionality lemma A.15,Cλ mapsC→−◦&> terms to
C→−◦&> objects; in particular, it associates well-typedAC-normalC→−◦&> terms to well-typedλ→−◦&> terms.
Moreover, since terms that are alreadyAC-normal cannot be furtherAC-reduced, the right-invertibility Lemma
states thatCλ is the left inverse ofλC on well-typedC→−◦&>

0 terms. Finally, by the left-invertibility lemma,λC
is the left inverse ofCλ onλ→−◦&>, and in particular on its well-typed fragment.

On the basis of these hypotheses, the previous algebraic observation allows us to conclude thatλC andCλ are
indeed bijections between well-typed objects inλ→−◦&> and well-typed terms inC→−◦&>

0 , and that they are one
another’s inverse. 2X

This property opens the door to easy proofs of the completeness direction of every soundness theorem achieved
so far. We first consider the completeness ofλC with respect to typing.

Corollary A.19 (Completeness ofλC for typing)

If M λC−→ T and Γ;∆ `C

Σ T ⇑↓ A, then Γ;∆ `Σ M ⇑↓ A.

Proof:
By the left invertibility lemma,T Cλ−→ M . Then, the soundness ofCλ for typing yields a derivation of

Γ;∆ `Σ M ⇑↓ A. 2X

In a similar fashion, we prove the completeness ofCλ with respect to typing.

Corollary A.20 (Completeness ofCλ for typing)

If T Cλ−→ M and Γ;∆ `Σ M ⇑↓ A, then Γ;∆ `C

Σ T ⇑↓ A.

Proof:
By the right-invertibility lemma,M λC−→ T ′ whereT

C−→∗
AC T ′. By the soundness ofλC for typing, we obtain

thatΓ;∆ `C

Σ T ′ ⇑↓ A. Finally, sinceAC-expansion preserves typing (Lemma A.2), we getΓ;∆ `C

Σ T ⇑↓ A. 2X

We will now analyze the interaction betweenCλ as a translation fromC→−◦&> andλ→−◦&>, and the notion
of reduction inherent to these two languages. The main results of our investigation will be thatCλ preservesβ-
reductions, but identifiesAC-convertible terms. We will also take advantage of the fact that this translation is the
inverse ofλC to prove the completeness counterpart of these statements.

It will be convenient to start by getting a deeper understanding of howAC-reducibility relates toCλ. Consider

the equivalence relation
C≡AC induced by theAC-reduction congruence

C−→AC. Its equivalence classes consist of all

41

the terms ofC→−◦&> that AC-reduce to the sameAC-normal form.Cλ uniformly maps every object in such an
equivalence class to the sameλ→−◦&> term. In order to prove this fact, we first show thatAC-reducing a term does
not affect its translation.

Lemma A.21 (Invariance ofCλ underAC-reduction)

If Q :: T
C−→AC T ′ and CL :: T Cλ−→ M , then T ′ Cλ−→ M .

Proof: By induction on the structure ofQ. 2X

T

M

T ′

@
@

@@RCλ

-C -
AC	Cλ

This lemma can also be interpreted as stating thatCλ is sound with respect toAC-reducibility. Therefore, in the
following discussion, we will concentrate on the interaction between this translation and the properβ-reductions
of C→−◦&>.

The converse of the above property holds also:Cλ maps a term and all of itsAC-expansions to the same
λ→−◦&> object. This is formally stated as follows.

Lemma A.22 (Invariance ofCλ underAC-expansion)

If Q :: T
C−→AC T ′ and CL′ :: T ′ Cλ−→ M , then T Cλ−→ M .

Proof: By induction on the structure ofQ. 2X

T

M

T ′

�
�

��	Cλ

-C -
AC..............RCλ

StrongAC-normalization (Lemma A.6) enables to easily shift these properties to the reflexive and transitive
closure of

C−→AC, and to the corresponding equivalence relation.

The AC-invariance properties we just achieved together with the discovery above thatλC andCλ are weakly
bijective account for a simple proof of the completeness of the latter translation with respect to the reduction
semantics of the involved calculi.

Corollary A.23 (Completeness ofCλ for reduction)

Assume thatΓ;∆ `C

Σ T ⇑↓ A.
If T Cλ−→ M and M −→ M ′, then there is anAC-normal termT ∗

and a termT ′ such thatT
C−→∗

AC T ∗, T ∗ C−→β T ′ and T ′ Cλ−→ N .

T

M

T ∗

M ′

T ′

?

Cλ

-

...............	
Cλ

...........-C...........-
AC

--C...........-
β

Proof:
By the left-invertibility lemma A.17, there is anAC-normal termT ∗ such thatM λC−→ T ∗ andT

C−→∗
AC T ∗ are

derivable. By the soundness ofλC with respect to reduction (Theorem A.13), there are termsT ′ andT ′′ such that

T ∗ C−→β T ′ C−→∗
AC T ′′ and M ′ λC−→ T ′′.

By the right-invertibility lemma A.16, we have thatT ′′ Cλ−→ M ′. Finally, by the functionality and invariance of
Cλ underAC-reductions (Lemmas A.15 and A.21), we obtain thatT ′ Cλ−→ M ′. 2X

We conclude this section by showing thatCλ is sound with respect to the reduction semantics ofC→−◦&>.
The above invariance lemmas capture this property in the case ofAC-reduction. Therefore, we focus the discussion
onβ-reductions.

The required steps in order to achieve this result are reminiscent of the path we followed when proving the
analogous statement forλC. There are however three important differences. First, the proofs are much simpler
in the present case. Second, the statements below do not mention any typing information. Third,AC-reductions
do not appear in these statements. This overall simplification derives from the fact that, because of the presence
of AC-reduction,C→−◦&> has more structure thanλ→−◦&>. Therefore,Cλ can simply forget about the extra
structure of theC→−◦&> terms it acts upon.

The first step towards the soundness ofCλ with respect to (β-)reduction is given by the following substitution
lemma, needed to cope with functional objects, both linear and unrestricted.

Lemma A.24 (Substitution inCλ)

If CL :: T Cλ−→ M and CLR :: R Cλ−→ N , then [R/x]T Cλ−→ [N/x]M .

42

Proof: By induction on the structure ofCL. 2X

Finally, we have the following soundness theorem, that states thatCλ preservesβ-reduction.

Theorem A.25 (Soundness ofCλ for β-reducibility)

If D :: T
C−→β T ′ and CL :: T Cλ−→ M , then there is a termM ′ such that

M −→ M ′ and T ′ Cλ−→ M ′.

Proof: By induction on the structure ofR. 2X

T T ′

M M ′

-C -
β

?

Cλ

..........-

...........?
Cλ

We can summarize the previous theorem, stating the soundness ofCλ for β-reducibility, and the invariance
lemma A.21, expressing the soundness ofCλ for AC-reducibility in a single statement mentioning the generic
notion of reduction ofC→−◦&>.

Corollary A.26 (Soundness ofCλ for reducibility)

If T
C−→ T ′ and T Cλ−→ M , then there is a termM ′ such that M −→∗ M ′

and T ′ Cλ−→ M ′.

T T ′

M M ′

-C

?

Cλ

..........--

...........?
Cλ

Proof:
Depending on whether

C−→ is
C−→AC or

C−→β , this statement corresponds to Lemma A.21 or to theorem A.25,
respectively. In the former case,M ′ = M and−→∗ is instantiated to the identity. 2X

Clearly, the above result holds also relatively to the reflexive and transitive closure of
C−→.

The previous theorem, together with the fact thatCλ andλC form a pair of inverse functions, allows us to
achieve a simple proof of the completeness ofλC with respect to the reduction semantics ofC→−◦&>. Notice that
this corollary mentions bothβ- andAC-reductions.

Corollary A.27 (Completeness ofλC for reduction)

Assume thatΓ;∆ `Σ T ⇑↓ A.

If M λC−→ T and T
C−→β T ∗ C−→∗

AC T ′ with T ′ in AC-normal form, then
there is a termM ′ such thatM −→ M ′ and M ′ λC−→ T ′.

M

T

M ′

T ∗ T ′
?

λC

-C -
β

-C -
AC

-

..........-
................R

λC

Proof:
By the left-invertibility lemma A.17, there is a derivation ofT Cλ−→ M . By the soundness ofCλ with respect

to β-reduction, there is a termM ′ such thatM −→ M ′ andT ∗ Cλ−→ M ′. By the invariance ofCλ underAC-
reduction, there is a derivation ofT ′ Cλ−→ M ′. By composing various typing soundness results, we obtain that
Γ;∆ `C

Σ T ⇑↓ A, so that we can apply the left-invertibility lemma, obtaining thatM ′ λC−→ T ′ is derivable. 2X

A.4 Properties ofC→−◦&>

We will now present the main properties ofC→−◦&>, ultimately strong normalization and the uniqueness of normal
forms with respect to bothAC- andβ-reducibility. In order to do so, we will take advantage of the facts that similar
results hold forλ→−◦&>, and that we have reasonably well-behaved translations to and from this calculus. An
alternative would have been to give direct proofs of these properties.

We begin by showing thatC→−◦&> admits confluence and the Church-Rosser property.

Theorem A.28 (Church-Rosser)

Confluence: Assume thatQ :: Γ; ∆ `C

Σ T ⇑↓ A.

If D′ :: T
C−→∗ T ′ and D′′ :: T

C−→∗ T ′′, then there is a term̂T such
thatT ′ C−→∗ T̂ and T ′′ C−→∗ T̂ .

T

T ′ T ′′

T̂

@
@R

C

R
�

��	

C

	

..........	
C

	

..........R
C

R

43

Church-Rosser: Assume thatQ′ :: Γ; ∆ `C

Σ T ′ ⇑↓ A and Q′′ :: Γ; ∆ `C

Σ T ′′ ⇑↓ A.

If D :: T ′ C≡ T ′′, then there is a term̂T such that T ′ C−→∗ T̂ and
T ′′ C−→∗ T̂ .

T ′ T ′′

T̂

-C�
..........	

C
	

..........R
C

R

Proof:
We will carry out the proof in the case of confluence only. The Church-Rosser property is handled similarly.

Since, by lemma A.15,Cλ is a total function overC→−◦&>, there is a unique termM such thatT Cλ−→ M is
derivable. By typing soundness, we obtain thatΓ;∆ `Σ M ⇑↓ A. By iterated applications of the soundness ofCλ
over reduction, we deduce that there are termsM ′ andM ′′ such thatM −→∗ M ′ andT ′ Cλ−→ M ′, and similarly
M −→∗ M ′′ andT ′′ Cλ−→ M ′′. By subject reduction, we have thatΓ;∆ `Σ M ′ ⇑↓ A andΓ;∆ `Σ M ′′ ⇑↓ A. By
the confluence property ofλ→−◦&>, we know that there exists a termN such thatM ′ −→∗ N andM ′′ −→∗ N
are derivable.

By the invertibility lemma, there areC→−◦&> termsT ∗ andT ∗∗ such thatM ′ λC−→ T ∗ with T ′ C−→∗
AC T ∗ and

M ′′ λC−→ T ∗∗ with T ′′ C−→∗
AC T ∗∗. By the soundness ofλC with respect to reductions, there are termsT̂ ′ and

T̂ ′′ such thatT ∗ C−→∗ T̂ ′ andN λC−→ T̂ ′, and similarlyT ∗∗ C−→∗ T̂ ′′ andN λC−→ T̂ ′′. However, sinceλC is
a function,T̂ ′ = T̂ ′′; let us call this termT̂ . By composing the various reductions above, we obtain the desired
derivations ofT ′ C−→∗ T̂ andT ′′ C−→∗ T̂ . 2X

Next, we consider theC→−◦&> equivalent of the Transitivity Lemma 2.3 discussed in Section 2. As in
λ→−◦&>, we must distinguish the linear and the unrestricted cases.

Lemma A.29 (Transitivity)

i. If Q :: Γ; ∆, x :B `C

Σ T ⇑↓ A and R :: Γ; ∆′ `C

Σ R ↓ B, then Γ;∆,∆′ `C

Σ [R/x]T ⇑↓ A.

ii. If Q :: Γ, x :B;∆ `C

Σ T ⇑↓ A and R :: Γ; · `C

Σ R ↓ B, then Γ;∆ `C

Σ [R/x]T ⇑↓ A.

Proof:
We prove this lemma by means of a technique similar to the one we just sketched in the case of the Church-

Rosser property. 2X

The next property we are interested in proving forC→−◦&> is subject reduction. Remember that we have
already proved this property in the subcase ofAC-reduction.

Lemma A.30 (Subject reduction)

If Q :: Γ; ∆ `C

Σ T ⇑↓ A and D :: T
C−→ T ′, then Γ;∆ `C

Σ T ′ ⇑↓ A.

Proof:
By the soundness ofCλ with respect to typing, there are a termM and derivations ofT Cλ−→ M andΓ;∆ `Σ

M ⇑↓ A. By the soundness ofCλ with respect to reductions, there are a termM ′ and derivations ofT ′ Cλ−→ M ′

andM −→∗ M ′. By the subject reduction property ofλ→−◦&>, Γ;∆ `Σ M ′ ⇑↓ A is derivable.

Now, by the soundness ofλC with respect to typing, there is a termT ∗ such thatΓ;∆ `C

Σ T ∗ ⇑↓ A and
M ′ Cλ−→ T ∗ are derivable. On the other hand, by the right-invertibility lemma A.16, there is a termT ∗∗ such that
M ′ λC−→ T ∗∗ andT ′ S−→∗

NIL T ∗∗ are derivable. However, since, by Lemma A.9,λC is a function, we have that
T ∗ = T ∗∗. Then, in order to conclude this proof, we simply take advantage of the fact thatAC-expansion preserves
typing (Lemma A.2) to obtain the desired derivation ofΓ;∆ `C

Σ T ′ ⇑↓ A. 2X

We now tackle strong normalization which, as in the case ofλ→−◦&>, states that no infinite chain of (either
AC- or β-) reductions can start from a well-typedC→−◦&> term. Therefore, we can reduce a well-typed term to
normal (actually canonical) form by exhaustively reducing randomly selected redices.

Theorem A.31 (Strong normalization)

If Q :: Γ; ∆ `C

Σ T ⇑↓ A, thenT is strongly normalizing.

44

Proof:
Assume we have a (possibly infinite) sequence of termsT0, T1, T2, . . . such thatT = T0 and there are deriva-

tions for the following reductions:
σ = T0

C−→ T1
C−→ T2

C−→ . . .

By the soundness ofCλ with respect to reducibility, everyβ-reduction inσ corresponds to a reduction inλ→−◦&>

(Theorem A.25) while everyAC-reduction disappears (Lemma A.21). This entails that there is a sequence of
λ→−◦&> termsM0,M1,M2, . . . such that on the one hand there are derivations ofTi

Cλ−→ Mϕ(i) whereϕ maps
maximal subsequences ofσ linked byAC-reductions to the sameλ→−◦&> term, and on the other hand the following
reduction sequence is derivable

σ′ = M0 −→ M1 −→ M2 −→ . . .

Notice in particular that there is a derivation ofT Cλ−→ M0. Therefore, by the soundness ofCλ with respect to
typing, the judgmentΓ;∆ `Σ M0 ⇑ A is derivable. By the strong normalization theorem forλ→−◦&>, σ′ is
finite. Then, alsoσ must be finite since, by the strong normalization ofAC-reduction (Lemma A.6), the maximal
subsequences ofAC-reducts collapsed byϕ are finite. 2X

Strong normalization ensures that exhaustive reductions of a well-typedC→−◦&> term will eventually produce
an object in normal form. Depending on which redex is selected at each step, this procedure might yield different
normal objects. The uniqueness corollary below guarantees that every reduction path will lead to the same normal
term, up to the renaming of bound variables.

Corollary A.32 (Uniqueness of normal forms)

If Q :: Γ; ∆ `C

Σ T ⇑↓ A, then there is a unique normal termT ′ such thatT
C−→∗ T ′.

Proof:
By the strong normalization theorem, we know that every sequence of reductions starting atT leads to a term

in normal form. Let consider two reduction sequences validatingT
C−→∗ T ′ andT

C−→∗ T ′′, for termsT ′ andT ′′

in normal form. By confluence, there is a termT ∗ to which both reduce. However, sinceT ′ andT ′′ do not contain
redices, the only way to close the diamond is to have thatT ′ = T ′′ = T ∗, and use the identical reduction. 2X

As in the case ofλ→−◦&>, the above results entitle us to speak aboutthe normal form (or equivalentlythe
canonical form) of a termT , whenever this object are well-typed. We denote this termCan(T). A calculus that
accepts only canonical objects can be obtained from the typing system displayed in Figure 4.1 by simply removing
rule lC redex.

A term in which redices appear at most in the argument of an application is said to be inweak head-normal
form. Any well-typed term can be converted to weak-head normal form by repeatedly selecting a redex that violates
this property and reducing it. We useT to denote the weak-head normal form of a termT .

45

