
A Logical Correspondence
between Natural Semantics and Abstract Machines

Robert J. Simmons
Carnegie Mellon University

Email: rjsimmon@cs.cmu.edu

Ian Zerny
Aarhus University

Email: zerny@cs.au.dk

Abstract—We present a logical correspondence between nat-
ural semantics and abstract machines. This correspondence en-
ables the mechanical and fully-correct construction of an abstract
machine from a natural semantics. Our logical correspondence
mirrors the Reynolds functional correspondence but places it in a
logical setting, as both semantics are encoded in a substructural
logical framework.

I. INTRODUCTION

The literature contains numerous semantic specifications
and therefore many proposals for relating them. These rela-
tions are stated using a diversity of methods and methodolo-
gies. To the best of the authors’ knowledge, only one, the
Reynolds functional correspondence [1], [2] has seen repeated
use outside the work of its inventors [3], [4]. Our goal [5], [6]
is to develop a logical counterpart. We want it to be formal,
mechanizable and, like the functional correspondence, widely
applicable.

In this paper, we describe a method for relating natural
semantics with abstract machines within a common logical
framework. We take advantage of the fact that substructural
logic provides an adequate specification language for different
types of specifications.

We motivate our work by recalling how divergence and
failure interact with natural semantics and abstract machine
semantics. Expressions are λ-terms in addition to an extra
nonsense term, here denoted by junk. As usual, syntactic
values are λ-abstractions, and contexts are a list of application
frames terminated by the empty frame halt:

e ::= x | λx.e | e1 e2 | junk
v ::= λx.e
k ::= halt | k;� e2 | k; (λx.e)�

We give two semantics for call-by-value (CBV) evaluation:
Figure 1 defines a big-step semantics in the form of a natural
semantics [7], [8]; Figure 2 defines a small-step semantics in
the form of an abstract machine. Common to these specifica-
tions is the appearance of being specified by the same logical
tool: inductive definitions. Despite this, the two specifications
have a very different character.

Consider the term ω = (λx.x x) (λx.x x). The abstract
machine can characterize developments of ω. The natural
semantics cannot find a v such that ω ⇓ v is derivable. As
a small-step semantics the abstract machine can characterize
how ((λx.x x) junk) goes wrong. As a big-step semantics the

λx.e ⇓ λx.e
e1 ⇓ λx.e e2 ⇓ v2 e[v2/x] ⇓ v

e1 e2 ⇓ v
Fig. 1. A natural semantics for CBV evaluation

k . λx.e 7→ k / λx.e k . e1 e2 7→ (k;� e2) . e1

(k;� e2) / λx.e 7→ (k; (λx.e)�) . e2

(k; (λx.e)�) / v2 7→ k . e[v2/x]

Fig. 2. An abstract machine semantics for CBV evaluation

natural semantics cannot find a v such that ((λx.x x) junk) ⇓ v
is derivable. Thus, working with the natural semantics, we
cannot distinguish safe programs that do not terminate from
programs that go wrong. This is a known obstacle to proving
type soundness with natural-semantics specifications.

II. NATURAL SEMANTICS AS LOGIC PROGRAMS

Our approach to this problem reaches back to some of the
original work on natural semantics, the TYPOL compiler that
translated natural semantics specifications to logic programs in
Prolog [7]. The operational interpretation introduced by this
compilation process is only implicitly present in the original
natural semantics presentation. We derive operational meaning
from Figure 1 by systematically describing a search procedure
that attempts to find an expression v and derivation e ⇓ v given
an expression e.
• If e = λx.e′, derive λx.e′ ⇓ λx.e′ with the first rule.
• If e = e1 e2, attempt to derive e1 e2 ⇓ v using the second

rule:
1) Search for a v1 such that e1 ⇓ v1 is derivable.
2) Assert that v1 = λx.e′ for some e′; fail if it is not.
3) Search for a v2 such that e2 ⇓ v2 is derivable.
4) Let e′′ = e′[v2/x]
5) Search for a v such that e′′ ⇓ v is derivable.
6) If we succeed, derive e1 e2 ⇓ v with the second rule.

Our operationalization transformation makes this implicit
search process explicit. It is applicable to a significant frag-
ment of Horn clause logic programs (those with a reason-
able input-output interpretation, the so-called well-moded pro-
grams).

Two similar lines of work by Hannan and Miller [9] and
Ager [10] also derive abstract machines by representing a

natural semantics as a logical specification, in λProlog and
L-attributed grammars respectively, and then applying logical
transformations. Our work follows this tradition of assigning
operational behavior by means of proof search.

III. ABSTRACT MACHINES AS LOGIC PROGRAMS

Given as input a standard judgments as types encoding of
the natural semantics in Figure 1 [11], our operationalization
transformation produces an encoding of the abstract machine
semantics in Figure 2. This encoding of Figure 2 is not in the
standard judgments as types encoding, however. Instead, we
get a substructural operational semantics, an encoding of the
transition system as rewriting rules in ordered logic [12].

The states of a substructural operational semantics are or-
dered sequences of propositions ∆, contexts in ordered linear
logic. We interpret the ordered logic proposition a •b � c •d
as a local rewriting rule that allows us to transition from a
state ∆1 a b ∆2 to a state ∆2 c d ∆2. (The connective P •Q
is conjunction in ordered logic, and the connective P � Q
is implication.) We say there is a trace ∆ ;∗ ∆′ if we can
rewrite ∆ to ∆′ with a series of transitions.

The general idea behind operationalization is that a trace
(eval(e) ∆ ;∗ retn(v) ∆) indicates the presence of a
derivation e ⇓ v, so the left-most proposition in ∆, if any,
represents a continuation that spawned the evaluation of e and
needs to receive a v to continue. In general, operationalization
takes the encoding of a single judgment like e ⇓ v and defines
(at minimum) an evaluation predicate eval(e) and a return
predicate retn(v).

Describing the proof search behavior when e = λx.e′ is
simple. We start in the state eval(λx.e) ∆. Because λx.e ⇓
λx.e is immediately derivable, we can step immediately to the
state retn(λx.e) ∆. This is captured by the rule evlam:

evlam: eval(λx.e) � retn(λx.e).

(For brevity’s sake, we are omitting a careful treatment of the
term language; see [5] for details.)

Dealing with proof search e = e1 e2 requires extra ma-
chinery. If we are in a state eval(e1 e2) ∆, then the search
procedure from Section II indicates that we first should search
for a v1 such that e1 ⇓ v1. This means picking a ∆′ and trying
to find a trace eval(e1) ∆′ ;∗ retn(v1) ∆′. We introduce
a new predicate cont1(e2) that stores e2 in on the top of
the continuation stack, letting ∆′ = cont1(e2) ∆, while we
attempt to evaluate e1 to a value.

evapp: eval(e1 e2) � eval(e1) • cont1(e2).

If we ever complete a trace of this form:

eval(e1) cont1(e2) ∆ ;∗ retn(v1) cont1(e2) ∆

then we know there is a proof of e1 ⇓ v1. Then we proceed
to check that v1 has the form λx.e and evaluate e2 to a value,
storing the body of the function λx.e in another new predicate
cont2(λx.e).

evapp1: retn(λx.e) • cont1(e2) � eval(e2) • cont2(λx.e).

Finally, once a value v2 returns to the left of the proposition
cont2(λx.e), we know that in order to prove e1 e2 ⇓ v it
suffices to prove e[v2/x] ⇓ v.

evapp2: retn(v2) • cont2(λx.e) � eval([v2/x]e).

Thus, we can encode the search procedure from Section II
as a transition system in ordered logic. The connection be-
tween this four-rule specification and the transition relation in
Figure 2 is witnessed by a translation from states k / v and
k .e to ordered contexts. The stack frames � e2 and (λx.e)�
are, respectively, associated with the propositions cont1(e2)
and cont2(λx.e). This interpretation treats Figure 2 not as an
inductive definition but as a direct encoding of a transition
system in ordered logic.

IV. CONCLUSION

We have shown how to take a natural semantics and make
its implicit operational interpretation explicit as a substructural
operational semantics. This instance of the general operational-
ization transformation also formally connects a natural seman-
tics specification (Figure 1) and an abstract machine semantics
specification (Figure 2). The general correctness proof for this
operationalization establishes that eval(e) ;∗ retn(v) if and
only if e ⇓ v [5].

We have implemented operationalization in SML and have
successfully applied the transformation to a variety of exam-
ples, including but not limited to a number of larger natural
semantics specifications.

REFERENCES

[1] J. C. Reynolds, “Definitional interpreters for higher-order programming
languages,” in Proc. of 25th ACM National Conference, 1972, pp. 717–
740.

[2] M. S. Ager, D. Biernacki, O. Danvy, and J. Midtgaard, “A functional
correspondence between evaluators and abstract machines,” in Proc. of
PPDP’03, D. Miller, Ed. ACM Press, Aug. 2003, pp. 8–19.

[3] I. Sergey and D. Clarke, “A correspondence between type checking via
reduction and type checking via evaluation,” IPL, vol. 112, no. 13-20,
pp. 13–20, 2011.

[4] K. Anton and P. Thiemann, “Typing coroutines,” in Trends in Functional
Programming, ser. LNCS, R. Page, Z. Horvth, and V. Zsk, Eds. Springer
Berlin Heidelberg, 2011, vol. 6546, pp. 16–30.

[5] R. J. Simmons, “Substructural logical specifications,” Ph.D. dissertation,
School of Computer Science, Computer Science Department, Carnegie
Mellon University, Nov. 2012.

[6] I. Zerny, Ph.D. dissertation, Dept. of Comp. Sci., Aarhus University,
forthcoming.

[7] D. Clément, J. Despeyroux, T. Despeyroux, L. Hascoet, and G. Kahn,
“Natural semantics on the computer,” INRIA, Tech. Rep. 416, Jun. 1985.

[8] G. Kahn, “Natural semantics,” in Proc. of STACS’87, ser. LNCS, F.-
J. Brandenburg, G. Vidal-Naquet, and M. Wirsing, Eds., no. 247.
Springer-Verlag, Feb. 1987, pp. 22–39.

[9] J. Hannan and D. Miller, “From operational semantics to abstract
machines,” in Special issue on the 1990 ACM Conference on Lisp
and Functional Programming, ser. Mathematical Structures in Computer
Science, Vol. 2, No. 4, M. Wand, Ed. Cambridge University Press, Dec.
1992, pp. 415–459.

[10] M. S. Ager, “From natural semantics to abstract machines,” in LOPSTR
2004, revised selected papers, ser. LNCS, S. Etalle, Ed., no. 3573.
Springer, Aug. 2004, pp. 245–261.

[11] R. Harper, F. Honsell, and G. Plotkin, “A framework for defining logics,”
Journal of the ACM, vol. 40, no. 1, pp. 143–184, 1993.

[12] F. Pfenning and R. J. Simmons, “Substructural operational semantics as
ordered logic programming,” in Proc. of LICS’09, 2009, pp. 101–110.

	Introduction
	Natural semantics as logic programs
	Abstract machines as logic programs
	Conclusion
	References

