
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Modal Language for the Safety of Mobile Values

Sungwoo Park

April 25, 2005
CMU-CS-05-124

3

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We present a modal language for distributed computation which addresses the safety of mobile values as well
as mobile code. The safety of mobile code is achieved with the modality • which corresponds to necessity
of modal logic. For the safety of mobile values, we introduce a new modality O which expresses that
given code evaluates to a mobile value. We demonstrate the use of modal types with three communication
constructs: remote evaluation, futures, and asynchronous channels.

braries
n University

OOQO
PictsburgSi

Keywords: Modal language, Distributed computation, Type system

1 Introduction

A distributed computation is a cooperative process taking place in a network of nodes. Each node is capable
of performing a stand-alone computation and also communicating with other nodes to distribute and collect
code and data. Thus a distributed computation has the potential to make productive use of all the nodes in
the network simultaneously.

Usually a distributed computation assumes a heterogeneous group of nodes with different local re-
sources. A local resource can be either a permanent/physical object available at a particular node (e.g.,
printer, database) or an ephemeral/semantic object created during a stand-alone computation (e.g., heap cell,
abstract data type). Local resources are accessed via their references (e.g., handle for a database file, pointer
to a heap cell).

Local resources, however, give rise to an issue not found in stand-alone computations: the safety of
mobile code, or in our terminology, the safety of mobile terms where a term represents a piece of code. In
essence, a node cannot access remote resources in the same way that it accesses its own local resources,
but it may receive mobile terms in which references to remote resources are exposed. Therefore the safety
of mobile terms is achieved either by supporting direct access to remote resources (e.g., remote file access,
remote memory access) or by preventing references to remote resources from being dereferenced. This
paper focuses on the second case with the assumption that references to remote resources are allowed in
mobile terms as long as they are never dereferenced.

One approach to the safety of mobile terms is to build a modal type system with the modality • [1, 12,
9, 13]. The basic idea is that a value of modal type DA contains a mobile term that can be evaluated at any
node. An indexed modal type O^A is used for mobile terms that can be evaluated at node UJ. By requiring
that a mobile term be from a value of type DA or D^A, we ensure its safety without recourse to runtime
checks.

A type system augmented with the modality • is not, however, expressive enough for the safe commu-
nication of values, i.e., the safety of mobile values. In other words, we cannot rely solely on modal types
•^4 and D^A to verify that a value communicated from one node to another is mobile (e.g., when a remote
procedure call returns, or when a value is written to a channel). The reason is that in general, a value of type
CM or D^A contains not a mobile value but a mobile term. The evaluation of such a mobile term (with
the intention of obtaining a mobile value) may result in a value that is not necessarily mobile because of
references to local resources created during the evaluation.

As an example, consider a term of type i n t - > i n t in an ML-like language:

let
val new_reference = ref 0
val f = fn x => x + !new.reference

in
f

end

The above term may be used in building a mobile term of type • (i n t - > i n t) , since it can be eval-
uated at any node. The resultant value f, however, is not mobile because it accesses a local resource
new.ref erence . In contrast, the following term, also of type i n t - > i n t , cannot be used in building
a mobile term, but the resultant value is mobile because it does not access any local resource:

let
val v = !some_existing_reference
val f = fn x => x + v

in
f

end

Hence the modality • is irrelevant to the safety of mobile values, which should now be verified by program-
mers themselves.

This paper investigates a new modality O which expresses that a given term evaluates to a mobile value.
The basic idea is that a term contained in a value of modal type OA evaluates to a value that is valid at any
node. Similarly to DU,A9 an indexed modal type O^A is used if the resultant value is valid at node w. To
obtain a value to be communicated to other nodes, we evaluate a term contained in a value of type O^4 or
Ou, A. In this way, we achieve the safety of mobile values.

Since the mobility of a term is independent of the mobility of the value to which it evaluates, the two
modalities • and O are developed in an orthogonal way:

DA

O^A - A - OA

We use combinations of • and O to express various properties of mobile terms:

• UOA: evaluates at any node to a value valid at any node.

CJA: evaluates at any node to a value valid at node u.

: evaluates at node u to a value valid at any node.

: evaluates at node u> to a value valid at node a/.

We first develop a modal language AQO by extending the A-calculus with the modalities • and O. We
formulate its type system in the natural deduction style by giving introduction and elimination rules for each
connective and modality. The modality O requires us to introduce a typing judgment differentiating values
from terms. This typing judgment induces a substitution defined inductively on the structure of the term
being substituted instead of the term being substituted into. We then develop another modal language Ano^
by extending AQO with the indexed modalities D^ and Ow .

We also present a network operational semantics for Ano^ which is capable of modeling distributed
computations. We demonstrate the use of modal types in the network operational semantics with three
communication constructs: remote evaluation, futures, and asynchronous channels. The safety of mobile
terms and mobile values is shown by the type safety of the network operational semantics, i.e., its type
preservation and progress properties.

Depending on the degree of code mobility and data mobility, languages for distributed computation are
classified into four paradigms: client/server, remote evaluation, code on demand, and mobile agents [4]. The
client/server paradigm allows only data to be transmitted to remote nodes. The remote evaluation paradigm
extends the client/server paradigm by allowing both code and data to be transmitted to remote nodes. The
code on demand paradigm is similar to the remote evaluation paradigm, but both code and data are fetched
from remote nodes. In the mobile agents paradigm, autonomous code migrates to remote nodes by itself and

also carries its state. XQCF belongs to the remote evaluation paradigm as its primary capability is to transmit
and evaluate mobile terms at remote nodes. The two modalities D and O deal with name resolution [5], a
safety issue in languages for distributed computation.

This paper is organized as follows. In Section 2, we develop the modal language AQO- In Section 3, we
develop the modal language Anow- In Section 4, we present the network operational semantics and prove
its type safety. Section 5 discusses how to handle local resources in distributed computations and compares
AQCT with other modal languages for distributed computation. Section 6 concludes with future work. See
Appendix for details of all proofs.

2 Modal Language Ano

Since AQO is an extension of the A-calculus, we first review the type system of the A-calculus in the context
of distributed computations.

The syntax of the A-calculus is standard; we use metavariables A, B for types and M, N for terms:

type A ::= A Z> A
term M ::= x\Xx:A.M \M M
value V ::= Xx.A.M
typing context T ::= • | F,x : A

A variable x with binding x : A is assumed to hold a term and is not regarded as a value. We use a typing
judgment r h M : A to mean that term M has type A under typing context T:

x.AeT T,x:A\-M :B T\-M:ADB T h N : A
T\-x:Ayar ThXx.A.M :ADB 3I ThMN.B DL

The /3-reduction rule for the connective D uses a capture-avoiding substitution [M/x]N defined in a
standard way:

(\x:A.N)M - ^ [M/x)N

It may be seen as the reduction of a typing derivation in which the introduction rule D\ is followed by the
elimination rule DE. The following proposition shows that the reduction is indeed type-preserving:

Proposition2.1. IfT h M : A andT,x : A h N : B, then T h [M/x]N : B.

In the context of distributed computations, x : A in a typing context T means that variable x holds a
term of type A that is valid at a hypothetical node where typechecking takes place, which we call the current
node throughout the paper. Then a typing judgment Th M : A means that if typing context T is satisfied,
the evaluation of term M at the current node returns a value V of type A. It does not, however, tell us if M
is a mobile term that can be evaluated at other nodes. Nor does it tell us if V is a mobile value that is valid
at other nodes. Therefore the above type system is not expressive enough for the safety of mobile terms and
mobile values in distributed computations.

We first develop a modal language An which extends the A-calculus with the modality • to ensure
the safety of mobile terms. AQ is based upon the type system for necessity of modal logic by Pfenning and
Davies [14]. Next we develop another modal language Ao which extends the A-calculus with the modality O
to ensure the safety of mobile values. XQ and Ao extend the A-calculus in an orthogonal way: the modality
• is concerned with where we can evaluate a given term whereas the modality O is concerned with where
we can use the result of evaluating a given term. Thus we merge An and Ao to obtain the modal language
Ano» which ensures the safety of both mobile terms and mobile values.

2.1 An for term mobility

The idea behind the modality • is that if a term M is well-typed under an empty typing context, i.e.,
• h M : A, we can evaluate it at any node. Intuitively M is valid at any node, or globally valid, because it
does not depend on any local resource. Thus we use M in building a value box M of modal type D A

The syntax of AQ is as follows:

type A ::= • • • | DA
term M ::= • • • | box M | letbox x = M in M
value V ::= • • • | box M

If M evaluates to box Mf, then letbox x = M in N substitutes Mf, without evaluating it, for x in N.
Now a variable x can hold a term that is globally valid (e.g., letbox x = box M in N). Accordingly we

introduce a mobile typing context A. F is now called a /oca/ typing context.

mobile typing context A ::= • | A, x :: A
local typing context F ::= • | F, x : A

x :: A in A means that variable x holds a globally valid term of type A; hence a mobile typing context does
not affect the mobility of a term being typechecked.

We use a typing judgment A; F h M : A to mean that under mobile typing context A and local typing
context F, term M evaluates to a value of type A valid at the current node.

x::AeA or x.AeT A;-hM:A A ; r h M : D i A,x :: A;T h N : B
A ; F h x : ^ L v a r A;F h box M : DA U l A;F h letboxx = M in N : B U t

The rule Cvar replaces the rule Var. The rule Dl implies that M is globally valid if it is well-typed under an
empty local typing context and thus no assumption is made on the current node. Therefore the premise of
the rule Dl implicitly uses an arbitrary node as the current node in typechecking term M.

The /?-reduction rule for the modality • uses a capture-avoiding substitution [M/x]N extended in a
standard way:

letbox x = box M in N —•#• [M/x]N

As with the connective D, this /3-reduction rule may be seen as the reduction of a typing derivation in which
the introduction rule Dl is followed by the elimination rule DE. The following proposition shows that the
reduction is indeed type-preserving:

Proposition2.2. //A; • h M : Aand A,x :: A-T h N : By then A;F h [M/x]N : B.

2.2 Ao for value mobility

The typing judgment of the A-calculus determines if a term is valid at a given node; if the term is well-typed,
it evaluates to a value valid at that node. In contrast, the type system of Ao should be able to check if the
value to which a term evaluates is valid at a given node. This is a property that cannot be verified by the type
system of the A-calculus. Therefore we need an additional typing judgment for the type system of Ao.

As in the type system of An, we split a typing context into two parts. We also introduce a new form of
binding v ~ A:

mobile typing context A ::= • | A, v ~ A
local typing context F ::= • | F, x : A

v is called a value variable and holds a value; hence it itself is also regarded as a value, v ~ A in A means
that v holds a globally valid value of type A.

We use a typing judgment A; T h M ~ A to mean that M evaluates to a globally valid value of type
A. In order to express that the value is valid at the current node, we use an ordinary typing judgment
A ; T h M : A For any language construct producing local resources, we can use only an ordinary typing
judgment (e.g., for a memory allocation construct which returns pointers to heap cells).

The following typing rules hold independently of the syntax of Ao:

v~AeA w A-r\-V:A
A ; r h , : i V v a r A;ThV~A V a l

The rule Vvar says that a value variable in v ~ A is valid at the current node. The rule Val conforms to the
definition of the new typing judgment: the premise of the rule Val checks if V is globally valid, in which
case the conclusion holds because V is already a value.

The syntax of Ao is as follows:

type A ::= • • • | OA
term M ::= • • • | v | cir M | letcir v = M in M
value V ::= • • • | v | cir M

cir M has a modal type OA, where M evaluates to a globally valid value, letcir v = M in N expects M to
evaluate to cir M'; it conceptually finishes the evaluation of M1 before substituting the resultant value for v
in N9 since v holds a value.

cir M corresponds to the introduction rule for the modality O. Note that in letcir v = M in N, the type
of M does not determine the form of the typing judgment for the whole term. That is, regardless of the type
of M, there are two possibilities for where the result of evaluating N is valid: at the current node and at any
node. Therefore each instance of the modality O has one introduction rule and two elimination rules:

A; T h M ~ A A;rhM:Oi A,v~A;T\-N:B
A;T h cir M : OA Wl A;T h letcir v = M in N : B

2 '. 2 2 — r\c'
A;T h letcir v = M in N ~ B ut

The /̂ -reduction rule for the modality O reduces letcir v = cir M in N. In this case, we analyze M
instead of N. The reason is that only a value can be substituted for v, but M may not be a value; therefore
we analyze M to decide how to transform the whole term so that v is eventually replaced by a value.
ConceptuaUy N should be replicated at those places within M where the evaluation of M is finished, so that
M and N are evaluated exactly once and in that order. If M is already a value V, we reduce the whole term
into [V/v]N. Thus we are led to define a new form of substitution (M/v)N which is defined inductively on
the structure of M instead of N9 and use it in the ^-reduction rule for the modality O:

(V/v)N = [V/v]N
(letcir xf = M in Mf/v)N = letcir v' = M in {M'/v)N

letcir v = cir M in N —>po (M/v)N

Note that we do not define (M M'/v)N because cir M Mf cannot be weU-typed: there is no derivation
of A; F h M Mf ~ A, which would require us to refine types of lambda abstractions. In practice, ordinary
type A D OB for M suffices in conjunction with letcir v = M M' in v to simulate such a derivation.

As with the connective D, the /3-reduction rule may be seen as the reduction of a typing derivation in
which the introduction rule Ol is foUowed by the elimination rule OE. The foUowing proposition shows that
the reduction is indeed type-preserving:

Proposition 23.
!fA;r\-M~AandA,v~A,rhN:C,thenA;r\-(M/v)N:C.
If A;T h M ~ Aand A,v ~ A,r \- N ~ C, then A,r h (M/v)N ~ C.

Proof. By induction on the structure of M (not N).

23 Ano for term mobility and value mobility
is a modal language which incorporates both AQ and Ao. Since AQ and Ao are orthogonal extensions

of the A-calculus, all their individual properties continue to hold in AQO .
We decide to allow letbox x = M in N in the typing judgment for value mobility. The decision is based

upon the observation that a substitution of a mobile term for x does not prevent N from evaluating to a
mobile value. For example, x may not appear in N at all. Therefore we introduce a new elimination rule for
the modality • as follows:

A;T\-M:\3A A,x:: A;T h N ~ B f

A; r h letbox x = M in N ~ B

Since cir letbox x = M in M' can now be well-typed, we define (letbox x = M in M'/v)N:

(\etboxx = M'mM'/v)N = letboxx = M in (M'/v)N

An easy induction shows that Proposition 2.3 continues to hold. The following proposition shows that the
/^-reduction rule for the modality • continues to be type-preserving:

Proposition 2.4. If A; - h M : Aand A,x : A;T \- N ^ Bf then A;T h [M/x]N ~ B.

2.4 Primitive types

A primitive type is one for which value mobility is an inherent property. For example, a boolean value, of
type bool, is atomic and does not contain references to local resources. Therefore boolean values are always
globally valid and A; T h M : bool semantically implies A ; T h M ~ bool. Under the above type system,
however, value mobility for primitive types should be expressed explicitly by programmers.

As an example, consider a primitive type nat for natural numbers:

type A ::= • • • | nat
term M ::= • • • | zero | succ M
value V ::= • • • | zero | succ V

We use the following construct for primitive recursion over nat:

term M ::= • • | rec M of /(zero) => M / /(succ x) => M

A ; T h M : n a t A ; T h M : n a t
A ; n - M 0 : ^ A;rhM0-A
A; T, x : nat, f(x) :A\- Mi: A A, f(x) ~ A; T, x : nat h Mi ~ A

A; r h rec M of /(zero) => Mo :A A; T h rec M of /(zero) => Mo ~
I /(succ x) => Mi / /(succ x) =» Mi

Now, for any term M such that A ; F h M : nat, we explictly express its value mobility with the following
term M~, which evaluates to the same value as M and also satisfies A; T h M~ ~ nat:

M~ = rec M of /(zero) => zero / /(succ x) =^ letcir i; = cir f(x) in succ v

type A ::= A D A | DA \ OA
term M ::= x \ Xx: A. M \ M M | box M | letbox x = M in M

v | cir M | letcir v = M in M
value V ::= Xx: A. M \ box M \ v \ cir M

x :: Ae A or x:AeT- v ~ AeA
— Cvar A ^ , 1A ; r h x : 4

A,Tyx :AhM :B A;ThM:ApB A;ThN:A
A;T\-XX:A.M:ADB

 D l A;ThMN:B Dl

A ; - h M : A A ; r h M : D i A,x :: A;T h N : B
l_JI A T \ I I . 1 % /f ' AT 7 5 ~" '—'•—A; T h box M : D^i lJI A; T h letbox a: = M in JV :

A;T\-M:DA A, x :: A;T \-N ~ B
—• • rip'

A;T h letbox x = M in N ~ B u c

A ; r h M ~ A A;TI-M:OA A,t; ~ vl;r h JV : .5
A; T h cir M : OA ° A; T h letcir v = M in JV : B

A;T h M : OA A,v ~ A;Th N ~ B ,

A; T h letcir v = M in JV ~ B O E

Prim~

Figure 1: Syntax and type system of AQO •

We choose to take advantage of the fact that every term M of a primitive type can be converted into
an equivalent term M~ with value mobility as illustrated above, and introduce the following typing rule in
which value mobility for primitive types is built-in:

; T I- M ~

Here A^im is a primitive type (̂ 4 D A, DA9 and OA cannot be a primitive type). With the rule Prim~ in
the type system, we can easily express value mobility for primitive types.

The price we pay for the rule Prim~ is that /3-reduction —*/JQ is n o longer valid: letcir v = cir M in N
may typecheck while (M/v)N is not defined. For example, M = Mi M2 of type nat satisfies A; T \- M ~ nat
by the rule Prim~, but (Mi M2/v)N is not defined. Intuitively the rule Prim~ disguises an unanalyzable
term of a primitive type as an analyzable term.

A quick fix is to reduce letcir v = cir M in N only if M is already a value V:

letcir v = cir V in N -^$o [V/v]N (—*Po redefined)

Note that we write [V/v]N for (V/v)N. Thus, in order to reduce letcir v = cir M in AT, we are forced to
reduce M into a value first, instead of analyzing M to transform the whole term. Such a reduction strategy
is reflected in the operational semantics, as we will see in Section 4.

Now we have introduced all typing rules of Ano (See Figure 1.) All the previous propositions, ex-
cept Proposition 2.3, continue to hold for the type system of Ano. The following proposition proves that
A; T h M ~ A is stronger than A; T h M : A:

Proposition 2.5. The following typing rule is admissible:

A;T\-M ~ A
A;T\-M:A ~'

Proof. By induction on the structure of A; V \- M ~ A •

2.5 Example

To express term mobility and value mobility for each new construct M, we provide a rule for ordinary typing
judgment A;T h M : A and optionally another rule for typing judgment A ; T h M ~ A As an example,
consider constructs for memory allocation. We regard a heap cell as a local resource; hence its pointer is
assumed to be valid only at the node where it is allocated. We use type ptr A for pointers to heap cells
containing values of type A. For the sake of brevity, we do not consider typing rules for pointers.

type A ::= ptr A

term M ::= new M | read M | write M M

The three constructs work as follows:

• If M evaluates to a value V, then new M allocates a new heap cell containing V and returns its pointer
L

• If M evaluates to a pointer /, then read M returns the contents of the heap cell pointed to by Z.

• If M evaluates to a pointer I and N evaluates to a value V, then write M N writes V to the heap cell
pointed to by I and returns V.

The rules for the ordinary typing judgment reflect how these three constructs work:

A;T\-M:A A;rhM:ptr,4 A,T\-M:ptrA A;T\~N:A
New A ^ . T T T — I Read A ^ , r-—TTTF—A WriteA ; r h n e w M : p t r ^ " c w A ; T h r e a d M : ^ lxccau A;T h write M N : A

Thus any of these constructs is mobile if its argument is globally valid. For example, box new M (of type
• ptr A) typechecks if M is globally valid, which means that allocating a new heap cell itself can be done
at any node. Once we finish evaluating new M, however, the result is no longer mobile (because it is a
pointer), which implies that the following rule is not allowed:

(wrong)
A; T h new M ~ ptr A

Since the value contained in a heap cell is not necessarily globally valid, we do not allow the following rule:

A _ ,— ' - T (wrong)
A ; T h r e a d M ~ A v *'

The following rule is safe to use because write M N returns the value to which N evaluates:

A ; T h M : p t r A A;T h N - A
A; T h write M N ~ A Write'

As an example involving primitive types, let us build a mobile term adding two natural numbers. The
following term does not typecheck because variables x and y are not added to the mobile typing context:

Xx: nat. Xy: nat. box (x + y)

We can make it typecheck by converting x and y into value variables vx and vy (using the rule Prim~):

Xx: nat. Xy: nat. letcir vx = cir x in
letcir vy = cir y in
box (vx + vy)

g

The foUowing term copies mobiles terms contained in variables x and y, and the evaluation of the resultant
mobile term may take longer than adding two natural numbers:

Ax: Dnat. Xy: Dnat. letbox x' = x in
let box yf = y in

The following term first finishes evaluating mobile terms contained in variables x and y:

Xx: Dnat. Xy: Dnat. letbox x1 = x in letcir vx = cir x1 in
letbox y1 — y in letcir vy = cir 2/ in
box (vx + vy)

2.6 Logic for AQO

Modal types DA in A^o use the same type system for necessity of modal logic of Davies and Pfenning [6,
14]. A minor difference is that our interpretation of the modality • is spatial (CM means that A is true at
every node), whereas their interpretation is temporal or proof-theoretic.

The type system for modal types OA is unusual in that it differentiates values (i.e., terms in weak head
normal form) from ordinary terms, as shown in the rule Val. This differentiation implies that the logic
corresponding to the modality O requires a judgment that inspects not only hypotheses in a proof but also
inferences rules in it. Thus the modality O sets itself apart from other modalities and is not found in any
other logic.

A substitution (M/v)N for the modality O is similar to (and was inspired by) those substitutions for
modal possibility and lax truth in [14] in that it is defined inductively on the structure of the term being
substituted (i.e., M) instead of the term being substituted into (i.e., N). In fact, we may even think of
(M/v)N as substituting N into M because conceptually N is replicated at those places within M where
the evaluation of M is finished.

We close this section with a discussion of the properties of the modalities • and O. Note that the two
modalities interact with each other, although they are developed in an orthogonal way.

• DA D A Xx:DA. letbox y = x in y
A mobile term is a special case of an ordinary term.

• DA D DD^4 Xx: DA. letbox y = x in box box y
A mobile term itself is mobile.

• D(A DB)DDADDB XX:D(A D B). Xy: DA. letbox xf = x\x\ letbox y1 = y\n boxx'y'

• OA D A Xx:OA. letcir v = x in v
A mobile value is a special case of an ordinary term.

• OA D OCL4 Ax: OA. letcir v = x in cir cir v
A mobile value itself is mobile.

• OADDA XX:OA. letcir v = x in box v
A mobile value is a special case of a mobile term.

• DA D ODA Xx: DA. letbox y = x in cir box y
box M is a mobile value.

• OA D DOA \x:OA. letcir v = x in box cir v
cir V is a mobile term.

D D i Ax: DO A letbox y = x in box letcir t> = x/ in v
(derivable from DOA D OA D DA)

• CO.4 2
If OQA D OA held, DA and O-A would be equivalent because of OA D DA and DA D ODA D OA.

3 Modal language ADou' with indexed modalities

In the definition of Ano, "mobile" is synonymous with "globally valid": a mobile term or value is valid at
any node in the network. Such a model for distributed computation is adequate if all participating nodes are
assumed to be homogeneous and have the same permanent local resources. In a grid computing environment,
for example, a mobile term valid at a particular remote node is also globally valid and can be evaluated at any
other remote node. For a heterogenous group of nodes with different permanent local resources, however,
AQO becomes inadequate because a mobile term or value is not always globally valid. For example, a client
node may transmit to a printer server a "mobile" term for printing a document; such a mobile term can be
evaluated only at printer servers and is not globally valid. Since this notion of restricted mobility is useful
in practice, we extend AQO to allow terms and values valid only at specific nodes.

The main design issue is whether or not the type system specifies a node at which a mobile term or value
is valid. As an example, consider a mobile term M that is valid only at printer servers (e.g., for printing
a document). There are two approaches to expressing its mobility with a type. In one approach, the type
system does not specify the node at which M is to be evaluated; instead it only indicates that there exists a
certain node at which M can be evaluated. In this case, it is the linker or the runtime system that decides
where to evaluate such a mobile term. In the other approach, the type system specifies explicitly the node at
which M is to be evaluated. In this case, it is the type system that decides where to evaluate such a mobile
term.

The first approach is attractive because the type system abstracts from any particular network configu-
ration. For example, new printer servers can be deployed into the network and old printer servers can be
removed without changing the type system. The second approach is useful if the network configuration is
static. For example, if the set of available printer servers is published and never changes, programmers can
specify a printer server with an appropriate type involving its identifier. In this paper, we adopt the second
approach to extend Ano and leave it as future work to apply the first approach.

We extend Ago with two indexed modalities D^ and O^ with the following interpretation:

• A value box^ M of indexed modal type D^A contains term M which is valid at node u>.

• A value cir^ M of indexed modal type O^A contains term M which evaluates to a value valid at node
u/.

Since the type system of Ano is incapable of expressing properties of a term with respect to specific nodes,
we replace the typing judgments of Ano by a new form of typing judgment A; T h^ M ~ A @ u/:

• A; T h^ M ~ A @ u/ means that under mobile typing context A and local typing context I\ term M
at node u> evaluates to a value of type A valid at node u/.

• A; T K; M : A is a shorthand for A; T h^ M ~ A @ u;, where u) may be thought of as the current
node for typechecking M. Note that it is not a separate judgment.

10

A mobile typing context A is defined as before, but a local typing context T now contains only those binding
relativized to a specific node:

mobile typing context A ::= • | A, x :: A | A, v ~ A
local typing context T ::= -\T,x:A@u;\T,v^A@u;

• x :: A in A means that x holds a globally valid term of type A.

• v ~ A in A means that v holds a globally valid value of type A.

• x : A @ UJ in T means that x holds a term valid at node a;.

• t; ~ A @ a; in F means that v holds a value valid at node u.

Note that the use of typing judgment A; T h^ M ~ A @ u/ implies that a term may evaluate to a value that
is not valid at the node at which it is evaluated. For example, a term may scan a list of handles for remote
files and select one; the evaluation is safe as long as the selected handle is not dereferenced. We refer to our
new modal language with indexed modalities as AQO^ .

The syntax of Ano^ is as follows:

type A ::= A D A \ DA \ UUA \ OA \ O^A
term M ::= x\ XxiA.M \ M M \ box M | box^ M | letbox x = M in M |

v | cir M | cir^ M | letcir v = M in M
value V ::= XxiA.M | box M | box^ M \ v | cir M \ cir^ M

For the sake of simplicity, we reuse letbox x = M in N and letcir v = M in iV to expose terms inside
Mf and cir^ Mf (as well as box Mf and cir M'). Thus both letbox x = box Mf in JV and letbox x =
M; in N substitute M1 for x in AT; similarly both letcir v = cir M' in N and letcir v = cir^ Mf in AT

first reduce M' to a value, which is then substituted for v in N.
Figure 2 shows the typing rules of XQCF'• All these typing rules look similar to those of AQO, except

that we explicitly annotate every typing judgment with a node at which the evaluation is to take place and
another node at which its end result is valid. For each form V of value, we provide a typing rule for the
judgment A; T h^ V : A only; in order to decide where else V is valid, we use the rule Val^. Note that
in the rule Dlvr, the local typing context T of the conclusion is carried over to the premise (whereas in the
rule Dl of Ano» it is replaced by an empty local typing context). This is safe because an arbitrary node a/
(instantiated by fresh u/) serves as the current node in the premise.

The rules Cvarvr and Vvar^ prevent references to local resources from being dereferenced at remote
nodes. Suppose x : A@ u;eT9v^A@u;eT, and u/ ^ w. In order to "evaluate" the term in x
(which perhaps contains references to local resources belonging to UJ) at u;\ we should be able to derive
A; T h /̂ x ~ A @ u" for a certain node u", which is impossible because of the rule Cvarvr; in order to
"use" the value in v (which is perhaps a reference to a local resource belonging to a;) at u/, we should be
able to derive A; V h /̂ v : A, which is impossible because of the rule Vvar^y. Note, however, that we can
derive A-.Th^ v ^ A@ u;, which implies that a reference to a local resource may be present at remote
nodes as long as it is not dereferenced.

As value mobility for primitive types is built-in in the rule Prim~vr, we reduce letcir v = cir M in N
and letcir v = cir^ M in N only if M is already a value, as in Ano. Thus all /3-reduction rules are defined
in terms of an ordinary substitution [M/x]N or [V/v]N:

(Xx :A.N)M —£3 [M/x]N
letbox x = box M in N ->pn [M/x]N

letbox x = box^ M in N -*pQr [M/x]N
letcir v = cir V in N ->po [V/v]N

letcir v = cir^ V in N ->0O, [V/v]N

11

xr.AeA or x:A@u>€.r r v~ Ae A or v ~ A@u>€F
- Lvarw

A;T\-ux:A ^°w A'.Th^viA

' — - j — j — — - Valjy (w ^ <*>')

A; T, x : A @ u h^ M : B A; T h^ M : A D B A'.Th^N :A

fresh J A;T \-u> M : A A j f ^ M :UA A,x :: A;T ĥ , JV ~ J3 @ t«/

M :A , A;ri-MAf:EUA A;T,x : >1 @ J' hM JV
A; T h^ letbox x = M in AT ~ B @ a/

A;rhwAf;Oi4 A,t; ~ A;T \-» N ~ B @ J
W A; T h letcir v = M in JV ~ B @ w' ^A;n-wdrAf :O>1 W A; T h^ letcir v = M in JV ~ B

fa/ , A; T hw M : OW»A A;T,v ~ A@ u;" \-» N ~ B, A; T hw M : OW»A A;T,v ~ A@ u; \» N ~ B @ u ,
°^w A T h l t i M i JV B @ / ^A;T\-u,dru>M:Ou>A°^w A;T hw letcir v = M in JV ~ B @ a/

Figure 2: Typing rules of AQOU •

The following propositions imply that all these /3-reductions are type-preserving:

Proposition3.1. / /A;T h^ M : AandA;Tyx : A@u>"' h^ N - B @ c*/f f/̂ n A;T h^ [M/x]JV - B @ J.

Proposition 3.2. 7/A;T K// Af : Afar any node CJ" and A, x :: A^Thu N ~ B @ d, thenA.Th^ [M/x]N ~B@v'.

Proposition33. / / A ; r h ^ V : ,4a/w/A;I> - A @ J' h^ JV - B @ u;7, r/ien A;T h^ [V/v]iV - S Q a/.

Proposition 3.4. IfA,T h^ F : Afar any node u" and A, v ~ A^rhu N ~ B @ u;', thenA^TY-^ [V/v]N ~B@v'.

3.1 AQO^ as an extension of AQO

Since all the /̂ -reduction rules of AQO arc included in Ano^, any reduction sequence in AQO is also valid in
AQO^ . All the typing rules of AQO can also be rewritten in terms of typing judgments in AQO^ • Intuitively
A;T h^ M ~ A @ J is more expressive than A;T h M : A and A;T\- M ~ A because u> and J can be
instantated into arbitrary nodes. Given a local typing context T in Ano, we write [T]u for a local typing
context in Ano^ that attaches @ w to every binding x : A in F:

[T]" = {x:A@u>\x:A€T}

The following proposition shows how to interpret typing judgments in AQO in terms of those in

Proposition 3.5.
IfA; r h M : A then A; [T]" h^ M : Afar any node w.
If A; T h M ~ A f/ien A; [TĴ h^ M ~ A @ u / / ^ any norfe5 c^ a/u/ J.

12

3.2 Logic for

As every typing judgment in And*' is relative to a certain node, the logic for AQO^ requires judgments
relativized to nodes. For example, x : A @ w in a local typing context corresponds to a judgment that A is
true at node v. Since the indexed modalities D^ and Oa; directly internalize nodes within propositions, the
logic for AncT is a restricted form of hybrid logic [2].

The notion of judgment relativized to nodes is also a suitable basis for the semantics of modal logic.
For example, Simpson [15] provides a natural deduction system for intuitionistic modal logic based upon
relative truth. The fragment of Anow> without the indexed modalities can be explained in a similar way,
with the assumption that all nodes are visible (or accessible) from each other. This assumption is justified
because in a distribution computation, all nodes can communicate with each other.

The type system presented in this section is appropriate for understanding the roles of the modalities
• and O and the indexed modalities D^ and O^. It is not, however, expressive enough for distributed
computations in which communication constructs may generate terms whose type is determined by remote
nodes. For example, a synchronization variable produced by a future construct (to be explained in the next
section) is essentially a pointer to a remote node, which determines its type. In the next section, we extend
the type system of AQO^ SO that we can typecheck such terms, and also develop a network operational
semantics which is capable of modeling distributed computations.

4 ADou' for distributed computation

In this section, we develop an extended type system and a network operational semantics for AQOW . We
demonstrate the use of modal types with three communication constructs: remote evaluation, futures, and
asynchronous channels. We prove the type safety of the network operational semantics, Le.9 its type preser-
vation and progress properties, in the presence of these communication constructs. The type safety implies
the safety of mobile terms and mobile values.

4.1 Physical nodes and logical nodes

So far, we have restricted ourselves to physical nodes by interpreting u; as an identifier of a physical node.
For example, u may refer to a printer server or a database server. While appropriate for the type system,
this interpretation poses a problem when we model distributed computations. For example, if a database
server initiates a stand-alone computation for each query it receives, we cannot distinguish between these
stand-alone computations with different node identifiers. Therefore there arises a need for logical nodes,
each of which performs a single stand-alone computation. In order for a physical node to perform multiple
stand-alone computations concurrently, it spawns the same number of logical nodes.

We distinguish between physical nodes and logical nodes as separate syntactic categories:

physical node LJ
logical node 7

A logical node on physical node u; inherits all permanent local resources belonging to UJ. Therefore a term
valid at physical node u; is valid at every logical node on a;.

We assume two primitives, new 7 and new 7 @ a;, for creating logical nodes. V(y) stands for the
physical node with which logical node 7 is associated, as defined below. Note that it is not defined as the
actual physical node where logical node 7 resides:

• new 7 creates a new logical node 7 which may reside at an arbitrary physical node (including the
physical node invoking new 7 itself). If 7 is created with new 7, then ^ (7) is a fresh physical node

13

oj (which is different from any existing physical node).
Example: new 7 searches for an idle computer in the network and establishes a logical node 7 on it.

• new 7 @ uj creates a new logical node 7 at physical node a;. If 7 is created with new 7 @ a;, then

Example: new 7 @ <j contacts a database server u; and requests a logical node 7 on it.

We assume that every physical node w publishes a local typing context rS*1™ which records the type
of its permanent local resources with bindings v ~ A @ a;, where v may be thought of as a reference to
a permanent local resource. We require that A not be a primitive type (to ensure the progress property in
Theorem 4.5). We write Tperm for the union of all known local typing contexts T^rm.

4.2 Configuration

We represent the state of a network with a configuration C which records the term being evaluated at each
logical node. A configuration type A records the type of the term and the mobility of the resultant value. We
assume that no logical node appears more than once in C and consider C as an unordered set.

configuration C ::= • | C, M at 7
configuration type A ::= • | A, 7 ~ A@ u; \ A, 7 ~ .A @ *

• M at 7 in C means that logical node 7 is currently evaluating term M.

• 7 ~ 4̂ @ u; in A means that the term at logical node 7 evaluates to a value of type A valid at physical
node a;.

• 7 ~ 4̂ @ • in A means that the term at logical node 7 evaluates to a globally valid value of type A.

The extended type system is formulated with a configuration typing judgment C :: A, which means that
configuration C has configuration type A. The network operational semantics is formulated with a configu-
ration transition judgment C = > C\ which means that configuration C reduces or evolves to configuration
C". We first consider the extended type system and then the network operational semantics.

4 3 Extended type system

In order to be able to typecheck those terms whose type is determined by remote nodes, we introduce an
extended typing judgment which includes a configuration type as part of its typing context:

• An extended typing judgment A; A; T h^ M ~ A @ J means that under configuration type A, mo-
bile typing context A, and local typing context I\ term M at any logical node on physical node UJ
evaluates to a value of type A valid at physical node u/. We assume rperm C I\ which means that all
references to permanent local resources are public.

• A; A; T h^ M : A is a shorthand for A; A; T h^ M ~ A @ u>.

The rules for extended typing judgments are derived from (and given the same name as) those in Figure 2
by prepending a configuration type A to every judgment A; T h^ M ~ A @ u/.

14

The configuration typing judgment is defined in terms of extended typing judgments. It has only one
inference rule, which may be regarded as its definition:

for each M at 7 G C,
7 ~ A @ UJ € A and A; •; r**1™ h p (7) M ~ A @ a;, or
7 ~ A @ • G A and A; •; T^1™ hp (7) M ~ A @ u) for a fresh node u>.

_ _ Tcfg

We assume \C\ = |A| to maintain a one-to-one correspondence between C and A; hence A contains exactly
one element for each logical node in C.

4.4 Network operational semantics

The configuration transition judgment uses evaluation contexts in a call-by-name style; we could equally
choose a call-by-value style with another case (Ax: A. M) K for evaluation contexts:

evaluation context K ::= \\ \ K M | letbox x = K in M \
letcir v — K in M \ letcir v = cir K in M \ letcir v = cir^ K in M

An evaluation context K is a term with a hole \\ in it, where the hole indicates the position where a reduction
may occur. The following rule shows how to use the /^-reduction rules of Ano^ in the network operational
semantics; —• refers to the one of the /3-reduction rules —>#> —•/#:> —*/O> ~>/?o> ~*&of

MM >N R r
C, K[M] at 7 => C, K[N] at 7 8

Note that a configuration transition is nondeterministic, since the rule Rcfg can choose an arbitrary logical
node 7 from a given configuration.

We also need another configuration transition rule to deal with value variables in r ^ "" . Suppose that a
value variable v is a reference to a permanent local resource V of a physical node u> (hence v ~ A @ u* e

^ p o r e x a mpi e^ y COuld be a printing function at a printer server u. At a logical node 7 such that
u>, v does not need to reduce to V because V is not valid at 7 anyway. If V(y) = u>, however,

v reduces to V by accessing the local resource. Thus, for each binding v ~ A @ u; G r^1™, we define a
reduction

such that V is not another value variable and •; •; rp e r m h^ V : A holds. The following rule specifies that a
reference to a permanent local resource reduces to a value only at the node to which it belongs:

— Rvalvar
C, K[V] a t 7 => C, K[V] a t 7

Thus the rule Rvalvar ensures that references to permanent local resources are never dereferenced at remote
nodes.

4.5 Communication constructs

The network operational semantics becomes interesting only with communication constructs; without com-
munication constructs, all logical nodes perform stand-alone computations independently of each other and
the type safety holds trivially. Below we give three examples of communication constructs. Each construct
is defined with extended typing rules and configuration transition rules.

15

type A ::= •• • | unit
term M ::= • • • | () | eval M
value V : : = . . . | ()
evaluation context K ::= • • • | eval K

A; A;T h^ M : DA A; A;T h^ M : D^A
H Teval A, A . r , u ^ e v a | *, _ .._^ Teval®

Reval

Reval®

A; A; T h^ () : unit v/ A; A; T h^ eval M : unit ' e v a i A; A; T h^ eval M : unit

nett; 7'

C, ^[eval box M] at 7 => C,«[()] at 7, M at

new 77 @ a;'
C, ^[eval box^/ M] at 7 ==• C,«[()] at 7, M at

Figure 3: Definition of the remote evaluation construct.

4.5.1 Remote evaluation

In order to be able to evaluate a mobile term at a remote node, we introduce a remote evaluation construct
eval M. It expects M to evaluate to box N or boxa, N and transmits N to a remote node. Unlike a remote
procedure call, it does not expect the result of evaluating N and immediately returns a value () of type unit.

Figure 3 shows the definition of the remote evaluation construct. The rule Reval creates a new logical
node 77 with new 7' because M may be evaluated at any node. In contrast, the rule Reval® creates a new
logical node y with new y @ J because M may be evaluated only at node u/.1

4.5.2 Futures

A future construct [8] is similar to a remote procedure call in that it initiates a stand-alone computation at a
remote node and also expects the result. The difference is that it does not wait for the result and immediately
returns a synchronization variable which points to the remote node. When the result is needed, it is requested
through a synchronization operation. If the remote node has finished the computation, the result is returned;
otherwise the synchronization operation is suspended until the result becomes ready. We can simulate
a remote procedure call by performing a synchronization operation immediately after evaluating a future
construct.

Figure 4 shows the definition of the future construct future M. It expects M to be of type DO A, D^OA,
• O ^ / A, or CLOo/ A. If M evaluates to box N, it initiates a stand-alone computation of letcir v = N in v at
a new logical node 7 created with new 7 and returns a synchronization variable syncvar 7 of type A sync;
if M evaluates to box^ AT, it initiates the same stand-alone computation at a new logical node 7 created
with new 7 @ UJ and returns a synchronization variable syncvar 7 of type A sync^. Since N has type OA
or 0^' A, letcir v = N in v evaluates to a mobile value of type A that is valid either at any node or at node
d. The result is requested through a synchronization operation syncwith syncvar 7.

Note that a synchronization variable itself is inherently mobile and we can synchronize with it at any
node. Intuitively it is just a pointer to a certain logical node and hence is globally valid. The result of a
synchronization operation may not be valid at the node where it takes place, but the typing system correctly

*A remote evaluation construct can be simulated by a future construct; we present the remote evaluation construct
only as a simple example of using modal types D 4̂ and D^A As we will see below, eval M is simulated as
let . = future (letbox x = M in box let . = x in cir ()) in () where let x = M in N is standard let-binding and _ is a wildcard
pattern.

16

indicates the mobility of the result. For example, in the rule Tswith7, the result of evaluating syncwith M is
valid only at node u/, which is correctly indicated by @ u/ in the typing judgment of the conclusion.

The rules Tsvar and Tsvar7 show that a configuration type A is necessary in extended typing judgments
in order to typecheck synchronization variables. Since synchronization variables are created only by the
future construct and do not appear in a source program, we need these rules only for proving the type safety.

type A ::=
term M ::=
value V ::=
evaluation context K ::=

I A sync | A sync^
I future M | syncvar 7 | syncwith M
Isyncvar 7
I future K I syncwith K

A; A; F h^ M : DOA A ; A ; F K ; M . _^
A; A; F h^ future M ~ ^ sync @ cv* T f u t u r e A; A; F h^ future M ~ ^ sync @ u* T f u t u r e ®

A; A; F K, future M ~ A sync^ @ a;* T f u t u r e / A; A; F !-„ future M ~ A sync^,, @ u;* T f u t u r e @ /

Tsvar Tsvar7

A; A; F h^ syncvar 7 : A sync A; A; F h^ syncvar 7 : A

A'.A'.Th^MiAsync . A; A;F h^ M: ^ ^ . . . ^ .
A; A; F h^ syncwith M~A@LJ*

 T s w i t h A; A; F h^ syncwith M ~ A @ a;7 T s w i t h

new
C, ^[future box M] at 7 => C, /̂ [syncvar 77] at 7, letcir v = M in v at Y

'T7 @u/
C, K[future box^/ M] at 7 => C, ^[syncvar 77] at 7, letcir v = M in t> at 77

C, K[syncwith syncvar T7] at 7, V^ at 77 => C, K[F] at 7, V at T7

Figure 4: Definition of the future construct. u>* may be read as "any node."

Rfuture

Rfuture®

4.53 Asynchronous channels

An asynchronous channel is a first-in-first-out buffer containing values communicated among nodes. A
write operation adds a value to the buffer and always succeeds. A read operation removes the oldest value
from the buffer, if the buffer is empty, it waits until a new value is written. We assume that an asynchronous
channel is accessible to every node. This means that a value written to it must be globally valid, which in
turn means that a value read from it is also globally valid. A similar idea can be used to implement shared
variables, for which a write operation overwrites a single-entry buffer and a read operation leaves the buffer
intact.

We implement an asynchronous channel for type A as a special node holding a list of values of type
A. The node updates the list when a read or write operation is performed on the channel. It maintains the
invariant that every value in the list is globally valid.

Figure 5 shows the definition of asynchronous channels, nil and Vh :: Vu both of type A vlist, are
constructs for lists, newchan^ creates a new logical node 7 to implement an asynchronous channel for type
A, and returns a channel variable chanvar 7 of type A chan. A channel variable points to an asynchronous
channel and is globally valid. The rules Rreadc and Rwritec show how read and write operations manipulate
the node associated with an asynchronous channel.

17

Like synchronization variables for future constructs, channel variables are created only by newchan 4
and do not appear in a source program. Therefore we need the rule Tchanv only for proving the type safety.

type A : : = • • • | A chan | A vlist
term M ::= • • • | nil | V :: V | chanvar 7 | newchan^ | readchan M | writechan M M
value V ::= • • • | nil | V :: V | chanvar 7
evaluation context n ::= • • • | readchan n | writechan K M | writechan (chanvar 7) n

T ., A-&-T^Vh:A A; A; T K , ^ : ,4 vlist
Tvnil 1—A T, 1 77 7T—T—rrr Tvcon

A; A; T h^ nil : A vlist ' v m i A; A; V h^ Vh ::Vt:A vlist

7 ~ A vlist @ • e A
A ; A ; r K , chanvar 7 :^chan T c h a n v A; A; T \-u newchan^ ~ A chan @ u;* T n e w C

A; A; T h^ M : A chan
A; A; T h^ readchan M ~ A @ a;* T r e a d c

AjAsrhq; Af : Achan / T ^ / I ^ A; A;T h^ AT ^ ^ @ ^
A; A; T h^ writechan M AT ~ A @ ĉ * Twritec

next; 7'
C, ^[newchan^] at 7 ==> C, K[chanvar T7] at 7, nil at V

R r e a d °C, ^[readchan chanvar 7
r] at 7, Vh :: Ft at y => C, K ^] at 7, Vt at

C, «:[writechan (chanvar y) V] at 7, Vi :: • • :: V^ :: nil at 77 =>
C,«[^ at 7, Vi :: • • • :: Fn " V :: nil at y

Figure 5: Definition of asynchronous channels, u;* may be read as "any node."

4.6 Type safety

The type safety of the network operational semantics consists of two properties: configuration type preser-
vation (Theorem 4.1) and configuration progress (Theorem 4.5). Configxiration type preservation states that
a configuration transition does not alter the type and mobility of the term being evaluated at each node. Con-
figuration progress states that we can apply a configuration transition rule until every node has finished its
stand-alone computation or waits for a result from another node (by the rules Rswith, Rreadc, and Rwritec).

Theorem 4.1 (configuration type preservation).
IfC ::AandC=> C, thenC :: A'suchthat Ac A'.

Proof. By case analysis on C => C". There are three cases:
1) Co, K[M] at 7 = > Co, K[N] at 7
2) Co, K[M] a t 7 = » Co, K[N] at 7, AT7 at V
3) Co, K[M] at 7, M7 at y = > Co, K[JV] at 7, TV' at 7

;

In each case, we show that N preserves the type and mobility of M. In case 3), we also show that Nf

preserves the type and mobility of M'. d

Lemma 4.2 (Canonical forms). If A; ; rp e r m h^ V - A @ u/,
V = v,

18

A is a primitive type,
A = Ai D A2andV = \x:A\.M,
A = UBandV = boxM,
A = Uu'tB and V = box /̂/ M,
A = OBandV = drM,
A = Ou'fB and V = cir̂ // M,
A = unit andV = (),
A = B sync and V = syncvar 7,
A = B synqy/ and V = syncvar 7,
A = B chan and V = chanvar 7,
,4 = S vlist and V = nil,
or A = B vlist and V = Vh :: 14.

/ Suppose that V ^ v and >1 is not a primitive type.
If A = Ai D A2, then A; •; rperm h^ V ~ A @ J is derived by the rule D\\v, optionally followed by

the rule \ZB\W- Hence V = Ax: A\. M.
All the other cases are analogous. •

Lemma 43. If A; -; r*>erm \-uM~AQw', then

M = V ^v, M = vandv~A@u;'e T*™™,
M = K[V] andv~ B@ue T^1™, M = K[N] where N —• N',
M = Ac[eval box N], M = «[eval box^// N],
M = ^[future box AT], M = /c[future box^// N],
M = ^[syncwith syncvar 7], M = /^[newchans],
M = K[readchan chanvar 7], or M = /c[writechan (chanvar 7) V],

Proof. By induction on the structure of A; •; rperm h^ M ~ A @ w'. We present one case.

C a S e A^T^^M-A©.' P n m ^ (" ^ " } :

If M = V ^ i; by induction hypothesis, we are done.
M = v and v ~ A^im @ u; G r**1™ cannot happen by induction hypothesis, since the assumption on

quires that permanent local resources not be of a primitive type.
If M = K[M'] by induction hypothesis where

M' = vandv ~ B @u e r^"1,
M' —> N\ or
Mf is eval box N\ eval box ,̂" AT', future box N\ future box^f N'9 syncwith syncvar 7, newchan#,

readchan chanvar 7, or writechan (chanvar 7) V,
then we are done. •

Lemma 4.4. If A; A; T h^ K[M] ~ A @ d, then there exist B and J' such that A; A; T V-u M ~ B @ J'.

Proof By induction on the structure of K. D

Theorem 4.5 (configuration progress).
IfC :: A, then either there exists Cf such that C => C7, or C consists only of the following:

Vat 7,
^[syncwith syncvar T7] at 7,
K[readchan chanvar Y\ a* 7>
K[writechan (chanvar 7') V] at 7.

19

Proof. Suppose C = COjM a t 7. By the rule Tcfg, we have A; •; rp e r m h^ M ~ A @ J for V(i) = u
and a certain node u/. We do case analysis according to Lemma 4.3. We present one case.
Case M = ^[writechan (chanvar Y) V]:

By Lemma 4.4, we have A; •; rperm h^ writechan (chanvar Y)V ~B@ u".
By the rule Twritec (optionally preceded by the rule Prim ~w if -B is a primitive type), we have

A; •; T^1™ K; chanvar 7' : B chan.
By the rule Tchanv, we have Y ~ B vlist @ • 6 A.
Since C :: A, we have C = C'Q,M a t 7, iV a t Y and A; •; rp e r m l-?>(7>) N ~ B vlist @ a;* for a fresh

node a;*.
If N = Vi : :•••:: Vn :: nil (where 0 < n), then

Q, /c[writechan (chanvar Y) F] a t 7 , V i ::•••:: Vn :: nil a t Y = >
CJ, K[F] at 7, Vi :: • • • :: V̂ n :: V :: nil at </

Rwritec

Otherwise iV 7̂ Vi : :•••: : V^ :: nil and M is not further reduced. •

The two cases «[syncwith syncvar 77] a t 7 and ^[readchan chanvar T7] a t 7 in Theorem 4.5 can occur
during a distributed computation. Here is an example of a configuration whose transition gives rise to the
two cases:

syncwith future box cir (readchan newchan^) at 7
=> syncwith syncvar 7' at 7, letcir v = cir (readchan newchan^) in v at V
==> syncwith syncvar V at 7, letcir v = cir (readchan chanvar 7") in v at 7r, nil at 7"

Here node 7 waits for a result from node Y, which in turns waits for a value to be written to node 7". Since no
value can be written to node 7", the last configuration is stuck. The case K [writechan (chanvar Y) V] a t 7
in Theorem 4.5 occurs only when the term being evaluated at node Y cannot be reduced to a list of values
(whether empty or not), as clarified in the proof above. This case, however, does not actually occur because
an asynchronous channel is always initialized as nil by the rule Rnewc and never holds a term that is not a
list.

The type safety of the network operational semantics implies that mobile terms and mobile values are
both safe to use: well-typed terms never go wrong even in the presence of mobile terms and mobile values.

4.7 Example

Consider a network of two nodes S (server) and C (client). Node S has a printer attached to it, and provides
a function print for printing pdf files of type pdf. The printer accepts pdf files written only with local fonts,
and provides a function converts for converting ordinary pdf files into a suitable format. Node C has its
own conversion function converge-

= files ~ pdf @ S, converts ~ O(pdf D Ospdf) @ S, print ~ pdf D unit @ S
= fUec - pdf @ C, convertc ~ pdf D Ospdf @ C

We give three examples (similar to those in [9]) to illustrate how to describe tasks in Ano^ • All terms below
have type Dsunit and typecheck at any node. We use syntactic sugar rpc M for syncwith future M.

Printing a pdf file files of node S:
boxs (print files)

Printing a pdf file filec of node C after converting it with convertc-

letcir v = cirs rpc boxc (convertc fil^c) xn

boxs (print v)

20

Printing a pdf file filec of node C after converting it with converts:

boxs letcir v = converts in
letcir v' = cirs rpc boxc (v filec) in
print v1

5 Related work

5.1 Local resources in distributed computations

In designing a distributed system, there are several ways to handle references to local resources when they
are transmitted (as part of a mobile term) to a remote node. If the underlying system supports direct access
to remote resources, such a reference can be replaced in the remote node by a proxy which automatically
redirects all requests for the resource to the originating node. Obliq [3] adopts such a computation model,
in which local references are replaced by network references in a remote node.

\u& allows references to remote resources in mobile terms, but it also ensures that they are never
dereferenced. In essence, references to local resources become invalid when they are transmitted to remote
nodes, but their validity is restored when they are brought back to the original node. For example, if a term
M accesses local resources of node u> and returns a globally valid value of type A, then

syncwith future box^ cir M

can be evaluated at any node: wherever the above term is evaluated, it calls back with the same term M to
node a?, where all references in M again point to their corresponding local resources. The same computation
model is used by Mascolo et al. [11] in their treatment of references.

References to remote resources, as used in the above two computation models, are suitable for persistent
resources such as printers and databases, but they can be problematic for ephemeral resources which are
eventually destroyed. For example, die presence of references to remote heap cells incurs the problem of
distributed garbage collection [7]. An alternative computation model is one that permits no references to
remote resources either by rejecting mobile terms containing such references or by transmitting copies of
local resources along with mobile terms. Facile [10] supports such a computation model, in which local
resources are copied whenever their references (called singular values) are transmitted to a remote node.
Thus the problem with ephemeral resources is resolved at an increased cost of transmitting mobile terms.

5.2 Modal languages for distributed computation

Borghuis and Feijs [1] present a typed A-calculus MTSN (Modal Type System for Networks). It assumes
stationary services (Le.9 stationary code) and mobile data, and belongs to the client/server paradigm. An
indexed modal type Of (A —• B) represents services transforming data of type A into data of type B at
node u> (similarly to D^ (A D B) in AQOH). MTSN is a task description language rather than a programming
language, since services are all "black boxes" whose inner workings are unknown. For example, terms of
type tex —> dvi all describe procedures to convert tex files to dvi files. Thus reduction on terms is tantamount
to simplifying procedures to achieve a certain task.

Jia and Walker [9] present a modal language Arpc which belongs to the remote evaluation paradigm.
It is based upon hybrid logic [2], and every typing judgment explicitly specifies the current node where
typechecking takes place. The modalities • and 0 are used for mobile terms that can be evaluated at any
node and at a certain node, respectively.

Murphy et al [13] present a modal language Lambda 5 which addresses both code mobility and resource
locality. It also belongs to the remote evaluation paradigm, and is based upon modal logic S5 where all

21

judgments are relativized to nodes. A value of type DA contains a mobile term that can be evaluated at any
node, and a value of type ()A contains a label, a reference to a local resource. A label may appear at remote
nodes, but the type system guarantees that it is dereferenced only at the node where it is valid.

Although the intuition behind the modality • is the same, Arpc and Lambda 5 are fundamentally different
from Anow in their use of modal types DA in remote procedure calls. In both languages, a remote procedure
call, by the pull construct in Arpc and by the fetch construct in Lambda 5, is given a specific node where
the evaluation is to occur, and therefore does not expect a term contained in a value of type DA. Instead
it expects just a term of type DA, which itself may not be mobile but eventually produces a mobile term
valid at any node including the caller node. The resultant mobile term is delivered to (i.e., pulled or fetched
by) the caller node, which needs to further evaluate it to obtain a value. As such, neither language needs
to address the issue of value mobility. In contrast, a remote procedure call in XQC^ (by the eval or future
construct) transmits a term contained in a value of type DA and relies on the modality O for return values.
Such use of the modality • is natural in Ano^, since it supports remote procedure calls to unknown nodes.

Moody [12] presents a system which is based upon modal logic S4 and belongs to the remote evaluation
paradigm. The modality • is used for mobile terms that can be evaluated at any node, and the modality 0 is
used for terms located at some node. As in Ano w \ remote procedure calls use modal types DA to transmit
mobile terms to unknown remote nodes. Moody's system uses the elimination rules for the modalities •
and 0 to send mobile terms to remote nodes, and does not provide a separate construct for remote procedure
calls.

6 Conclusion and future work

We present a modal language A Q O ^ which ensures the safety of both mobile terms and mobile values. It
provides a flexible programming environment for various kinds of distributed computations. For example, if
the network evolves dynamically and no permanent local resources are known in advance, only modal types
DA and OA are necessary; if the network is static and every node publishes its permanent local resources,
we can program exclusively with indexed modal types D^A and Oo, A

The modality O is useful in Ano^ only because the unit of communication includes a value. That is, if
the unit of communication was just a term and did not include a value, the modality O would be unnecessary.
Then, however, the future construct would have to be redefined in a similar way to the pull construct of Arpc
and the fetch construct of Lambda 5, and asynchronous channels would be difficult to implement.

The three communication constructs of AQO^ are all defined separately. A better approach would be
to introduce a few primitive operations and then implement various communication constructs using these
primitive operations. For example, we could introduce a send operation for the modality • and a receive
operation for the modality O, and then implement the future construct using these operations. Because of
technical difficulties arising from asynchronous channels, however, we do not adopt this approach and define
all communication constructs separately.

A drawback of Ano^ is that in general, references to ephemeral local resources cannot be transmitted
to remote nodes. As an example, consider a pointer v of type ptr A at a logical node 7 created with new 7.
Node 7 wishes to use v as a shared pointer among all its child nodes, i.e., those nodes created with the eval
and future constructs. No child node, however, even knows the existence of v because the physical node u
in a binding v ~ A @ u; is not known statically. (If node 7 was created with new 7 @ u>9 then v could be
transmitted to remote nodes.)

To overcome this drawback, we are currently investigating how to augment Ano (not Ano^) with a
modality 0 similar to that of Jia and Walker [9]. The idea is that a term M in dia M of type OA can be
evaluated at a certain node, which is unknown to the type system but known to the runtime system. The use
of the modality 0 will allow us to dispense with indexed modalies D^ and Ou;.

22

Acknowledgment

I am grateful to Tom Murphy and Jonathan Moody for their helpful comments on an earlier draft of this
paper, and Karl Crary for his helpful comments on the type system.

References

[1] T. Borghuis and L. Feijs. A constructive logic for services and information flow in computer networks.
The Computer Journal, 43(4):275-289, 2000.

[2] T. Brauner. Natural deduction for hybrid logic. Journal of Logic and Computation, 14(3):329-353,
2004.

[3] L. Cardelli. A language with distributed scope. In Proceedings of the 22nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 286-297. ACM Press, 1995.

[4] A. Carzaniga, G. P. Picco, and G. Vigna. Designing distributed applications with mobile code
paradigms. In Proceedings of the 19th international conference on Software engineering, pages 22-32.
ACM Press, 1997.

[5] G. Cugola, C. Ghezzi, G. P. Picco, and G. Vigna. Analyzing mobile code languages. In Selected
Presentations and Invited Papers Second International Workshop on Mobile Object Systems - Towards
the Programmable Internet, pages 93-110. Springer-Verlag, 1997.

[6] R. Davies and F. Pfenning. A modal analysis of staged computation. Journal of the ACM, 48(3):555-
604,2001.

[7] F. L. Fessant, I. Piumarta, and M. Shapiro. An implementation of complete, asynchronous, distributed
garbage collection. In Proceedings of the ACM SIGPLAN1998 conference on Programming language
design and implementation, pages 152-161. ACM Press, 1998.

[8] R. H. Halstead, Jr. Multilisp: a language for concurrent symbolic computation. ACM Transactions on
Programming Languages and Systems, 7(4):501-538, 1985.

[9] L. Jia and D. Walker. Modal proofs as distributed programs (extended abstract). In D. Schmidt, editor,
Proceedings of the European Symposium on Programming, LNCS 2986, pages 219-233. Springer, Apr.
2004.

[10] F. C. Knabe. Language Support for Mobile Agents. PhD thesis, Department of Computer Science,
Carnegie Mellon University, 1995.

[11] C. Mascolo, G. P. Picco, and G.-C. Roman. A fine-grained model for code mobility. In Proceedings
of the 7th European software engineering conference held jointly with the 7th ACM SIGSOFT interna-
tional symposium on Foundations of software engineering, pages 39-56. Springer-Verlag, 1999.

[12] J. Moody. Modal logic as a basis for distributed computation. Technical Report CMU-CS-03-194,
Carnegie Mellon University, Oct. 2003.

[13] T. Murphy, VII, K. Crary, R. Harper, and F. Pfenning. A symmetric modal lambda calculus for dis-
tributed computing. In Proceedings of the 19th IEEE Symposium on Logic in Computer Science (UCS
2004). IEEE Press, July 2004.

23

[14] F. Pfenning and R. Davies. A judgmental reconstruction of modal logic. Mathematical Structures in
Computer Science, 11(4):511-540, 2001.

[15] A. K. Simpson. The Proof Theory and Semantics ofIntuitionistic Modal Logic. PhD thesis, Department
of Philosophy, University of Edinburgh, 1994.

A Proofs of the properties of AQO

Proposition A.I.
//A;T h M : Aand A;I\x : A h N : B, then A;T h [M/x]N : B.
If A]Th M : Aand A,r,x: Ah N ~B, then A;F\- [M/x]N ~ B.

Proof By simultaneous induction on the structure of of the derivation of A; r, x : A h N : B and A; T, x : A h N
Proof of the first clause:
Case N = x: [M/x]N = M

By the rule Cvar, A; T, x : A h N : B implies A = B.
A;T h M : ^implies A;T h [M/x]N : A.
Therefore A; T h [M/x]N : B.

Case N = y,y ^ x: [M/x]N = y
By the rule Cvar, A; T, x : A h iV : B implies y :: 5 e A or 2/: B G I\ x : A.
Since y ^ x,v/c have y :: 2? G A or y : B G F.
By the rule Cvar, A; T h y : B.
Therefore A; T h [Af/o;]JV : S.

Case N = v: [M/x]N = v
By the rule Vvar, A;T,x : A\- N : B implies v ~ B e A.
By the rule Vvar, A; T h v : B.
Therefore A; V h [M/x] AT: £.

Case N = Xy: Bf. N\ y ^ x, y not a free variable of M: [M/x]iV = Ay: B1. [M/x]N'
By the rule Dl, A; I \ x : A h AT: B impUes A; T,x : A,y : B' h N' : B" and B = B1 D B /;.
By weakening, A;Th M :A implies A ; r , j / : B ' h M : A
By induction hypothesis, A; I\ y : B1 h [M/x] AT7 : £".
By the rule Dl, A; T h Ay: Sr. [M/x] JV; : S' D B".
Therefore A; V h [M/x]iV : B.

Case AT = iVi AT2: [M/x]AT = [M / x] ^ [M/x]AT2

By the rule DE, A; I\ x : A h AT: S implies A; T, x : A h JVi : B; D B and A; T, x : A h AT2 : B'.
By induction hypothesis, A; V h [M/x]JVi : Bf D B and A; V h [M/x]AT2 : S ; .
By the rule DE, A; V h [M/x]iVi [M/x] AT2 : S.
Therefore A; T h [M/x]iV : B.

Case AT = box N': [M/x]N = box [M/x]AT
By the rule Dl, A ; I \ x : A h N : B implies A; • h N': Bf andB = OB'.
Since x is not a free variable of N\ we have [M/x]N' = AT'.
By the rule Dl, A; T h box [M/x] AT7 : • £ ' .
Therefore A; T h [M/x] AT: £.

Case AT = letbox y = ATX in AT2, y 7^ x, y not a free variable of M:
[M/x]AT = letbox y = [M/x]Ni in [M/x]AT2

BytheruleDE,A;r,x: A h AT: .Bimplies A;T,x : Ah Nx : DBX and A,y :: £ i ; I \ x : A h AT2 : B.
By weakening, A; T h M : A implies A, y :: Si; T h M : A.

24

By induction hypothesis, A; T h [M/x]Nx : QBi and A, y :: By T h [M/x]AT2 : £.
By the rule DE, A; T h letbox y = [M/x] ATX in [M/x]AT2 : £.
Therefore A; T h [M/x] AT : B.

Case AT = cir N': [M/x]N = cir [M/x]AT'
By the rule Ol, A; I\ x : A h N : £ implies A; I\ x : A h N' ~ J5' and B = OB'.
By induction hypothesis, A; T h [M/x]AT' ~ £'.
By the rule Ol, A; T h cir [M/x]TV' : OS7.
Therefore A; T h [M/x] AT: £.

Case N = letcir t; = Ni in AT2, i; not a free variable of M: [M/x]N = letcir v = [M/x]N\ in [M/x] AT2

BytheraleOE,A;r,x:^hAr:£impliesA;r,x: ,4hAri : OBi and A,v ~ £ i ; I \ x : >1 h iV2 : B.
By weakening, A; T h M : A implies A , v ~ B i ; r h M : A
By induction hypothesis, A; T h [M/x]iVi : OBi and A, r; ~ Bx\ T h [Af/x]JV2 : £.
By the rule OE, A; T h letcir t; = [M / x] ^ in [M/x]iV2 : B.
Therefore A; T h [M/x] AT: B.

Proof of the second clause:
If the rule Prim~ is used to deduce A; T,x : A h N ~ B:

A;T,x : Ah N : B and B is a primitive type.
By induction hypothesis, A; T h [M/x]AT: B.
By the rule Prim~, A; T h [M/x] AT ~ B.

Now AT cannot be an application iVi AT2 or a variable y.
Case AT = V:

By the rule Val, A; I\ x : A h AT ~ B implies A; • h N : B.
Since x is not a free variable of N9 we have [M/x]N = N.
By the rule Val, A; T h [M/x]N ~ S.

Case AT = letbox y = iVi in AT2, y ^ x, y not a free variable of M:
[M/x]AT = letbox y = [M/x]^ in [M/x]AT2

By the rule DE', A; I\ x : A h AT ~ S implies A; T,x : ,4 h ATX : DBi and A, y :: B^T^x : Ah N2 ~ B.
By weakening, A; F h M : A implies A, y :: B\\ T h M : A.
By induction hypothesis, A; T h [M/x]Ni : UB\ and A, y :: Bi; T h [M/x]N2 ~ B.
By the rule DE;, A; T h letbox y = [M/x]ATi in [M/x]AT2 - B.
Therefore A; T h [M/x]AT ~ B.

Case N = letcir v = N\ in AT2, v not a free variable of M: [M/x]N = letcir t; = [M/x]N\ in [M/x] AT2

B y t h e r u l e O ^ A ^ x : A h N ~ Bimplies A ; I \ x : A h JVi : O#i and A, v ~ B i ; r , x : >1 h AT2 ~ B.
By weakening, A; V h M : A implies A, v ~ B\\ T h M : A.
By induction hypothesis, A; T h [M/x]Ni : OBi and A, v ~ By, T h [M/x]N2 ~ B.
By the rule OE7, A; T h letcir v = [M/x]Ni in [M/x]N2 ~ B.
Therefore A; T h [M/x] N ~ B. D

Proof of Proposition 2.2 and Proposition2.4:

Proof. By simulataneous induction on the structure of the derivation of A, x :: A', T h N : B and A, x :: A; T h N
Proof of Proposition 2.2:
Case N = x: [M/x]N = M

A;-hM:A implies A; • h [M/x] N : A.
By weakening, A; • h [M/x]AT : A implies A; T h [M/x]N : A.
A, x :: A; T h N : B implies A = B.
Therefore A; T h [M/x]N : B.

Case N = y,y^x: [M/x]N = y

25

By the rule Cvar, A, x :: A F h N : B implies y :: B e A, x :: A or y : B € T.
Since y ^ x, we have y :: B G A or y : B G F.
By the rule Cvar, A; V h y : £.
Therefore A; V h [M/x] AT : £.

Case AT = v: [M/x]N = v
By the rule Vvar, A,x :: A;T \- N : B implies v ~ f? € A, x :: A which means V ^ B G A .

By the rule Vvar, A; T h i;: B.
Therefore A; V h [M/x] AT: B.

Case N = \y: B'. N\ y ^ x, y not a free variable of Af: [M/x] AT = Ay: B'. [M/x]Nf

By the rule Dl, A, x :: A; T h AT: B implies A, x :: A; T, y : .B7 h 7V; : .B77 and B = S7 D B7/.
By induction hypothesis, A; I\ y : S7 h [M/x]N' : S77.
By the rule Dl, A; T h Ay: B7. [M/x]N' : B' D B77.
Therefore A; T h [M/x] AT: £.

Case AT = Nx N2: [M/x]N = [M/x]Nx [M/x]N2

By the rule DE, A, x ::A;ThN : B implies A, x :: A;T h ATX : B7 D S and A , x :: A;T h AT2 : B7.
By induction hypothesis, A; T h [M/x] ATX : B1 D B and A; T h [M/x]AT2 : 5 7 .
By the rule DE, A; T h [M/x]JVi [M/x]AT2 : B.
Therefore A; T h [M/x] AT: 5.

Case N = box AT7: [M/x]AT = box [M/x]AT7

By the rule D\9A,x::A;T\-N:B impUes A,x :: A;- h N' : B' and B = DB'.
By induction hypothesis, A; • h [M/x] AT7: B'.
By the rule Dl, A; T h box [M/x]AT7: DS7.
Therefore A; T h [M/x] AT: 5.

Case AT = letbox y = ATi in JVjj, y 7^ x, y not a free variable of M:
[M/x]AT = letbox y = [M/x]Nx in [M/x]AT2

By the rule DE, A, x :: A-Th N : 5impUesA,x :: A;Th Nx : DJ5i and A ,x :: A,y i.B^Th N2 : B.
By weakening, A; • h M : A implies A, y :: 2?i; • h M : A
By induction hypothesis, A; T h [M/x]ATx : DSi and A, y :: £1; T h [M/x]AT2 : B.
By the rule DE, A; T h letbox y = [M/x]Nx in [M/x]AT2 : B.
Therefore A; T h [M/x] AT: B.

Case AT = cir Â 7: [M/x]AT = cir [M/x]AT7

By the rule Ol, A,x :: A,T h N : B implies A,x :: A;T h AT7 ~ B7 and B = OBf.
By induction hypothesis, A; T h [M/x] AT7 ~ B7.
By the rule Ol, A; T h cir [M/x] AT7 : OS7.
Therefore A; T h [M/x]N : B.

Case AT = letcir v = Ni in AT2, i; not a free variable of M: [M/x]N = letcir v = [M/x]N\ in [M/x]AT2

By the rule OE, A, x :: A;T\- N : ^implies A,x :: A;T h Â i : O£i and A,x :: A v ~ B^T h AT2 : B.
By weakening, A ; « h M : A implies A, v ~ S i ; • h M : A
By induction hypothesis, A; T h [M/x]A^i : OJBI and A, t; ~ Bi; T h [M/x]AT2 : S.
By the rule OE, A; T h letcir v = [M/x]Ni in [M/x] AT2 : B.
Therefore A; T h [M/x]AT: B.

Proof of Proposition 2.4:
If the rule Prim~ is used to deduce Ayx :: A;Th N ~ B:

A, x :: A; T h AT: B and B is a primitive type.
By induction hypothesis, A; T h [M/x] AT: B.

26

By the rule Prim~, A; T h [M/x]N ~ £.
Now N cannot be an application Ni N2 or a variable y.
Case AT = V:

By the rule Val, A, x :: A; T h N ~ B implies A, x :: -4; • h N : B.
By induction hypothesis, A; • h [Af/x] AT : B.
By the rule Val, A; V h [M/x] AT - S.

Case AT = letbox y = iVi in AT2, y ^ x,y not a free variable of M:
[M/x]N = letbox </ = [M/x]Nx in [M/x]AT2

By the rule DE7, A, x:: A;T h N ~ Bimphes A, x :: A,T h Nx :DB1andA,x::A,y::B1,rhN2~B.
By weakening, A ; « h M : 4 implies A, y :: Bi; • h M : A
By induction hypothesis, A; T h [M/x]ATi : DBi and A, y :: B±; T h [M/x]AT2 ~ £.
By the rule DE7, A; T h letbox y = [M/ar]JVi in [M/ar]AT2 - B.
Therefore A; T h [M/x]N - B.

Case N = letcir v = JVi in iV2, v not a free variable of M: [M/x]N = letcir v = [M/x] JVi in [M/x]JV2

By the rule OE7, A, x : : A ; T h A r ~ BimpUes A,x :: ^ ; T h ATX : OBi and A,x :: A,v ~ Bi;T h AT2 - B.
By weakening, A; • h M : A implies A, v ~ B\; • h M : A
By induction hypothesis, A; T h [M/x]ATi : OJ5i and A, v - Bi; T h [Af/x]AT2 ~ JB.
By the rule OE7, A; T h letcir v = [M/x] JVi in [Af/x]AT2 ~ 5.
Therefore A; T h [M/x] AT - 5. •

Lemma A.2.
/ /A ; • h F : ^lanrf A ,v ~ A;T h AT : B, lAm A;T h [V/v]i\T : B.

; r h [V/vJJV ~ S.

By simulataneous induction on the structure of the derivation of A, v ~ A; F \- N : B and A, v ~ A; T h N ~ B.
Proof of the first clause:
Case N = x: [V/v]N = x

BytheruleCvar, A,v ~ A\Y\- N : B implies x :: B G A,v ~ Aorx : B E T, which means x :: 5 G A
or x : B G T.

By the rule Cvar, A; T h x : B.
Therefore A; T h [V/v]AT: B.

Case N = v: [V/v]N = V
A;-hV :A implies A; • h [V/v]N : A.
By weakening, A; • h [V/v]^ : A implies A; T h [V/v]Ar: A.
A,v ~ A;Th N : B implies A = B.
Therefore A; T h [V/v]AT: B.

Case N = w,w ^v: [V/v]N = w
By the rule Vvar, A, v ~ A; F h N : B implies w ~ B e A,v ~ A, which means w ~ B G A.
By the rule Vvar, A ; T h w : B .
Therefore A; T h [V/v]AT: B.

Case AT = Ax: Bf. N\ x not a free variable of V: [V/v]N = Ax: B'. [V/v\Nf

By the rule Dl, A,v - A;T h AT: £ implies A, v ~ A;T,x : Bf h AT' : B^andB = B7 D B77.
By induction hypothesis, A; T, x : B7 h [V/v]N' : B".
By the rule Dl, A; T h Ax: B1. [V/v]Nf : B1 D B".
Therefore A; T h [V/v] AT: B.

Case N = Nx N2: [V/v]N = [V/v]^ [V/v]N2

By the rule DE, A, v ~ A; T h AT: B implies A, v ~ A; T h ATi : B7 D B and A, v ~ A; T h AT2 : B7.
By induction hypothesis, A; T h [V/v]ATi : B7 D B and A; T h [V/v]N2 : B7.

27

A; • h AT': B' and B = DB'.

[V/v]N = letbox x = [V/v]Ni in [V/v]N2

and A,v - A,x :: Bi;T h iV2 : B.

and A, x :: J5i; T h [V/v]N2 :
in [V/v]N2 : B.

; T h [V/v]AT2 : B.

By the rule DE, A; T h [V/v]Ni [V/v]N2 : B.
Therefore A; T h [V/v] AT : B.

Case AT = box N': [V/v]N = box [V/v\Nf

By the rule Dl, A, v ~ A; T h AT: B implies A, v
By induction hypothesis, A; • h [V/v]Nf: B'.
By the rule Dl, A; T h box [V/v] AT' : DB'.
Therefore A; T h [V/v] AT : B.

Case AT = letbox x = Ni in iV2, x not a free variable of V:
BytheruleDE,A,v~ A;T\-N: B implies A , v ~ A;ThiVi
By weakening, A ; - h F : i implies A, x :: Bi; • h V : A
By induction hypothesis, A; T h [V/v]ATi
By the rule DE, A; T h letbox x = [V/v]
Therefore A; T h [V/v]iV : B.

Case AT = cir N': [V/v]N = cir [V/v]Nf

By the rule Ol, A, v ~ A; T h N : B implies A, v ~ A; T h N' ~ Bf and B = OB\
By induction hypothesis, A; T h [V/v] JV' ~ JB7.
By the rule Ol, A; T h cir [V/vJA/7 : O57.
Therefore A; T h [V/v]A^: B.

Case N = letcir w = Ni in AT2, w; ^ v, it; not a free variable of V:
BytheruleOE,A,v~ A;T\- N : Bimplies A, v - A; T h i
By weakening, A; • h V : A implies A, i/; ~ Si; • h V : A
By induction hypothesis, A; T h [V/vJA î : OBi. and A, it; ~
By the rule OE, A; T h letcir w; = [V/v] ATX in [V/v]AT2 : B.
Therefore A; T h [V/v]AT: B.

Proof of the second clause:
If the rule Prim~ is used to deduce A , v ~ i ; r h i V ~ B :

A, v ~ 4̂; T h AT: B and B is a primitive type.
By induction hypothesis, A; T h [V/v] AT: B.
By the rule Prim-, A; T h [V/v] AT - B.

Now AT cannot be an application JVi N2 or a variable x.
Case AT = V7:

By the rule Val, A , v ~ ^ 4 ; n - A T ~ B implies A, v
By induction hypothesis, A; • h [V/v]JV : B.
By the rule Val, A; V h [V/v] AT ~ B.

Case Af = letbox a: = N\ in AT2, x not a free variable of V:
[V/v]AT = letbox x = [V/v]Nx in [V/v]AT2

B y t h e r u l e D E ^ A ^ - ^ r i - AT ~ Bimplies A,v ~ 4̂;
By weakening, A; • h V : A implies A, x :: Bi; • h V : A
By induction hypothesis, A; T h [V/v]ATi : DBi and A, x
By the rule DE', A; T h letbox x = [V/v]ATi in [V/v]AT2

Therefore A; T h [V/v]JV - B.
Case AT = letcir w = N\ in AT2, w ^ v,w not a free variable of V:

By the rule OE', A, v~ A; Th N ~ B implies A,v ~ A;T \-
By weakening, A; • h V : A implies A, w ~ B\\ • h V : A
By induction hypothesis, A; T h [V/v]iVi : OBi and A, w ~ Bi; T h [V/v]AT2

By the rule OE', A; T h letcir tt; = [V/v]JVi in [V/v]AT2 ~ B.
Therefore A; T h [V/v]AT ~ B.

[V/v] AT = letcir w = [V/v]Ni in [V/v]N2

,v ~ ^l,it; ~ Bi jTh AT2 : J5.

A; • h AT: B.

h

: Bx

B.

and A, v

T h [V/v]AT2

l ,x :: Bi;TI-AT2 ~ B.

B.

[V/v] AT = letcir w = [V/v]ATx in [V/v]AT2

i : OBi andA,v ~ A,tt; ~ Bi;T h AT2 ~

28

Proof of Proposition 2.3:

Proof. By induction on the structure of M.
Proof of the first clause:
Case M = V: (M/v)N = [M/v]N

By the rule Val, A; F h M ~ A implies A; • h M : A
By Lemma A.2, we have A; F h [M/v]N : B.
Therefore A; F h (M/v)N : B.

Case M = letbox x = Mi in M^ (M/v)N = letbox x = Mi in {M2/v)N
By the rule DE7, A; T h M - A implies A; T h Mi : HL4iandA,x : : A i ; r h M 2 ~ A
By weakening, A,v ~ A;T \- N : B implies A,v ~ A,x :: Ai;F h N : B.
By induction hypothesis on M2, A, x :: A\; F h (M2/v)N : B.
By the rule DE7, A; F h letbox x = Mx in (M2/v)N : B.
Therefore A; T h (M/v)N : B.

Case M = letcir it; = Mi in M2: (M/v)N = letcir w = Mi in {M2/v)N
By the rule OE', A^Th M ~ A implies A; T h Mx : O 4̂i a n d A ^ ~ i i ; n - M 2 ~ A
By weakening, A,v ~ A;T\- N : B implies A,v ~ A,w ~ Ai;T \- N : B.
By induction hypothesis on M2, A, w ~ J4I; F h (M2/v)N : B.
By the rule OE', A; T h letcir w = Mx in (M2/v)N : B.
Therefore A; T h (M/v)N : B.

Proof of the second clause:
Case M = V: (M/v)N = [M/v]N

By the rule Val, A;T h M ~ A implies A; • h M : A
By Lemma A.2, we have A; T h [Af/v]JV ~ B.
Therefore A; T h (M/v)N ~ J5.

Case M = letbox x = Mi in M2: (M/v)N = letbox x = Mi in (M2/v)N
By the rule DE7, A; T h M ~ ^4 implies A; T h Mi : QAi and A, x :: Ai; T h M2 ~ A.
By weakening, A,v ~ A;T \- N ~ B in^lies A,v ~ A,x :: Ai;T h N ~ B.
By induction hypothesis on M2, A, x :: A\; F h (M2/v)N ~ B.
By the rule DE', A; F h letbox x = Mx in (M2/v)N ~ B.
Therefore A; F h (M/v)N ~ S.

Case M = letcir it; = Mi in M2: (M/v)N = letcir it; = Mi in (M2/v)AT
By the rule OE7, A; F h M ~ A implies A; F h Mi : O 4̂i and A, w ~ ^1; F h M2 ~ A
By weakening, A , v ~ A ; F I - i V ~ 5 implies A,v ~ A,w ~ Ai;F\- N ~ B.
By induction hypothesis on M2, A, w ~ A±; T h (M2/v)N ~ B.
By the rule OE7, A; F h letcir it; = Mx in (M2/v)N ~ S.
Therefore A; F h (M/v)N ~ 5.

Proof of Proposition 2.5:

Proof. By induction on the structure of the derivation of A; F h M ~ A

C a S e

By weakening, A;-\-V : A implies A;F h V : A.
Therefore A; F h M : A

A;F h Mi : HAi A,x :: A1;T\-M2^A
C a S e A;Fhletboxx = M i i n M 2 ^ ^ DE and M = letbox x = Mi in M2:

By induction hypothesis on A, x ::: Ai; F h M2 ~ A, we have A, x :: J4X; F h M2 : A

29

By the rule DE, A; T h letbox x = Mi in M2 : A
Therefore A;T\- M : A.

A;T \-Mi : OAi A,v ~ Ai;T h M2 ~ A
C a S e A;T\-\etc\rv = Mi\nM2~A O E ' and M = letcir t; = Mx in M2:

By induction hypothesis on A, v ~ A\; T h M2 ~ -A, we have A, v ~ Ai,T h M2 : A.
By the rule OE, A; F h letcir v = Mi in M2 : A.
Therefore A; F h M : A

A;rhM:i
C a s e A -n i_ n>r T P n m ~

A;F h M ~ A
The premise gives A ; T h M : A •

B Proofs of the properties of AQO^

Proof of Proposition 3.1:

Lemma B.I. [M/x]V is a value.

Proof. By case analysis of V. D

Proof. By induction on the structure of the derivation of A; F, x : A @ a/' h^ N ~ B @ a/.
If N = V and the rule Val^ is used to deduce A; T, x : A @ J' h^ N ~ B @ J\

A;T,x: A®d'\-<j N \B.
By induction hypothesis, A; T h^ [M/x]N : B.
By the rule Cvarvr, A; F h^ [Af/xJiV ~ B @ uf because [M/x]N is a value by Lemma B.I.

If the rule Prim~vr is used to deduce A; F, x : A @ J9 h^ N ~ B @ J\
A; F, x : A @ J' h^ N : B and B is a primitive type.
By induction hypothesis, A; F \-u [M/x]N : B.
By the rule Prim~vr, A; F h^ [M/x]N ~ B @ J.

Now we assume that the rules Cvar^ and Cvarvr are not used to deduce A; F, x : A @ w" h^ N ~ B @ uJ.
Case N = x: [M/x]N = M

By the rule Cvar^r, A; F, x : A @ J* h^ N ~ B @ u/ implies A = B and u> = J = d'.
A; F h^/ M : A implies A; F h ^ [M/x]N : A.
Therefore A; F h^ [M/x]iV - B @ J.

Case N = y9y ^ x: [M/x]N = y
BytheruleCvarvr,A;F,x : A @ J1 h^ N ~ B @ u/impliesy :: B G Aory : B @ a; € F , x : -A @ u;",

and UJ — (J\
Since y ̂ x, we have j / : : B G A o r y : B @ a ; G r .
By the rule Cvarvr, A; F h^ y : B.
Therefore A; F h^ [M/x]N ~B@vf.

Case N = v: [M/x]N = v
BytheruleVvariy,A;F,x : A @ J' h^ N ~ B @ a;'implies?; ~ B e Aori; ~ B @ u; eT,x : A@ u;"9

and a; = u>'.
Since 1; ̂ x, we have v ~ B G A o n ; ~ B @ ^ G r .
By the rule Vvarvr, A; F h^ v : B.
Therefore A; F h^ [M/x]N ~B@u;'.

Case N = Xy: B'. N\ y ^ x9 y not a free variable of M: [Af/*] JV = Ay: Bf. [M/x]Nf

By the rule D\w, A;F,x : A@ v" hu, N ~ B @ a/implies A;F,x : A @ J\y :Br @u^N' : B\
B = Bf D S ; /, and a; = a;r.

30

By weakening, A; T \-^> M : A implies A; T, y : B' © u> hy/ M : A.
By induction hypothesis, A; T, y : B' © u \-u [M/x]N' : B".
By the rule D\w, A; T \-u Xy.B'. [M/x]N' : £ ' D 5".
Therefore A; T \-u [M/x]N ~ 5 @ J.

Case N = Ni N2: [M/x]N = [M/x]Ni [M/x]N2

By the rule DEW, A;T,X : A ©w" \-u N ~ B @u/ impUes A;T,x : 4 Q u;" r-w JVi : B' D B,
A; T, x : A @ a/' hw iV2 : £ ' , and u> = a/.

By induction hypothesis, A; T \-u [M/x]Ni : B' D B and A; T hu [M/x]N2 : B'.
By the rule DEvr, A; T hw [Af/x]JVi [M/x]N2 : B.
Therefore A; T Ho, [M/x]iV ~ B @ J.

Case AT = box N': [M/x]N = box [M/x]N'
By the rule Dl w , A ; I \ z : A @ w" hw AT ~ 5 @ J implies A ;r,a:: >1 @ w" !-«* N' :B',B = DB\

and IJJ — u:' where u/* is a fresh node.
By induction hypothesis, A; T hw. [M/x]^' : B'.
By the rule \3\w, A; T hu box [Jif/x]Ar': UB'.
Therefore A; T h^ [M/x]N ~ B @ J.

Case N = box^. AT': [M/x]N = box^. [M/xjA7"'
By the rule Dl^, A; T, x : A@ UJ" h^ N ~ B @ w'imphes A;T,x :A@u/'!-«. N' :B',B = U^B',

and u> = u>'.
By induction hypothesis, A; T \-w* [M/x]N': B'.
By the rule Dl^, A; T h^ box ,̂. [M/x]Nf: D^B'.
Therefore A; T h^ [M/x]N ~ B @ J.

Case A7" = letbox y = A7! in A7 ,̂ y ̂ x,y not a free variable of M:
[M/xjAr = letbox y = [M/x}Nx in [M/x]N2

If the rule DE^ is used to deduce A; T, x : A @ J' Hw AT ~ B @ w',
A;T,ar: A @ u" \-u N ~ 5 @ a/ implies A;T,x : A © w" h^ JVi : DBi and

A,y :: 5 i ; r , x : yl © J' hu N2 ~ £ © a/.
By weakening, A; T \-w» M : A implies A, y :: B\; T \-^» M : A.
By induction hypothesis, A; T \-u [M/x)Ni : OBi and A, y :: Bi; T hw [M/x]N2 ~ B @ J.
By the rule DEw, A; T \-w letbox y = [M/x]N\ in [M/x]N2 ~ B © w'.
Therefore A; T hw [Af/xjAT ~ B © u/.

If the rule DE^ is used to deduce A; T, x : A © u>" H^ AT ~ B @ J,
A;T,x:A@u;"\-u,N~B@u/ imph'es A; I \x : A @u" h^ Nx : U^Bx and

A;T,x : A © a;",t/: £ i © a;* h^ AT2 ~ B @ J.
By weakening, A; T \-w>, M : A implies A; T, y : Bx © w* Ky/ M : i4.
By induction hypothesis, A; T hw [M / x] ^ : D^.^iand A;T,y : Bi © w* h^ [M/xjA^ ~ B © a;'.
By the rule DE'^, A; T \-w letbox y = [M/x]Ni in [M/x]AT2 ~ B @ J.
Therefore A; T \-w [M/x)N ~ 5 @ a;'.

Case A7 = cir AT': [M/x]AT = cir \M/x)N'
BytheruleOlw, A;T,x : A Q w" Hw AT ~ 5 © u/ impUes A; I\ x : A ©u/'K, AT' ~ 5 ' @a;*,B = OB',

and a; = J where a;* is a fresh node.
By induction hypothesis, A; Y \-w [M/x]N' ~ B' @ u>*.
By the rule O\w, A; T h^ cir [M/x]N': OB'.
Therefore A; T hw [M/x]AT ~ B Q u/.

Case AT = cir^. AT': [M/x]N = cir^. [M/x)Nf

By the rule Ol^, A;T,x : A © a/' hw AT ~ B © J implies A;T,x : A © u;" h^ N' ~ B' @ a;*,

31

By induction hypothesis, A; F h^ [M/x]Nf ~ B' © u*.
By the rule Ol7^, A; F K, cir \M/x]N': O^Bf.
Therefore A; F h^ [M/x]N ~B@d.

Case N = letcir v = N± in AT2, v not a free variable of M: [M/x]N = letcir v = [M/x]ATi in [M/x]N2

If the rule OEjy is used to deduce A; F, x : A © d1 hw N ~ B © d,
A\T,x:A@df\-UJN^B@d implies A;F,x : A © df h^ Nx : OSi and

A, t; - Si; T,x : A © d' \-u N2 ~ B © d.
By weakening, A; F h^/ M : A implies A, v ~ B\\ F h /̂/ M : A.
By induction hypothesis, A; F h^ [M/x]ATi : OBi and A, i; ~ J5i; T h^ [Af/xJiV^ ~ B@uf.
By the rule OEvr, A; T h^ letcir v = [M/x]N± in [M/x] Â 2 ~ B @ d.
Therefore A; T h^ [M/x]N - B @ u'.

If the rule OE^ is used to deduce A; T, x : ^4 @ d' h^ iV ~ 5 @ a;',
A;T,x : ^ @ a;7' h^ AT ~ B @ a;7 impUes A;T,x : A @ d' \-u Nx : Ow*Bi and

A;T,a: :A@d',v~B1@u;*\-UJN2~B@ d.
By weakening, A; F h /̂/ M : ^4 implies A; F, v ~ B\ @ a;* h /̂/ M : A.
By induction hypothesis, A; F h^ [Af/x]JVi : Oa;*^! and A; F, v ~ B\ @ a;* h^ [M/x]AT2 ~ S @ a;7.
By the rule OE7^, A; F h^ letcir v = [M/x]Nx in [M/x] AT2 ~ S @ d.
Therefore A; F h^ [M/x]N ~ B@d. D

Proof of Proposition 3.2:

/ By induction on the structure of the derivation of A, x :: A; F h^ AT ~ B @ d.
If AT = V and the rale Va\w is used to deduce A, x :: A; F h^ AT ~ J5 © d:

By induction hypothesis, A; F h /̂ [M/x]N : B.
By the rule Cvarws A; F h^ [M/x]N ~ B @ d because [M/x]N is a value by Lemma B.I.

If the rale Prim~vr is used to deduce A, x :: A; F h^ AT ~ B © d:
A, x :: 4̂; F h^ AT: B and S is a primitive type.
By induction hypothesis, A; F h^ [M/x]N : B.
By the rale Prim~vr, A; F h^ [M/x] AT ~ B@d.

Now we assume that the rales Cvarvr and Cvarvr are not used to deduce A, x :: A; T h^ AT ~ B @ d.
Case AT = x: [M/x]N = M

By the rale Cvarvr, A,x :: A]T h^ N ~ B @ d implies A = B and u) — d.
A; F \-un M : A implies A; F h^ M : A.
Therefore A; F h^ [M/x]N ~B@d.

Case N = y,y ^ x: [M/x]N = y
By the rale Cvarvr, A,x :: A;F h^ N ~ B © u/ implies y :: B G A,x :: A or y : B © w G F, and

LJ = d.
Since y ^ x, we have y : : B G Aorj / : jB@a;Gr.
By the rale Cvarns A; F \-u y : B.
Therefore A; F h^ [M/x] N ~B@d.

Case N = v: [M/x]N = v
By the rule Vvarvr, A, x :: A; T h^ AT ~ B @ u;7 implies v ~ B G A, x :: A or v ~ B @ a; G F, and

u) = d.
Since v ^ x, we have v ~ B G
By the rule Vvarvr, A; F h^ i;: B.
Therefore A; F h^ [M/x] N ~B@d.

Case N = Xy: Bf. N\ y ^ x, y not a free variable of M: [M/x] AT = Ay: Bf. [M/x] N'

32

By the rule Dl^, A, x :: A,T h^ AT - B @ u;7 implies A, x :: A;T,y : Bf @ u> K, AT7: B\B = B1 D B",
and u = d,

By weakening, A; F h^/ M : A implies A; I\ y : B' @ a; h /̂/ M : A
By induction hypothesis, A;T,y : Bf @ Luh^ [M/x] N' : B".
By the rule D\w, A; F h^ A</:B7. [M/x]AT7 : B' D B".
Therefore A; F h^ [M/x]N ~ B@d.

Case N = NX N2: [M/x]N = [M/x]Nx [M/x]N2

By the rule DEW, A, x :: A; F h^ N ~ 5 @ d implies A, x :: A; F h^ Ni : Br D B9

A,x :: A;T h^ AT2 : B7, andu> = d.
By induction hypothesis, A; F h^ [M/x]N± : B' D B and A; F h^ [M/x]N2 : B'.
By the rule DEW, A; F hu [M/x]Ni [M/x]N2 : B.
Therefore A; V hw [M/x]N - B & d.

Case AT = box N': [M/x]N = box [M/x] AT7

BytheruleDlvr, A,x :: A;T h^ N ~ B@ d implies A, x :: A\Y\-^ N' : B\B = QB7,andu; = d
where OJ* is a fresh node.

By induction hypothesis, A; T ĥ * [M/x] AT7: Bf.
By the rule U\w> A; T h^ box [M/x]AT7 : DB'.
Therefore A; T h^ [M/x]AT ~ B @ d.

Case AT = box^* N': [M/x]N = box^* [M/x]AT7

By the rule Dl7^, A,x :: A;T h^ N ~ B @ d implies A,x :: A;T h^ AT7 : B\ B = D^B7 , and

By induction hypothesis, A; T h *̂ [M/x] AT7: B7.
By the rule Dl7^, A; T h^ box^* [M/x]AT7 : U^B'.
Therefore A; T h^ [M/x] AT ~ B@d.

Case N = letbox y = Ni in AT2, y ^ x,y not a free variable of M:
[M/x]AT = letbox y = [M/x]Nx in [M/x]N2

If the rule DEvr is used to deduce A, x :: A; T h^ N ~ i? @ a;7,
A, x :: A; F h^ AT ~ B @ d implies A,x :: A; T h^ ATX : QBi and

A . 2/ •• B\. x '.'. A\ F \(jj N2
 rsj B @ UJ .

By weakening, A; F Y^" M : A implies A, y :: B\\ F h /̂/ M : A.
By induction hypothesis, A; F h^ [M/x]N\ : OBi and A, y :: £?i; F h^ [M/x]AT2 ~ B @ d.
By the rule DE^, A; F h^ letbox y = [M/x]Ni in [M/x]AT2 ~ B @ d.
Therefore A; F h^ [M/x]AT - B @ d.

If the rule DE7^ is used to deduce A, x :: A\ F h^ N ~ B @ a;7,
A, x :: A; F h^ AT ~ B @ d implies A, x :: A; F h^ Â i : Q *̂J3i and

A, x :: A; F, y : Bx @ v* h^ AT2 ~ B @ c;7.
By weakening, A; F h /̂/ M : A implies A; F, y : B\ @ w* h^/ M : A.
By induction hypothesis, A;F h^ [M/x]Ni : D^Bi and A; F, y : Bx @ LJ* h^ [M/x]AT2 ~ J5 @ a;7.
By the rule DE7^, A; F h^ letbox y = [M/x]Nx in [M/x] AT2 ~ J5 @ d.
Therefore A; F h^ [M/x]N ~ B @d.

Case AT = cir AT7: [M/x] AT = cir [M/x] AT7

By the rule Ol^, A, x :: A; F h^ AT ~ B @ d implies A, x :: A; T h^ N' ~ B' @ u>*9 B = OB\ and
u) = d where a;* is a fresh node.

By induction hypothesis, A; F h^ [M/x]Nf ~ Br @ a;*.
By the rule Olw , A; F h^ cir [M/x]AT7 : OB7.
Therefore A; F h^ [M/x] AT ~ B @ a;7.

Case N = cir̂ * AT7: [M/x]N = cir̂ * [M/x]AT7

33

By the rule Ol'^, A,x :: A;T h^ N ~ B @ u/ implies A,x :: A;T h^ N' ~ B1 @ a;*,
5 = O^B', and a; = a;7.

By induction hypothesis, A; F h^ [M/x] AT7 ~ B7 @ a;*.
By the rule Ol'^, A; F \-u cir [M/x)Nr: Ow.B'.
Therefore A; F h^ [M/x]N ~B@u'.

Case AT = letcir v = N± in AT2, t; not a free variable of M: [M/x]N = letcir v = \M/x]N\ in [M/x] AT2

If the rule OEvr is used to deduce A, x :: A;F h^ N ~ j? @ a;7,
A,x::^4;FK; N ~ B @ w' implies A,x :: ^4;T h^ ATi : OJ5i and

A,v~Bi,x :: AjTho, AT2 ~ B @ J.
By weakening, A; F Ky/ M : A implies A, v ~ B\\ T hw// M : 4̂.
By induction hypothesis, A; T hu [M/x]N\ : OBi and A, v ~ Bx; T h^ [M/x]AT2 ~ B @ a;7.
By the rule OE^r, A; V hu letcir v = [M/x]Ni in [M/x] N2 ~ B@v'.
Therefore A; T h^ [M/x]N ~ B @ J.

If the rule OE7^ is used to deduce A, x :: A; T h^ N ~ B @ J,
A, x :: A; V h^ AT ~ J5 @ J implies A, x :: A\ T h^ ATX : O(JJ*B1 and

A, x :: A; T%v ~ Bx @ a;* h^ AT2 ~ B @ a;7.
By weakening, A; F h /̂/ M : A implies A; F, t; ~ Bi @ a;* h^/ M : A.
By induction hypothesis, A; F h^ [M/x] JVi : O *̂ Bx and A; F, v ~ Si @ a;* h^ [M/x] AT2 ~ B @ a;7.
By the rule OE7^, A; F h^ letcir v = [M/x]Nx in [M/x]N2 a;7.
Therefore A; F h^ [M/x]iV - S @ J. U

Proof of Proposition 3.3:

Proof. By induction on the structure of the derivation of A; F, v ~ A @ u;77 h^ JV ~ B @ a;7.
If N is a value and the rule Val^ is used to deduce A; F, v ~ A @ J' h^ AT ~ B @ a;7:

A;T,v~A@u;"\-u;<N:B.
By induction hypothesis, A; F h<y [V/v] JV : B.
By the rule Cvarvr, A; F h^ [V/v]N ~ S @ J because [V/v]N is a value by Lemma B.I.

If the rule Prim~vr is used to deduce A; F, v ~ A @ J1 \-u N ~ B @ u;7:
A; F, v ~ A @ a?77 \-u N : B and B is a primitive type.
By induction hypothesis, A; F h^ [V/v]N : B.
By the rule Prim~vr, A; F h^ [V/v]iV ~ B @ J.

Now we assume that the rules Cvar^ and Cvarvr are not used to deduce A; F, v ~ A @ a;77 h^ N ~ B @ a?7.
Case AT = x: [V/v]JV = x

BytheruleCvarvr, A;F,v ~ A @ a;77 h^ AT ~ B @ a;7impliesx ::BG Aorx : B @ u e T,v ~ A @ u/\
and u) = a;7.

Since x ^ v, we have x : : B G A o r x : B @ a ; G r .
By the rule Cvarvr, A; F h^ x : B.
Therefore A; F h^ [F/v]A^ - B @ J.

Case AT = v: [V/v]N = V
By the rule Vvarvr, A; F, v ~ A @ J1 h^ AT ~ B @ J implies A = B and u; = a;7 = a/7.
A;F h^/ F : A implies A;F h^ V : B.
Therefore A; F h^ [V/v]N ~ S @ a;7.

Case N = w,w ^ v: [V/v]N = w
BytheruleVvarty,A;F,i; ~ A @ a;77 h^ AT ~ B @ a;7 implies K; ~ B G Aorit; ~ B @ a; € F , v ~ ^ 4 @ a ;

and a; = u;7.
Since w ^ v, we have t i ; ~ B G A o r ^ ~ B @ o ; G r .
By the rule Vvar^, A; F h^ it; : B.

34

Therefore A; T \-w [V/v]N ~B@J.
Case N = Xx:B'. AT', x not a free variable of V: [V/v]N = Ax: B'. [V/v]N'

By the rule Dlw, A;T,v ~ A Q u / ' h , N ~ 5 @ u>' implies A; I\ v ~ 4 @ u/',x : B' @u\-w N' : B",
B = B' D B", and u = u'.

By weakening, A; T hy V : A implies A; T, x : B' @ u \-w" V : A.
By induction hypothesis, A; T, x : B' @ u \-u [V/v}N' : B".
By the rule D\w, A; T \-u Ax :£'. [V/v)Nf: B' D B".
Therefore A; T hw [V/v]N ~ B @ J.

Case N = Ni N2: [V/v]N = \V/v]Ni [V/v)N2

By the rule DEW, A ; T , V ~ A @ J1 \-w N ~ B @ J impUes A;T,u ~ A @ w" h^ Ni : B' D B,
A; T, v ~ ̂ 4 @ u" hw iV2 : B', and w = a;'.

By induction hypothesis, A; T \-u [V/v]Ni : B' D B and A; T hu [V/v]N2 : £' .
By the rule DE^, A; T h^ [V7t;]JVi [F/v]AT2 : B.
Therefore A; T hw [V/v]N ~ 5 @ u/.

Case AT = box AT': [V/t;]JV = box [V/v]^'
By the rule D\w, A;T,t; ~ A @ u" hu N ~ B @ u/ implies A; T, v ~ A @ w" h^ JV' :B',B = OB',

and u; = u/ where w* is a fresh node.
By induction hypothesis, A; T \-^* [V/v)Nf : B'.
By the rule U\w, A; V hu box [V/v)N' : DB'.
Therefore A; T h^ [V/v]N ~B@u>'.

Case AT = box^ N': [V/v]N = box^ [V/v]N'
By the rule Dl'^, A;T,v ~ A @ J' h^ iV ~ B @ a/ impUes A; T, v ~ y4 @u/' !-„,. N' :B',B = D^B

and u> = o»'.
By induction hypothesis, A; T !-„,. [V/u] A77 : B'.
By the rule Dl^, A; T h^ box^ [V/v]N' : D^.B'.
Therefore A;T\-u [V/v]N ~B@u;'.

Case N — letbox x = Ni in A^, x not a free variable of V:
[V/v]N = letbox x = [V/v]^ in [V/v]N2

If the rule DEvr is used to deduce A; T, v ~ A @ w" hw AT ~ B @ a;',
A; T, v ~ A @ a/' h^ AT ~ B @ a;' implies A; T, v ~ A @ a;" h^ ATi : DBi and

A,x :: Bi;T,v~ A@ J' t-w AT2 ~ B @ J.
By weakening, A; F h^" V : A implies A, x :: B\\ T \-^t V : A.
By induction hypothesis, A; T \-w [V/v]Ni : DBi and A,x :: B\; T hu [V/v]N2 ~ B @ J.
By the rale DEW, A; T h^ letbox x = \V/v]Ni in [V/wjA^ ~ B @ J.
Therefore A; T hw [V/v)N ~ B @ J.

If the rale DE^ is used to deduce A; I\ v ~ ^4 @ J' h^ AT ~ B @ J,
A;T,v~A@u;"\-u,N~B@u;' impUes A;T,v ~ A @ u>" hw JVi : DwBi and

u/.
By weakening, A; T \-w» V : A implies A; T, x : Bi @ u;* h /̂/ V : A.
By induction hypothesis, A; T hw [F/v]ATx : D ^ B i and A; T, x : Bi @ u* hw [F/v]AT2 ~ B @ <*;'.
By the rale DE'^, A; T hw letbox x = [V/v]Ni in [V/u] AT2 ~ B @ J.
Therefore A; T hw [V/w]JV ~ B @ u/.

Case AT = cir AT': [V/v]N = cir [V/v]Nf

By the rule Olw, A; T,v ~ A @ u" \-u N ~ B @ <J implies A;T,u ~ A @ J' \-w N' ~ B' @ u*,
B = OB', and OJ = <J where a;* is a fresh node.

By induction hypothesis, A; T \-w [V/v]N' ~ B' @ w*.
By the rule O\w, A; T hw cir [V/v]Nf : OB'.

35

Therefore A;T hw [V/v]N ~B@u'.
Case N = cir^ N': [V/v]N = cir̂ * [V/v)Nf

By the rule O\'w, A;T,i; ~ ,4 @ u/7 K, N ~ B © J implies A;T,v~ A@ d' \-» N' ~ B' @ a/%
B = Ou*B'9 and u; = a/.

By induction hypothesis, A; T h^ [V/vjAT7 ~ £' © a;*.
By the rule Ol7^, A; T \-u cir [V / v] ^ : CV# 7 .
Therefore A; T h^ [V/v]N ~B@d.

Case AT = letcir w = Ni in iV2, w^v,w not a free variable of V: [V/v]N = letcir it; = [V/v]Ni in [V/v]
If the rule OEvr is used to deduce A; I\ v ~ A © u/7 K, AT ~ 5 © a;7,

A; T, i; ~ ^4 © u" h^ iV ~ 5 © J implies A; T, v ~ A © a;;/ h^ iVi : OBi and
A, w - S i ; T, v ~ A © u;77 K, iV2 ~ S © u/.

By weakening, A; T h /̂/ V : ^4 implies A, it; ~ Si; T h^/ V : A.
By induction hypothesis, A; T h^ [V/v]Ni : O^i and A, w ~ .Bi; T h^ [V/v]N2 ~ B@v'.
By the rule OE^, A; T h^ letcir w = [V/v]Ni in [V/v]N2 ~ B © a;7.
Therefore A; T ĥ , [V/v] AT - 5 @ ^7.

If the rule OE7^ is used to deduce A; I\ v ~ A © a;77 h^ iV ~ S © a/,
A ; T , v ~ ^©a;77!-^ N ~ B @ u' implies A;I \v ~ A © u" \-u N± : O^Bx and

A; T, v ~ A © a;77, it; ~ 5 i © a;* h^ AT2 ~ B © a;7.
By weakening, A; T h^/ V": A implies A; T, it; ~ Bi © a;* h^/ F : A.
By induction hypothesis, A; T h^ [V/v]Ni : Oa;* Si and A; T, it; ~ 5i © u* h^ [V/v]A 2̂ ~ B © a;7.
By the rule OE7^, A; T h^ letcir n; = [V7v]iVi in [V/v]N2 ~B@CJ'.

Therefore A; T h^ [V/v]N ~B@v'. D

Proof of Proposition 3.4:

/ By induction on the structure of the derivation of A, v ~ A; T h^ N ~ B @
If N is a value and the rule Valjy is used to deduce A, v ~ A; T \-u N ~ B © a/:

By induction hypothesis, A; T h^ [V/v]N : B.
By the rule Cvarjy, A; T h^ [V/v]N ~ B @ a/ because [F/v]JV is a value by Lemma B.I.

If the rule Prim^vr is used to deduce A, v ~ A; T h^ AT ~ B © a;7:
A, v ~ 4̂; F h^ AT: i? and B is a primitive type.
By induction hypothesis, A; T h^ [V/v]N : B.
By the rule Prim~w, A; T h^ [V/v] AT ~ B © u/.

Now we assume that the rules Cvarvr and Cvar^ are not used to deduce A, v ~ A; T h^ N ~ B @ u;7.
Case AT = x: [V/v]iV = ar

By the rule Cvar^, A, v ~ A; T h^ AT ~ B © a/ implies x: : i? G A , v ~ A o r x : B @ o ? G T, and
UJ = CJ 7 .

Since x ^ v, we have x::J5G A o r x : B @ (j G r .
By the rule Cvarvr, A j T h ^ x i B .
Therefore A; T h^ [V/v]JV - B @ a;7.

Case N = v: \V/v]N = V
By the rule Vvarvr, A, v ~ A; T h^ AT ~ B © a;7 implies A = 5 and a; = a;7.
A; T \~u» V : A implies A; T h^ V : B.
Therefore A; T h^ [V/v]N ~ B © a/.

Case N = w,w ^v: [V/v]N = w
By the rule Vvarw, A, t; ~ A; T h^ AT ~ S @ d implies it;~5GA,v~^4orit;^-B@a;Gr, and

U) = =
 (JU .

36

Since w ^ v, we have w~B(z
By the rule Vvarvr, A; T h^ w : B.
Therefore A; T h^ [V/v]N ~B@UJ'.

Case N = \x: B'. AT7, x not a free variable of V: [V/v]N = Xx:B'. [V/v]N'
BytheruleDlvr, A,v - A;T h^ AT ~ B Q UJ'implies A, v ~ A;I \x : B7 @ u; K; A/7 : B",B = Bf D B",

and a; = a;'.
By weakening, A; T Ky/ V : A implies A; T, x : B7 @ UJ h /̂/ V : A.
By induction hypothesis, A; I\ x : B' © UJ h^ [V/v]N' : B".
By the rule D\w, A; r K, Ax: B7. [V>]iV7 : B' D B".
Therefore A; T h^ [F/v] AT - B @ J.

Case AT = Nx N2: [V/v]N = \Vfv\Nx [V/v]N2

By the rule DEW, A, v ~ A; T h^ N ~ B @ J implies A, v ~ A; T t-^ Nx : B' D B, A,v ~ A;T h^ N2 : B\
and UJ = OJ' .

By induction hypothesis, A; T h^ \V/v]Ni : B7 D S and A; T h^ [V/i;]iV2 : S7.
By the rule DEW, A; T h^ [F/v]iVi [V/v] JV2 : B.
Therefore A; V h^ [V/v]N - J5 Q o;r.

Case AT = box AT7: [V/v]N = box [V>]Ar7

BytheruleDlvr, A,t>~ Ajrh^ AT ~ B @ a;7 implies A, v ~ A^h^* AT7: B\B = OB\andu; = J
where UJ* is a fresh node.

By induction hypothesis, A; T K,* [F/fjAT7 : B'.
By the rule Dl w , A; T h^ box [V/v]AT7 : DJB7.

Therefore A; T h^ [V/v]N ~ B @ UJ'.
Case AT = box̂ * AT7: [V/v]N = box^* [V/v]Nf

By the rule Dl7^, A, v ~ A; T h^ AT ~ B @ UJ' implies A, v ~ A; T h^* AT7: B\ B = D^B 7 , and
UJ = Uj'.

By induction hypothesis, A; T h *̂ [V/v]N' : B'.
By the rule Dl7^, A; T h^ box^* [V/v]N': D^B'.
Therefore A; T h^ [V/v]N ~B@UJ'.

Case AT = letbox x = Ni in A^, x not a free variable of V:
[V/v]N = letbox x = [V/v]JVi in [V/v]N2

If the rule DE^ is used to deduce A, v ~ A; T h^ AT ~ B @ a;7,
A, i; ~ A; T h^ AT ~ S @ u;7 implies A, v ~ A; T h^ ATX : DBi and

A, x :: S i , v ~ A; T h^ AT2 ~ B @ a;7.
By weakening, A; T h /̂/ V : A implies A, x :: Bi; T h /̂/ V : A.
By induction hypothesis, A; T h^ [V/v]JVi : DBi and A, x :: Bx; T h^ [V/v]JV2 ~ B @ u;7.
By the rule DE^, A; T \-u letbox x = [V/v]iVi in [V/v]N2 ~ B @ UJ'.
Therefore A; T h^ [V/v]N ~B@UJ'.

If the rule DE7^ is used to deduce A, v ~ A; T h^ AT ~ B @ a;7,
A, v ~ A; T h^ AT ~ B @ UJ' implies A, v ~ A; T h^ ATX : D^^Bi and

A , i ; ~ A;T,x:Bi @ a;* h^ AT2 ~ B © a;7.
By weakening, A; T h^/ V : A implies A; I\ x : Bi © a;* h /̂/ V : A.
By induction hypothesis, A; T h^ [V/v] Ni : D^* Bx and A; r, x : Bx © UJ* \-U [V/V] N2 ~ B@UJ'.

By the rule DE7^, A; T h^ letbox x = [V/v)Ni in [V/v] AT2 ~ B © a;7.
Therefore A; T h^ [V/v]AT - B @ ĉ 7.

Case AT = cir AT7: [V/v]N = cir [V/v]N'
By the rule Olvr, A, v ~ A; T h^ A^ ~ B © a;7 implies A, t; ~ A; T h^ AT7 ~ B7 © a;*, B = OB7, and

UJ = UJ' where a;* is a fresh node.

37

By induction hypothesis, A; T K, [V/v]N' ~ B7 @ u/*.
By the rule O\w, A; T hw cir [V/v]AT7 : OB7.
Therefore A; T h^ [V/v]N ~ B@u;'.

Case N = cir̂ * AT7: [V/v]N = cir^* [V/v]iV7

By the rule O\'w, A, v ~ A; T h^ AT ~ B @ a;7 implies A, v ~ A; T h^ N'
B = Oa;*B7,andu; = u/.

By induction hypothesis, A; T h^ [V/v] AT7 ~ B7 @ u*.
By the rule Ol7^, A; T h^ cir [V/v] AT7: O^B7 .
Therefore A; T hw [V/v] AT ~ B @ u>7.

Case N = letcir w = iVi in AT2, w^v,w not a free variable of V: [V/v] AT = letcir w = [V/v]Ni in |
If the rule OE^ is used to deduce A, v ~ A; T h^ AT ~ B @ a;7,

A, v ~ ^4;T h^ AT ~ B @ a;7 implies A,v ~ A;T h^ Ni : OBi and
A, w ~ Bi, v ~ A; T h^ AT2 ~ B @ tc;7.

By weakening, A; T h^/ V : A implies A, w ~ B\\ T h^/ V : A.
By induction hypothesis, A; V h^ [V/vjA^ : OBi and A, w ~ Bx; T h^ [V/v]A^2 ~ B @ a;7.
By the rule OEvr, A; T h^ letcir ^ = [V/v]Ni in [V/v]AT2 ~ B @ a;7.
Therefore A; T h^ [V/v]AT ~ B @ J.

If the rule OE7^ is used to deduce A, v ~ A; T h^ AT ~ B @ a;7,
A, v ~ 4̂; F h^ N ~ B @ uf implies A, v ~ A; T h^ N\ : O^Bi and

A, v ~ ̂ 4; F, w ~ Bi @ a?* h^ Â 2 ~ B @ a;7.
By weakening, A; T h /̂/ V : ^4 implies A; T, ti; ~ B\ @ a;* hw// V : A.
By induction hypothesis, A; T h^ [V/v]Arx : O^^Bi and A; I\ w; ~ Bx @ a;* h^ [V/v]AT2 ~ B @ a;7.
By the rule OE7^, A; T h^ letcir ^ = [V/v]Nx in [V/v]AT2 ~ B @ J.
Therefore A; T h^ [V/v]N ~ B @ J. D

Proof of Proposition 3.5:

Proof. By simultaneous induction on the structure of the derivation of A; T h M : A and A ; T I - M ~ A
(Below we reuse metavarible M and type A)
- x ::Ae A or X : ^ 4 G T r

Case A - T h x * A :

x :: A e Aorx : AeT implies x :: A e Aor x : A@ u> e [T]".
Then,

x :: A G A or x : A @ u) G [r]a

A; \£f

_ v ~ Ae A w
C a s e A ; T h v : A V v a r :

v ~ ^4 G A implies v~A€Aorv~A@uje \Tf.
Then,

v ~ A G A or v~^4@
A; [IT \-»v:A

C a s e A;T\-V~A V a l :

By induction hypothesis on A; • h V : A, we have A; • h /̂ V : A.
By weakening, A; • h^ V : ^4 implies A; [r]^ h^ V : A.

38

Then,
A; [IT l-y V : A

;' WA; [r]w H-w V ~ A 0 a;'

Case
A r H A a : A M : A D £

By induction hypothesis on A; T, x : A h M : B, we have A; [F]u', x :A®u\-wM:B.
Then,

A;[rf K , A X : A M :
D w

A;T\-M:ApB A;T\~N:A
Case A;T\-MN:B DE :

By induction hypothesis on A; T \- M : A D B, we have A; [T]"' h^ Af : A D B.
By induction hypothesis on A; F h A^ : A we have A; [F]w h^ jV : A.
Then,

A; [r]" \-uM :ADB A; [T]w hM JV : A
WA;\Tf\-uMN:B

A;-\-M:A
Case A ^ . .—T7—PYT Dl :A; F h box M : DA;

By induction hypothesis on A; • I- M : A, we have A; • h /̂ M : J4.
By weakening, A; • Ky M : A implies A; [T]w hw/ M : A.
Then,

A1^rKLMjAA; [r]w h^ box M : DA

A;rhM:Di A,x :: A;T h N : B
Case A. r h) e t b o x a . = M in iV : S DE :

By induction hypothesis on A; T \- M : OA, we have A; [T]" hw M : DA.
By induction hypothesis on A, x :: A;T\- N : B, we have A, x :: A; [T]" h^ N : B.
A,x::A; [T]u hu N : B is equivalent to A, x :: A; [Tf \-u N ~ B @ w.
Then,

A; [r]" h^ M : DA A, a::: A; [T]" hw N ~ g Q o>
A; [T]w h^ letbox x = M in N ~ B @ u w

A; [r]u) K, letbox x = MiniV~ J B@a;is equivalent to A; \Tf \-w letbox ar = M in JV : B.
A;nM:DA A,x::A;T\-N~B

M i n i V ~ B U t *;
By induction hypothesis on A; T h M : OA, we have A; [T]" \-u M : OA.
By induction hypothesis on A, x :: A; T h N ~ B, we have A, x :: A; [r]1" h^ AT ~ S @ u'.
Then,

A; |T]W hw M : CL1 A,x :: A; [I f H^ AT ~ B @u>'
A; [r]^ K, letbox x = MinAT~B@o; / W

A ; T I M ~ A
C a S e A ; r h c i r M : O A O l :

By induction hypotheis on A; T \- M ~ A, we have A; [r]"* h^ M ~ A @ u/.

39

Then,
A; [r f \-u M ~ A Q a/
A; [T]w Hw cir M : Oil

A;r i -M:CL4 A,v ~ A;T h N : B
C a S e A;T\-\etc\rv = MinN:B O E :

By induction hypothesis on A; T h M : OA, we have A; [T]" h^ M : OA.
By induction hypothesis on A, v ~ A; T h AT: S, we have A, v ~ A; \T]" h^ N : B.
A, v ~ A; [r]^ h^ AT: B is equivalent to A, v ~ A; [T]w h^ AT ~ S @ a;.
Then,

A; [r]^ Kg; M : OA A,v ~ A; [Tf \-u N ~ B Q u>

A; [r]^ h^ letcir v = M i n A ^ ~ B @ a ;

A; [T]w h^ letcir v = MinA/'~JB@a;is equivalent to A; [T]" h-̂ letcir v = M in AT: B.

By induction hypothesis on A; T h M : O 4̂, we have A; [T]" h^ M : O-A.
By induction hypothesis on A, v ~ A; T h N ~ B, we have A, v ~ A; [F]" h^ N ~ B
Then,

A; \T]" h^M [] /
A; [r]^ h^ letcir v =

Case A ^,, , . -A Prim~ :
A; T h M ~ A

By induction hypothesis on A; T h M : Aprim, we have A; [T]" h^ M :
Then,

A; [IT ^ M : ^
A; [IT h» M ~ A^ O a/

C Proofs of the type safety of AQO^

Proposition C.I.

If A; A; T h^/ M : A and A; A; T, x : A @ a;77 h^ AT ~ J5 @ a;7, then A; A; T hw [M/x]N ~B@UJ'.

Proof. By induction on the structure of the derivation of A; A; T, x : A @ J' h^ N ~ B @ J. D

Proposition CJ2.
If A; A; T h /̂/ M : Afor any node d' and A; A, x :: A; T h^ AT ~ 5 @ J, then A; A; T K

Proof By induction on the structure of the derivation of A; A, x :: A; T h^ N ~ B @ a/.

Proposition C3.
//A; A;T h /̂/ V : Aanrf A; A ; I > ~ >1 @ a;/r h^ JV - B @ a/, fte/i A; A;T h^ [V/vJJNT - B

By induction on the structure of the derivation of A; A; T, v ~ 4̂ @ u" \-u N ~ B @ a;7. D

Proposition C.4.
If A; A;T hw// V : A for any node u" and A; A,v - A;T h^ AT - B @ a;7, r/ie/i A; A;T h^ [V/vJJV

40

Proof. By induction on the structure of the derivation of A; A, v ~ A; T h^ N ~ B @ u/. D

Proofs of Propositions C.I to CA are similar to those of Propositions 3.1 to 3.4. Cases for communica-
tion constructs are also straightforward, as substitutions on communication constructs are all structural:

[M/x]eva\N = eval [M/x]N
[M/x]future N = future [M/x]N
[M/x]syncvar 7 = syncvar 7

[M/x]syncwith N = syncwith [M/x]N
[M/x]n\\ = nil

[M/x]V1::V2 = [M/x]Vx :: [M/x]V2

[M/x]chanvar 7 = chanvar 7
[M/x]newchan^ = newchan^

[M/x]readchan N = readchan [M/x]N
[M/x]writechan Ni N2 = writechan [M/x]Ni [M/x]N2

Lemma O5. //A; A; T h^ M - A @ J and M —• AT, then A; A; V h^ N - A Q d.

Proof. By induction on the structure of the derivation of A; A; T t-^ M ~ A @ J. (Below we reuse metavari-
ble M and type A.)

A ^ T I M AA ^ T I ^ M lAprim
Case ^—7 Prim-u^ (^ 7̂ a/) :

A; A; T h^ M - A^im @ u/By induction hypothesis, A; A; T h^ N :
By the rule Prim~vr, A; A; T hu N ~

Now we now assume that the rule Prim~vr is not used to derive A; A; T h^ M ~ A
Case (XxiA.N) M ->0D [M/x]N:

The only possible derivation is:

WA;A]ThbJXx:A.N:ADB W A; A;T h^ M : A
A i V) M : B D W

By Proposition C.I, A; A; T h^ [M/x]N : B.
Case letbox x = box M in N —>/?n [M/x]N:

The only possible derivation is:

fresh d' A;A;Th^M:A
A; A;T h^ boxM : DA w A; A,s :: A;T h^ N ~ B @ J

A;A;rhw letbox x = box M in AT ~ B Q J W

By Proposition C.2, A; A; T h^ [M/x]N ~ B@v'.
Case letbox x = box /̂/ M in N —>/?D/ [M/rr]iV:

The only possible derivation is:

HA; A; T h^ box^ M : UU»A w A; A; T, x : A @ u" h^ N ~ B @ J ,
A; A; T h^ letbox x = box^/ M m N ~ B @ u' H

By Proposition C.I, A; A; T h^ [M/x]N ~ B @ J.
Case letcir v = cir V in N^po [V/v]N:

41

The only possible derivation is:

fresh u>" A; A; T \-u V ~ A @ J' ™
w:OA w A;A,v ~ A;T\-UN ~ B Qu/
= c\rVmN B@u' W

By Proposition C.4, A; A; T h^ [V/v]N ~ B @ a;'.
Case letcir v = cir̂ ,// F in N-+poi [V/v]N:

The only possible derivation is:

A; A;T h^ cir^/ F : Q^/A A;A;T,v~A@u;\u;N~B@u; ,
A; A;T h^ letcir v = cir^ F in iV ~ £ @ u/ w

From A; A; T h^ V ~ A @ u/\ we have A; A; V h /̂/ V : A, whether u> = J1 or a; ^ a?r/.
By Proposition C.3, A; A; T h^ [V/v]N ~B@u;f. D

Lemma C.6.
Consider two terms Mo and NQ such that A; A; T h^ MQ ~ AQ @ LJO implies A; A; T h^ No ~ A) @ o;o
/<?r any Ao and a;o.
//* A; A; T hu M - A @ u/, then for any K such that M = K[M0], it holds A; A; T h^ K[N0] ~ A @ J.

Proof. If K = 0, then M = Mo and K[AT0] = AT0. Hence A; A; T h^ K[N0] ~ A @ a;7 holds by the
assumption on Mo and iV0.

Suppose n ^ [], which means that M ^ x> M ^v, and M ^ V.
Now we apply induction on the structure of A; A; T h^ M ~ A @ u/. (Below we reuse metavarible M

and type A.)
AjAjrh^MA

CaSe W ^ M -
By induction hypothesis, A; A; T K, K[N0] :
By the rule Prim~vr, A; A; T h^ K[iV0] ~ >l

^ A A
Case A i A i r h M A T i g DEU" ' M ^ = K[M°^ = K [M°liV:

By induction hypothesis on A; A; T K, M : >1 D S, we have A; A; T h^ «'[iVo] : A D B.
By the rule DEW, A; A; T \-w K'[N0] N:B, and K'[N0] N = K[N0].

A;A,x :: A;T\-UN ~B@u;f

= MiniV~ JB@u; / W '
letbox a: = M in JV = K[M0] = letbox x = K'[M0] in N:
By induction hypothesis on A; A; T Hw M : DA, we have A; A; T h^ «'[iVo] : DA.
By the rule DE^, A; A; T \-w letbox x = K'[N0] in JV ~ B @ LS, and letbox x = K'[N0] in JV = K[JV0].

Case OE'W is similar to Case DE^.
A; A;T \-u M : OA A-,A,v ~ A;T\-UN ~ BQu/

A;A;rha,letcirv = MiniV~i?@a;' W

If letcir t; = M in JV = K[M0] = letcir v = K'[M0] in JV and M = K'[M0),

By induction hypothesis on A; A; T K, M : OA, we have A; A; T \-u K'[NQ\ : OA.
By the rule OE^, A; A; T H^ letcir v = K'[N0] in JV ~ B @ u/, and letcir v = K'[JV0] in JV = K[JV0].

If letcir v = M in JV = K[MQ] = letcir v = cir K'[MQ] in JV and M = cir K'[JV/0],

42

w u ft^W7 A; A;F h, K7[M0] ~ A @ ^
We have — : — n 1

A; A; F h^ cir /c'[Afo] : O-4
By induction hypothesis on A; A; F h^ K![MQ] ~ A @ J1, we have A; A; F \-u K'[N0] ~ A
Then,
fresh J' A; A; F h^ K'[NQ] ~ A @ a/7

A; A;F !-„ cir K'[NQ] : OA W A; A,v ~ ^ ; T !-„ AT ~ g @ u/

A; A; F h , letcir v = cir K'[N0) in AT - B @ J Wand letcir v = cir K'[NO] in JV = AC[

If letcir v = M in N = K[MQ] = letcir v = cir^// K;[MO] in N and M = cir^// K7[MO],

There is no rule for deriving A; A; F h^ M : OA.
Case OE^y is similar to Case

C a s e A i A i r ' H ^ v a ^ u n i t T e v a l ' e v a l M = « ^ = e v a l

By induction hypothesis on A; A; T h^ M : DA, we have A; A; F h^ K'[NO] : DA
By the rule Teval, A; A; F h^ eval K'[N0] : unit, and eval K'[N0] = K[N0].

Case Teval® is similar to Case Teval.

Case A A F L ' A — ^ J J -A ^—5r Tfuture , future M = K[MO] = future K'[MQ\:

A; A; F h^ future M ~ A sync @ a; L J l J

By induction hypothesis on A; A; F h^ M : DO A, we have A; A; F h^ K'[N0] : DOA.
By the rule Tfuture, A; A; F h^ future K'[N0] ~ A sync @ u*9 and future K'[NO] = K[N0].

Cases Tfuture®, Tfuture7, Tfuture®7 are similar to Case Tfuture.
Case A A ', ... %jr T-S;—5r Tswith , syncwith M = K[MQ] = syncwith K!\MQ}:

A; A; F h^ syncwith M ~ A @ v J L UJ 7 L UJ

By induction hypothesis on A; A; F h^ M : A sync, we have A; A; F h^ K'[N0] : 4̂ sync.
By the rule Tswith, A; A; F h^ syncwith K7[AT0] ~ A @ a;*, and syncwith K'[N0] = /c[iV0].

Case Tswith7 is similar to Case Tswith.
Case A; A; F h^ newchan^ ~ A chan @ a;* T n e w C :

There is no K such that newchan^ = K[MQ] and K 7^ \\.

Case A ; A ; r ' h j readdian M " I " Q a;* T r e a d c • r e a d c h a n M = *lM<>] = readchan K'[M0}:

By induction hypothesis on A; A; F h^ M : A chan, we have A; A; F h^ K7[AT0] : A chan.
By the rule Treadc, A; A; F h^ readchan K7[iVo] ~ A @ a;*, and readchan K7[iV0] = K[iV0].

A; A; F h^ M : A chan ,/res/i a;7 A; A; F h^ iV ~ A @ u;7

A; A; F h^ writechan M N - ^ @ a;* Twritec :
If writechan M N = K[M0] = writechan n'[M0] NandM = K7[M0] ,

By induction hypothesis on A; A; F h^ M : A chan, we have A; A; F \-u K'[N0] : A chan.
By the rule Twritec, A; A; F h^ writechan K'[N0] N ~ A @ a;*, and writechan K'[N0] N = /c[iVb].

If writechan M N = K[M0] = writechan M K/[M0] and iV = K7[M0] where M = chanvar 7,
By induction hypothesis on A; A; F h^ JV ~ A @ u;7, we have A; A; F h^ K'[N0] ~ A@U;'.

By the rule Twritec, A; A; F h^ writechan M K![N0] ~ A @ u;*, and writechan M K7[iVo] = K[iV0].
D

Lemma C.7.
IfC, M at 7 :: A, 7 ~ A @ u and A, 7 ~ ^4 @ a;; •; FPerm h P (7) AT ~ A @ u9

then C, N at 7 :: A, 7 ~ >1 @ a;.

C, M at 7 :: A, 7 ~ ^4 @ UJ implies that for each M7 at y G C,
77 - A7 @ a;7 G A, 7 - A @ UJ and A, 7 ~ ^ @ u; - F ^ " 1 1 h p (y) M7 ~ A7 O a;7, or
y 7 , 7 ~ ^ @ u ; ; .;FPerrn h ^ y) M 7 ~ A @ a;77 for a f i e s h node a;77.

43

By the rule Tcfg and A, 7 ~ A @ u; •; Tperm h P (7) AT ~ A @ a;, we have C, JV at 7 :: A, 7 ~ ^ @ u.
D

Lemma C.8.
IfC,M at 7 :: A, 7 ~ ^ @ •a/w/ A, 7 ~ ,4 @ •; . ; rP e r m hp (7) N ~A@ w for afresh node u>,

then C, N at 7 :: A, 7 ~ A @ *.

/ C, M at 7 :: A, 7 ~ ^4 @ • implies that for each M7 at V G C,
7' ~ ,47 @ <j' e A, 7 ~ A @ • and A, 7 ~ A @ •; •; r^1™ l"p(y) M7 ~ A7 @ J, or
77 ~ ^l7 @ • e A, 7 ~ >1 @ • and A, 7 ~ A @ •; •; rperfT1 hp (7 ,) M7 ~ A7 @ a;77 for a fresh node u;77.

By the rule Tcfg and A, 7 ~ A @ •; •; rp e r m h P (7) AT ~ ^1 @ a;, we have C, AT at 7 :: A, 7 ~ ^ @ •.
D

Proof of Lemma 4.4:

/ By induction on the structure of n.
Case K = \\:

B = A and a/7 = a/.
If K 7^ [], it suffices to consider those cases in which the rule Prinv^vr is not used to deduce A; A;F h^ K[M] ~ A@ U;';
if the rule Prim~vr is used, we repeat the same case analysis on the premise of the rule.
Case K = no Mo:

By the rule DEw and induction hypothesis on KQ.
Case K = letbox x = KQ in Mo:

By the rule • E ^ or DEf
w and induction hypothesis on KO-

Case K = letcir i; = ACO in Mo:
By the rule O E ^ or OE7^ and induction hypothesis on KO-

Case K = letcir v = cir KO in Mo:
By the rules OEvr and Olvr and induction hypothesis on KQ.

Case K — letcir v = cir^ KO in Mo:
By the rules OElw and O l ^ and induction hypothesis on «o.

Case eval K§\
By the rule Teval or Teval® and induction hypothesis on KO.

Case future /q>:
By the rule Tfuture, Tfuture®, Tfuture7, or Tfuture®7, and induction hypothesis on K§.

Case syncwith K§\
By the rule Tswith or Tswith7 and induction hypothesis on «o.

Case readchan «o:
By the rule Treadc and induction hypothesis on «o.

Case writechan KQ MQ:
By the rule Twritec and induction hypothesis on KO.

Case writechan (chanvar 7) /q>:
By the rule Twritec and induction hypothesis on «o- E

Proposition C.9 (Weakening).
Suppose

C::X
A ; . ; rP e r m h u ; M: A
u; = V{^)9 where 7 is not found in A.

Then C, M at 7 :: A, 7 ~ A @ a;.

44

Proof.
If M7 a t V G C and V ~ A1 © J G A,

By the rule Tcfg, A; •; rp e r m \-v{y) M' ~ A'@ J
By weakening on A, we have A, 7 ~ >1 @ u\ •; rp e r m Hj>(7/) M7 ~ A

If M7 a t i G C and V ~ A! © • G A,
By the rule Tcfg, A; •; P*"" h p (y) M7 ~ A' Q u/ for a fresh node u/.
By weakening on A, we have A, 7 ~ ^4 @ u;; •; rp e r m ^v(Y) M' ~ A'

For M at 7,
By weakening A; •; T**m h^ M : A, we have A, 7 ~ A
That is, A, 7 ~ A @ a;; •; rp e r m h p (7) M ~ A @ u.

Therefore C, M at 7 :: A, 7 ~ A @ a; by the rule Tcfg.

u;7

a;; M : A

Lemma CIO.

C, M at 7 :: A, 7 @ a;,

A, 7
y

a;, i ~ Ay/ @ *;
a;,

then
C,N at 7, AT7 at y :: A, 7

iV7 ~ Ay/

u;,77 ~ Ay/ @ •.

^*/<?r an arbitrary node u*9

a;,

l-p(7o) Mo ~
@ o;0, or
^0 for an arbitrary node

/ From C, M at 7 :: A, 7 ~ A
for each Mo at 70 G C,

70 ~ Ao @ o;0 G A and A, 7 ~ Ay @ u;; •;
70 ~ AQ @ • G A and A, 7 ~ A7 @ a;; •;

By weakening on A, 7 ~ Ay @ it>,
A, 7 ~ A7 @ u, i ~ Ay @ •; •; r ^ " 1 Hp(7o) Mo ~ Ao @ o;0, or
A, 7 ~ A7 @ a;, T7 ~ Ay/ @ •; •; r p e r m Hp(7o) Mo ~ Ao @ u>o for an arbitrary node o;o.

By the rule Tcfg, we have C, N at 7, N' at T7 :: A, 7 ~ A7 @ a;, 77 ~ Ay/ @ •. •
Lemma C.ll.
/ /

C, M at 7 :: A, 7 ~ Ay @ a;,
A,7 ~ Ay @ ^ T 7 - Ay/ @ u;7; .;r

perfT1 \-v{ri) N
A, 7 ~ i 7

Ay
@

then
C, N at 7, AT7 at

Lemma C.12.

Ay/ © a;7; •; rp e r m h p (y) iV7 ~ A

:: A, 7 ~ A 7 © a;, 77 ~ Ay/ © u;7.

a;7,

C,M at 7 :: A, 7 ^ Ay © •,
A, 7 ~ Ay © •, T7 ~ Ay/ © •; •; rperm hp(7) AT ~ A7 © u;* /or a/i arbitrary node UJ*9

A, 7 ~ Ay © •, 77 ~ Ay/ © *; •; rperm hp(y) N' ~ Ay/ © a;* /or a/i arbitrary node a;*,

C, AT a t 7, AT7 a t Y :: A, 7

Lemma C.13.

© •, 77 ~ Ay/ © •.

C, M at 7 :: A, 7 ~ Ay @ •,
A, 7 ~ Ay © •, i ~ Ay/ © u;7; •; T**rm hP (7) iV ~ Ay © u;* /or an arbitrary node a;*,

45

A, 7 ~ Ay @ • , i ~ ^ @ a/; •; 1^™ h p (y) AT' ~ Ay/
then

C, N at 7, AT7 at Y :: A, 7 ~ Ay @ *, 7' ~ Ay/ @ a/.

£ Similar to the proof of Lemma C.I0. •

Proof of Theorem 4.1:

Proof By case analysis of C => C". (Below we reuse all metavariables.)

n M—+N Rr
C a s e C, K [M] at 7 =• C, K[JV] at 7 6 :

If C, K [M] at 7 :: A, 7 - Ay @ w9 then A, 7 - Ay @ a;; •; rPerm h p (7) «[M] ~ Ay @ a;.
Since M —• N9 Lemmas C.5 and C.6 imply A, 7 ~ ^47 @ u>; •; r**1™ h P (7) «[j\T] ~ Ay @ u;.
By Lemma C.7, we have C, K[JV] at 7 :: A, 7 ~ Ay @ v.

If C, AC[M] at 7 :: A, 7 - Ay @ •, then A, 7 ~ Ay @ •; •; rp e r m h p (7) K [M] ~ Ay @ a; for a fresh node

Since M —> AT, Lemmas C.5 and C.6 imply A, 7 ~ ^47 @ •; •; rp e r m h P (7) «[JV] ~ Ay @ w.
By Lemma C.8, we have C, «[iV] at 7 :: A, 7 ~ Ay @ •.

nett; V

C, «[eval box M] at 7 =• C,«[()] at 7, M at </ R e v a l :

If C, ^[eval box M] at 7 :: A, 7 ~ A7 @ a;, then A, 7 ~ A7 @ a;; •; T^1™ h P (7) K[eval box M] ~ A7 @ 4*;.
By Lemma 4.4, eval box M typechecks:

freshw' A, 7 ~ Ay @ a;;-;!^1™ h^ M : A

A, 7 ~ Ay @ w; •; r"*"" h P (7) box M : OA

A, 7 ~ A7 @ w; •; T^"" h W 7) eval box M : unit T e v a l

Since A, 7 ~ A7 @ a;; •; T^1711 h p (7) () : unit,
. A, 7 ~ A7 @ a;; •; TP6"" h P (7) «[()] ~ Ay @ a; by Lemma C.6.

By Lemma C.7,
C,«[()] at 7 :: A, 7 ~ A1 @ a;.

From
C,«[()] at 7 :: A, 7 ~ A7 @ a;,
A, 7 ~ Ay @ a;; •; r^17" h^ M : A where we let a/ = V(^)9

we have C, K[()] at 7, M at V :: A, 7 ~ Ay @ a;, T7 ~ A @ u>f by Proposition C.9.
The case for C, «[eval box M] at 7 :: A, 7 ~ A7 @ • is similar, except that we use Lemma C.8 instead

of Lemma C.7.
^ new Y @ J
Case ——-x—— —,—7 ——fT ĵ—7 y Reval® :

C, /qeval box^/ M] at 7 => C, K[()J at 7, M at y
The proof is similar to Case Reval, except that we use u/ without creating a fresh node.

new y
C, /c[future box M] at 7 => C, /cfsyncvar y] at 7, letcir v = M in i; at YIf C, ^[future box Af] at 7 :: A, 7 ~ ^47 @ a;, then A, 7 ~ Ay @ a;; •; T^17" h P (7) K[future box M] ~ A7 @ a;.

By Lemma 4.4, future box M typechecks:

freshu' A , 7 - A y O ^

A, 7 ~ Ay @ a;; •; rPerm h p (7) box M : DO.4
7 TfutureA, 7 ~ A7 @ ex;; •; T**™ \~v<a) future box M ~ A sync @ u;

or

46

fresh J A, 7 ~ Ay @ a;; •; rperm h^ M : O^A
A, 7 - Ay @ LJ; •; T ^ h p (7) box M : DCV A w

A, 7 - Ay Q a;; •; h P (7) future box M A synq,,, @ a;*
T f u t u r e

In the first case,
A, 7 ~ A 7 @ a;; ;
A, 7 ~ A 7 @ u>; •; r p e

A, 7 ~ A 7 @ a;; •;
A, 7 ~ Ay @ a;; •;
and we let J —

By weakening on A, 7
A, 7 ~ A 7 @ a;, 77

A, 7 rsj A1 @ a;, 77

A, 7 ~ A1 @ a;, 77

Ac[future box M] ~ A7 @ a;,
(7) A sync @ a;* for an arbitrary node u;*,

^/ M : OA for a fresh node J,
hw/ letcir v = M in v ~ A @ a;* for an arbitrary node a;*,

l~p(7) future box M

A1 @ a;,
A @ •;
A @ •;
A @ •;

• ;

By the rules Tsvar and Valvr»
A, 7 ~ A1 @ a;, 7r ~ A @

By Lemma C.6,
A, 7 ~ A 7 @ a;, 77 ~ A @ •;

By applying Lemma CIO to
C, K[future box M] at 7 :: A, 7 ~ A7

A, 7 ~ ^47 @ a;, 77 ~ A @ •; •; rp e r m

A, 7 ~ ^47 @ a;, 77 ~ A @ •;

K[future box M] ~ A7 @ a;,
future box M ~ A sync @ a?* for an arbitrary node v*9

letcir t; = M in v ~ A @ u* for an arbitrary node u;*.

syncvar y ~ A sync @ a;* for an arbitrary node a;*,

«[syncvar V] ~ A7 @ a;,

a;,
a;* for an arbitrary node a;*,

@ a;, T7 ~ 4̂ @ • .

a;,
^[syncvar V] ~

letcir v = M in x;
we have C, /s[syncvar 77] at 7, letcir v = M in v at 7' :: A, 7 ~ A^
In the second case, we prove C, Ac[syncvar T7] at 7, letcir v = M in v at V :: A, 7 ~ Ay @ a;, 77 ~ A @

the proof is similar to the first case, except that we use Lemma C. 11.
The case for C, ^[future box M] at 7 :: A, 7 ~ A1 @ * is similar, except that we use Lemmas C.12 and

C.13.
new V @ a/Case Rfuture®

C, K[future box^/ M] at 7 => C, ^[syncvar YJ at 7, letcir v = M in v at
The proof is similar to Case Rfuture, except that we use u1 without creating a fresh node.

R s W l t hCase C, K[syncwlth syncvar V] at 7, V at 7
7 => C, K[V] at 7, V at V

If C, K[syncwith syncvar 77] at 7, F at 77:: A, 7 ~ Ay @ u;, T7 ~ Ay/
A, 7 ~ A7 @ u>, 77 ~ Ay/ @ J\ •; rp e r m hp(7) /c[syncwith syncvar Y
A, 7 ~ ^7 @ a;, 77 ~ Ay/ @ ic;7; •; Tperm hp (7 /) V ~ Ay @ a;7.

By Lemma 4.4 and the rules Tsvar7 and Tswith7,
A, 7 a;7 ; rperm h^(7) syncwith syncvar V

^ or not),
A, 7

A~y @ a?, 77 ~ Ay/

= a;7 (whether Viri) =
A7 Q a;, 7

7 ~ Ay/ @ a;7; •; Tperm h p (7) V - Ay/ @ a;7 by the rule
/

u;7, then

@ a;7.

A, 7 ~ A7 @ a;, 77

A, 7 ~ A7 @ w, 77

By Lemma C.6,
A, 7 ~ A7 @ a;, T7

By Lemma C.7,
C, K[V] at 7, V at

Ay/ @ a;7; •; rp e r m

Ay/ @ u;7; •; r p e r m

Ay/ @ a/; •; Tperm

V : Ay/ by the rule Val^, and
V ~ Ay/ @ ^7 by the rule

Ay @ a;,

:: A, 7 a;, Ay/ @ a;7

The case for C, K [syncwith syncvar y] at 7, V at T7 :: A, 7 u>, V ~ Ay/ @ • is similar.

47

The cases for
C, /c[syncwith syncvar Y\ at 7, V at y :: A, 7 ~ Ay @ •, y ~ Ay/ @ a?' and
C, ^[syncwith syncvar Y\ at 7, V at y :: A, 7 ~ Ay @ *, y ~ Ay/ @ •

are also similar, except that we use Lemma C.8 instead of Lemma C.7.
new 7'

C, /sfnewchan^] at 7 =>• C, «[chanvar 7'] at 7, nil at y
If C, ^[newchan^] at 7 :: A, 7 ~ Ay @ a;, then

A, 7 ~ A7 @ a;; •; F̂ 1™ l"p(7) ^[newchan^] ~ Ay @ UJ.
By weakening on A, 7 ~ Ay @ a;,

A, 7 ~ Ay @ a;, 7' ~ A vlist @ *; •; T**xm l"p(7) ^[newchan^] ~ Ay @ u).
By Lemma 4.4, newchan^ typechecks:

A, 7 ~ Ay @ a;, y ~ A vlist @ •; •; r^"1 l~p(7) newchan^ ~ A chan @ a;*

By the rules Tchanv and Val^,
A, 7 ~ Ay @ a;, 7' ~ A vlist @ •; •; rperm hP (7) chanvar y ~ A chan @ a;*

By Lemma C.6,
A, 7 ~ Ay @ a;, 77 ~ A vlist @ •; •; rperm h p (7) K[chanvar y] ~ Ay @ u.

By the rule Tvnil and Val^,
A, 7 ~ A7 @ a;, y ~ A vlist @ •; •; Tperm ^p(7/) nil ~ ^4 vlist @ CJ* for an arbitrary node a;*.

By applying Lemma CIO to
C, K[newchan^] at 7 :: A, 7 ~ ^47 @ u9

A, 7 ~ Ay @ a;, y ~ A vlist @ •; •; r P ^ h p (7) /̂ [chanvar y] - Ay @ a;,
A, 7 ~ A7 @ a;, 7r ~ ^4 vlist @ *; •; r^1™ ^~v(Y) n'' ~ ^ vlist @ a;* for an arbitrary node a;*,

we have
C, ^[chanvar y] at 7, nil at y :: A, 7 ~ A7 @ a;, y ~ ^4 vlist @ •.

The case for C, Ktnewchan^] at 7 :: A, 7 ~ A7 @ • is similar, except that we use Lemma C.12.

Case c, ^[readchan chanvar y] at 7, Vh :: yt at y => C, K ^] at 7,14 at 7' R r e a d c :
If C, ^[readchan chanvar 7'] at 7, V& :: Vt at y :: A, 7 ~ A7 @ a;, 7r ~ Ay/ @ *, then

A, 7 ~ Ay @ a;, 77 ~ Ay/ @ •; •; T^"11 l"̂ >(7) «[readchan chanvar y] ~ Ay @ u)9

A , 7 ~ A7 @u;,7 /~ Ay/ @*;;rp e r m hp(7/) V^ :: Vt ~ Ay/ @ a;* for an arbitrary node a;*.
By the rules Valvr and Tvcon,

Ay/ = A vlist,
A,7 ~ A7 @ u>,7; ~ Ay/ @ •; •;T^1™ h p (7) V^ ~ A @ u;*,
A, 7 - Ay @ u;, 77 - Ay/ @ •; -; rPerm \~ny) Vt - Ay/ @ a;*.

By Lemma 4.4 and the rules Tchanv and Treadc,
A, 7 ~ A7 @ a;, 7' ~ Ay/ @ •; •; r1^"11 f~p(7) readchan chanvar y ~ ^4 @ a;*,

By Lemma C.6,

By Lemma C.7,
C,«[Vy at iM :: Ft at y :: A, 7 ~ A7 @ a;,y ^ Ay/ @ •.

By Lemma C.8,
C, /c[Vh] at 7, yt at i :: A, 7 ~ ^47 @ a;, y ~ Ay/ @ •.

The case for C, ^[readchan chanvar Y\ at 7, V^ :: Vt at i :: A, 7 ~ ^47 @ •, y ~ Ay/ @ • is similar,
except that we use Lemma C.8 instead of Lemma C.7.

48

The two cases with Y ~ Ay @ u/ for some node u/ are impossible because of the rule Tchanv.

C, «[writechan (chanvar Y) V] at 7, V\ :: • • • :: Vn :: nil at Y =>
C,/c[V] at 7, Vi :: • • • :: Vn :: V :: nil at Y

If C, «;[writechan (chanvar y) V] at 7, Vi

A, 7 a;, 7' • ; •;
A, 7 ~ Ay @ a;, 7' ~ Ay/ @ •; •;

By the rules Valvr and Tvcon,
Ay/ = ^4 vlist,
A, 7 ~ ^i7 @ a;, 7X ~ Ay/ @ •;

:: V^ :: nil at y :: A, 7 ~ Ay @ a;, y ~ Ay @ •, then
«[writechan (chanvar Y) V] ~ Ay @ a;,
Vi :: • • • :: Vn :: nil ~ Ay @ a;* for an arbitrary node

a;*.A,7 ~ A7 Q u;^7 ~ Ay/ @ •;
By Lemma 4.4 and the rules Tchanv, Twritec, and

A, 7 ~ Ay @ a;, 77 ~ Ay/ @ •; •; T^1™ hp (7) writechan (chanvar y) V ~ A
A, 7 ~ A7 @ a;, 77 ~ Ay/ @ •; •; Tperm h p (7) V ~ A @ a;*,

LJ*9

Ay/ @ •; •;

Ay/ @ • ; -

A, 7 ~ A7 @ a;, 77 - Ay/ @ •; •; T̂ 1™ hP(7/) V
By Lemma C.6,

A, 7 ~ A7 @ o;
By Lemma C.7,

C, «[V] at 7, VL :: • • • :: Fn :: nil at y :: A, 7
By the rules Valvr, Tvcon, Tvnil,

@ y A @ TP6"11 \v(y)

@a;*.

a;.

A,7 - Ay @ o;,y ~ Ay/ @ •; - \-
By Lemma C.8,

C, «[F] at 7, :: Vn :: V :: nil at y :: A, 7

7 ; ~ Ay/ @ •.

Fn :: V :: nil ~ Ay/ @ v*.

@ a;, y ~ Ay/ @ *.
:: V̂ :: V :: nil at Y :: A, 7 ~ A7 @ •, y ~ Ay/ @ •The case for C, ^[writechan (chanvar y) V] at 7,

is similar, except that we use Lemma C.8 instead of Lemma C.7.
The two cases with Y ~ Ay/ @ a/ for some node a/ are impossible because of the rule Tchanv.

<; ~ A @ u) € TP6"" V -•pe™ V Pfr) = U)
Case ——r-Tj— — — — j — Rvalvar :

C, /c[v] at 7 = ^ C, K[VJ at 7
If C, K[V] at 7 :: A, 7 ~ Ay @ J, then

A, 7 - Ay @ a/; •; Tperm h p (7) K[V] ~ A7 @ v'.
Since v ~ A @ u e T^17" and ^(7) = a;,

A, 7 - Ay @ a;'; •; T*>erm \-v(y) v : A.
By the assumption on V and weakening,

A,7 - Ay @ a/; .;TPerm h^ V : A.
Since ^(7) = u>,

A, 7 - Ay @ J\ •; rperm hf>(7) K[
By Lemma C.7,

C,K[V) at 7 :: A, 7 ~ ^7 @ ^.

The case for C, K[V] at 7 :: A, 7 ~ ^4

Proof of Lemma 4.3:

@ u;r by Lemma C.6.

• is similar, except that we use Lemma C.8 instead of Lemma C.7.

•

Proof. By induction on the structure of A; •;
Case

^ M ~ A @ u/. (Below we reuse all metavariables.)

49

impossible.
Case Vvar^:

M = v, u = J, and v ~ A @ J £ rperm.
Cases D\w, Dlw, Dlpp, Olvr, Oljy, T(), Tsvar, Tsvar7, Tvnil, Tvcon, Tchanv:

M = V ̂ v.

Case ^ . . ^ ^ ^ ^ V a M ^) :

If F = v, then v ~ A @ J G T**™ by the rule Vvar^.

M = Ax; A. M' by Lemma 4.2.
M AT = (0)[(Xx: A. M') N] and (Ax: A. M1) N —• [N/x]Mr.

v~ AD B@u e rP*rm by the rule Vvar^.
M N = (\\ N)[v] andv~ AD B@u€ rperm.

M = K[Af] by induction hypothesis where
M' = v and v ~ A' @ u G T"*"",
M' —> iV', or
M' is eval box N', eval box̂ ,// iV', future box N', future box̂ ,// iV', syncwith syncvar 7, newchan^/,

readchan chanvar 7, or writechan (chanvar 7) V.
Then we let M N = (K N)[M*\.
A; •; TPerm h^ M : DA A; •, x :: A; P""™ hu N ~ B @ J

A; •; r^"" \-w letbox x = M\nN~B@u>'

M = box M' by Lemma 4.2.
letbox x = M in N = (0)[letbox x = box M' in AT] and letbox x = boxM'\nN —> [M'/x]N.

v ~ DA @ a; G rP"711 by the rule VvarH .
letbox x = M in JV = (letbox x = 0 in N)[v] and t? ~ DA @ u>

M = K[Af] by induction hypothesis where
M' = u and v ~ A' @ u G rperm,
M' —f iV', or
M ' is eval box N', eval box̂ w N', future box iV', future box̂ w N', syncwith syncvar 7, newchang',

readchan chanvar 7, or writechan (chanvar 7) V.
Then we let letbox x = M in JV = (letbox x = K in JV)[Af].

Case DE^r is similar to Case
A;-;rPerm h^ M : OA A;-,v~ A;^™ \-u N ~ g @ <«/

Case A ; ; r P e r m l l e t c i r t ; M i n 7 N r 5 @ a ; ' W :

If Af = V961/,
M = cir M' by Lemma 4.2 and

fresh u* A; •; r h^M A@u
A . .. pperm h w d r M / o ^ ^

50

letcir v = M in N = (Q)[letcir v = cir V' in N] and letcir v = cir V in N —• [V'/v]N.
2) Mr = v" is impossible.

Mf = K[M"] by induction hypothesis where
M" = v" and v"~A'@u>€ T**™,
M" —> N\ or
M" is eval box N\ eval box^" N\ future box N\ future box /̂/ TV', syncwith syncvar 7, newchan^/,

readchan chanvar 7, or writechan (chanvar 7) V".
Then we let letcir v = M in N = (letcir t> = cir K in AT)[M7/].

If M = i/,
v ^ O i @ a ; G Tperm by the rule Vvar^.
letcir v = M jn N = (letcir t; = Q in JV)[t/] and v; ~ Oi4 @ a; G Tperm.

M = K[MX] by induction hypothesis where
M' = v' and v7 - A! @ u> € T*™,
Mf —> N', or
Mf is eval box N\ eval box /̂/ AT7, future box iV7, future box /̂/ A^7, syncwith syncvar 7, newchan^,

readchan chanvar 7, or writechan (chanvar 7) V.
Then we let letcir v = M \n N = (letcir t> = AC in N)[M'].

Case OE7^ is similar to Case OEw, except that Subcases 1) and 2) are now combined as follows:
M' = V\
letcir v = M in N = (Q)[letcir v = cir̂ * V in iV] and letcir v = cir̂ * V1 in JV —• [V'/v]N.

= V 7^ v by induction hypothesis, we are done.
M = v and v ~ Aprim @ u G rperm cannot happen by the assumption on
If M = AC[M7] by induction hypothesis where

Mf = v and v ~ A' @ w G rperm,
M7 —• iV7, or
M1 is eval box N\ eval box /̂/ A/̂ 7, future box N\ future box /̂/ AT7, syncwith syncvar 7, newchan^/,

readchan chanvar 7, or writechan (chanvar 7) V\
then we are done.

C a S C A; •; TPerm Hw eval M : unit T e v a l :

M = box M' by Lemma 4.2.
eval M = (Q)[eval box M'].

If Af = «,
t; ~ DA @ UJ € TP6"" by the rule Vvar^.
eval M = (eval D)[v] and v ~ D 4̂ @ w 6

M = K[M'] by induction hypothesis where
M' = u and v ~ A' @ u> € rperm,
M' —» AT', or
M' is eval box N', eval box ,̂" AT', future box AT', future box̂ w N', syncwith syncvar 7, newchan^s

readchan chanvar 7, or writechan (chanvar 7) V.

51

Then we let eval M = (eval /c)[Af].
Case Teval® is similar to Case Teval.

A r p e r m h M D Q

C a S C A; -; rperm K; future M~A sync @ u;* T f u t u r e :

M = box Mf by Lemma 4.2.
future M = (fl)[future box M'].

v ~ UOA @u> e r**"™ by the rule
future M = (future \\)[v] and v - DO A @ UJ G rp€rm.

M = K[M 7] by induction hypothesis where
M' = v and v ~ A! @ a; G rp e r m ,
M7 — • iV7, or
M ; is eval box N\ eval box /̂/ iV', future box N\ future box^" N\ syncwith syncvar 7, newchan^/,

readchan chanvar 7, or writechan (chanvar 7) V.
Then we let future M = (future n)[M').

Cases Tfuture®, Tfuture', and Tfuture®' are similar to Case Tfuture.
A ; ; r ^ M : A s y n c

C a S e A; •; TPerm h^ syncwith M ~ A @ a;* T s w i t h :

M = syncvar 7 by Lemma 4.2.
syncwith M = ([]) [syncwith syncvar 7].

v ~ A sync @ u € Tperm by the rule
syncwith M = (syncwith [])[v] and i; ~ A sync @ a; G rperm.

V9

M = n[Mf] by induction hypothesis where
M1 = v and v ~ A! @ u e Tperm,
M7 —> iV7, or
M 7 is eval box N\ eval box^" AT7, future box AT7, future box^" AT7, syncwith syncvar 7, newchan^,

readchan chanvar 7, or writechan (chanvar 7) V.
Then we let syncwith M = (syncwith K)[M'}.

Case Tswith7 is similar to Case Tswith.
Case A; •; F*1™ h^ newchan^ - A chan @ u;* T n e w c :

newchan^ =
A ; ; r ^ M : c a

C a & e A; -; rperm h^ readchan M - A @ LJ* T r e a d c :

M = chanvar 7 by Lemma 4.2.
readchan M = (Q)[readchan chanvar 7].

v ~ A chan @ cc; € rperm by the
readchan M = (chanvar \\)[v] and v - A chan @ a; G Tperm.

M = K[M 7] by induction hypothesis where
M 7 = x; and v - A7 @ u; G Tperm,
M 7 — • AT7, or

52

M' is eval box N\ eval box^" N\ future box N\ future box /̂/ AT7, syncwith syncvar 7, newchan^s
readchan chanvar 7, or writechan (chanvar 7) V.

Then we let readchan M = (readchan /^[M7].
A . . ; r p e r m h ^ M : ^ c h a n fresh J A; •; rperm h , N ~ A ^

C a S e A; •; F*"" h^ writechan M AT

M = chanvar 7 by Lemma 4.2.

u;*
Twntec :

writechan M N = ([]) [writechan (chanvar 7) V7].
2) If N = v' is impossible.

induction hypothesis where
N' = vf and vr - A' @ a; G rPerm ,
JV' — • JV ,̂ or
Nf is eval box Nf\ eval box /̂/ JV7', future box Nf\ future

newchan^/, readchan chanvar Y, or writechan (chanvar y) V".
Then we let writechan M N = (writechan (chanvar 7) K)[N'].

syncwith syncvar V,

v ~ A chan @ u G rp e r m by the rule
writechan M N = (writechan \\ N)[v] and v ~ A chan G rperm.

M = K[M7] by induction hypothesis where
M' = vandv~A'@u;e rperm,
M7 —> iV7, or
M7 is eval box A/̂ 7, eval box^" AT7, future box TV7, future box /̂/ iV7, syncwith syncvar 7, newchan^',

readchan chanvar 7, or writechan (chanvar 7) V.
Then we let writechan M N = (writechan K N)[M']. •

Proof of Theorem 4.5:

Proof.
Suppose C = Co, M at 7. By the rule Tcfg, we have A; •; T̂ 1™ h^ M - A @ a;7 for ^(7) = a; and a
certain node a/. By Lemma 4.3, we consider the following cases:

• M = v (where v ~ A@u;f e rperm)

• M = k[v], v ~ B @u> e r**1™, and

v ~ B @ (j G rperm V V

Co, K[V] at 7 => Co, K[F] at 7

M = K[N] where AT —• N\ and

Rvalvar

Co, K[N] at 7 = > Co, «[iV] at 7
Rcfg

53

M = «[eval box N] and

new 7'
Co, tf [eval box N] at 7 =» Co, *[()] at 7, AT at

• M = *c[eval box^" N] and

new 7' @ u/'
Co, /c[eval box^/ AT] at 7 =» Co,«[()] at 7, AT at V

• M = /c[future box iV] and

Reval

Reval®

new 7'
RfutureCo, /̂ [future box AT] at 7 => Co, «:[syncvar 7^ at 7, letcir i; = AT in v at V

M = K[future box /̂/ N] and

new V @ UJ"

Co, /c[future box /̂/ N] at 7 ==> Co, ^[syncvar T7] at 7, letcir v = N mv at

• M = /̂ [syncwith syncvar y] and V at T7 ^ Co- (£.g., M at Y € Co and M is not a value.)

• M = *;[syncwith syncvar 7'], V at V € Co, and

Rswith
Co, /c[syncwith syncvar 7'] at 7 =£> Co, K[V] at 7

• M = ^[newchan^] and

new V
Co, K[newchan£] at 7 => Co, ^[chanvar 7'] at 7, nil at Y

• M = KJreadchan chanvar Y] .

By Lemma 4.4,

A; •; T̂ 1™ ho; readchan chanvar Y ~ ^ @ a;".

By the rule Treadc (optionally preceded by the rule Prim~^ if B is a primitive type),

A; •; T^rpn h^ chanvar Y : B chan.

By the rule Tchanv,

i ~ B vlist @ • € A.

Since C :: A,

C = C'0,M at 7, AT at 77 and A; •; T̂ 1™ hp(7/) AT ~ JB vlist @ a;* for a fresh node a;*.

- N = Vh::Vt and

CQ, ^[readchan chanvar Y] at 7, V^ :: Vt at Y => Co' Kivh] at 7> ^* at Y

- AT ^ 14 :: Vt.

54

• M = ^[writechan (chanvar Y) V).

By Lemma 4.4,

A; •; r^rm hw writechan (chanvar 7') V ~ B Q a;77.

By the rule Twritec (optionally preceded by the rule Pr\xr\~w if -B is a primitive type),

9 A; •; Tperm ho, chanvar 7' : £ chan.

' By the rule Tchanv,

77 ~ 5 vlist @ • G A.

Since C :: A,

C = C^M at 7, AT at y and A; •; T^1™ h p (y) A^ ~ B vlist @ a;* for a fresh node uA

- N = Vi :: • :: Vn :: nil and

CQ, /c[writechan (chanvar y) F] at 7, Vi :: • • :: Vn :: nil at y =^

CJ,K[V] at 7,Fi :: • • • :: Fn :: F :: nil at i

- -Y^Vi ::-.-:: Vn:: nil.

Therefore, if there exists no C" such that C ==> C", C consists only of the following:
F a t 7,
/c[syncwith syncvar y] at 7 (where V at y 0 C),
K[readchan chanvar y] at 7 (where Vh :: T4 at y 0 C),
/c[writechan (chanvar y) F] at 7 (where Fi : : • • • : : Vn :: nil at y ^ C). D

55

