
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-86-173

A Pattern Classification Approach
to Evaluation Function Learning

Kai-Fu Lee

Computer Science Department
Carnegie-Mellon University

Pittsburgh, PA 15213

October 1986

Abstract

We present a new approach to evaluation function learning using classical pattern-classification
methods. Unlike other approaches to game-playing where ad-hoc mediods are used to generate
the evaluation function, our approach is a disciplined one based on Bayesian Learning. This
technique can be applied to any domain where a goal can be defined and an evaluation function
can be applied. Such an approach has several advantages: (1) automatic and optimal combination
of the features, or terms, of the evaluation function; (2) understanding of inter-feature
correlations; (3) capability for recovering from erroneous features; (4) direct estimation of the
probability of winning by the evaluation function. We implemented this algorithm using the game
of Othello and it resulted in dramatic improvements over a linear evaluation function that has
performed at world-championship level.

This research was partly sponsored by a National Science Foundation Graduate Fellowship. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied of the
National Science Foundation or the US Government

i

Table of Contents

1. Introduction
2. The Construction of an Evaluation Function

2.1 The Role of the Evaluation Function in Search
2.2 Samuel's Evaluation Function Learning Experiments

2.2.1 Polynomial Evaluation Learning through Self-play
2.2.2 Signature Table Learning through Book Moves

2.3 Other Work on Automatic Feature Combination
3. Baycsian Learning of Evaluation Function

3.1 Bayesian Learning
3.1.1 The Training Stage
3.1.2 The Recognition Stage

3.2 The Game of Othello and Bill
3.3 Evaluation Function Learning

3.3.1 The Training Stage
3.3.2 The Evaluation Stage

4. Results
4.1 Actual Games
4.2 Endgame Problems

5. Discussion
5.1 Advantages of Bayesian Learning
5.2 Problems with Bayesian Learning

5.2.1 Multivariate Normal Assumption
5.2.2 Accuracy of Labeling
5.2.3 Efficiency of Bayesian Learning Evaluation

5.3 Applicability to Other Domains
6. Conclusion
Acknowledgments

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PilTSBURGH, PENNSYLVANIA 15213

List of Figures
Figure 2-1: Samuel's final signature table scheme.
Figure 2-2: If F l and F2 arc the same feature, the signature table configurations in (a) would cancel

their redundancy, but the one in (b) would not.
Figure 3-1: (a) shows the initial Othello board set-up and the standard names of the squares; (b)

shows a sample board with legal moves (for Black) to C6, D6, D2, E6, and G2; (c)
shows the board after Black plays to E6.

Figure 3-2: The learning and evaluation process of the proposed evaluation function learning
algorithm based on Bayesian Learning.

Figure 5-1: Correlation between every pair of features for winning and losing positions as a
function of the stage in the game.

Figure 5-2: The fraction of training positions correctly classified by each feature used in isolation as
a function of the stage of the game.

Figure 5-3: Win/Loss distribution of the four feature used.

iii

List of Tables

Table 3-1: The mean vector, covariance matrix, and correlation matrix for the classes win and loss at 15
move 40.

Table 4-1: Results between two versions of BILL. 18
Table 4-2: Percentage of agreement between two versions of BILL and the move that guarantees the 18

largest winning margin.
Table 5-1: Comparison between Samuel's Algorithms and the Bayesian learning algorithm. 20

1. Introduction

i

Most successful game-playing programs employ full-width search that applies a heuristic evaluation

function at terminal nodes [14] [1] [11] [7], A typical evaluation function has the form:

Eval = C x F' + C x F\+ ••• + C x F. (1.1)

1 1 2 2 n n v 7

where Eval is the static evaluation of a board configuration, and linearly combines a number of features

(Ft F, - - - F^ weighed by coefficients (C^ C , • • • CJ. Each feature is a well-defined measure of the

"goodness" of the board position. In chess, reasonable features might be piece-count advantage, center

control, and pawn structure. In Othello, reasonable features might be mobility, edge position, and disc

centrality.

The above formulation suggests three ways to improve a game-playing program:

1. Finding a superior search strategy.

2. Selecting better features.

3. Combining the features appropriately.

We believe that the first two ways are already well-understood. Researchers have proposed several new

full-width search strategies, such as Scout [10] and the zero-window search [1]. Unfortunately, these

techniques provide only constant improvements in an exponential search space [7]. Selecting good features is

extremely important. However, good features are usually not very difficult to derive from expert knowledge1.

At present, the strongest game-playing programs are relying on fast hardware instead of new search

algorithms [3] [1], and efficient feature analysis instead of discovering new features [1] [7]. Therefore, we

suggest that research in full-width searching and feature selection has reached the saturation point, and that

the success of future game-playing programs will depend crucially on how well the features are combined. In

this paper, we will introduce an algorithm based on Bayesian Learning that automatically combines features.

Unlike feature selection, feature combination is a very unintuitive process. On the one hand, one must

establish a precarious balance among diversified strategies (such as choosing weights for positional advantage

or piece advantage in chess). On the other hand, one must attend to interaction between related features

(such as pawn structure and king safety in chess). Furthermore, one always faces the dilemma of having

either too few features, or many features that include correlated or redundant ones.

Samuel [12] was the first to propose algorithms that automatically combine features. He introduced a

linear evaluation function learning algorithm, and subsequently devised a non-linear learning algorithm based

binding good features automatically is a very difficult problem, but it is beyond the scope of this paper.

2

on signature tables [13], However, his algorithms suffer from a number of problems. The linear evaluation

function has an inadequate understanding of relationships among the features. The signature tables have

smoothness problems from extreme quantization. The greatest problem with both algorithms is that while

they obviated the burden of tuning the coefficients, they imposed new burdens such as choosing the signature

tables structure, determining the range and level of quantization, and selecting the amount and frequency of

functions' adjustments during learning. The effort required to tune the programs far exceeded die

conventional trial-and-error tuning of the coefficients with expert help. Finally, because of the effort

required, Samuel's algorithms are highly domain dependent

In this study we report a new learning algorithm. Like Samuel's, our algorithm learns to combine

features into an evaluation. Unlike Samuel's, however, it has no problem witii smoothness and is completely

automatic, requiring no tuning whatsoever. Our algorithm is based on Bayesian Learning [4].

1. We accumulate a large number of games as training data. Each game is played by two expert
players.

2. We label (either manually or automatically) each position as winning or losing according to some
criteria. The criterion used in this study is the actual outcome of the game.

3. The training program computes a Bayesian discriminant function the labeled training data. The
function tries to recognize feature patterns that represent winning or losing positions. Given a set
of feature values of a position, it assigns a probability that the position is a winning one.

4. We build different classifiers for different stages of the game.

Our algorithm has five important advantages:

1. The learning process is completely automatic. There are no coefficients or parameters to tune,
and no normalization is needed.

2. Assuming multivariate normal distribution [4], the quadratic combination is proven to be optimal
on the training data.

3. The algorithm considers not only the features themselves, but also how they covary with each
other. For example, if two correlated features were used, they will not both contribute fully to the
evaluation.

4. The algorithm can recover from erroneous information in the evaluation. For example, adding a
random feature would not degrade its performance.

5. It returns the probability of winning as the evaluation. This evaluation is one that all evaluation
functions try to emulate. Furthermore, having such an evaluation validates comparison between
values on different levels of the search tree.

We tested this algorithm in the domain of Othello. An Othello program, BILL 2.0 [7], was modified to

learn an evaluation function from the features that it already used. Since the evaluation in BILL 10 was

carefully tuned and since BILL 2.0 is virtually invincible, only moderate improvements were expected.

3

However, results showed that BILL 3 0 (using Bayesian Learning) defeated BILL 2.0 over twice times as often as

it was defeated from nearly even initial positions. The average final score from this experiment was 37 to 27.

Wc show that this gain is equivalent to two extra plies of search. In another experiment involving Odiello

problem solving, BILL 3.0 solved 11% more problems than BILL 2.0 using eight plies of search.

In Chapter 2, we will first discuss conventional ways of constructing evaluation functions and their

shortcomings, with emphasis on Samuel's work. In Chapter 3, Bayesian Learning and its application to

evaluation function learning is described in detail. In Chapter 4, the results from Odiello are presented.

Chapter 5 contains analyses and discussion of the Bayesian Learning of evaluation function. Finally, Chapter

6 contains some concluding remarks.

4

2. The Construction of an Evaluation Function

2.1 The Role of the Evaluation Function in Search

The fundamental paradigm in game-playing programs has changed very little since Newell, Simon, and

Shaw's discovery of the alpha-beta relationship [9]. Almost all programs still rely on full-width alpha-beta

search, and all programs still use static evaluation at terminal nodes.

Since most programs employ similar search strategies, the evaluation function plays the most crucial

part in game-playing programs. The evaluation function embodies the knowledge of the program, and is

responsible for differentiating good moves and positions from poor ones. Furthermore, since most programs

rely on the evaluation function for move ordering, a good evaluation function leads to a more efficient search.

The static evaluation includes two stages: (1) evaluating certain features of a board position, and (2)

combining these feature scores into an evaluation. Selecting the features is a domain-dependent task, and

cannot be systematically studied. In this study, we will focus on the combination of the feature scores into an

evaluation. In particular, we will later present an algorithm that accomplishes this task automatically.

Traditionally, a static evaluation is a linear combination of the features as shown in Equation (2.1): -

Evcd= CxF + C x F + + C xF. (2.1) 1 1 2 2 n n v /

where Eval is the static evaluation of a board configuration, and is a linear combination of features

(Fx, F2, - • • FJ weighed by coefficients (q, C 2, • • • CJ.

There are two problems with this representation. First, it assumes that the features are independent,

and that they can be combined linearly. This is clearly a false assumption. In fact, we will later show that

every pair of features are correlated to some degree. Second, the coefficients are usually derived by ad-hoc

methods. In many cases, the implementor guesses these coefficients from his domain knowledge. Even when

the implementor is knowledgeable, it is difficult to derive these coefficients because humans do not think in

terms of alpha-beta search and static evaluation. When the implementor is not knowledgeable, he will be

clueless. This was the initial motivation for Arthur Samuel, a novice checkers player, to write a checkers

learning program.

2.2 Samuel's Evaluation Function Learning Experiments

One of the earliest and the most intensive studies on machine learning was conducted by Arthur Samuel

in the domain of checkers from 1947 to 1967 [12] [13]. His objective was very similar to that of this study,

namely, given a set of feature values of a board position, assign a score which measures the goodness of the

5

position. Although he performed many experiments, we will focus on the two most important ones: (1)

polynomial evaluation learning through self-play, and (2) nonlinear signature table evaluation learning

through book-move. In the two subsequent sections, these two procedures will be described and evaluated.

2.2.1 Polynomial Evaluation Learning through Self-play

In polynomial evaluation learning [12], Samuel arranged to have two copies of the checkers programs

play against each other, and learn the weight for each feature in a linear evaluation function. One copy of the

program, Beta, uses a fixed function throughout a game. The other copy, Alpha, continuously improves its

evaluation function. Alpha learns by comparing its evaluation to that of a more accurate evaluation, which is

derived by the use of a minimax search. If the search returns a sufficiently higher value than the static

evaluation, it is assumed that the static evaluation is in error. Each negative feature in the static evaluation is

penalized by lowering its weight

Alpha and Beta are originally identical, and Alpha continuously improves its weights. After each game,

if Alpha defeats Beta, it is assumed to be better, and Beta adopts Alpha's evaluation function. Conversely, if

Alpha loses three games to Beta, it is assumed to be on the wrong track, and the coefficient of its leading term

is set to 0 in an attempt to put it back on the right track. Furthermore, manual intervention was used to

restore previous states if "it becomes apparent that the learning process is not functioning properly."

The resulting evaluation function from this learning algorithm seemed to stabilize after a number of

games when Alpha consistently defeated Beta. The final program was able to play a "better-than-average"

game of checkers. This learning procedure was one of the first examples of machine learning. However, its

validity is predicated upon several incorrect assumptions.

The first of these assumptions is that a good evaluation function can be defined as a linear combination

of independent features. This assumption is false in general, and is particularly wrong with Samuel's learning

procedure because he intentionally collected redundant features. If two identical features were considered by

Samuel's procedure, both would be assigned the same weight, resulting in over-estimation of the feature's

value. Furthermore, a linear evaluation function is unable to capture the relationship between features. By

repeating Samuel's experiments, Griffith [5] showed that better performance was achieved by an extremely

simple heuristic move ordering procedure.

The second assumption is that when search and static evaluation disagree, the static evaluation must be

in error. While deep searches are more accurate than shallow searches in general, there are several ways this

assumption can fail. It is possible that a problem with a position can only be discovered by looking several

plies ahead. In this case the static evaluation should be allowed to remain in error, as it is usually impossible

6

to program such look-ahead knowledge into it. Furthermore, searches could suffer from the horizon effect [2],

resulting in inaccurate evaluations.

The diird assumption is that if the evaluation function is found to be overly-optimistic, any positive

component is assumed to be in error. This is clearly incorrect because in most positions, each player is ahead

in some features and behind in others. The erroneous evaluation may be due to components that are

negative, but not negative enough. Just checking the sign is simply not adequate.

Finally, this procedure assumes that if Player A defeats Player B, it must be because of its superior

evaluation function. This assumption may be reasonable for expert players, but when novice programs play

each other, a win may be the result of: (1) a superior evaluation function, (2) luck (when neither player

understands the position), or (3) opponent's errors. Since Samuel's program played like a novice, it would

often win due to luck or opponent's errors, resulting in erroneous credit assignment

2.2.2 Signature Table Learning through Book Moves

Samuel recognized these problems, and subsequently devised another learning procedure that remedied

most of them [13]. In order to handle nonlinear interactions among the feature, he introduced signature

tables', and in order to cope with the incorrect assumptions in self-play, he used book moves.

Signature tables are multi-dimensional tables that combine features together nonlinearly. Each

dimension represents some feature. To evaluate a board position, the value for each feature is used to index

into the table, and the cell corresponding to this index contains the evaluation. The obvious problem with this

scheme is that the tables become extremely large. Samuel deals with this problem by using a a hierarchical

organization, and the features are grouped into sets of 4. Only intra-set interactions are considered. Then

each set produces a value from the cell indexed by these four feature values. Tables in the next higher level

use these values as if they were features. There were a total of three levels. But this could still result in very

large tables, so Samuel quantized his feature values. In each of the lowest-level tables, the values were

restricted to (-1, 0,1) for three of the features, and (-2, -1 , 0 ,1 , 2) for the other feature. This resulted in the

final configuration as shown in Figure 2-1. This configuration contains 883 cells, which is reasonable for both

storage and training.

These cells are trained from book moves. A large number of board positions from master play were

presented to the program. The goal was to have the signature table learn to emulate master play. This is done

by keeping counts for each cell corresponded with the feature combination of the move chosen by the master

(A), and for each cell that corresponded with the feature combination of each legal move not chosen by the

master (D). The actual cell value is updated periodically with ^ — ~ , which is a measure of how well the cell
{A + D)

corresponded to book moves.

7

Range
of

Va lues

5
3
3
3

5-
3
3
3 '

5
3 '
3
3

5
3 '
3 '
3 '

5-
3-
3 -

3"

5-
3 -
3"
3"

F i r s t
Level

Tab les

68

E n t r i e s

Range
o f

Va lues

Second
Level

Tab les

5 \ 128
E n t r i e s

68

E n t r i e s
5 \ 128

E n t r i e s

68

E n t r i e s
5 \ 128

E n t r i e s

68

E n t r i e s
/

128
E n t r i e s

/ 5

128
E n t r i e s

68
E n t r i e s

/ 5

68
E n t r i e s

68
E n t r i e s

68
E n t r i e s

68
E n t r i e s

68
E n t r i e s

5)
128 ,

E n t r i e s
68

E n t r i e s
5)

128 ,
E n t r i e s

68
E n t r i e s

5)
128 ,

E n t r i e s
68

E n t r i e s
128 ,

E n t r i e s
128 ,

E n t r i e s

68
E n t r i e s

68
E n t r i e s

68
E n t r i e s

T h i r d
t e v e l
Tab le

225
E n t r i e s

Figure 2-1: Samuel's final signature table scheme.

The signature table approach successfully added nonlinear learning; the book learning approach

successfully eliminated the incorrect assumptions of self-play. The resulting program significantly

outperformed a linear function trained by book learning.

However, there are a number of new problems with the signature table approach. First, this approach

makes two assumptions: (1) the book move is always the best move, and (2) there are no equally good

alternative moves. Since these were expert games, and games from the losing side were not used, they are

reasonable assumptions, but certainly not infallible ones. These problems could probably be minimized by

using a sufficiently large training database.

A major problem is that considerable accuracy is lost during the quantization process. Extreme

quantization is very risky. For example, if one were to quantize material difference in chess into 3 or 5 values,

8

how could one expect to make the right moves when the loss of a bishop may be equal to the loss of a queen?

Moreover, extreme quantization violates Berliner's smoothness principle [2], thereby introducing the blemish

effect In Berliner's words,
a very small change in the value of some feature could produce a substantial change in the value of
the function. When die program has the ability to manipulate such a feature, it will frequently do
so to its own detriment

The arbitrary quantization into so few levels has precisely this problem.

In spite of its sacrifice of smoothness, signature table learning still does not provide a general solution to

the linearity problem. Consider the case where two features were identical (or highly correlated). If these

features, F l and F2, were organized as in Figure 2-2a, their redundancy will be successfully eliminated in

Table 1. However, if they were organized as in Figure 2-2b, F l would contribute to Table 1, and F2 would

contribute to the Table 2. Furthermore, Table 3 could not eliminate this redundancy because it could not

know whether its two inputs are affected by F l and F2 or the other features. This results in over-estimation of

the utility of this feature. For the same reason, we believe the higher level signature tables to be of little utility

as they cannot identify the contributors to their inputs, and consequently cannot handle inter-table

correlations..

(a) (b)

Figure 2*2: If F l and F2 are the same feature, the signature table
configurations in (a) would cancel their redundancy, but the one in (b)
would not

As a result, it is important to carefully arrange the structure of the signature tables so that covariances

are captured. Furthermore, it is necessary to determine the range and levels for the quantization of each level,

the initial values in the cells, the frequency that they must be updated, and many others. This is what we

consider to be the greatest flaw of both procedures, namely, excessive human initialization and interventions

are required. Each parameter adds the possibility of human errors affecting the learning process, and

9

increases the amount of time needed to derive and test these values. The result is either poor learning caused

by human errors, or acceptable learning as a result of excessive human intervention.

All of this heuristic tuning made Samuel's procedure domain dependent. If one wanted to implement

his procedures in another domain, considerable additional domain knowledge must be used in the learning

algorithm, and considerable effort must be invested in die trial-and-error modification of the parameters.

This is clearly undesirable.

Finally, the concepts learned by Samuel's algorithms are suboptimal. His self-play algorithm learns to

distinguish good features from bad features based on search. His book-move algorithm learns to distinguish

moves chosen by experts from moves not chosen by experts. However, in a game-playing domain, the optimal

concept to learn is that which distinguishes winning positions from losing positions.

In summary, while Samuel's studies were a milestone in the early years of machine learning, we believe

that the amount of supervision makes them impractical and domain dependent. These major flaws, coupled

with Samuel's problematic assumptions, smoothness problems, and suboptimal learning severely limited the

practicality and applicability of his procedures.

2.3 Other Work on Automatic Feature Combination

Griffith, who originally conceived of the idea of signature tables, reported a number of evaluation

function learning results in checkers [5]. He compared linear evaluation function learning, two variants of

signature table learning, and a heuristic move ordering algorithm. He showed that the heuristic move

ordering algorithm, which has only extremely rudimentary checkers knowledge, outperformed the linear

evaluation function, but was outperformed by the signature table algorithms.

Another study was undertaken by Mitchell [8], who used regression analysis to create a linear evaluation

function in Othello. The resulting program did not play as well as was hoped. We conjecture that this is due

to the lack of nonlinearity in his program.

Both of these results indicate the inadequacy of linear evaluation functions. However, Griffith and

Samuel's signature table approach is also not adequate because of problems with smoothness and the

excessive tuning required.

10

where / is the matrix transpose operation.

3. Bayesian Learning of Evaluation Function

In this chapter, an algorithm that automatically combines the features is presented. First, Bayesian

Learning is introduced for readers unfamiliar with the concept. Next, the game of Othello and the Othello

program BILL are briefly described. Finally, we present the evaluation learning algorithm, which is based on

Bayesian Learning, and applied to the domain of Othello.

3.1 Bayesian Learning

Bayesian Learning of discriminant functions is a standard technique used in pattern recognition.

Typically, it is applied to recognition and classification of concrete objects, such as characters, images, speech

and seismic waves. Assuming multivariate normal distribution, the discriminant function defines a decision

boundary between classes. In a two-class problem, all points on this boundary are equally likely to belong to

either class. This boundary is automatically computed from the features vectors of the training data, and takes

into consideration variance and covariance of the features. It is composed of two stages, namely, training and

recognition.

3.1.1 The Training Stage

The training stage is a straight-forward parameter estimation stage. A database of labeled training data

is required. Each training sample consists of a feature vector and a label indicating which class the feature

vector belongs to. The task of the training stage is to estimate the mean feature vector and the covariance

matrix for each label (or class) from the training data.

The mean vector for af class c, / A ^ is simply the arithmetic average of each feature value for each training

sample labeled as this class, and is computed as follows:

where N is the number of times class c was observed, and x. is the r feature vector for class c.
C I

The covariance matrix for class c, 2^, measures the degree that two features covary with each other, and

is computed as follows:

i N < * c = 4 S > , ~ - M / (3.2)
C / = 1

11

3.1.2 The Recognition Stage

From the mean vector and die inverse of the covariancc matrix, the general multivariate normal density

function p of a distribution can be computed as shown in Equation (3.3):

where x is the N-element feature vector, 12 I is the determinant of the covariance matrix, 2 1 is the inverse of
• c 1 c

the covariance matrix, and u is the mean vector for class c.
* c

Bayes Rule shows that minimum-error-rate classification can be achieved using the discriminant
function gc(\)\

g c(x) = log/7(x |c) + l o g ? (c) (3.4)

where P (c) is the a priori probability of class c. Substituting Equation (3.3) into Equation (3.4), we have:

ge(x) = - ^ (x - M / S ^ x - z x p - - l o g 2TT - i l o g | 2 J + log P(c) (3.5)

To determine which class a new feature vector belongs to, g is computed for each class, and the new

input is assigned to the class with the greatest g. Furthermore, if probabilities, P9 are preferred to making

hard decisions, they can be derived by simply normalizing g(x):

P(c\x) =
e & > (3.6)

3.2 The Game of Othello and Bill

Before explaining how Bayesian Learning can be applied to evaluation function learning, we first briefly
describe the domain of our experiment, Othello.

Othello is a game played on an 8 by 8 board between two players, black and white. The board is

initially set up as in Figure 3-1. Black starts the game by placing a black disc (a playing piece with the black

side up) on any empty square on the board which allows white's disc(s) to be flipped. Each white disc

captured between this black disc and any other black disc is flipped to black. The players alternately place

discs on the board until neither player can make another move. The player with the most discs is declared the

winner.

Othello has been a very popular game for computer implementation because of its relatively small

branching factor, and the relative ease of writing programs that play reasonably. This ease is due to the

12

a b c d e f g h

C A B B A C
c X X C
A A
B O B
B e 0 B
A A
C X X C

C A B B A C

(a)

a b c d e f 6 h

© 0 o m 0
o m

0 0 o

(b)

a b c d e f g h

© 0 o
o © o o ©

0

(c)

Figure 3-1: (a) shows the initial Othello board set-up and the standard
names of the squares; (b) shows a sample board with legal moves (for
Black) to C6, D6, D2, E6, and G2; (c) shows the board after Black plays to
E6.

difficulty of Othello for human players. Othello is difficult because the board changes drastically after each

move, and some strategies are counter-intuitive.

In 1981, Rosenbloom [11] demonstrated the feasibility of creating a world-championship level Othello

program, 1AGO. IAGO'S evaluation consisted of a linear combination of edge stability, mobility, and potential

mobility. In 1986, Lee and Mahajan [7] constructed another program, BILL, that consistently defeated IAGO.

BILL placed second in the 1986 North American Championships, and is one of the best Othello players in the

world, BILL'S playing strength is mostly due to its use of an efficient yet accurate evaluation function that used

tables with pre-compiled knowledge, BILL 2.0 uses four sets of these tables, hence four features. The features

are:

1. Weighted Current Mobility - Measures the quantity and quality of the player's moves. All moves
are found using tables, and appropriate penalties are subtracted for poor moves.

2. Weighted Potential Mobility - Measures the goodness of the player's future moves. Tables that
consider each neighbor of each disc are used.

3. Weighted Squares - Measures the goodness of each square occupied by each disc of the player.
Both static measures (central squares are better than squares next to the corner) and dynamic
measures (surrounded discs are better than peripheral discs) are used.

4. Edge Position - Measures the player's edge position using a table that contains every combination
on each edge. This table is generated by a probabilistic minimax procedure [7].

The interested reader is directed to [11] or [7] for analyses of Othello strategies.

BILL 2.0 combines these features together linearly. The weights in the linear combination were

determined by creating ten different versions and holding a tournament among these ten versions. The

13

version that won the tournament was chosen as the final set of coefficients. We will apply Bayesian Learning

to the same four features, and measure the strength of the resulting program by comparing it against BILL 10.

3.3 Evaluation Function Learning

We will now present an evaluation function learning algorithm that uses Bayesian Learning as described

in Section 3.1. The key difference between our application and typical applications is that instead of trying to

recognize concrete objects, we are trying to recognize and classify board positions as winning positions or

losing positions.

The basic approach of our algorithm is shown in Figure 3-2. Like Bayesian Learning, this algorithm

consists of two stages, namely, training (learning) and recognition (evaluation), which will be described in die

next two sections.

3.3.1 The Training Stage

In order to train a Bayesian discriminant function, a database of positions, where each position is

labeled as a winning position or a losing position, is required. There are many ways to obtain such a database.

In this study, the training data were taken from actual games between two experts, and each position of the

winning player is marked as a winning position, and each position of the losing player as a losing position.

While this is a simple and consistent method, there is a serious problem: A winning position could be lost by

a poor subsequent move, and would be mislabeled as a losing position. We deal with this problem in two

ways. First, reliable experts are needed. Since BILL 2.0 is a world-championship level player, we simply used it

to generate the training data by self-play from initial positions. Second, 20 random initial moves were

generated for each game and training commenced after 20 random moves (or after there are 24 discs on the

board). It was hoped that one of the players would be ahead after the 20 moves, and that this player would go

on to win the game. In cases with truly even positions, sufficient training data should result in equivalent

number of winning and losing labels.

To generate the training data, BILL 2.0 was set up to play itself under the following conditions: the first

20 half-moves are made randomly, then BILL 2.0 is given 15 minutes for each side to play the remaining 40

half-moves . When there are 15 half-moves left, an endgame search is performed to find the winner assuming

perfect play on both sides. The game is terminated, and recorded as training data. 3000 games were played to

estimate the parameters.

W e are usually exacUy 60 half-moves to a game. The only exception is when neither side has a legal move.

14

Learning (Training)

T r a i n i n g
P o s i t i o n s

F e a t u r e
E x t r a c

t i o n

Board
P o s i t i o n

F e a t u r e
E x t r a c

t i o n

Edge

M o b i l i t y

P o t e n t i a l
M o b i 1 i t y >o

Weighted
Squares

Parameter
E s t i m a t i o n

Parameters
f o r w inn ing

p o s i t i o n s

Edge

M o b i l i t y

P o t e n t i a l
M o b i l i t y

Weighted
Squares nJ

±

Parameters
f o r l o s i n g
p o s i t i o n s

D i s c r i m i n a n t
f u n c t i o n

f o r w inn ing

D i s c r i m i n a n t
f u n c t i o n

f o r l o s i n g

P (w i n) > P (w i n) >
Eval =
P (w i n)

P (l o s s)
P (l o s s) — >

P (l o s s)

Ev

Evaluation (Recognition)

Figure 3-2: The learning and evaluation process of the proposed
evaluation function learning algorithm based on Bayesian Learning.

It is well known that different strategies are needed for different stages of the game [2]. Therefore, we

generated a discriminant function for each stage, where a stage is defined by the number of discs on the

board. The discrimination function for a stage with N discs is generated from training positions with AT-2,

N - l , N, N+l, and N+2 discs3. Since there are almost always 60 moves per game in Othello, disc count

provide a reliable estimate of the stage of the game. By coalescing adjacent data, the discriminant function is

slow-varying, and similar to the application coefficients proposed by Berliner [2],

3Note that positions with Discs < 24 and those with Discs > 49 are not trained because of random initialization and endgame search,
solved this problem by copying the parameters for the Discs = 24 to Discs < 24, and those for Discs = 49 to Discs > 49.

15

Having generated the training data, the four features are extracted from each position in the database.

Then, the mean feature vector and the covariance matrix between features are estimated for the two classes,

winning positions and losing positions. Table 3-1 shows the mean vector, the covariance matrix, and the

correlation matrix for the classes of winning and losing positions at Discs = 40. They clearly support our

earlier claims that every pair of features are correlated to some degree, and that nonlinearity is crucial to the

success of an evaluation function.

Mob.

533

475871
185298
137911
121288

1.00
0 . 7 3
0 . 6 5
0 . 2 6

W I N
P o t . Wtd.

Mean
266 242

Covariance Matrix
185298 137911
133714 71658

71658 94977
26931 41957

Correlation Matrix
0 . 7 3 0 . 6 5
1.00 0 . 6 4
0 . 6 4 1.00
0 . 1 1 0 . 2 0

Edge

599

121288
26931
41957

444184

0 . 2 6
0.-11
0 . 2 0
1.00

Mob.

•419

508045
196432
143986
118982

1.00
0 . 7 4
0 . 6 5
0 . 2 5

LOSS

P o t . Wtd. Edge

Mean
-200 -112 -334

Covariance Matrix
196432 143986
138063 73963

73963 95262
28984 42341

Correlation Matrix
0 . 7 4 0 . 6 5
1.00 0 . 6 4
0 . 6 4 1.00
0 . 1 2 0 . 2 1

118982
28984
42341

436256

0 . 2 5
0 . 1 2
0 . 2 1
1 .00

Table 3-1: The mean vector, covariance matrix, and correlation matrix for
the classes win and loss at move 40.

3.3.2 The Evaluation Stage

The evaluation of a board position involves the computation of the features, and then the combination
of this feature vector, x, into a final evaluation. From Section 3.1.2, we know that the two discriminant
functions for win and loss are:

W<X> = -\(-tWJKin(*-Kin> ~ f l 0 8 2 * " \ * * + l 0 S (3-7)

The evaluation function should measure the likelihood that the board position belongs to the class win, or:
Pwin

g(x) = -jTL = gwin-gl0SS (3.9)
loss

16

N

We now substitute (3.7) and (3.8) into (3.9). The constant - log 27r are canceled. Also, we will assume

that the a priori probability of winning and losing are equal, and eliminate log P(win) and log P(loss). This

results in our final evaluation function:

The term log | 2 y | — log \ ^ l o s s \ is a constant used to normalize the quantity, and is not stricdy necessary if

all evaluations use the same constant. But as stated above, a different set of parameters is estimated for each

stage of the game; therefore, eliminating this term would result in different evaluation ranges on different

levels of the search tree. That would be inconvenient because some thresholds in our search require a

consistent range [7]. Thus, the term is retained. Furthermore, by retaining this term, when the program

reports its evaluation, it is possible to compute the probability of winning directly from g(x):

P(win\x) = e W x)

 = g W x) " W x)

 = g* (x)

P (win | x) + P (loss | x) e 8winM + e gbss(x) e gwin(x) - ghss(x) + l e g (x) + l

Let us summarize our evaluation procedure. At every terminal node of the search, the four features are

computed, and combined into g(x) as shown in Equation (3.10). At the completion of each iteratively

deepened search, g(\) is converted to P.(win \ x) as shown in Equation (3.11), which is a more meaningful

measure for humans.

4. Results

17

In this chapter, we will describe two experiments with two versions of the Othello program, BILL. The

first version is BILL 2.0, which combines the four features linearly, and is known to play at die world-

championship level. The other version, BILL 3.0, uses the same four features, and combines them using

Bayesian Learning described in the previous chapter.

There are many ways to evaluate and compare game-playing programs, including (1) playing the

programs against each other, (2) giving problems with known solution to the programs, and (3) actual playing

record or rating. The first two methods are used here, and the third was not possible due to the scarcity of

opponents who play at BILL'S level.

41 Actual Games

The most obvious measure of two programs is simply arranging them to play each other. We arranged

BILL 2.0 to play BILL 3.0 under the following conditions: 100 nearly even positions with 20 discs on the board

were selected from BILL 2.0's opening book, BILL 2.0 played BILL 3.0 twice from each position, once as black

and once as white. Each side was given 25 minutes to make all of its moves. BILL 3.0 won 139 of the 200

games, tied 6, and lost 55. The average score was 36.95 to 27.05. This result showed that Bayesian Learning is

significantly better than a fine-tuned linear evaluation function. The actual difference may be even greater

because although all of the initial positions are close, one side could be destined to win. In that case, each

program would score a win.

In order to find out exactly how much is gained from Bayesian Learning, different versions of BILL 10

that searched to different depths played each other from the same initial positions. The results are shown in

Table 4-1. Since the above conditions allowed BILL to search 6 to 8 plies, it is valid to say that BILL 3.0 is about

equivalent to BILL 2.0 with two extra plies of search. The effective branching factor in Othello is between 3.4

and 3.7, which implies that if BILL 1 0 were given 13 times as much time, it would be about as good a player as

BILL 3.0.

4.2 Endgame Problems

Since Othello endgames can be solved many moves from the end of the game, it is possible to assess the

strength of a program by the frequency with which it selects (without searching to the end) the move that

leads to the optimal result. A problem with this scheme is that as endgame is approached, the less applicable

are the known Othello strategies, and sometimes counter-intuitive moves have to be made. In order to

minimize this problem, we acquired a database of 63 winning positions with 20 to 24 moves left, each with the

18

Players Win Tie Loss W/L Avg. Score

7-ply vs. 6-ply 121 7 72 1.68 34.54 - 29.39

8-ply vs. 7-ply 115 6 79 1.46 35.04 - 28.89

7-ply vs. 5-ply 141 10 49 2.88 37.03 - 26.94

8-ply vs. 6-ply 130 13 57 2.28 36.38 - 27.59

Learn vs. Linear 139 6 55 2.53 36.95 - 27.03

Table 4-1: Results between two versions of BILL.

move that leads to the win with the largest margin. This database was generated by a hardware endgame

searcher built by Clarence Hewlett [6].

The linear version and the Bayesian Learning version of BILL were given these problems, and each

suggested a best move using 3 to 8 plies of search. The frequency that they agreed with the optimal move is

shown in Table 4-2. Under tournament conditions, BILL could search about 8 plies at this stage of the game.

Thus, BILL 2.0 and BILL 3.0 would solve 55% and 64% of these problems, respectively, should diey occur in

actual tournaments.

Search Ply Bayesian Linear

3 51% 41%

4 51% 43%

5 53% 46%

6 57% 53%

7 61% 53%

oo 64% 55%

Table 4-2: Percentage of agreement between two versions of BILL and the
move that guarantees the largest winning margin.

In order to evaluate these figures, one should be aware that some of the optimal moves may still be

counter-intuitive. More importantly, there are often many moves that still preserve a winning position.

Unfortunately, we were not provided with sufficient information to evaluate the frequency that wins were lost

due to a poor move. But the above statistics show that Bayesian Learning is indisputably stronger.

Finally, it is possible to compare these figures against expert human play. 19 of these positions were

19

taken from six games between the top players in the world. It was found that the human experts made 9

correct moves, and 10 incorrect ones, for an accuracy of 47.36%. From, this, it is clear that both versions of

BILL played significantly better than human experts. Furtheimore. BILL 3.0 is far better than BILL 2.0 and the

human experts.

20

5. Discussion

5.1 Advantages of Bayesian Learning

In this section, we will discuss the advantages of the Bayesian Learning algorithm by comparing it

against Samuel's algorithms. Table 5-1 shows a comparison of Samuel's two algorithms and the Bayesian

Learning algorithm. It is clear that while all three algorithms were designed to solve the same problem, there

are many major differences.

Samuel's
Polynomial

Samuel's
Signature Table

Bayesian
Learning

Nonlinearity No Yes Yes

Can deal with redundancy? No Possibly Yes

Smoothness Yes No Yes

Completely automatic? No No Yes

Optimality No No Yes

General purpose Probably Not No Yes

Concept learned Good vs. bad
features

Strong vs. weak
positions

Winning vs. losing
positions

Learning Method Self-play Book-moves Games

Table 5-1: Comparison between Samuel's Algorithms and the Bayesian
learning algorithm.

The first great difference is that of linearity. Samuel's polynomial learning algorithm learns a linear

function. It assumes that all features are mutually independent, which we have shown to be false. If two

identical features were presented to this algorithm, both would be assigned equal weights, resulting in gross

over-estimation of its utility. The signature table learning is a reasonable nonlinear approximation. However,

as pointed out in Section 2.2.2, the nonlinearity in signature table learning will function only if the table

structure is carefully arranged. Even then, correlations between features that are in different tables will be

lost. If two identical features were not positioned properly, their utility is still overestimated. The Bayesian

Learning approach, on the other hand, understands nonlinear relationships between the features by

considering covariances between every pair of features. It is always possible to detect redundant features, and

account for all the overlap among the features.

In the previous chapter, we saw the dramatic improvement produced by using a nonlinear evaluation

function. To illustrate why a linear evaluation is inadequate, the correlations between each pair of features

21

arc plotted in Figure 5-1. Although the four features were extracted from different characteristics of the

board, they were found to be highly correlated, particularly mobility, potential mobility, and weighted

squares. It would be detrimental to combine these highly correlated features linearly.

Another difference is smoothness. Samuel's polynomial learning is smooth, as it uses natural features.

But the extreme quantization in signature table learning deprived it of its smoothness. The lack of

smoothness results in a search space where a minute change in one feature value could significantly alter the

evaluation. In contrast, Bayesian Learning learns a smooth function, which measures the likelihood that a

position belongs to the class of winning or losing positions.

Another serious problem with both of Samuel's procedures is that they require additional tuning and

supervision. Bayesian Learning, on the other hand, is completely automatic. Since tuning of feature-

combination is very unintuitive, automation is a very desirable property. Furthermore, Bayesian Learning

provides the optimal quadratic combination assuming multivariate normal distribution4.

One other problem with Samuel's procedures is that they do not adequately account for the stages of the

game. We measured the utility of each feature in Figure 5-2, which shows the fraction of the training

positions correctly classified as winning or losing positions for each feature if it were used in isolation. It is

clear that the stage of the game affects the relative importance of the features. The correlation changes shown

in Figure 5-1 also support the need for a fine and slow-varying measure of the stage of the game, which we

provide by generating a discriminant function for each stage. Note that it would be possible to modify

Samuel's procedure to generate many stages of learning; however, that would increase the already very large

number (180,000) of training positions.

An interesting difference between Samuel's procedures and ours is the concept that is being learned.

Samuel's polynomial learning tries to distinguish good features from bad ones by penalizing the ones that

make poor decisions, where the goodness of the feature is determined by its agreement with a deeper search.

The signature table learning tries to differentiate strong positions from weak ones, where the strong positions

result from the move made by the expert, and weak positions result from legal moves not selected by the

expert. Bayesian Learning tries to learn the concepts of winning and losing positions, where winning positions

are those that lead to an eventual win, and losing positions are those that lead to a loss. Since the objective of

any game is to win, it seems more plausible to model winning vs. losing positions than good vs. bad features or

moves chosen by experts vs. moves not chosen by experts.

e will show in Section 5.2.1 that this assumption is correct

22

c 0.80
o

"5 0.70
V.
V.

O
0 0.60

0.50

0.40

0.30

0.20

O.fO

0.00

-0.10

Mob-Pot

Mob-Wt
Pot-Wt

— — — — Mob-Edge

_ . Wt-Edge

-~** • Pot-Edge

• ' \ 25 30 35 40 45 50 55
Game Stage (Disc Count)

Winning Positions

c 0.80 r
o

I 0.70
V.
O

0 0.60

0.50

0.40

0.30

0.20

O.fO

0.00

-O.fO

Mob-Pot

Mob-Wt
Pot-Wt

^ — . Mob-Edge
Wt-Edge

Pot-Edge

- 2 5 30 35 40 45 50 55
Game Stage (Disc Count)

Losing Positions

Figure 5-1: Correlation between every pair of features for winning and
losing positions as a function of the stage in the game.

23

0.60

45 50 55
Game Stage (Disc Count)

Figure 5-2: The fraction of training positions correctly classified by each
feature used in isolation as a function of the stage of the game.

Finally, the method of training is different for all three algorithms. Samuel's polynomial learning

algorithm used self-play to generate the training data. Since this is an incremental hill-climbing procedure, it

is likely to converge to a local maximum. The signature table learning is more global; however, the training

from book-move suffers from limitations. First, while expert moves usually provide good positive exemplars,

using all moves not chosen by the expert as negative exemplars is misleading. Second, by learning to imitate

expert moves, it is theoretically impossible for the evaluation function to play better (without searching) than

the experts. In this study, the use of winning and losing positions provide good positive and negative

exemplar learning. Furthermore, by modeling "moves that lead to a win" rather than "moves chosen by

experts", it is theoretically possible for our evaluation to be superior to the experts who played the training

games.

5.2 Problems with Bayesian Learning

24

5.2.1 Multivariate Normal Assumption

The simplicity and elegance of Bayesian Learning arc largely due to its assumption of the underlying

distribution of die data. In order for our learning algorithm to function properly, the distributions of the

feature must be multivariate normal. To verify diis assumption, die distribution of the four features from all

3000 training games were plotted in Figure 5-3. The thick curve is the distribution for winning positions, and

the thin one is the distribution for losing positions. The positions were taken from positions with 24 empty

squares on the board. It is clear from these figures that this assumption is quite reasonable.

5.2.2 Accuracy of Labeling

One point that can be raised is that the win/loss labeling procedure may not be very accurate, and any

mistake in the labeling is likely to adversely affect the performance of Bayesian Learning.

Although positions with 15 empty squares are always perfect because of BILL'S endgame solving

capability, the earlier positions could be in error. We feel, however, that our labeling method is reasonable

because:

1. Many pattern classification procedures use hand-labeled training data, which are not always
perfect.

2. Since BILL 2.0 probably played better than any expert, this is the best labeling mechanism
available.

3. The first 20 random moves should create many positions that are not very close, and the side that
is ahead will almost always win because BILL plays extremely well.

4. Nearly even positions are difficult to label; however, given sufficient training data, these positions
will simply form a boundary where win and loss are difficult to differentiate.

5.2.3 Efficiency of Bayesian Learning Evaluation

Perhaps the greatest problem with Bayesian Learning of evaluation function is that of efficiency. Each

evaluation requires four multiplications of the inverse covariance matrix by the feature vector. Because the

matrices are symmetric, the number of floating point multiplications neede4 to combine the features is

2N(N + 1), where N is the number of features. Consequentiy, having a large number of features

substantially decreases the speed of the program. Furthermore, accurate parameter estimation with many

features requires much more training data.

We could deal with this problem by reducing the dimensions of the feature space using principal

components analysis [4], which rotates the feature space into one that has independent features, and

unimportant features (those with small variance) can be discarded. Another similar approach is to use

Fisher's linear discriminant [4], which uses labeled training data to maximize the ratio between inter-class

variance and intra-class variance.

25

-3000 -2000 -WOO O WOO 2000 3000
Mobility Evaluation

•1500 •1000 -500 O 500 7 0 0 0

Potential Mobility Evaluation
1500

•1500 -1000 -500 O 500 WOO
Weighted Square Evaluation

1500

-3000 -2000 -1000 o 1000
Edge Evaluation

2000 3000

Figure 5-3: Win/Loss distribution of the four feature used.

26

5.3 Applicability to Other Domains

Bayesian Learning has already been applied to speech, vision, character recognition, and many other

domains. This study is the first that uses Bayesian Learning to learn feature combination in an evaluation

function. The key concept that enabled this application is our use of Bayesian Learning to maximally separate

the classes of winning and losing positions. This algorithm is applicable to any other game or any other

search-based application where static evaluation is used. In order to obtain superior results, the following

conditions are necessary: (1) good features must be used, (2) it must be possible to define the goal in terms of

classes, and (3) the multivariate normal distribution must provide a reasonable fit

The first condition is needed for any program to be successful. The second condition is easy to satisfy in

game-playing programs, because the classes of winning and losing positions are the ideal concepts for learning.

It may be more difficult in other domains. The third condition is satisfiable in most domains.

Although we used a different version of BILL to generate the training data, it is not always desirable to

do so. In games difficult for computers such as Go, self-generation will lead to many mislabeled positions.

But in that case, using games between superior players should lead to even better performance; however, it

was not possible here because it is questionable that such a player existed in Othello. But in Go, where

humans are far superior to programs, training with expert games will improve the level of play even more

drastically.

27

6. Conclusion

In this paper we presented a new algorithm for combining terms, or features, of an evaluation function.

This algorithm is based on Bayesian Learning. First, a training database is obtained, and each position is

labeled as winning or losing. These positions are used to train a discriminant function that evaluates positions

by estimating the probability that a position is a winning one.

While machine learning of evaluation functions has been studied, algorithms such as Samuel's suffer

from lack of smoothness, excessive human tuning, and lack of generality. The Bayesian Learning algorithm

eliminates these problems, and has a number of desirable properties:

1. Completely automatic learning from training data.

2. Optimal quadratic combination.

3. Understanding of feature covariances.

4. Capability of recovering from erroneous features.

5. Evaluation directly estimating (he probability of winning.

We demonstrated that Bayesian Learning significantly improved the playing ability of an Othello

program that already played at the world-championship level. We believe that it can be applied to any

domain where a static evaluation is needed, and will not only drastically reduce the tuning time, but also

dramatically improve the performance of the program.

28

Acknowledgments

The author wishes to thank Sanjoy Mahajan for suggestions and for programming support; Hans

Berliner for helpful discussions and reading drafts of tliis paper; and Roy Taylor and Beth Byers for reading

drafts of this paper.

29

References

1. Berliner, H., Ebcling, C . 'The SUPREM Architecture: A New Intelligent Paradigm". Artificial
Intelligence 28,, 1. (February 1986), 3-8.

2. Berliner, H. On the Construction of Evaluation Functions for Large Domains. Proceedings of IJCAI-79,
1979, pp. 53-55.

3. Condon, J.H., Thompson, K. Belle Chess Hardware. In Advances in Computer Chess 3, Clark, M.R.B.,
Ed., Pergamon Press, Oxford, 1982.

4. Duda, R., Hart, P.. Pattern Classification and Scene Analysis. New York: Wiley, 1973.

5. Griffith, A.K. "A Comparison and Evaluation of Three Machine Learning Procedures as Applied to the
Game of Checkers". Artificial Intelligence 5,, 1. (Spring 1974), 137-148.

6. Hewlett, C. "Report on a Hardware Computing System Dedicated to the Game of Othello". Othello
Quarterly 5 , , 2. (Summer 1986), 7-8.

7. Lee, K., Mahajan, S. BILL : A Table-Based Knowledge-Intensive Othello Program. Carnegie-Mellon
University, April, 1986.

8. Mitchell, D. Using Features to Evaluate Positions in Experts' and Novices' Othello Games. Master Th.,
Northwestern University July 1984.

9. Newell, A., Simon, H., and Shaw, C. Chess playing programs and the problem of complexity. In
Computers and Thought, Feigenbaum, E.A., Feldman, J., Ed., McGraw-Hill, 1963..

10. Pearl, Judea. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley
Publishing Company, 1984.

11. Rosenbloom, P. S. "A World-Championship-Level Othello Program". Artificial Intelligence 19, 3.
(November 1982), 279-319.

12. Samuel, A. L. "Some Studies in Machine Learning Using the Game of Checkers". IBM Journal , 3 .
(1959), 210-229.

13. Samuel, A. L. "Some Studies in Machine Learning Using the Game of Checkers. II". IBM Journal, 11.
(November 1967), 601-617.

14. Slate, D. J., Atkin, L. R. CHESS 4.6 - The Northwestern University Chess Program. In Chess Skills in
Man and Machine,
Springer-Verlag, 1977, pp. 101-107.

Figures
and

Tables
A Pattern Classification Approach
to Evaluation Function Learning

Kai-Fu Lee
Computer Science Department

Carnegie-Mellon University

KAI-FU LEE A PATTERN CLASSIFICATION APPROACH TO EVALUATION FUNCTION LEARNING

Range
of

Va lues

Fi r s t
Level

Tab les

68
E n t r i e s

68
E n t r i e s

68
E n t r i e s

68
E n t r i e s

68
E n t r i e s

68
E n t r i e s

68
E n t r i e s

68
E n t r i e s

68
E n t r i e s

68
E n t r i e s

68
E n t r i e s

68
E n t r i e s

68
E n t r i e s

68
E n t r i e s

68
E n t r i e s

68
E n t r i e s

68
E n t r i e s

68
E n t r i e s

68
E n t r i e s

68
E n t r i e s

68
E n t r i e s

68
E n t r i e s

68
E n t r i e s

68
E n t r i e s

Second
Level

Tab les

128
E n t r i e s

128
E n t r i e s

T h i r d
Level
Tab le

225
E n t r i e s

Figu re 2 - 1 : Samuel's final signature table scheme.

KAI-FU LEE A PATTERN CLASSIFICATION APPROACH TO EVALUATION FUNCTION LEARNING

Figure 2 - 2 : If F1 and F2 are the same feature, the signature table configurations in (a) would

cancel their redundancy, but the one in (b) would not.

KAI-FU LEE A PATTERN CLASSIFICATION APPROACH TO EVALUATION FUNCTION LEARNING

C A B B A C 1
c X X C 2

A A 3

!B O €> B 4

B 0 B 5

A A 6

C X X C 7

c A B B A C S

m 0 o
0 Q
o
0

0 0 0

0
O m Q m

0 ® ©

(a) (b) (c)

Figure 3 - 1 : (a) shows the initial Othello board set-up and the standard names.of the squares; (b)

shows a sample board with legal moves (for Black) to C6, D6, D2, E6, and G2; (c) shows the board

after Black plays to E6.

KAI-FU LEE A PATTERN CLASSIFICATION APPROACH TO EVALUATION FUNCTION LEARNING

Learning (Training)

T r a i n i n g
P o s i t i o n s

F e a t u r e
E x t r a c

t i o n

Board
P o s i t i o n

F e a t u r e
E x t r a c

t i o n

Edge

M o b i 1 i t y

P o t e n t i a l
M o b i 1 i t y

Weighted
Squares

Parameter
E s t i m a t i o n

Parameters
f o r w i n n i n g

p o s i t i o n s

Edge U

M o b i 1 i t y

P o t e n t i a l
M o b i 1 i t y

Weighted
Squares

Parameters
f o r l o s i n g
p o s i t i o n s

D i s c r i m i n a n t
f u n c t i o n

f o r w inn ing

D i s c r i m i n a n t
f u n c t i o n

f o r l o s i n g

P (w i n)

P(loss)—$H

Eva!

Evaluation (Recognition)

F i g u r e 3 - 2 : The learning and evaluation process of the proposed evaluation function learning

algorithm based on Bayesian Learning.

KAI-FU LEE A PATTERN CLASSIFICATION APPROACH TO EVALUATION FUNCTION LEARNING

c 0 . 8 0
o

"35 0 . 7 0
•»
o
° 0 . 6 0

0 . 5 0

0 . 4 0

0 . 3 0

0.20

0.10

O.00

-0.10

c 0 . 8 0
o

"35 0 . 7 0
V.
O
° 0 . 6 0

0 . 5 0

0 . 4 0

0 . 3 0

0 . 2 0

O. fO

0 . 0 0

-O . fO

Mob-Pot

Mob-Wt
Pot-Wt

. — — — — Mob-Edge

. ^ - . Wt-Edge

" * Pot-Edge

\ 25
\

30 35 40 45 50 55
Game Stage (Disc Count)

Winning Positions

Mob-Pot

Mob-Wt
Pot-Wt

^ — , Mob-Edge
^ . Wt-Edge

Pot-Edge

25 30 35 40 45 50 55
Game Stage (Disc Count)

Losing Positions

Figure 5 - 1 : Correlation between every pair of the features for winning and losing positions as a

function of the stage in the game.

KAI-FU LEE A PATTERN CLASSIFICATION APPROACH TO EVALUATION FUNCTION LEARNING

Figure 5 -2 : The fraction of training positions correctly classified by each feature used in isolation

as a function of the stage of the game.

KAI-FU LEE A PATTERN CLASSIFICATION APPROACH TO EVALUATION FUNCTION LEARNING

-3000 -2000 -1000 O 1000 2000 3000
Mobility Evaluation

-1500 -1000 -500 O 500 1000 1500
Potential Mobility Evaluation

1500 -1000 -500 O 500 1000 1500
Weighted Square Evaluation

-3000 3000
Edge Evaluation

Figu re 5 -3 : Win/Loss distribution of the four feature used.

KAI-FU LEE A PATTERN CLASSIFICATION APPROACH TO EVALUATION FUNCTION LEARNING

W I N L O S S

Mob. P o t . Wtd. Edge Mob. P o t . Wtd. Edge

Mean Mean
533 266 242 599 - 4 1 9 - 2 0 0 - 1 1 2 - 334

Covar iance Mat rix Covar iance Matr ix
475871 185298 137911 121288 508045 196432 143986 118982
185298 133714 71658 26931 196432 138063 73963 28984
137911 71658 94977 41957 143986 73963 95262 42341
121288 26931 41957 444184 118982 28984 42341 436256

Correlat ion Matr i
1 .00 0 . 7 3 0 . 6 5
0 . 7 3 1 .00 0 . 6 4
0 . 6 5 0 . 6 4 1 .00
0 . 2 6 0 . 1 1 0 . 2 0

0 . 2 6 1 .00
0 . 1 1 0 . 7 4
0 . 2 0 0 . 6 5
1 .00 0 . 2 5

Corre lat ion Matr ix
0 . 7 4 0 . 6 5 0 . 2 5
1 .00 0 . 6 4 0 . 1 2
0 . 6 4 1 .00 0 . 2 1
0 . 1 2 0 . 2 1 1 .00

Tab le 3 - 1 : The mean vector, covariance matrix, and correlation matrix for the classes win and loss

at move 40.)

KAI-FU LEE A PATTERN CLASSIFICATION APPROACH TO EVALUATION FUNCTION LEARNING

Players Win Tie Loss W / L Avg. Score

7-ply vs. 6-ply 121 7 72 1.68 34.54 - 29.39

8-ply vs. 7-ply 115 6 79 1.46 35.04 - 28.89

7-ply vs. 5-ply 141 10 49 2.88 37.03 - 26.94

8-ply vs. 6-ply 130

CO
 57 2.28 36.38 - 27.59

Learn vs. Linear 139 6 55 2.53 36.95 - 27.03

Tab le 4 - 1 : Results between two versions of BILL.

KAI-FU LEE A PATTERN CLASSIFICATION APPROACH TO EVALUATION FUNCTION LEARNING

Search Ply Bayesian Linear

3 5 1 % 4 1 %

4 5 1 % 43%

5 53% 46%

6 57% 53%

7 6 1 % 53%

8 64% 55%

Tab le 4 - 2 : Percentage of agreement between two versions of BILL and the move that guarantees

the largest winning margin.

KAI-FU LEE A PATTERN CLASSIFICATION APPROACH TO EVALUATION FUNCTION LEARNING

Samuel's
Polynomial

Samuel's
Signature Table

Bayesian
Learning

Non-Linearity No Yes Yes
Can deal with redundancy? No Maybe Yes

Smoothness Yes No Yes
Completely automatic? No No Yes
Optimality No No Yes
General purpose Probably Not No Yes
Concept learned Good vs. bad

features
Strong vs. weak

positions
Winning vs. losing

positions
Learning Method Self-play Book Games

Tab le 5 - 1 : Comparison between Samuel's Algorithms and the Bayesian learning algorithm.

