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Abstract 

We present a new approach to evaluation function learning using classical pattern-classification 
methods. Unlike other approaches to game-playing where ad-hoc mediods are used to generate 
the evaluation function, our approach is a disciplined one based on Bayesian Learning. This 
technique can be applied to any domain where a goal can be defined and an evaluation function 
can be applied. Such an approach has several advantages: (1) automatic and optimal combination 
of the features, or terms, of the evaluation function; (2) understanding of inter-feature 
correlations; (3) capability for recovering from erroneous features; (4) direct estimation of the 
probability of winning by the evaluation function. We implemented this algorithm using the game 
of Othello and it resulted in dramatic improvements over a linear evaluation function that has 
performed at world-championship level. 
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1. Introduction 

i 

Most successful game-playing programs employ full-width search that applies a heuristic evaluation 

function at terminal nodes [14] [1] [11] [7], A typical evaluation function has the form: 

Eval = C x F' + C x F\+ ••• + C x F. (1.1) 

1 1 2 2 n n v 7 

where Eval is the static evaluation of a board configuration, and linearly combines a number of features 

(Ft F, - - - F^ weighed by coefficients (C^ C , • • • CJ. Each feature is a well-defined measure of the 

"goodness" of the board position. In chess, reasonable features might be piece-count advantage, center 

control, and pawn structure. In Othello, reasonable features might be mobility, edge position, and disc 

centrality. 

The above formulation suggests three ways to improve a game-playing program: 

1. Finding a superior search strategy. 

2. Selecting better features. 

3. Combining the features appropriately. 

We believe that the first two ways are already well-understood. Researchers have proposed several new 

full-width search strategies, such as Scout [10] and the zero-window search [1]. Unfortunately, these 

techniques provide only constant improvements in an exponential search space [7]. Selecting good features is 

extremely important. However, good features are usually not very difficult to derive from expert knowledge1. 

At present, the strongest game-playing programs are relying on fast hardware instead of new search 

algorithms [3] [1], and efficient feature analysis instead of discovering new features [1] [7]. Therefore, we 

suggest that research in full-width searching and feature selection has reached the saturation point, and that 

the success of future game-playing programs will depend crucially on how well the features are combined. In 

this paper, we will introduce an algorithm based on Bayesian Learning that automatically combines features. 

Unlike feature selection, feature combination is a very unintuitive process. On the one hand, one must 

establish a precarious balance among diversified strategies (such as choosing weights for positional advantage 

or piece advantage in chess). On the other hand, one must attend to interaction between related features 

(such as pawn structure and king safety in chess). Furthermore, one always faces the dilemma of having 

either too few features, or many features that include correlated or redundant ones. 

Samuel [12] was the first to propose algorithms that automatically combine features. He introduced a 

linear evaluation function learning algorithm, and subsequently devised a non-linear learning algorithm based 

binding good features automatically is a very difficult problem, but it is beyond the scope of this paper. 
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on signature tables [13], However, his algorithms suffer from a number of problems. The linear evaluation 

function has an inadequate understanding of relationships among the features. The signature tables have 

smoothness problems from extreme quantization. The greatest problem with both algorithms is that while 

they obviated the burden of tuning the coefficients, they imposed new burdens such as choosing the signature 

tables structure, determining the range and level of quantization, and selecting the amount and frequency of 

functions' adjustments during learning. The effort required to tune the programs far exceeded die 

conventional trial-and-error tuning of the coefficients with expert help. Finally, because of the effort 

required, Samuel's algorithms are highly domain dependent 

In this study we report a new learning algorithm. Like Samuel's, our algorithm learns to combine 

features into an evaluation. Unlike Samuel's, however, it has no problem witii smoothness and is completely 

automatic, requiring no tuning whatsoever. Our algorithm is based on Bayesian Learning [4]. 

1. We accumulate a large number of games as training data. Each game is played by two expert 
players. 

2. We label (either manually or automatically) each position as winning or losing according to some 
criteria. The criterion used in this study is the actual outcome of the game. 

3. The training program computes a Bayesian discriminant function the labeled training data. The 
function tries to recognize feature patterns that represent winning or losing positions. Given a set 
of feature values of a position, it assigns a probability that the position is a winning one. 

4. We build different classifiers for different stages of the game. 

Our algorithm has five important advantages: 

1. The learning process is completely automatic. There are no coefficients or parameters to tune, 
and no normalization is needed. 

2. Assuming multivariate normal distribution [4], the quadratic combination is proven to be optimal 
on the training data. 

3. The algorithm considers not only the features themselves, but also how they covary with each 
other. For example, if two correlated features were used, they will not both contribute fully to the 
evaluation. 

4. The algorithm can recover from erroneous information in the evaluation. For example, adding a 
random feature would not degrade its performance. 

5. It returns the probability of winning as the evaluation. This evaluation is one that all evaluation 
functions try to emulate. Furthermore, having such an evaluation validates comparison between 
values on different levels of the search tree. 

We tested this algorithm in the domain of Othello. An Othello program, BILL 2.0 [7], was modified to 

learn an evaluation function from the features that it already used. Since the evaluation in BILL 10 was 

carefully tuned and since BILL 2.0 is virtually invincible, only moderate improvements were expected. 
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However, results showed that BILL 3 0 (using Bayesian Learning) defeated BILL 2.0 over twice times as often as 

it was defeated from nearly even initial positions. The average final score from this experiment was 37 to 27. 

Wc show that this gain is equivalent to two extra plies of search. In another experiment involving Odiello 

problem solving, BILL 3.0 solved 11% more problems than BILL 2.0 using eight plies of search. 

In Chapter 2, we will first discuss conventional ways of constructing evaluation functions and their 

shortcomings, with emphasis on Samuel's work. In Chapter 3, Bayesian Learning and its application to 

evaluation function learning is described in detail. In Chapter 4, the results from Odiello are presented. 

Chapter 5 contains analyses and discussion of the Bayesian Learning of evaluation function. Finally, Chapter 

6 contains some concluding remarks. 
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2. The Construction of an Evaluation Function 

2.1 The Role of the Evaluation Function in Search 

The fundamental paradigm in game-playing programs has changed very little since Newell, Simon, and 

Shaw's discovery of the alpha-beta relationship [9]. Almost all programs still rely on full-width alpha-beta 

search, and all programs still use static evaluation at terminal nodes. 

Since most programs employ similar search strategies, the evaluation function plays the most crucial 

part in game-playing programs. The evaluation function embodies the knowledge of the program, and is 

responsible for differentiating good moves and positions from poor ones. Furthermore, since most programs 

rely on the evaluation function for move ordering, a good evaluation function leads to a more efficient search. 

The static evaluation includes two stages: (1) evaluating certain features of a board position, and (2) 

combining these feature scores into an evaluation. Selecting the features is a domain-dependent task, and 

cannot be systematically studied. In this study, we will focus on the combination of the feature scores into an 

evaluation. In particular, we will later present an algorithm that accomplishes this task automatically. 

Traditionally, a static evaluation is a linear combination of the features as shown in Equation (2.1): -

Evcd= CxF + C x F + + C xF. (2.1) 1 1 2 2 n n v / 

where Eval is the static evaluation of a board configuration, and is a linear combination of features 

(Fx, F2, - • • FJ weighed by coefficients (q, C 2, • • • CJ. 

There are two problems with this representation. First, it assumes that the features are independent, 

and that they can be combined linearly. This is clearly a false assumption. In fact, we will later show that 

every pair of features are correlated to some degree. Second, the coefficients are usually derived by ad-hoc 

methods. In many cases, the implementor guesses these coefficients from his domain knowledge. Even when 

the implementor is knowledgeable, it is difficult to derive these coefficients because humans do not think in 

terms of alpha-beta search and static evaluation. When the implementor is not knowledgeable, he will be 

clueless. This was the initial motivation for Arthur Samuel, a novice checkers player, to write a checkers 

learning program. 

2.2 Samuel's Evaluation Function Learning Experiments 

One of the earliest and the most intensive studies on machine learning was conducted by Arthur Samuel 

in the domain of checkers from 1947 to 1967 [12] [13]. His objective was very similar to that of this study, 

namely, given a set of feature values of a board position, assign a score which measures the goodness of the 



5 

position. Although he performed many experiments, we will focus on the two most important ones: (1) 

polynomial evaluation learning through self-play, and (2) nonlinear signature table evaluation learning 

through book-move. In the two subsequent sections, these two procedures will be described and evaluated. 

2.2.1 Polynomial Evaluation Learning through Self-play 

In polynomial evaluation learning [12], Samuel arranged to have two copies of the checkers programs 

play against each other, and learn the weight for each feature in a linear evaluation function. One copy of the 

program, Beta, uses a fixed function throughout a game. The other copy, Alpha, continuously improves its 

evaluation function. Alpha learns by comparing its evaluation to that of a more accurate evaluation, which is 

derived by the use of a minimax search. If the search returns a sufficiently higher value than the static 

evaluation, it is assumed that the static evaluation is in error. Each negative feature in the static evaluation is 

penalized by lowering its weight 

Alpha and Beta are originally identical, and Alpha continuously improves its weights. After each game, 

if Alpha defeats Beta, it is assumed to be better, and Beta adopts Alpha's evaluation function. Conversely, if 

Alpha loses three games to Beta, it is assumed to be on the wrong track, and the coefficient of its leading term 

is set to 0 in an attempt to put it back on the right track. Furthermore, manual intervention was used to 

restore previous states if "it becomes apparent that the learning process is not functioning properly." 

The resulting evaluation function from this learning algorithm seemed to stabilize after a number of 

games when Alpha consistently defeated Beta. The final program was able to play a "better-than-average" 

game of checkers. This learning procedure was one of the first examples of machine learning. However, its 

validity is predicated upon several incorrect assumptions. 

The first of these assumptions is that a good evaluation function can be defined as a linear combination 

of independent features. This assumption is false in general, and is particularly wrong with Samuel's learning 

procedure because he intentionally collected redundant features. If two identical features were considered by 

Samuel's procedure, both would be assigned the same weight, resulting in over-estimation of the feature's 

value. Furthermore, a linear evaluation function is unable to capture the relationship between features. By 

repeating Samuel's experiments, Griffith [5] showed that better performance was achieved by an extremely 

simple heuristic move ordering procedure. 

The second assumption is that when search and static evaluation disagree, the static evaluation must be 

in error. While deep searches are more accurate than shallow searches in general, there are several ways this 

assumption can fail. It is possible that a problem with a position can only be discovered by looking several 

plies ahead. In this case the static evaluation should be allowed to remain in error, as it is usually impossible 
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to program such look-ahead knowledge into it. Furthermore, searches could suffer from the horizon effect [2], 

resulting in inaccurate evaluations. 

The diird assumption is that if the evaluation function is found to be overly-optimistic, any positive 

component is assumed to be in error. This is clearly incorrect because in most positions, each player is ahead 

in some features and behind in others. The erroneous evaluation may be due to components that are 

negative, but not negative enough. Just checking the sign is simply not adequate. 

Finally, this procedure assumes that if Player A defeats Player B, it must be because of its superior 

evaluation function. This assumption may be reasonable for expert players, but when novice programs play 

each other, a win may be the result of: (1) a superior evaluation function, (2) luck (when neither player 

understands the position), or (3) opponent's errors. Since Samuel's program played like a novice, it would 

often win due to luck or opponent's errors, resulting in erroneous credit assignment 

2.2.2 Signature Table Learning through Book Moves 

Samuel recognized these problems, and subsequently devised another learning procedure that remedied 

most of them [13]. In order to handle nonlinear interactions among the feature, he introduced signature 

tables', and in order to cope with the incorrect assumptions in self-play, he used book moves. 

Signature tables are multi-dimensional tables that combine features together nonlinearly. Each 

dimension represents some feature. To evaluate a board position, the value for each feature is used to index 

into the table, and the cell corresponding to this index contains the evaluation. The obvious problem with this 

scheme is that the tables become extremely large. Samuel deals with this problem by using a a hierarchical 

organization, and the features are grouped into sets of 4. Only intra-set interactions are considered. Then 

each set produces a value from the cell indexed by these four feature values. Tables in the next higher level 

use these values as if they were features. There were a total of three levels. But this could still result in very 

large tables, so Samuel quantized his feature values. In each of the lowest-level tables, the values were 

restricted to (-1, 0,1) for three of the features, and (-2, -1 , 0 ,1 , 2) for the other feature. This resulted in the 

final configuration as shown in Figure 2-1. This configuration contains 883 cells, which is reasonable for both 

storage and training. 

These cells are trained from book moves. A large number of board positions from master play were 

presented to the program. The goal was to have the signature table learn to emulate master play. This is done 

by keeping counts for each cell corresponded with the feature combination of the move chosen by the master 

(A), and for each cell that corresponded with the feature combination of each legal move not chosen by the 

master (D). The actual cell value is updated periodically with ^ — ~ , which is a measure of how well the cell 
{A + D) 

corresponded to book moves. 
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Figure 2-1: Samuel's final signature table scheme. 

The signature table approach successfully added nonlinear learning; the book learning approach 

successfully eliminated the incorrect assumptions of self-play. The resulting program significantly 

outperformed a linear function trained by book learning. 

However, there are a number of new problems with the signature table approach. First, this approach 

makes two assumptions: (1) the book move is always the best move, and (2) there are no equally good 

alternative moves. Since these were expert games, and games from the losing side were not used, they are 

reasonable assumptions, but certainly not infallible ones. These problems could probably be minimized by 

using a sufficiently large training database. 

A major problem is that considerable accuracy is lost during the quantization process. Extreme 

quantization is very risky. For example, if one were to quantize material difference in chess into 3 or 5 values, 
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how could one expect to make the right moves when the loss of a bishop may be equal to the loss of a queen? 

Moreover, extreme quantization violates Berliner's smoothness principle [2], thereby introducing the blemish 

effect In Berliner's words, 
a very small change in the value of some feature could produce a substantial change in the value of 
the function. When die program has the ability to manipulate such a feature, it will frequently do 
so to its own detriment 

The arbitrary quantization into so few levels has precisely this problem. 

In spite of its sacrifice of smoothness, signature table learning still does not provide a general solution to 

the linearity problem. Consider the case where two features were identical (or highly correlated). If these 

features, F l and F2, were organized as in Figure 2-2a, their redundancy will be successfully eliminated in 

Table 1. However, if they were organized as in Figure 2-2b, F l would contribute to Table 1, and F2 would 

contribute to the Table 2. Furthermore, Table 3 could not eliminate this redundancy because it could not 

know whether its two inputs are affected by F l and F2 or the other features. This results in over-estimation of 

the utility of this feature. For the same reason, we believe the higher level signature tables to be of little utility 

as they cannot identify the contributors to their inputs, and consequently cannot handle inter-table 

correlations.. 

(a) (b) 

Figure 2*2: If F l and F2 are the same feature, the signature table 
configurations in (a) would cancel their redundancy, but the one in (b) 
would not 

As a result, it is important to carefully arrange the structure of the signature tables so that covariances 

are captured. Furthermore, it is necessary to determine the range and levels for the quantization of each level, 

the initial values in the cells, the frequency that they must be updated, and many others. This is what we 

consider to be the greatest flaw of both procedures, namely, excessive human initialization and interventions 

are required. Each parameter adds the possibility of human errors affecting the learning process, and 
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increases the amount of time needed to derive and test these values. The result is either poor learning caused 

by human errors, or acceptable learning as a result of excessive human intervention. 

All of this heuristic tuning made Samuel's procedure domain dependent. If one wanted to implement 

his procedures in another domain, considerable additional domain knowledge must be used in the learning 

algorithm, and considerable effort must be invested in die trial-and-error modification of the parameters. 

This is clearly undesirable. 

Finally, the concepts learned by Samuel's algorithms are suboptimal. His self-play algorithm learns to 

distinguish good features from bad features based on search. His book-move algorithm learns to distinguish 

moves chosen by experts from moves not chosen by experts. However, in a game-playing domain, the optimal 

concept to learn is that which distinguishes winning positions from losing positions. 

In summary, while Samuel's studies were a milestone in the early years of machine learning, we believe 

that the amount of supervision makes them impractical and domain dependent. These major flaws, coupled 

with Samuel's problematic assumptions, smoothness problems, and suboptimal learning severely limited the 

practicality and applicability of his procedures. 

2.3 Other Work on Automatic Feature Combination 

Griffith, who originally conceived of the idea of signature tables, reported a number of evaluation 

function learning results in checkers [5]. He compared linear evaluation function learning, two variants of 

signature table learning, and a heuristic move ordering algorithm. He showed that the heuristic move 

ordering algorithm, which has only extremely rudimentary checkers knowledge, outperformed the linear 

evaluation function, but was outperformed by the signature table algorithms. 

Another study was undertaken by Mitchell [8], who used regression analysis to create a linear evaluation 

function in Othello. The resulting program did not play as well as was hoped. We conjecture that this is due 

to the lack of nonlinearity in his program. 

Both of these results indicate the inadequacy of linear evaluation functions. However, Griffith and 

Samuel's signature table approach is also not adequate because of problems with smoothness and the 

excessive tuning required. 
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where / is the matrix transpose operation. 

3. Bayesian Learning of Evaluation Function 

In this chapter, an algorithm that automatically combines the features is presented. First, Bayesian 

Learning is introduced for readers unfamiliar with the concept. Next, the game of Othello and the Othello 

program BILL are briefly described. Finally, we present the evaluation learning algorithm, which is based on 

Bayesian Learning, and applied to the domain of Othello. 

3.1 Bayesian Learning 

Bayesian Learning of discriminant functions is a standard technique used in pattern recognition. 

Typically, it is applied to recognition and classification of concrete objects, such as characters, images, speech 

and seismic waves. Assuming multivariate normal distribution, the discriminant function defines a decision 

boundary between classes. In a two-class problem, all points on this boundary are equally likely to belong to 

either class. This boundary is automatically computed from the features vectors of the training data, and takes 

into consideration variance and covariance of the features. It is composed of two stages, namely, training and 

recognition. 

3.1.1 The Training Stage 

The training stage is a straight-forward parameter estimation stage. A database of labeled training data 

is required. Each training sample consists of a feature vector and a label indicating which class the feature 

vector belongs to. The task of the training stage is to estimate the mean feature vector and the covariance 

matrix for each label (or class) from the training data. 

The mean vector for af class c, / A ^ is simply the arithmetic average of each feature value for each training 

sample labeled as this class, and is computed as follows: 

where N is the number of times class c was observed, and x. is the r feature vector for class c. 
C I 

The covariance matrix for class c, 2^, measures the degree that two features covary with each other, and 

is computed as follows: 

i N < * c = 4 S > , ~ - M / (3.2) 
C / = 1 
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3.1.2 The Recognition Stage 

From the mean vector and die inverse of the covariancc matrix, the general multivariate normal density 

function p of a distribution can be computed as shown in Equation (3.3): 

where x is the N-element feature vector, 12 I is the determinant of the covariance matrix, 2 1 is the inverse of 
• c 1 c 

the covariance matrix, and u is the mean vector for class c. 
* c 

Bayes Rule shows that minimum-error-rate classification can be achieved using the discriminant 
function gc(\)\ 

g c(x) = log/7(x |c ) + l o g ? ( c ) (3.4) 

where P (c) is the a priori probability of class c. Substituting Equation (3.3) into Equation (3.4), we have: 

ge(x) = - ^ ( x - M / S ^ x - z x p - - l o g 2TT - i l o g | 2 J + log P(c) (3.5) 

To determine which class a new feature vector belongs to, g is computed for each class, and the new 

input is assigned to the class with the greatest g. Furthermore, if probabilities, P9 are preferred to making 

hard decisions, they can be derived by simply normalizing g(x): 

P(c\x) = 
e & > (3.6) 

3.2 The Game of Othello and Bill 

Before explaining how Bayesian Learning can be applied to evaluation function learning, we first briefly 
describe the domain of our experiment, Othello. 

Othello is a game played on an 8 by 8 board between two players, black and white. The board is 

initially set up as in Figure 3-1. Black starts the game by placing a black disc (a playing piece with the black 

side up) on any empty square on the board which allows white's disc(s) to be flipped. Each white disc 

captured between this black disc and any other black disc is flipped to black. The players alternately place 

discs on the board until neither player can make another move. The player with the most discs is declared the 

winner. 

Othello has been a very popular game for computer implementation because of its relatively small 

branching factor, and the relative ease of writing programs that play reasonably. This ease is due to the 
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Figure 3-1: (a) shows the initial Othello board set-up and the standard 
names of the squares; (b) shows a sample board with legal moves (for 
Black) to C6, D6, D2, E6, and G2; (c) shows the board after Black plays to 
E6. 

difficulty of Othello for human players. Othello is difficult because the board changes drastically after each 

move, and some strategies are counter-intuitive. 

In 1981, Rosenbloom [11] demonstrated the feasibility of creating a world-championship level Othello 

program, 1AGO. IAGO'S evaluation consisted of a linear combination of edge stability, mobility, and potential 

mobility. In 1986, Lee and Mahajan [7] constructed another program, BILL, that consistently defeated IAGO. 

BILL placed second in the 1986 North American Championships, and is one of the best Othello players in the 

world, BILL'S playing strength is mostly due to its use of an efficient yet accurate evaluation function that used 

tables with pre-compiled knowledge, BILL 2.0 uses four sets of these tables, hence four features. The features 

are: 

1. Weighted Current Mobility - Measures the quantity and quality of the player's moves. All moves 
are found using tables, and appropriate penalties are subtracted for poor moves. 

2. Weighted Potential Mobility - Measures the goodness of the player's future moves. Tables that 
consider each neighbor of each disc are used. 

3. Weighted Squares - Measures the goodness of each square occupied by each disc of the player. 
Both static measures (central squares are better than squares next to the corner) and dynamic 
measures (surrounded discs are better than peripheral discs) are used. 

4. Edge Position - Measures the player's edge position using a table that contains every combination 
on each edge. This table is generated by a probabilistic minimax procedure [7]. 

The interested reader is directed to [11] or [7] for analyses of Othello strategies. 

BILL 2.0 combines these features together linearly. The weights in the linear combination were 

determined by creating ten different versions and holding a tournament among these ten versions. The 
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version that won the tournament was chosen as the final set of coefficients. We will apply Bayesian Learning 

to the same four features, and measure the strength of the resulting program by comparing it against BILL 10. 

3.3 Evaluation Function Learning 

We will now present an evaluation function learning algorithm that uses Bayesian Learning as described 

in Section 3.1. The key difference between our application and typical applications is that instead of trying to 

recognize concrete objects, we are trying to recognize and classify board positions as winning positions or 

losing positions. 

The basic approach of our algorithm is shown in Figure 3-2. Like Bayesian Learning, this algorithm 

consists of two stages, namely, training (learning) and recognition (evaluation), which will be described in die 

next two sections. 

3.3.1 The Training Stage 

In order to train a Bayesian discriminant function, a database of positions, where each position is 

labeled as a winning position or a losing position, is required. There are many ways to obtain such a database. 

In this study, the training data were taken from actual games between two experts, and each position of the 

winning player is marked as a winning position, and each position of the losing player as a losing position. 

While this is a simple and consistent method, there is a serious problem: A winning position could be lost by 

a poor subsequent move, and would be mislabeled as a losing position. We deal with this problem in two 

ways. First, reliable experts are needed. Since BILL 2.0 is a world-championship level player, we simply used it 

to generate the training data by self-play from initial positions. Second, 20 random initial moves were 

generated for each game and training commenced after 20 random moves (or after there are 24 discs on the 

board). It was hoped that one of the players would be ahead after the 20 moves, and that this player would go 

on to win the game. In cases with truly even positions, sufficient training data should result in equivalent 

number of winning and losing labels. 

To generate the training data, BILL 2.0 was set up to play itself under the following conditions: the first 

20 half-moves are made randomly, then BILL 2.0 is given 15 minutes for each side to play the remaining 40 

half-moves . When there are 15 half-moves left, an endgame search is performed to find the winner assuming 

perfect play on both sides. The game is terminated, and recorded as training data. 3000 games were played to 

estimate the parameters. 

W e are usually exacUy 60 half-moves to a game. The only exception is when neither side has a legal move. 
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Figure 3-2: The learning and evaluation process of the proposed 
evaluation function learning algorithm based on Bayesian Learning. 

It is well known that different strategies are needed for different stages of the game [2]. Therefore, we 

generated a discriminant function for each stage, where a stage is defined by the number of discs on the 

board. The discrimination function for a stage with N discs is generated from training positions with AT-2, 

N - l , N, N+l, and N+2 discs3. Since there are almost always 60 moves per game in Othello, disc count 

provide a reliable estimate of the stage of the game. By coalescing adjacent data, the discriminant function is 

slow-varying, and similar to the application coefficients proposed by Berliner [2], 

3Note that positions with Discs < 24 and those with Discs > 49 are not trained because of random initialization and endgame search, 
solved this problem by copying the parameters for the Discs = 24 to Discs < 24, and those for Discs = 49 to Discs > 49. 
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Having generated the training data, the four features are extracted from each position in the database. 

Then, the mean feature vector and the covariance matrix between features are estimated for the two classes, 

winning positions and losing positions. Table 3-1 shows the mean vector, the covariance matrix, and the 

correlation matrix for the classes of winning and losing positions at Discs = 40. They clearly support our 

earlier claims that every pair of features are correlated to some degree, and that nonlinearity is crucial to the 

success of an evaluation function. 

Mob. 

533 

475871 
185298 
137911 
121288 

1.00 
0 . 7 3 
0 . 6 5 
0 . 2 6 

W I N 
P o t . Wtd. 

Mean 
266 242 

Covariance Matrix 
185298 137911 
133714 71658 

71658 94977 
26931 41957 

Correlation Matrix 
0 . 7 3 0 . 6 5 
1.00 0 . 6 4 
0 . 6 4 1.00 
0 . 1 1 0 . 2 0 

Edge 

599 

121288 
26931 
41957 

444184 

0 . 2 6 
0.-11 
0 . 2 0 
1.00 

Mob. 

•419 

508045 
196432 
143986 
118982 

1.00 
0 . 7 4 
0 . 6 5 
0 . 2 5 

LOSS 

P o t . Wtd. Edge 

Mean 
-200 -112 -334 

Covariance Matrix 
196432 143986 
138063 73963 

73963 95262 
28984 42341 

Correlation Matrix 
0 . 7 4 0 . 6 5 
1.00 0 . 6 4 
0 . 6 4 1.00 
0 . 1 2 0 . 2 1 

118982 
28984 
42341 

436256 

0 . 2 5 
0 . 1 2 
0 . 2 1 
1 .00 

Table 3-1: The mean vector, covariance matrix, and correlation matrix for 
the classes win and loss at move 40. 

3.3.2 The Evaluation Stage 

The evaluation of a board position involves the computation of the features, and then the combination 
of this feature vector, x, into a final evaluation. From Section 3.1.2, we know that the two discriminant 
functions for win and loss are: 

*W<X> = -\(*-tWJKin(*-Kin> ~ f l 0 8 2 * " \ * * + l 0 S (3-7) 

The evaluation function should measure the likelihood that the board position belongs to the class win, or: 
Pwin 

g(x) = -jTL = gwin-gl0SS (3.9) 
loss 
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N 

We now substitute (3.7) and (3.8) into (3.9). The constant - log 27r are canceled. Also, we will assume 

that the a priori probability of winning and losing are equal, and eliminate log P(win) and log P(loss). This 

results in our final evaluation function: 

The term log | 2 y | — log \ ^ l o s s \ is a constant used to normalize the quantity, and is not stricdy necessary if 

all evaluations use the same constant. But as stated above, a different set of parameters is estimated for each 

stage of the game; therefore, eliminating this term would result in different evaluation ranges on different 

levels of the search tree. That would be inconvenient because some thresholds in our search require a 

consistent range [7]. Thus, the term is retained. Furthermore, by retaining this term, when the program 

reports its evaluation, it is possible to compute the probability of winning directly from g(x): 

P(win\x) = e W x )

 = g W x ) " W x )

 = g* ( x ) 

P (win | x) + P (loss | x) e 8winM + e gbss(x) e gwin(x) - ghss(x) + l e g ( x ) + l 

Let us summarize our evaluation procedure. At every terminal node of the search, the four features are 

computed, and combined into g(x) as shown in Equation (3.10). At the completion of each iteratively 

deepened search, g(\) is converted to P.(win \ x) as shown in Equation (3.11), which is a more meaningful 

measure for humans. 
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In this chapter, we will describe two experiments with two versions of the Othello program, BILL. The 

first version is BILL 2.0, which combines the four features linearly, and is known to play at die world-

championship level. The other version, BILL 3.0, uses the same four features, and combines them using 

Bayesian Learning described in the previous chapter. 

There are many ways to evaluate and compare game-playing programs, including (1) playing the 

programs against each other, (2) giving problems with known solution to the programs, and (3) actual playing 

record or rating. The first two methods are used here, and the third was not possible due to the scarcity of 

opponents who play at BILL'S level. 

41 Actual Games 

The most obvious measure of two programs is simply arranging them to play each other. We arranged 

BILL 2.0 to play BILL 3.0 under the following conditions: 100 nearly even positions with 20 discs on the board 

were selected from BILL 2.0's opening book, BILL 2.0 played BILL 3.0 twice from each position, once as black 

and once as white. Each side was given 25 minutes to make all of its moves. BILL 3.0 won 139 of the 200 

games, tied 6, and lost 55. The average score was 36.95 to 27.05. This result showed that Bayesian Learning is 

significantly better than a fine-tuned linear evaluation function. The actual difference may be even greater 

because although all of the initial positions are close, one side could be destined to win. In that case, each 

program would score a win. 

In order to find out exactly how much is gained from Bayesian Learning, different versions of BILL 10 

that searched to different depths played each other from the same initial positions. The results are shown in 

Table 4-1. Since the above conditions allowed BILL to search 6 to 8 plies, it is valid to say that BILL 3.0 is about 

equivalent to BILL 2.0 with two extra plies of search. The effective branching factor in Othello is between 3.4 

and 3.7, which implies that if BILL 1 0 were given 13 times as much time, it would be about as good a player as 

BILL 3.0. 

4.2 Endgame Problems 

Since Othello endgames can be solved many moves from the end of the game, it is possible to assess the 

strength of a program by the frequency with which it selects (without searching to the end) the move that 

leads to the optimal result. A problem with this scheme is that as endgame is approached, the less applicable 

are the known Othello strategies, and sometimes counter-intuitive moves have to be made. In order to 

minimize this problem, we acquired a database of 63 winning positions with 20 to 24 moves left, each with the 
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Players Win Tie Loss W/L Avg. Score 

7-ply vs. 6-ply 121 7 72 1.68 34.54 - 29.39 

8-ply vs. 7-ply 115 6 79 1.46 35.04 - 28.89 

7-ply vs. 5-ply 141 10 49 2.88 37.03 - 26.94 

8-ply vs. 6-ply 130 13 57 2.28 36.38 - 27.59 

Learn vs. Linear 139 6 55 2.53 36.95 - 27.03 

Table 4-1: Results between two versions of BILL. 

move that leads to the win with the largest margin. This database was generated by a hardware endgame 

searcher built by Clarence Hewlett [6]. 

The linear version and the Bayesian Learning version of BILL were given these problems, and each 

suggested a best move using 3 to 8 plies of search. The frequency that they agreed with the optimal move is 

shown in Table 4-2. Under tournament conditions, BILL could search about 8 plies at this stage of the game. 

Thus, BILL 2.0 and BILL 3.0 would solve 55% and 64% of these problems, respectively, should diey occur in 

actual tournaments. 

Search Ply Bayesian Linear 

3 51% 41% 

4 51% 43% 

5 53% 46% 

6 57% 53% 

7 61% 53% 

oo 64% 55% 

Table 4-2: Percentage of agreement between two versions of BILL and the 
move that guarantees the largest winning margin. 

In order to evaluate these figures, one should be aware that some of the optimal moves may still be 

counter-intuitive. More importantly, there are often many moves that still preserve a winning position. 

Unfortunately, we were not provided with sufficient information to evaluate the frequency that wins were lost 

due to a poor move. But the above statistics show that Bayesian Learning is indisputably stronger. 

Finally, it is possible to compare these figures against expert human play. 19 of these positions were 
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taken from six games between the top players in the world. It was found that the human experts made 9 

correct moves, and 10 incorrect ones, for an accuracy of 47.36%. From, this, it is clear that both versions of 

BILL played significantly better than human experts. Furtheimore. BILL 3.0 is far better than BILL 2.0 and the 

human experts. 
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5. Discussion 

5.1 Advantages of Bayesian Learning 

In this section, we will discuss the advantages of the Bayesian Learning algorithm by comparing it 

against Samuel's algorithms. Table 5-1 shows a comparison of Samuel's two algorithms and the Bayesian 

Learning algorithm. It is clear that while all three algorithms were designed to solve the same problem, there 

are many major differences. 

Samuel's 
Polynomial 

Samuel's 
Signature Table 

Bayesian 
Learning 

Nonlinearity No Yes Yes 

Can deal with redundancy? No Possibly Yes 

Smoothness Yes No Yes 

Completely automatic? No No Yes 

Optimality No No Yes 

General purpose Probably Not No Yes 

Concept learned Good vs. bad 
features 

Strong vs. weak 
positions 

Winning vs. losing 
positions 

Learning Method Self-play Book-moves Games 

Table 5-1: Comparison between Samuel's Algorithms and the Bayesian 
learning algorithm. 

The first great difference is that of linearity. Samuel's polynomial learning algorithm learns a linear 

function. It assumes that all features are mutually independent, which we have shown to be false. If two 

identical features were presented to this algorithm, both would be assigned equal weights, resulting in gross 

over-estimation of its utility. The signature table learning is a reasonable nonlinear approximation. However, 

as pointed out in Section 2.2.2, the nonlinearity in signature table learning will function only if the table 

structure is carefully arranged. Even then, correlations between features that are in different tables will be 

lost. If two identical features were not positioned properly, their utility is still overestimated. The Bayesian 

Learning approach, on the other hand, understands nonlinear relationships between the features by 

considering covariances between every pair of features. It is always possible to detect redundant features, and 

account for all the overlap among the features. 

In the previous chapter, we saw the dramatic improvement produced by using a nonlinear evaluation 

function. To illustrate why a linear evaluation is inadequate, the correlations between each pair of features 
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arc plotted in Figure 5-1. Although the four features were extracted from different characteristics of the 

board, they were found to be highly correlated, particularly mobility, potential mobility, and weighted 

squares. It would be detrimental to combine these highly correlated features linearly. 

Another difference is smoothness. Samuel's polynomial learning is smooth, as it uses natural features. 

But the extreme quantization in signature table learning deprived it of its smoothness. The lack of 

smoothness results in a search space where a minute change in one feature value could significantly alter the 

evaluation. In contrast, Bayesian Learning learns a smooth function, which measures the likelihood that a 

position belongs to the class of winning or losing positions. 

Another serious problem with both of Samuel's procedures is that they require additional tuning and 

supervision. Bayesian Learning, on the other hand, is completely automatic. Since tuning of feature-

combination is very unintuitive, automation is a very desirable property. Furthermore, Bayesian Learning 

provides the optimal quadratic combination assuming multivariate normal distribution4. 

One other problem with Samuel's procedures is that they do not adequately account for the stages of the 

game. We measured the utility of each feature in Figure 5-2, which shows the fraction of the training 

positions correctly classified as winning or losing positions for each feature if it were used in isolation. It is 

clear that the stage of the game affects the relative importance of the features. The correlation changes shown 

in Figure 5-1 also support the need for a fine and slow-varying measure of the stage of the game, which we 

provide by generating a discriminant function for each stage. Note that it would be possible to modify 

Samuel's procedure to generate many stages of learning; however, that would increase the already very large 

number (180,000) of training positions. 

An interesting difference between Samuel's procedures and ours is the concept that is being learned. 

Samuel's polynomial learning tries to distinguish good features from bad ones by penalizing the ones that 

make poor decisions, where the goodness of the feature is determined by its agreement with a deeper search. 

The signature table learning tries to differentiate strong positions from weak ones, where the strong positions 

result from the move made by the expert, and weak positions result from legal moves not selected by the 

expert. Bayesian Learning tries to learn the concepts of winning and losing positions, where winning positions 

are those that lead to an eventual win, and losing positions are those that lead to a loss. Since the objective of 

any game is to win, it seems more plausible to model winning vs. losing positions than good vs. bad features or 

moves chosen by experts vs. moves not chosen by experts. 

e will show in Section 5.2.1 that this assumption is correct 
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Figure 5-1: Correlation between every pair of features for winning and 
losing positions as a function of the stage in the game. 
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0.60 

45 50 55 
Game Stage (Disc Count) 

Figure 5-2: The fraction of training positions correctly classified by each 
feature used in isolation as a function of the stage of the game. 

Finally, the method of training is different for all three algorithms. Samuel's polynomial learning 

algorithm used self-play to generate the training data. Since this is an incremental hill-climbing procedure, it 

is likely to converge to a local maximum. The signature table learning is more global; however, the training 

from book-move suffers from limitations. First, while expert moves usually provide good positive exemplars, 

using all moves not chosen by the expert as negative exemplars is misleading. Second, by learning to imitate 

expert moves, it is theoretically impossible for the evaluation function to play better (without searching) than 

the experts. In this study, the use of winning and losing positions provide good positive and negative 

exemplar learning. Furthermore, by modeling "moves that lead to a win" rather than "moves chosen by 

experts", it is theoretically possible for our evaluation to be superior to the experts who played the training 

games. 

5.2 Problems with Bayesian Learning 
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5.2.1 Multivariate Normal Assumption 

The simplicity and elegance of Bayesian Learning arc largely due to its assumption of the underlying 

distribution of die data. In order for our learning algorithm to function properly, the distributions of the 

feature must be multivariate normal. To verify diis assumption, die distribution of the four features from all 

3000 training games were plotted in Figure 5-3. The thick curve is the distribution for winning positions, and 

the thin one is the distribution for losing positions. The positions were taken from positions with 24 empty 

squares on the board. It is clear from these figures that this assumption is quite reasonable. 

5.2.2 Accuracy of Labeling 

One point that can be raised is that the win/loss labeling procedure may not be very accurate, and any 

mistake in the labeling is likely to adversely affect the performance of Bayesian Learning. 

Although positions with 15 empty squares are always perfect because of BILL'S endgame solving 

capability, the earlier positions could be in error. We feel, however, that our labeling method is reasonable 

because: 

1. Many pattern classification procedures use hand-labeled training data, which are not always 
perfect. 

2. Since BILL 2.0 probably played better than any expert, this is the best labeling mechanism 
available. 

3. The first 20 random moves should create many positions that are not very close, and the side that 
is ahead will almost always win because BILL plays extremely well. 

4. Nearly even positions are difficult to label; however, given sufficient training data, these positions 
will simply form a boundary where win and loss are difficult to differentiate. 

5.2.3 Efficiency of Bayesian Learning Evaluation 

Perhaps the greatest problem with Bayesian Learning of evaluation function is that of efficiency. Each 

evaluation requires four multiplications of the inverse covariance matrix by the feature vector. Because the 

matrices are symmetric, the number of floating point multiplications neede4 to combine the features is 

2N(N + 1), where N is the number of features. Consequentiy, having a large number of features 

substantially decreases the speed of the program. Furthermore, accurate parameter estimation with many 

features requires much more training data. 

We could deal with this problem by reducing the dimensions of the feature space using principal 

components analysis [4], which rotates the feature space into one that has independent features, and 

unimportant features (those with small variance) can be discarded. Another similar approach is to use 

Fisher's linear discriminant [4], which uses labeled training data to maximize the ratio between inter-class 

variance and intra-class variance. 
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Figure 5-3: Win/Loss distribution of the four feature used. 
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5.3 Applicability to Other Domains 

Bayesian Learning has already been applied to speech, vision, character recognition, and many other 

domains. This study is the first that uses Bayesian Learning to learn feature combination in an evaluation 

function. The key concept that enabled this application is our use of Bayesian Learning to maximally separate 

the classes of winning and losing positions. This algorithm is applicable to any other game or any other 

search-based application where static evaluation is used. In order to obtain superior results, the following 

conditions are necessary: (1) good features must be used, (2) it must be possible to define the goal in terms of 

classes, and (3) the multivariate normal distribution must provide a reasonable fit 

The first condition is needed for any program to be successful. The second condition is easy to satisfy in 

game-playing programs, because the classes of winning and losing positions are the ideal concepts for learning. 

It may be more difficult in other domains. The third condition is satisfiable in most domains. 

Although we used a different version of BILL to generate the training data, it is not always desirable to 

do so. In games difficult for computers such as Go, self-generation will lead to many mislabeled positions. 

But in that case, using games between superior players should lead to even better performance; however, it 

was not possible here because it is questionable that such a player existed in Othello. But in Go, where 

humans are far superior to programs, training with expert games will improve the level of play even more 

drastically. 
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6. Conclusion 

In this paper we presented a new algorithm for combining terms, or features, of an evaluation function. 

This algorithm is based on Bayesian Learning. First, a training database is obtained, and each position is 

labeled as winning or losing. These positions are used to train a discriminant function that evaluates positions 

by estimating the probability that a position is a winning one. 

While machine learning of evaluation functions has been studied, algorithms such as Samuel's suffer 

from lack of smoothness, excessive human tuning, and lack of generality. The Bayesian Learning algorithm 

eliminates these problems, and has a number of desirable properties: 

1. Completely automatic learning from training data. 

2. Optimal quadratic combination. 

3. Understanding of feature covariances. 

4. Capability of recovering from erroneous features. 

5. Evaluation directly estimating (he probability of winning. 

We demonstrated that Bayesian Learning significantly improved the playing ability of an Othello 

program that already played at the world-championship level. We believe that it can be applied to any 

domain where a static evaluation is needed, and will not only drastically reduce the tuning time, but also 

dramatically improve the performance of the program. 
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Figu re 2 - 1 : Samuel's final signature table scheme. 
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Figure 2 - 2 : If F1 and F2 are the same feature, the signature table configurations in (a) would 

cancel their redundancy, but the one in (b) would not. 
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Figure 3 - 1 : (a) shows the initial Othello board set-up and the standard names.of the squares; (b) 

shows a sample board with legal moves (for Black) to C6, D6, D2, E6, and G2; (c) shows the board 

after Black plays to E6. 
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F i g u r e 3 - 2 : The learning and evaluation process of the proposed evaluation function learning 

algorithm based on Bayesian Learning. 
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Figure 5 - 1 : Correlation between every pair of the features for winning and losing positions as a 

function of the stage in the game. 
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Figure 5 -2 : The fraction of training positions correctly classified by each feature used in isolation 

as a function of the stage of the game. 
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Figu re 5 -3 : Win/Loss distribution of the four feature used. 
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W I N L O S S 

Mob. P o t . Wtd. Edge Mob. P o t . Wtd. Edge 

Mean Mean 
533 266 242 599 - 4 1 9 - 2 0 0 - 1 1 2 - 334 

Covar iance Mat rix Covar iance Matr ix 
475871 185298 137911 121288 508045 196432 143986 118982 
185298 133714 71658 26931 196432 138063 73963 28984 
137911 71658 94977 41957 143986 73963 95262 42341 
121288 26931 41957 444184 118982 28984 42341 436256 

Correlat ion Matr i 
1 .00 0 . 7 3 0 . 6 5 
0 . 7 3 1 .00 0 . 6 4 
0 . 6 5 0 . 6 4 1 .00 
0 . 2 6 0 . 1 1 0 . 2 0 

0 . 2 6 1 .00 
0 . 1 1 0 . 7 4 
0 . 2 0 0 . 6 5 
1 .00 0 . 2 5 

Corre lat ion Matr ix 
0 . 7 4 0 . 6 5 0 . 2 5 
1 .00 0 . 6 4 0 . 1 2 
0 . 6 4 1 .00 0 . 2 1 
0 . 1 2 0 . 2 1 1 .00 

Tab le 3 - 1 : The mean vector, covariance matrix, and correlation matrix for the classes win and loss 

at move 40.) 
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Players Win Tie Loss W / L Avg. Score 

7-ply vs. 6-ply 121 7 72 1.68 34.54 - 29.39 

8-ply vs. 7-ply 115 6 79 1.46 35.04 - 28.89 

7-ply vs. 5-ply 141 10 49 2.88 37.03 - 26.94 

8-ply vs. 6-ply 130 

CO
 57 2.28 36.38 - 27.59 

Learn vs. Linear 139 6 55 2.53 36.95 - 27.03 

Tab le 4 - 1 : Results between two versions of BILL. 
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Search Ply Bayesian Linear 

3 5 1 % 4 1 % 

4 5 1 % 43% 

5 53% 46% 

6 57% 53% 

7 6 1 % 53% 

8 64% 55% 

Tab le 4 - 2 : Percentage of agreement between two versions of BILL and the move that guarantees 

the largest winning margin. 
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Samuel's 
Polynomial 

Samuel's 
Signature Table 

Bayesian 
Learning 

Non-Linearity No Yes Yes 
Can deal with redundancy? No Maybe Yes 

Smoothness Yes No Yes 
Completely automatic? No No Yes 
Optimality No No Yes 
General purpose Probably Not No Yes 
Concept learned Good vs. bad 

features 
Strong vs. weak 

positions 
Winning vs. losing 

positions 
Learning Method Self-play Book Games 

Tab le 5 - 1 : Comparison between Samuel's Algorithms and the Bayesian learning algorithm. 


