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Abstract 

Beginn ing with the recent ly in t roduced 'ba lanced sort ing network* that sorts an input vector of s ize 
N=-2n and cons is ts of n identical b locks where e a c h block is c o m p o s e d of n phases of N/2 
comparators per phase , w e p ropose a shuf f le -exchange type layout consist ing of a s ingle block with 
the output rec i rcu lated back as input until sort ing is ach ieved . T h e main advantage of the p roposed 
des ign is that no comparator in the network is critical in the sense that any faulty comparator can be 
b y p a s s e d without d isturbing the functionality of the network (just its speed) . T h e novelty of the des ign 
is that the robustness is der ived from the under ly ing algorithm. T h e network will sort in Lhe presence 
of many faulty comparators . Moreover , of the NlogN/2 comparators , only A' pairs of comparators 
are cr i t ical . Tha t is, the network fails only w h e n both comparators in any of these pairs fail. T h e s e 
results enable one to bui ld large sorting networks on a single wafer so that a high percentage of the 
fabr icated wafers can be used ; some of the wafers wiil sort very quickly (the ones with no faulty 
c o m p o n e n t s ) , most will sort at somewhat s lower than optimal speeds , but only a few will fail to be 
useful as sort ing networks (due to too many, badly p laced faults). 
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T h e advent of V L S I techno logy is impacting almost all aspects of society . Unfortunately, one of the 
major problems facing V L S I techno logy increasing manufacturing costs is the low yield in mass 
product ion of ch ips and wafers. Tha t is, a l though it is cheap to p r o d u c e large quantities of a s ingle 
ch ip or wafer, only a small fraction of them funct ion correct ly . T h e rest are rendered useless d u e to 
random flaws int roduced during the fabrication process . T h e flaws tend to have the most adverse 
effect on the active elements (e.g., gates, transistors) and less effect on the wires. 

O n e way of increasing the yield is by employing des igns that funct ion despite fabrication flaws. W e 
present a layout for a sort ing network that can withstand many faulty components . A l though a small 
network can usually fit on a single ch ip , a much larger network cou ld be made to fit on a s ingle wafer. 
Previously known sort ing networks shared the property that almost all the components (comparators) 
are cruc ia l , and so large networks p r o d u c e d on a s ingle wafer wou ld be expens ive d u e to the 
resulting low yield. T h i s is not the c a s e with our layout; most faulty comparators can be bypassed and 
still al low the network to sort , albeit somewhat s lower . 

Related work can be classif ied into two different areas, sort ing networks and fault-tolerant systems. 
T h e r e has been much research in sort ing networks and the related area of parallel sorting algorithms. 
Batcher [Batcher 68] int roduced the Bitonic network as well as the O d d - E v e n network (see also 
[Knuth 68]) both requir ing 0 ( [ log A ] 2 ) s teps to sort input vectors of s ize N (see also, Hong and 

Sedgewick [Hong and Sedgewick 82] and Perl [Perl 83] for addit ional insights into s u c h networks) . 
T h e r e has also been much research in sorting algorithms for parallel p rocessors , some parts of w h i c h 
are relevant to sorting networks, for example, Valiant [Valiant 75], Borod in and Hopcrof t [Borod in and 
Hopcrof t 82], and Kruskal [Kruskal 83]. Rief and Valiant [Reif and Valiant 83] g ive an algorithm that 
requires 0 ( log AO expec ted time to sort on a particular type of network, whereas , Ajtai et. al [Ajtai el 
al 83] recently s h o w e d that there are 0(N\ogN) s i zed networks that can sort in 0 ( log AO steps, 
a l though the large constants make their network impractical . Wins low and C h o w [Winslow and C h o w 
83] review and compare var ious sorting machines that make different assumptions about how the 
input and the output are connec ted to the machine. 

T h e structure of the paper is as fol lows: W e first desc r ibe the 'balanced sort ing network' , w h i c h has 
recently been int roduced [ D o w d et al 83a, D o w d et al 83b]. T h e 'crucial comparators ' are then 
identified and their effect ana lyzed . T h e third sect ion first rev iews the layout p roposed in the 
introductory paper and then modifies the layout in two ways : first to reduce the number of critical 
comparators and then to eliminate all of them. A n analysis of the increased yield is also presented. 

1. The Balanced Sorting Network 
In this sect ion w e review the des ign and layout of the "ba lanced sort ing network" int roduced by 

D o w d et. al [ D o w d et al 83a]. T h e network requires [ log N\2 s tages of N/2 comparators to sort N items 
and consists of a s e q u e n c e of log N identical merging blocks, w h e r e each block possesses a highly 
regular, recurs ive des ign (see F igure 1-1 for a merging network of s ize 16). A novel aspect of the 
network is that the b locks are identical not smaller recurs ive vers ions as in those of Batcher 
[Batcher 68]. 

Specif ical ly , a basic unit of the network is a two input, two output comparator transforming the 
arbitrary o rder of the two input elements into nondecreas ing order . E a c h phase of the balanced 
merging network is c o m p o s e d of N/2 of these comparators with the first phase compar ing elements 
x ( 0 ) with x ( N - l ) , x ( l ) with x(N-2), • • • , x ( A V 2 - l ) with x(N/2), w h e r e x is the input vector . Taking 
the approach of an 'oblivious* algorithm in that even though the first phase does not guarantee a 
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F i g u r e 1 - 1 : A Ba lanced Merging Block of S i z e 16 

partition of the input into two halves, w e pretend that it d o e s and s o cont inue to apply the same 
procedure to both halves of the output of the first phase recurs ively . T h u s , log N phases compr ise a 
merging network. W e number the phases from 1 to log N. 

Figure 1-1 depicts a balanced merging network for N-16 elements using Knuth 's [Knuth 68] 
comparator -network representation where horizontal l ines represent the input lines x ( z ) , 0 < / < Af, and 
vertical lines represent compar isons between the elements on the co r respond ing input lines. S i n c e 
the output of a merging network (from now on w e call s u c h a merging network a block) may not be 
sor ted , w e cont inue to apply these b locks until sort ing is obtained. (F igure 1-2 s h o w s the full 
ba lanced sort ing network for s ize 8.) 

E a c h block, as its name implies, is a merging network, however , it is not easily observed exact ly 
what is being merged. T h e first phase of the merging network appl ied to a recursively balanced 
vector partitions the elements s o that the N/2 smallest elements are in the first half of the vector and 
the N/2 largest elements are in the s e c o n d half of the vector . Moreover , each half is recurs ively 
ba lanced s o that each subsequent phase acts recurs ive ly to sort the input. 

T h e ba lanced sort ing network is v e r y similar to the bitonic and the o d d - e v e n sort ing networks 
int roduced by Batcher [Batcher 68]. T h e s e networks also cons is t of [ log N]1 s tages with a s tage 
c o m p o s e d of N/2 comparators . Moreover , they are both bui ld u p o n merging networks, however , 
despite their similarity, there is no permutation between the input l ines of either of Batcher 's two 
networks and the balanced sort ing network. T h e di f ferences between the balanced network and 
those of Batcher are evident from the fol lowing lemma w h i c h is satisfied by neither the o d d - e v e n nor 
bitonic merge networks. 
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F i g u r e 1 - 2 : A Balanced Sort Network of S ize 8 
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L e m m a 1: 

i) If no e x c h a n g e o c c u r s dur ing a block, then the input of the block is sor ted . 

ii) A network wh ich sorts any input can be const ruc ted by serially composing a finite 
number of b locks . 

P r o o f : 

i) A s ingle b lock performs all compar isons x ( / - 1) with x(/) for 1 < i< n (among others) 
and thus if no e x c h a n g e o c c u r s the input must be sor ted . 

ii) E a c h e x c h a n g e dec reases the number of inversions (that is, pair of elements w h i c h 
are out of order) . S ince a permutation has at most ( ? ) inversions, part (i) implies 
that ) b locks suff ice to sort . • 

In addition to differentiating between the sorting networks, this lemma is important in two respects. 
It demonstrates that only some of the compar isons are needed to sort . It also suggest a p rocedure for 
decid ing w h e n the output is sor ted . T h e following implementation strategy, wh ich is assumed 
throughout the rest of the paper, ar ises from these observat ions. 

S i n c e a success ion of identical b locks are required, only one block is actually needed . T h e output 
of the block is recirculated back as input (see F igure 1-3). Moreover , by the first part of the lemma, 
the dec is ion to recirculate can be based on whether any e x c h a n g e s o c c u r r e d within a block. Not only 
d o e s this al low a faster complet ion time for certain input vectors and the elimination of a l o g i V 
counter , but it also enables a more fault tolerant network, as will be s h o w n later. 

2. Critical Comparators 
In this sect ion w e identify the 'critical comparators ' of the recirculating network (see F igure 1-3). 

S i n c e many fabricated chips , or more significantly, wafers , are likely to contain faulty comparators , it 
is desi rable that the fabricated product still sort o n c e the faulty comparators are bypassed . Recal l 
that w e are cons ider ing a recirculating network consist ing of one block of comparators with the 
output recirculated back w h e n e v e r there is at least one e x c h a n g e occur r ing in the block. W e 
compare a complete balanced sort ing network with one missing some of its comparators . T h e term 
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F i g u r e 1 - 3 : A S ingle Block Balanced Sort Network of S i ze 8 

iteration is used to indicate the movement of data th rough one block of the complete network and the 
term pass refers to the movement of data th rough one b lock of the incomplete network. W h e n some 
comparators are missing, there will usually be more passes than iterations to p r o d u c e the sorted 
output for a g iven input. 

C o n s i d e r a s ize 8 network with an input vector x consist ing of all ze ros except for a o n e in the fourth 
posit ion, i.e. x ( 3 ) = 1 or x = [0,0,0,1,0,0,0,0] (the result after the sort should be [0,0,0,0,0,0,0,1]). It is 
easy to see that the x ( 3 ) : x ( 4 ) compar ison (a first phase compar ison) is c ruc ia l . Without it, the 1 will 
never c h a n g e its posi t ion. O n the other hand , the x [ 4 ] : x [ 7 ] comparator (a s e c o n d phase comparator ) 
is not c ruc ia l . In the first b lock, the first phase e x c h a n g e s x [ 3 ] with x [ 4 ] , the next phase d o e s 
nothing, the third phase e x c h a n g e s x [ 4 ] with x [ 5 ] . A s e c o n d pass th rough the block will p r o d u c e the 
sor ted output using the x [ 5 ] : x [ 6 ] comparator in the s e c o n d phase and the x [ 6 ] : x [ 7 ] comparator in 
the third phase . 

Before presenting the main theorem, w e int roduce some notation and quote a few lemma's p roved 

in [ D o w d et al 83a] . 

• Greek letters represent a string of bits with a superscr ipt to indicate the number of bits. 
F o r example <xk~J ft"11 indicates a string of k bits, the first (h igh order) k—j bits of w h i c h 
are denoted by ak~*% and the last bit is 1. W e omit superscr ip ts of 1. 

• Comparators are specif ied b y the indices of the lines they compare ; the two indices are 
separated b y a co lon (:) . F o r example, the first phase of a s ize 16 network conta ins the 
comparator 0 :15 . T h e indices will often be written in a b inary templet form in w h i c h 
some of the bits are left unspeci f ied in order to represent a set of comparators . 
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W e first identify the critical comparators with the following definition and later s h o w that these are 
indeed the only comparators that are required for sort ing. 

D e f i n i t i o n 2 : In a balanced sort ing network of s ize N=2n
i the critical comparators of 

the j+ l s r phase are of the form 

T h e other (N log N/2)-N comparators are referred to as noncriticaL 

P r o p o s i t i o n 3 : In a s ize N= 2n ba lanced sorting network, the f h phase compares all 
pairs of entries w h o s e indices have identical h igh -order (leftmost) y ' - l bits and 
complementary low-order (r ightmost) n—(j—l) bits. In the above notation, compar isons in 
the j t h phase are between elements w h o s e indices are of the form 

D e f i n i t i o n 4 : T h e level i chains are all those with the same rightmost / bits. T h e level / 
cochains are all those with the same or complementary r ightmost / + 1 bits. 

L e m m a 5: Apply ing the \ t h phase (J< i< n) to an input w h o s e level n-(j— 1) cocha ins are 
sor ted , preserves this property . 

L e m m a 6: Apply ing the ith phase (j+l<i<n) to an input w h o s e level n—j chains are 
sorted preserves this property . 

T h e next theorem will make use of the following lemma. T h e proof of this lemma explicitly identifies 
a set of three comparators for each noncrit ical comparator w h o s e combined effect is the same as that 
of the noncrit ical comparator . 

L e m m a 7: G iven an input vector x of s ize Af = 2" in w h i c h the level n—(j— 1) chains are 
sorted, let k<j, and remove the following noncrit ical comparator from the kth phase: 

After a pass th rough the deficient block it will be the case that the missing compar ison will 
be compensated , i.e. its effect real ized. More precisely , after a pass it is the case that: 

x{ak~lQ x(ak'11/?"-*). 

P r o o f : T h r e e other comparators , one phase k and two phase r, (k<r< n)y will be s h o w n 
to accompl ish the effect of the missing comparator (see F igure 2-1). S i n c e the removed 
comparator is noncrit ical , w e can write fin~k as i 0 O y " ~ ( * + a + 1 ) , for some a > 0 . Th is is 
because stage j critical comparators can be character ized as having their r ightmost 
/ 2 - ( / - l ) bits consist of either all O's or all 1's (Definition 2). T h e three other comparators are: 

1. (Phase k) a

k-lQlaly"-(k+<*+D : a
kmml10aQy^(k+a^i) 

2. (Phase r) a ^ " 1 0 1 f l 0 y / 7 , " ^ + a + 1 ) : a ^ ^ O P l y H i t + a + i ) 

3. (Phase r) ak-llQaQyn-(k+a+i). a * - i 1 0 a i y * - ( * + < H - i ) ] 

F o r shor thand w e write a , M > and , for a * ~ \ O P , and O y ^ + ^ D , respect ively Us inq 
this notation, w e replace the comparator «/z„ s aji7 with the fol lowing: 9 
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• (phase k) a\iV : ap.i> 

• (phase r) a\Lv : a\iv and auv : 

In o rder to differentiate the value in the vector at each phase, w e superscr ipt the vector 
with a phase number / for the value before the i'h phase compar i son . 

As a result of the phase k compar ison w e have x * + 1 ( a / i ? ) < xk+l(a]iv). By a prev ious 
lemma, this is still t rue at phase r. T h i s , along with the fact that after a compar i son , the 
smaller value is p laced into the posit ion with the smaller index and the larger value into the 
posit ion with the larger index, w e have: 
x r + 1 ( a / i » » ) = min { x ^ a / i r ) , x r ( a ^ i » ) } 

S x r(afi*0 
£ x r (u jZ j r ) 
< max {x r(a/Z*0, x r ( a j H ? ) } 
= x r + Kajiv) 

• 
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F i g u re 2 - 1 : T h e bo ldface comparators compensate for the 
missing dotted one 

T h e next theorem s h o w s that the critical comparators are really the only crit ical ones . 

T h e o r e m 8 : G iven a s ize N=2n ba lanced sorting network consist ing of one b lock with 
the output of the block recirculated back as input whenever there is at least one e x c h a n g e , 
then the critical comparators are the only ones needed to eventual ly p r o d u c e a sorted 
output . 

P r o o f : W e need to s h o w that the network sorts with noncr i t ical comparators removed 
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and will not sort if a crit ical comparator is removed . T h e proof consists of two parts. In the 
first part w e first cons ider the removal of one noncrit ical comparator . 

(i) Assume a noncrit ical comparator is removed from the kth phase and cons ider the jth 

iteration. 

C a s e k >j: B y lemma 6, the phases after j+1 have no effect. 

C a s e k<j: Starting with level n—(j-l) sor ted chains , w e must s h o w that after another 
iteration it must be the case that the level / i — j cha ins are sorted. T h e first k— 1 phases are 
the same in both the networks. By the prev ious lemma (Lemma 7) the effect of phase k is 
accompl ished by the end of the pass. By lemma 5 it is c lear that the first k phases of the 
subsequent pass does no harm. There fo re by the k+1 phase of the s e c o n d pass, the 
items have the desi red property required at the k+1 phase of the cor responding iteration. 

At most twice the number of passes are needed to compensate for the removal of one 
noncrit ical comparator . T h e next quest ion to ask is what happens if two noncrit ical 
comparators are bypassed? Let and N C 2 be two noncrit ical comparators and let 
C O M P j , C O M P 2 , C O M P 3 be the three comparators used to compensate for N C j . If N C 2 is 
not one of these three then no extra passes are required. O n the ether hand , additional 
passes may be required if N C 2 is one of these three. S u p p o s e N C 2 is C O M P 2 . T h e n no extra 
passes are required s ince by the end of the block the effect of C O M P 2 will have been 
accompl ished and thus the same for the effect of N C j . However , if N C 2 is C O M P j then the 
effect of C O M P i may not o c c u r until the end of the block and so an additional pass will be 
needed for C O M P 2 and C O M P 3 to have and effect. T h u s in the worst case , three times as 
many passes will be needed if two noncr i t ical comparators are removed. 

(ii) It is c lear by inspect ion that the crit ical comparators are indeed crit ical. Cons ider a 
phase j+1 crit ical comparator . It has the form a ^ O F ^ ' ^ i a ^ l O " " ^ " 1 ) . In later phases, 
say phase r>j\ the smaller indexed line will be compared to lines smaller than it 
(i.e. 8 I ~ 1 0 / I " < r " 1 > : a^01 / l "^" 1 >). T h u s if the maximum key is on line a/Qln~V-l\ it will never 
be s w a p p e d b y any other compar ison . 

O n e may w o n d e r w h y Lemma 7 d o e s not apply in this case. U p o n careful examination, it 
is c lear that for a crit ical comparator pn~k cannot be rewritten in the required form. • 

In general , w h e n c noncrit ical comparators are removed, a factor of at most c increase in the 
number of passes will be required. C o n s i d e r what happens if all the noncrit ical comparators from the 
first phase are removed, leaving only one phase 1 comparator . It is not hard to see that a factor of 
log N additional passes will be needed . Moreover , w h e n all noncrit ical comparators are removed, the 

network is reduced to bubble sort [Knuth ] . 

C o r o l l a r y 9 : With only crit ical comparators , sort ing takes N log N phases. 

3. The Shuffle-Exchange Layout 
U p to this point w e descr ibed the network in terms of compar isons between the values on 

"hor izontal l ines" . In this sect ion, w e first review the shuf f le -exchange layout for the ba lanced sort ing 
network as presented in [ D o w d et al 83a], and then identify the critical comparators in this layout. A 
sl ight modification to the layout halves the number of critical comparators . Simple replication can 
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then eliminate the rest of the critical comparators . T h e sect ion c o n c l u d e s with an analysis of the 

increased robustness. 

A shuffle e x c h a n g e layout for N = 2k 'elements' consists of a ser ies of identical stages. E a c h s tage 
consists of N/2 two by two comparators , numbered 0 to TV/2— 1. If we number the lines through the 
comparators in a stage from 0 to N-1 s o that the lines th rough the \ t h comparator are labeled 2i and 
2i + 1 then output i from stage t is c o n n e c t e d to input a{\) in stage t + 1 w h e r e the permutation a is the 
perfect shuffle permutation (see [C los 53, Benes 65]): if \ k - x i*_ 2 . . . i 0 is the binary expans ion for i 
then a(i) = i * - 2 i*-3 • • • »o U-i ( s e e F i 9 u r e 3-1(a)) . 

(a) S H U F F L E P E R M U T A T I O N cr (b) T H E P E R M U T A T I O N r 

F i g u r e 3 - 1 : 

E a c h comparator compar ing input l ines / and j \ i< jean be set into four possible states: 

1. S t a t e + : o u t p u t ( i ) < o u t p u t ( j ) (larger value to the upper line) 
2 . S t a t e - : o u t p u t ( i ) > o u t p u t ( j ) (larger value to the lower line) 

3 . S t a t e 0 : o u t p u t ( i ) = i n p u t ( i ) , 

o u t p u t ( j ) = i n p u t ( j ) (no exchange) 

4 . S t a t e 1 : o u t p u t ( i ) = i n p u t ( j ) , 
o u t p u t ( j ) = i n p u t ( i ) (exchange). 

T h e layout realizing the ba lanced merging network (a s ingle b lock of the ba lanced sort ing network) 
consists of log N shuffle e x c h a n g e stages with all comparators set to the " + " state. E a c h stage 
c o r r e s p o n d s to a phase of the merging network. In order that the layout simulate the merging 
network, the inputs into the layout must be a certain permutation r of the inputs into the network, 
where r(2i) = 2i and T ( 2 / + 1 ) = w - 2 / - l , that is, r f ixes the location of the even inputs and reverses 
the order of the o d d inputs (see F igure 3-1 (b) ) . T h e ba lanced sorting network can be real ized with 

log N success i ve shuf f le -exchange b locks with the output of each b lock c o n n e c t e d to the input of the 

next b lock via the r permutation (see F igure 3-2). 

O u r plan is to first s h o w the c o r r e s p o n d e n c e between the network and the p roposed layout, w h i c h 

requires some additional notat ion, s o that the crit ical comparators in the layout can be identif ied. 

D e f i n i t i o n 1 0 : Let L ine ; ( i ) be the value on the i t h network line (see F igure 1-1) just 

before the phase t compar isons ( 0 < / < /i, 1 < / < log AO. In part icular, LineHO are the input 

values. 
D e f i n i t i o n 1 1 : Let In^i) be the value of the i t h input line of the Xth s tage of the layout. 

T h i s is the value for the i (mod 2)th input into the [ i/2 j comparator (0</</z, l < / < log AO. 
Note that dur ing the \ t h s tage comparator i compares ln'(2/) and l n r ( 2 / + 1 ) . 
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x — T T - m1n(x,y) 
y - | j _ m a x ( X . y ) 

F i g u r e 3 - 2 : S h u f f l e - E x c h a n g e Layout for Sort Network of S i ze 16 
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T h e initial relationship between the inputs of the layout and the network is g iven by: 

ln\2i) = Line I(2/) and l n l ( 2 / + l ) = Lmel(n-2i-l) 

T h u s the first stage of comparators of the layout performs the same compar isons as the first phase of 

the sorting network. F igure 3-3 tracks the movement th rough the layout over time with the numbers in 

the f igure cor respond ing to the location of the cor respond ing input line in the ba lanced merging 

network. T h e motivation for the r permutation can easily be seen from first s tage/phase . 

W e want to s h o w that the compar isons performed dur ing the j t h phase of the network are the same 
as those performed dur ing the j t h s tage of the layout. Us ing the a b o v e notation, w e quote the 
fol lowing lemma from [ D o w d et al 83a]. 

L e m m a 1 2 : Fo r a s ize N = 2 " ba lanced merging network (i.e. a block) and its 
cor respond ing shuff le layout, w e have the fol lowing c o r r e s p o n d e n c e s between the lines of 
the network and the inputs to the comparators in the layout: 

\nl{an~l0) = L i n e ^ a ^ O ) 
I n ^ a 1 1 " 1 ! ) = L i n e H a ^ l ) 

and for j> 1, 

l r V ( a w ^ " " 2 0 0 ) = Une> (pJ-20an-JQ) l r V U " ~ ^ ~ 2 0 1 ) = Line> (fii'20an^l) 
ln>( an-JfV-210) = Line> (pi~21 an'J\) lrV( an'Jfi^211) = Line> (pj~21 a ^ O ) . 

A natural quest ion to ask is w h i c h comparators in the layout c o r r e s p o n d to the critical comparators 
of the network. It is c lear that in the last s tage all the comparators are crit ical . T h e following theorem 
suppl ies the general answer . 

T h e o r e m 1 3 : In the tth s tage, the critical comparators are those of the form: 

(t=l) 1 0 " - 2 0 : 0 1 " - 2 1 
( l < / < logAO l O " - ' - 1 ^ - ^ : I0n"("lp^ll 

(/ = log AO p»~l0:fin-n 

P r o o f : W e s h o w that the ' ln() ' values of the a b o v e indices c o r r e s p o n d to the 'L ineO' 
values w h o s e indices are those of the networks critical comparators . Lemma 12 and 
Definition 2 are used in the fol lowing equalit ies. 

C a § g ( / = 1 ) 

ln x(1 O ^ O ) = L i n e H l 0 H 0 ) 
InH l 0 " - 2 1 ) = L i n e H O I 1 1 " 2 ! ) 

C a s e (1 < / < log AO T h e r e are two cases arising from the low order bit of ft*"1. 

S u b c a s e (p'-^P'-iQ) 

ln'(1 O ^ - ^ j S ^ O O ) = L i n e r ( j 3 ' - 2 0 1 0 « - w 0 ) 
ln'(1 C - ' - ^ ' ^ O I ) = L i n e / 0 8 r " " 2 O O 1 / I - / " l 1 ) 

S u b c a s e (p'-l=p<~2l) 
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i n p u t o u t p u t 

F i g u re 3 - 3 : T racks movement through the layout. Numbers c o r r e s p o n d to 
horizontal lines of F igure 1-2. 

Crit ical Comparators are shaded . 
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i n / ( , 0 * - r - i pt-2 o) = Line'*/?'" 21 0 l 7 1 " ^ 1 1 ) 
ln'(1 0 " - ' " 1 j 3 ' ~ 2 1 1 ) = L ine' (/? ' - 2 1 1 O 1 1 " 1 " 1 0) 

In F igure 3-3, the critical comparators are s h o w n . T h e input and output ports of each comparator 
are tagged with the cor respond ing Line() indices of the network. T h e advantage of this layout, as 
o p p o s e d to the shuf f le -exchange layout for bitonic sort (see [Stone 71]), is that all the comparators 
always place the larger value on the bottom port (port 1). Note that for s o m e of the comparators the 
top input port (port 0) c o r r e s p o n d to L ine values w h o s e indices a re larger than those for the bottom 
input port. A l though this d o e s not affect sort ing, it d o e s interfere with t h e application of the results 
from the prev ious sect ion . T h e matter can easily b e remedied by simply switching the input ports for 
these comparators . 

4. A Single Block Layout 
Having descr ibed the shuf f le -exchange layout and identified the crit ical comparators , it is n o w 

possible to descr ibe addit ional implementation details. T h e r e are a few cho ices for laying out the 
network: (i) inc lude al l 1 ( l /2 ) ( log AO2 s tages with s tages connected by either <r o r T , (ii) U s e only o n e 
stage of N/2 comparators c o n n e c t e d by a , o r (iii) a compromise s c h e m e consist ing of one block of 
logAf stages with the output recirculated back as input. W e will investigate the third opt ion after 

some d iscuss ion of all three. 

S i n c e area arguments immediately eliminate option ( i) , we contrast the later t w o opt ions. T h e full 
unfolding of a block ( instead of o n e s tage of shuf f le -exchange) enables pipelining and thus very long 
keys can be sorted. If the high order bits match, then they can both b e forwarded; as s o o n as a 
di f ference is detected , the appropr iate sort ing can be d o n e for the rest of the bits. T h u s , a key can b e 
passing through many comparators at the same time. T h i s is not possible in the s ingle -staged network 
(option (ii)). Moreover , pipelining reduces the connec t ion or pin requirements per comparator . T h e 
s ing le -s taged design requires the entire key to be s tored in the comparator and to keep the same rate 
of throughput , wider channe ls are n e e d e d . 

Perhaps even more important is the simplicity of the logic required fo r the s ingle b lock layout. 
Bes ides ail the obv ious benefits of a simpler logic , it a lso means that e a c h comparator requires less 
area (and fewer transistors) . A s ingle s tage shuf f le -exchange layout requires 0((N/ l o g j V ) 2 ) a rea 
(see [Kleitman et al 81]) for the connec t ions (i.e. wires) a n d s ince there a re N/2 comparators the total 
area required is: 

Tota l A rea of S ing le -Staged Layout is $5<^v)2 + CN/2. 

Whereas , for a single block, OC/V 2 ) wi re area is n e e d e d 2 (see [Wise 81, S n i r 81] and F igure 4-1) a n d , 

a l though there are more comparators (N log N/2), they are simpler and h e n c e require less area: 

1 [Dowd et al 83a] shows that only the first 2 phases are needed in the first two blocks, the first 3 phases in the third block, 
. . . . the first k phases in the kth block. Thus only (1/2X log JV)2 phases are actually needed. 

2 
An appropriate placement of the comparators yields a block in which the first stage is connected to the second via an 

inverse shuffle permutation. There are N crossovers and thus requires Q(N) width. The top half of the second stage is 
connected by a size N/2 inverse shuffle to the top half of the third stage and similarly for the bottom half. There are now half as 
many crossovers, thereby requiring 0(N)/2 width. Etc. 
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Total Area of O n e Block Layout is W N2 + CN log N/2, 

N Crossovers N/2 N/4 
— I i , i 

I I I 

F i g u r e 4 - 1 : O n e block of layout using O ( A ^ ) wire area 

T h u s for specif ic appl icat ion, the layout with minimal area d e p e n d s on the relations between W, W , 
C , C\ 

Lemma 1 is used as a basis for dec id ing whether or not the output is sor ted. T h e lemma refers to 
the compar isons in the sort ing networks: if there are no swaps dur ing a block, then the output is 
sor ted . Due to the mapping, this condi t ion is sl ightly different in the layout -- the output is sorted if 
some of the comparators swap and some of them d o not. It is easy to slightly modify the layout to 
eliminate this unpleasantness (see F igure 4-2). 

At first b lush , an A N D gate for N log N/2 boo lean values appears to be required, however , the 
dec is ion to recirculate can be generated dynamical ly with a much smaller gate. A bit is associated 
with each key indicating whether or not, based on the history of the key, a recirculat ion is needed . A s 
two keys pass through a comparator , this bit is updated appropriately. After the last stage of the 
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F i g u re 4- 2: Layout sl ightly modified s o that 
output is sorted iff no comparator s w a p s 
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block, the A N D of these N/2 bits so lves the recirculat ion dec is ion . 

4 . 1 . M o d i f i c a t i o n s 
T h e layout just descr ibed can be modified to achieve greater robustness in the following way. T h e 

comparators are g r o u p e d into pairs in s u c h a way that dur ing alternate passes the comparators in 
each pair alternate roles. As a result, the pair becomes crit ical, requiring both comparators to fail in 
order to dec lare the pair as faulty; the failure of any single comparator does not interfere with the 
functionality. 

O u r modification affects all but the last stage wh ich must be dealt with in a separate fashion. F igure 
3-3 s h o w s the critical comparators in one block of the shuffle layout. Note that it is our cho ice of r 
that causes the critical comparators to be in the bottom half of the layout, indeed, choos ing a slightly 
different T p laces all the critical comparators on the top half of the layout. Let r be s u c h a 
permutation def ined as: 

r(2i) = A f - 2 / - 1 and r\2i+1) = 2/. 

F i g u re 4 - 3 : A S ing le block with the output c i rculated back by r or T \ 
If there are no e x c h a n g e s within the block, the output is sor ted. 

C o n s i d e r a one -b lock recirculating layout in w h i c h the recirculat ion alternates between r and r 
(see F igure 4-3). During even passes the critical comparators will be in the lower half and dur ing odd 
passes they will be in the upper half. T h u s , any particular critical comparator in any but the last stage 
is no longer crit ical ; any s ingle compar ison in the network will be performed by two different 
comparators in the layout, thereby allowing any single comparator to be bypassed . 

In order to extend this property to the entire layout, w e propose that the last stage be replicated 
thereby making all comparators noncr i t ical . S i n c e there are N log N/2 comparators in a block, the 
addit ion of N/2 will not be too costly . With this addit ion, w e can now state: 

P r o p o s i t i o n 1 4 : At the very worst , the loss of a single critical comparator will doub le the 
sorting time, a l though general ly o n e would expec t a much smaller per formance loss. 
Moreover , of the (N( log A f - l ) ) / 2 comparators , there are just N critical pairs. T h e layout 
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will fail to sort only when both comparators in a pair fail. 

4 . 2 . A n a l y s i s 
A layout containing fewer critical comparators is more robust than one with more critical 

comparators . W e s h o w the probabil ity that an entire network funct ions correct ly assuming a uniform 
distr ibution of faulty comparators . A layout is said to funct ion correct ly if its faulty comparators can 
be bypassed in s u c h a way that it will eventual ly sort any g iven input vector . 

W e compare four layouts, all of wh ich consist of a s ingle block of log N s tages, with each stage 
containing N/2 comparators : 

1. All the comparators are c ruc ia l . Th i s is the case of a s ingle block layout of either of the 
two Batcher networks. 

2. N c ruc ia l comparators . T h e original p roposed single block layout of the ba lanced sor t 
network. 

3. N/2 c rucia l comparators and N/4 c ruc ia l pairs of comparators . Th i s is the situation o n c e 
T and T ' are incorporated. 

4. N o crucial comparators and N c ruc ia l pairs of comparators . T h i s can be easily 
accompl ished by replicating each of the N/2 comparators of the last stage. 

Let p be the probabil i ty that a comparator is faulty. W e assume that the faults are uniformly 
distr ibuted and independent . T h e following are the expected probabil it ies: 

• Probabil ity that each comparator works is (1— p) 

• Probabil ity that a pair works is (1 -/J 2 ) 

• Probabil ity that the last phase works is (l-p)N/2 

Layout l\) Layout (ii) Lavoutfl i i ) Layout (iv) 

(1 - p)N\og N/2 ( 1 _p)N {l-?f/A + (1 -P)N/1 (1 -f)N 

T a b l e 4 - 1 : Probabil i ty who le network works 

T h e cu rves in F igure 4-4 s h o w the probabil it ies of the network of s ize N funct ioning for var ious 

values of p. 

5. Testing for Faulty Comparators 
An addit ional n ice feature about the balanced sort ing network is that it is very easy to test for faulty 

comparators within a single b lock. It is easy to dev ise an input vector that will test any s ingle 
comparator b y direct examination of the network (i.e. F igure 1-1). 

A s ingle input vec to r c h e c k s for faulty crit ical comparators . S u c h a vector cou ld simply be a list of 
sor ted numbers . With another input one can test that all comparators perform a swap . Let i = 
i n - ! , i „ - 2 . ' ' ' • '<>• T h e n t h e i n P u t vec to r that c a u s e s all comparators to swap dur ing the first pass is 
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1 Layout (i) 
2 Layout 
3 Layout (iii) 
4 Layout (iv) 

5000 
Size of Network (N) 

probability of a comparator fault (p) a .01 

F i g u re 4 - 4 : Probabil ity of Network Working 
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probability of a comparator fault (p) - .001 

F ig u re 4 - 5 : Probabil ity of Network Working 
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defined as fol lows: 

x ( i ) = in-v i „ _ 2 , i n _ 3 , i w . 4 , • • • 

In other words , every other bit is complemented. Let y be the output vector after one pass though the 
block. If y ( i ) = • • • , i ^ + 1 , i^, • • •, then it is easy to identify the phase k comparator that failed to 
swap . 

W h e n actually construct ing a s ingle block recirculating sort ing network as outl ined above , one need 
not initially permute the input by T or r s ince the initial input is u n o r d e r e d 3 . If this is the case then the 
test input vector just presented must first be permuted by T. 

Given an input that forces every comparator to execute a swap, it is then possible to des ign a self 
modifying circuit . A s ingle input bit indicates that the circuit is in debug mode. While in this mode 
each comparator tests to see that it executes a swap . If a comparator does not swap then the 
comparator can automatically disable itself (i .e. put itself into bypass mode) . 

6. Conclusion 
Al though the balanced sort ing network has the same time and s p a c e requirements as that of the 

bitonic sort ing network, w e have s h o w n that its advantages are more than cosmetic . T h e network can 
be realized as a highly robust shuf f le -exchange layout. It is thus possible to p roduce a fairly large 
sorting network on a s ingle wafer so that most of the wafers fabricated can be used . 

T h e major 'trick' used in our des ign w a s the alternation of roles played by each comparator . It 
wou ld be interesting to find other algorithms that can exploit this trick. As the requirements for 
large-scale parallel process ing g rows , s o does the need to deve lop 'robust* algorithms that can 
funct ion in the p resence of many failures. Another requirement appears to be a simply computed 
funct ion that indicates termination as well as the requirement for progress to o c c u r at each iteration. 

A n immediate appl ication of the results of this paper may be routing networks. O u r sort ing network 
can be cons idered to be a routing network with each comparator sending an input value to the output 
port cor responding to a certain bit in the destination address ( instead of as the result of a 
compar ison) . A l though a s ingle shuf f le -exchange block can route an single input to any single 
output, some permutations of N inputs require more than one pass. Perhaps our method can be used 
to bui ld a robust routing network? 

^ h i s may not be the case if the input is assumed to be 'almost* sorted. 
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