A Spectrum of Plan Justifications

Eugene Fink *
School of Computer Science
Carnegie Mellon University

Pittsbugrh, PA 15213
eugene@cs.cmu.edu

Abstract

This paper formalizes the notion of justified plans,
which captures the intuition behind “good” plans. A
plan is called justified if it does not contain operators
that are not necessary for achieving a goal. We ex-
plore several different types of justification, present
algorithms for removing “useless” operators from a
plan, and show that the task to remove all useless
operators is NP-complete.

1 Introduction

When we search for a plan to achieve certain goals,
we wish to find a plan that does not contain “use-
less” steps. In other words, we wish to optimize the
plan by removing all operators that are not neces-
sary for achieving the goals. For example, suppose
that we prepare tea by following the plan: “put a
tea bag into a cup; boil water in a kettle; pour water
into the cup”. If later we discover that the water
in the kettle is already hot, then the second step of
the plan, “boil water”, is no longer necessary. After
removing the second step, the resulting plan, “put a
tea bag into a cup; pour water into the cup”, con-
tains fewer steps while still achieving the same goal.
The operation of removing useless operators from a
plan is known as justification. The purpose of our
paper is to formalize different ways of performing
justification.

The justification algorithms described in this pa-
per may be used to augment a non-optimal planner
such as STRIPS [Nilsson, 1980]. Such an augmen-
tation is especially useful for planning with macro
operators [Korf, 1985]. Another application of jus-
tification algorithms is in reusing old plans. Sup-

*The first author is supported by Carnegie Mellon Uni-
versity. The second author is supported in part by grants
from the Natural Sciences and Engineering Research Council
of Canada and ITRC.

Qiang Yang *

Department of Computer Science

University of Waterloo

Waterloo, Ont., Canada N2L3G1

qyang@logos.waterloo.edu

pose that we have found a plan for achieving goals
Gy and Gs. Later we may use the same plan to
achieve the goal G; alone. In this case we wish to
find the subset of the initial plan which is “relevant”
to achieving GG, by removing all unnecessary oper-
ators. Planning systems that reuse old plans [Ha-
mmond, 1986], [Kambhampati and Hendler, 1992],
[Hanks and Weld, 1992] can benefit from justifica-
tion algorithms.

Different definitions of justification were presented
in [Tenenberg and Yang, 1990], [Knoblock et al.,
1991], and [Bacchus and Yang, 1991], where this
notion was used for formalizing several important
properties of abstraction hierarchies. A further for-
malization of justification was presented in [Kam-
bhampati, 1992]. However, these papers did not
present an algorithm for removing non-justified op-
erators from a plan.

In this paper we extend and unify the previous
work and describe two algorithms for finding justi-
fied versions of nonlinear plans. First we consider
the notion of backward justified plans, which guar-
antees that each operator in the plan establishes a
literal necessary for achieving the goal. Then we
present well-justified plans. Informally, a plan is
well-justified if no single operator may be removed
from the plan. We compare well-justified and back-
ward justified plans. Finally, we consider the task
to find the “best possible” justification of a given
plan, that is, a subplan of a given plan that can-
not be further optimized by removing any subset of
its operators. The task of finding such a subplan is
NP-complete. To satisfy the practical need for effi-
cient planning, we present a greedy algorithm that
finds a near-perfect justification in polynomial time.
Proofs of the italicized statements may be found in
[Fink, 1992].

2 Backward justification

To formalize the notion of justified plans, we first
generalize the concept of establishment defined in
[Knoblock et al., 1991] to nonlinear plans.

Let a1 and as be two operators of a correct linear
plan, such that o precedes as, and [be a precondi-
tion of as. We say that ay establishes | for as if [is
an effect of a; and no operator between o and as
either asserts or removes [. We say that a; possibly
establishes a literal [for a in a nonlinear plan IT if it
establishes [for as in at least one linearized version
of II.

Intuitively this means that the precondition [of
the operator as is satisfied, and « is the last oper-
ator that achieves it.

Definition 1 Let II be a correct plan. An operator
a of IT is called backward justified if « possibly es-
tablishes some literal | either for the goal of the plan
or for another backward justified operator.

We say that a plan IT is backward justified if all its
operators are backward justified. This definition of
justification was used for linear plans in [Knoblock
et al., 1991]. It is slightly weaker than the justifi-
cation used in the ABTWEAK planner [Tenenberg
and Yang, 1990]. Intuitively, an operator is back-
ward justified if it establishes some literal necessary
for achieving the goal. We call this justification back-
ward because it has been mostly used in formalizing
backward-chaining planners.

However, backward justified operators are not
“truly justified”. For example, if a literal is achieved
twice in a linear plan, then, by definition, the second
operator achieving this literal is backward justified.
But in this case the second operator is useless. For
example, if the same discovery is made by two inde-
pendent researches, the second one usually does not
get a credit. As another example, suppose that you
have a kettle with hot water and an empty cup, and
you wish to have a cup of hot water. The following
plan achieves the goal.

1. Pour water into the cup.

2. Put the cup into a microwave.

The second operator is backward-justified, because
it makes the water hot, while no other operator af-
ter it achieves the same goal of making the water
hot in the final state. However, this operator still
may be skipped, because the water was already hot
before its execution. Thus, the second operator is
not “truly justified”.

The advantage of the backward justification is
that it can be computed with a small running time.

Backward _Justification(IT)

1. let II be some linearized version of II;

2. for a := (end of IT) downto (beginning of II) do
begin

3. Justified := False;
4. for each ! € Eff (o) do
5. if (« establishes [for some «; or for the goal)
6. then /x «isjustified %/ Justified := True;
7. if Justified=False [+ « is not justified */
8. then remove « from the plan IT;

end

Table 1: Finding a backward justified subplan of IT

Observe that if « is the last non-backward-justified
operator in some linearized version of a plan, it
does not establish any literal for any other opera-
tor, and thus may be removed without violating the
correctness of the plan. Also, after its removal all
backward justified operators are still backward jus-
tified, and all non-backward-justified operators are
still non-backward-justified. Thus, we may remove
non-backward-justified operators from a plan, one
by one, until we remove all of them. It may be
shown that the resulting plan is backward justified
and still achieves the goal. The algorithm in Ta-
ble 1 removes non-backward-justified operators from
a plan in O(FE - [l1|?) time, where |II] is the number
of operators in II, and F is the number of effects of
all operators in the plan, £ =} [Eff (o).

The backward justification not only characterizes
backward-chaining planners but also relates to exe-
cution monitoring. For example, STRIPS’ triangle
table [Nilsson, 1980] is computed via a backward
justification algorithm. Furthermore, the use of the
table itself is a kind of backward justification, where
an entire tail of a plan is justified by considering the
current situation as the first operator.

3 Well-justification

Definition 2 An operator is well-justified if and
only if we cannot remove it from the plan without
violating the correctness of the plan.

A plan is well-justified if all its operators are well-
justified. This definition captures the intuition be-
hind “good” plans, in terms of individual operators:
a well-justified plan does not contain any operator
that is not necessary for achieving the goal.

For example, suppose that one has a kettle of cold
water and needs a cup of hot water. The following
plan would lead to the desired result.

1. Boil water by putting the kettle onto a stove.

2. Pour the water into a cup.

3. Put the cup into a microwave.

This plan is not well-justified, because either the first
or third operator may be skipped without violating
the correctness. Thus, the plan has two well-justified
subplans: one of them consists of the first two oper-
ators, and the other consists of the last two.

Recall that if a plan IT is not backward justi-
fied, then its last non-backward-justified operator
may be removed without violating the correctness
of II, which means that II is not well-justified ei-
ther. Thus, any well-justified plan is backward jus-
tified. In other words, well-justification is stronger
than backward justification. It is also stronger than
the justification used in ABTWEAK [Tenenberg and
Yang, 1990].

We found an algorithm [Fink and Yang, 1992] that
computes a well-justified version of a given plan in
O(P-|1|*) time, where |II] is the number of operator
in IT, and P is the number of preconditions of all

operators in the plan, P =3 |Pre(a)|.

4 Perfect justification

While well-justified plans cannot contain unneces-
sary operators, they still may contain unnecessary
groups of operators. This means that while no single
operator may be eliminated from the plan, several
operators may be eliminated together. For example,
consider the following plan of boiling water:

1. Fill a cup with water.

2. Empty the cup.

3. Fill the cup with water again.

4. Put the cup into a microwave.
This plan is well-justified: we cannot skip opera-
tor 2, because then we could not fill the cup again;
and we cannot skip operator 3, because the cup has
to be full when we put it into a microwave. How-
ever, we may skip operators 2 and 8 together. To
formalize this observation, we introduce the notion
of a perfectly justified plan.

Intuitively, a plan is perfectly justified if no subset
of its operators may be removed from the plan. In
other words, this is the “best possible” justification.

Definition 3 A correct plan II is called perfectly
justified if no subset of its operators may be removed
from 11 without violating the correctness of 1I.

Just by definition perfect justification is stronger
than all justifications discussed above. Unfortu-
nately, a perfect justification of a given plan cannot
be found in polynomial time.

Greedy _Justify_Checking(II,«)
remove « from II;
repeat
Illegals := “the set of illegal operators of II7;
remove all operators of the set Illegals from IT
until IT does not contain illegal operators;
if IT still achieves the goal
then return(“II is optimization of initial plan”)
else return(“a is greedily justified”)

LN WN =

Table 3: Checking if « is greedily justified

Theorem 1 The task of finding a perfect justifi-
cation of a given plan is NP-hard, even for linear
plans.

A proof may be found in [Fink, 1992].

5 Greedy justification

While the task of finding a perfect justification is
NP-hard, one can design a greedy algorithm that
finds an “almost” perfect justification. To check the
usefulness of some operator « in a plan II, the al-
gorithm proceeds as follows (see Table 3). First, it
removes an operator « from the plan. After o has
been removed, some operators of II may become il-
legal, which means that now some of their precon-
ditions are not satisfied before their execution. The
algorithm removes all illegal operators and examines
the resulting plan. If the plan still contains illegal
operators, they are also removed. The algorithm
repeats this step until all remaining operators are
legal. If the plan still achieves the goal, then the
initially removed operator o was not useful, and we
say that « is not greedily justified.

As an example, we consider our water-boiling
plan:

1. Fill a cup with water.

2. Empty the cup.

3. Fill the cup with water again.

4. Put the cup into a microwave.
Let us remove operator 2. Now operator 3 is illegal,
because we cannot fill a cup which is already full.
So, we remove operator 3. We are left with the plan

1. Fill a cup with water.

4. Put the cup into a microwave.
which is legal and achieves the goal. Thus, opera-
tor 2 in the initial plan is not greedily justified.

Observe that if an operator a in a plan is not
well-justified, and we use the described algorithm to
check the usefulness of «, then « is removed at the

type of justification

running time to find it

perfect justification

NP-complete

stronger justification

greedy justification O(P - [II]°)

!

well-justification P10

!

backward justification E - 10%)

o(
ABTWEAK justification | O(P - E - |II])
o(

weaker justification

Table 2: Types of justifications and the running time to find them

first step of execution, and the remaining plan is le-
gal and achieves the goal. Thus, if an operator is not
well-justified, it is not greedily justified either, and
therefore greedy justification is stronger than well-
justification. All operators that are not greedily jus-
tified may be removed from a plan in O(P - |II|°)
time.

6 Conclusion

This paper formalizes the intuition behind “good”
nonlinear plans. Table 2 presents different types of
justification and their corresponding running times.
Justification algorithms for linear plans are much
faster. For example, a greedily justified version of
a linear plan may be found in O((P + E) - |I1|?) time
[Fink Yang, 1992].

The table may be viewed as a spectrum of justi-
fied plans. On one end of the spectrum plans are
backward justified. A backward justified subplan of
a given plan is not hard to find, but it may contain
some “useless” operators. The other end of the spec-
trum contains perfectly justified plans. They cannot
have any useless operators, but it is NP-hard to find
a perfectly justified subplan of a given plan.

References

[Bacchus and Yang, 1991] Fahiem Bacchus and Qi-
ang Yang. The downward refinement property. In
Proceedings of the Twelveth International Joint
Conference on Artificial Intelligence, pages 268—
292, 1991.

[Fink, 1992] Eugene Fink. Justified plans and or-
dered hierarchies. Master’s thesis, University
of Waterloo, Department of Computer Science,
Waterloo, Ont., Canada, 1992. Research Report
CS-92-42.

[Fink Yang, 1992] Eugene Fink and Qiang Yang.
Formalizing plan justifications. In Proceeding of

the Ninth Conference of the Society for Compu-
tational Studies of Intelligence, pages 9-14, 1992.

[Hammond, 1986] Kristian J. Hammond. CHEF: a
model of case-based planning. In Proceedings of
the Fourth National Conference on Artificial In-
telligence, pages 261-271, 1986.

[Hanks and Weld, 1992] Steven Hanks and Daniel
S. Weld. Systematic adaptation for case-based
planning. In Proceedings of the First Interna-
tional Conference on Artificial Intelligence Plan-
ning Systems, pages 96105, 1992.

[Kambhampati, 1992] Subbarao Kambhampati.
Characterizing multi-contributor causal struc-
tures for planning. In Proceedings of the First In-
ternational Conference on Artificial Intelligence
Planning Systems, pages 116-125, 1992.

[Kambhampati and Hendler, 1992] Subbarao Kam-
bhampati and James A. Hendler. A validation
structure based on theory of plan modifica-
tion and reuse. Artificial Intelligence, 1992, 2-3,
vol. 55.

[Korf, 1985] Richard E. Korf. Learning to solve
problems by search for macro operators. Pitman
Publishing, MA, 1985.

[Knoblock et al., 1991] Craig Knoblock, Josh Tene-
nberg, and Qiang Yang. Characterizing abstrac-
tion hierarchies for planning. In Proceedings of
the Ninth National Conference of Artificial In-
telligence, pages 692—-697, 1991.

[Knoblock, 1991] Craig A. Knoblock. Automati-
cally Generating Abstractions for Problem Solv-
ing. PhD thesis, School of Computer Science,
Carnegie Mellon University, 1991. Tech. Report
CMU-CS-91-120.

[Minton, 1985] Steven Minton. Selectively General-
izing Plans for Problem-Solving. In Proceedings
of the Ninth International Joint Conference on
Artificial Intelligence, 1985.

[Nilsson, 1980] Nils J. Nilsson. Principles of Artifi-
cial Intelligence. Morgan Kaufmann, 1980.

[Tenenberg and Yang, 1990] Josh Tenenberg and
Qiang Yang. ABTWEAK: abstracting a nonlin-
ear, least commitment planner. In Proceeding of
the Fighth National Conference on Artificial In-
telligence, pages 923-928, 1990.

