
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

C M U - C S - 8 2 - 1 4 7

University Libraries
Carnegie Mellon University
Pittsburgh PA 15213-3890

i wo Papers on Circui t Extract ion

Anoop Gupta
Robert W . H o n

15 December 1982

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, PA 15213

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 3597, monitored by the Air Force Avionics Laboratory under Contract F33615-81 -K-1539.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the US Government.

ACE: A Circuit Extractor 1

Anoop Gupta
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, PA 15213

Abstract
This paper describes the design, implementation and performance of a flat edge-based circuit extractor for

NMOS circuits. The extractor is able to work on large and complex designs, it can handle arbitrary geometry,

and outputs a comprehensive wirelist. Measurements show that the run time of the edge-based algorithm

used is linear in size of the circuit, with low implementation overheads. The extractor is capable of analyzing

a circuit with 20,000 transistors in less than 30 minutes of CPU time on a VAX 11/780. The high performance

of the extractor has changed the role that a circuit extractor played in the design process, as it is now possible

to extract £ chip a number of times during the same session.

1. Introduction
Pne majority of layout design is done using manual methods, and is susceptible to human errors. If the

designer has not verified the logic design (which is often the case in university environments), any errors in

the logic design will also be translated into the layout

Circuit extraction is the first step in eliminating layout errors and verifying circuit design. The input to a

circuit extractor is the layout of a chip. The output consists of a network of electrical devices represented by

the layout, and is called a wirelist. The wirelist can be fed to other CAD tools to verify the correctness of the

circuit. Logic simulators help validate the logical correctness; circuit simulators help check for timing errors,

overloading, and performance characteristics of the circuit. A static checker performs ratio checks, detects

malformed transistors, and checks for signals that are stuck at logical 0 or 1. If a circuit's schematic diagram is

available to the designer, it can be compared to the extracted circuit: if the two are equivalent, the layout

corresponds to the original circuit.

The next section gives an overview of the circuit extractor (ACE) in the context of existing approaches to

hh\s research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 3597, monitored by the
Air Force Avionics Laboratory under Contract F33615-81-K-1539.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the US Government

2

circuit extraction. Section 3 has a detailed description of the algorithm used by ACE. Section 4 analyzes the

expected and worst case time and space complexity of the algorithms used by ACE. Section 5 discusses the

overall performance, and the final section is devoted to conclusions.

2. ACE and existing approaches to circuit extraction
Circuit extractors vary along a number of dimensions. They can differ in:

• their use of the structural information present in the description of a chip,

• the constraintsthey impose on the designer,

• the amount of detail present in their outputs, and

• the algorithms they use to locate devices and find connectivity.

ACE is a flat extractor in that it works on a fully-instantiated description of the chip. It does not make use

of the structure and repetition present in the layout, and consequendy, it must analyze every cell instance,

even if the same cell has been analyzed before. In contrast, a hierarchical extractor analyzes identical cells

only once [7,10,13,15]. Even hierarchical extractors eventually call a flat extractor to analyze geometry

inside the leaf cells, and a fast flat extractor is an advantage.

Some extractors [1] require the designer to indicate the transistors and their connection points in the layout;

most extractors, including ACE, do not. Similarly, some extractors allow only manhattan geometry

(rectangles with their sides parallel to the coordinate axes) in the layout. This makes the extraction algorithm

simpler at the cost of constraining the designer. ACE copes with arbitrary polygons in the layout, but with

somewhat less efficiency than manhattan geometry.

Extractors vary in the amount of information contained in their output. A simple node extractor provides

connectivity information just sufficient for logic simulation; a sophisticated extractor provides additional

information about transistor ratios, and net capacitance and resistance (a net is an electrically conducting path

that does not include a transistor). ACE provides connectivity information along with data indicating the

location, length and width of transistors, the location and area of capacitors, and the location and names for

nets. ACE does not directly compute the capacitance and resistance for nets and devices, as it was undesirable

to embed any fixed notion of a circuit model into the extractor code. It is possible, however, to obtain a list of

geometry that constitutes each net and device. This information is enough for a post-processing program to

compute capacitances and resistances.

Finally, extractors vary on the basis of the algorithms used to find connectivity. The fixed grid raster-scan

3

based algorithm is popular [2]. In this algorithm the chip is examined in a raster-scan order (left to right, top

to bottom) looking through an L-shaped window containing three raster elements. Using only this

information it is possible to follow connectivity and locate transistors. The main advantage is simplicity [11],

but a lot of time is wasted scanning over grid squares where no information is to be gained. It further requires

that all geometry be aligned with the grid. ACE uses an edge-based algorithm. A scan line is moved from the

top to the bottom of the chip, pausing at points corresponding to the top or bottom edges of pieces of

geometry. Conceptually, this divides the chip into a number of horizontal strips where the state within the

strip does not change in the vertical direction. Change in state occurs only at the interface between two strips.

At the interface the extractor steps through the list of boxes touching the scanline, and makes the necessary

updates to state. One of the main advantages of this algorithm over the raster based algorithm is that empty

space and large device structures are extracted easily. Although the worst-case time complexity of this

algorithm is 0(N7\ where N is the number of boxes in the artwork, the observed complexity over a large

number of chips is linear in N.

3. The Algorithm
The input to the ACE program is the artwork of a chip expressed in CIF (Caltech Intermediate Form) [9].

Its output is a wirelist consisting of a list of transistors and their connectivity.

CIF front-end sorted back-end- output
file

front-end geometry back-end-
wirelist '

Figure 3-1: Overall organization of the extractor

It is convenient to view the extractor as consisting of two parts, a front-end and a back-end. The front-endz

consists of routines which parse, instantiate and sort the CIF file. The front-end builds an internal database

so that geometry can be output in order from top to bottom. Before being output, non-manhattan geometry is

split into a number of small aligned boxes that approximate the original object. After the front-end has built

the database, the back-end is initialized and the scanline is set to the top of the chip.

The back-end consists of routines that receive sorted geometry from the front-end and find transistors and

connectivity information. A brief sketch of the algorithm used, by the back-end is shown below.

1. Set scanline to top of chip.

front-end was written by Bob Hon at CMU

4

2. WHILE scanline > bottom of chip DO

a. Fetch geometry from the front-end whose top coincides with the scanline, and sort each
incoming box by x into a newGeometry list corresponding to its layer.

b. FOR each layer DO insert new geometry into active geometry list

c. Compute devices.

d. Compute y value for next scanline.

3. Output devices and nets.

Figure 3-2: Algorithm for the back-end

::.VDD:: I M P L A N T

DIFFUSION

V V V V A A A I I ! V T A A A A : \ A C - . . > _ ; : :

: ; : A A A A A A A A A A A A A A A A A A I V O . ; ^ ^
:: a a a a v \ a - v v v i V t : v i : i ^ ^ \ V s \ \ \
: : A ; V V \ A A A : V X A : V \ A J V T A : V \ « \ \ v<

• : A v v \ v : - : - :
•:aA :\a :v: 'X
• : A A A A I - : - : > :

m
•:a5iii«S5cKa*Ki55:::::::::::::::::::::

POLY

CUT

M E T A L

BURIED
*ssss

' / / / /

ill ^^^^^B

Figure 3-3: An Inverter

Within the back-end, most work is done in a loop where a scanline moves down from the top to the bottom

of the chip. (The solid lines in Figure 3-3 show the positions of the scanline while extracting the inverter.)

The action taken on each iteration of the loop can be divided into four steps:

• All geometry whose top coincides with the scanline is fetched from the front-end. Incoming

5

geometry is sorted into one of a set of newGeometry lists (one list per layer) by x-coordinate of the
left side of the box. Adjacent or overlapping boxes on the same layer are merged together into
one box. If one of the boxes is taller than the other, the taller box is split into two before merging.
Its lower portion is sent to a temporary buffer for recall when the scanline reaches its top.

• For each of the layers, boxes in the newGeometry list are inserted into the active geometry list for
that layer (Geometry that intersects the current scanline is said to be active). The program
maintains a sorted list of active geometry for each of the layers. If a box from the newGeometry
list abuts or overlaps a box in the active geometry list the two are merged together. Otherwise that
box is inserted independently and a new net is created for it. All geometry whose bottom
coincides with the scanline exits the active list at this step.

• To locate devices the extractor simultaneously traverses the active lists corresponding to the four
interacting layers (diffusion, poly, buried and implant). The lists are scanned from left to right,
and overlap between the geometry on the four layers is computed. An overlap between diffusion
and poly accompanied by the absence of buried results in a potential transistor. The presence of
implant determines the type of transistor.

• The position of the next scanline is determined, and the loop iterates. The y-value for the next
scanline is the larger of (i) the y-value of the top-edge of the next box output by the front-end to
the back-end (recall that the front-end outputs geometry sorted from top to bottom), and (ii) the
largest y-value for the bottom-edge of a box in the active list

A wirelist containing a list of all transistors and nets is output on termination of the loop. Associated with

each transistor are identities of its source, drain and gate nets, its type, length, width and location. Associated

with each net is its location and all of its user defined names [12]. User options exist to force the extractor to

output the geometry associated with each net and device. Under normal operation this is suppressed. Figure

3-4 shows the wirelist for the inverter in Figure 3-3. The format used for the wirelist was developed by Ed

Frank, Carl Ebeling, and Robert Sproull at CMU [5]. The format is easy to parse and extend because of its

LISP like syntax.

The length and width of a transistor is determined by the shape of its channel (the active region of the

transistor), and the contour along which its source and drain nets touch the channel. Since both die shape of

channel and the contours can be arbitrarily complex, it is not easy to determine the length and width. ACE

uses a simple algorithm that works well for most transistors encountered in practice. For the purpose of this

algorithm, the source edge length of a transistor is defined to be the the length of the perimeter along which

the source net and the channel touch. The width of the transistor is then computed as the mean of the source

and drain edge lengths. The length of the transistor is computed as the area of the channel divided by the

width. Results of the use of this algorithm can be seen in the wirelist of Figure 3-4. (The user is free to obtain

transistor geometry and compute length and width by a different technique if he wishes.)

(DefPart "inverter.cif"
(DefPart nEnh (Export Source- Gate Drain))

6

(DefPart nDep (Export Source Gate Drain))

(Part nEnh (InstName DO) (Location -800 -400)
(T Gate N9) (T Source N5) (T Drain Nil)
(Channel (Length 400) (Width 2800)
(CIF "
L NX; B L400 W1200 C-600 -1400; L NX; B L1600 W400 CO -600; ")))

(Part nDep (InstName Dl)(Location -400 2800)
(T Gate N5) (T Source N2) (T Drain N5)
(Channel (Length 1400) (Width 400)
(CIF " L NX; B L400 W1400 C-200 2100 ; ")))

(Net N2 VDD (Location -2600 3800)
(CIF "

L NM; B L4800 W800 C-200 3400; L ND; B L400 W200 C-200 2900;
L ND; B L800 W800 C-200 3400; L NC; B L400 W400 C-200 3400; "))

(Net N5 OUT (Location -800 2800)
(CIF "

L NP
L ND
L ND

B L1200 W2000 C-200 1800; L ND; B L400 W1600 C-1000 -1200;
B L2000 W400 C-200 -200; L ND; B L3400 W600 C500 300;
B L2000 W200 C-200 700; L ND; B L400 W600 C-200 1100; "))

(Net N9 INP (Location -800 -400)
(CIF "

L NP; B L800 W8.00 C-600 -2800; L NP; B L400 W1600 C-600 -1600;
L NP; B L2600 W400 C500 -600; L NM; B L4800 W800 C-200 -2800;
L NC; B L400 W400 C-600 -2800; "))

(Net Nil GND (Location -400 -800)
(CIF "

L ND; B L1200 W1200 C200 -1400; L NM; B L4800 W800 C-200 -1600;
L NC; B L400 W400 C400 -1600; "))

(Local N2 N5 N9 Nil))

Figure 3-4: Wirelist for the inverter

4. Analysis of the algorithm
ACE is implemented in the C language [8], and runs on a VAX-11/780 under UNIX. A number of

implementation decisions were influenced by the fact that the circuit extractor was to run on a VAX with a
large virtual memory. Space was not considered to be at a premium, and it was frequently traded for savings

in time. Care was taken, however, to preserve locality of addressing to prevent thrashing.

Time Complexity

The worst-case time complexity of the edge-based algorithm used by ACE is 0(N2), where N is the

number of boxes in the artwork. The worst case occurs when N horizontal poly lines intersect N vertical

7

diffusion lines, forming a mesh with N2 transistors. Since each of the N 2 transistors has to be found by the

extractor, the complexity is at least N V The best that ACE can do is linear in N. This is because it must look

at every box in the artwork at least once.

The time complexity of the front-end is determined by the sorting step, all other steps being linear in N.

The front-end uses a tree-sort algorithm, which if everything is expanded to primitive geometry before

sorting, takes 0(N log N) expected time. However, the front-end does not expand everything to boxes

before sorting, but instead makes use of the hierarchy present in the CIF specification of the chip, and

recursively expands only those cells that intersect the current scanline. For example, if there exists a CIF

symbol which lies completely below the scanline, the front-end does not have to expand that cell to determine

that all geometry inside it is below the scanline. In this way the complete geometry of the chip is never

instantiated (so never sorted) at the same time. The reduction in the number of items in the sorting tree

reduces the complexity of the sorting step, thus reducing the complexity of the front-end. This dependence of

front-end complexity on hierarchy present in the CIF description makes it very difficult to characterize i t

The observed complexity of the front-end is linear in N (see Table 5-1), over a wide range of designs.

To perform an expected-time analysis for the back-end, it is necessary to have a model for the size and

distribution of boxes in the artwork. The model used here is the simplest of a number of models proposed by

Bentley, Haken, and Hon [3]. It assumes that in an TV-rectangle design, the N rectangles are squares with edge

length 7.6X, uniformly distributed over a region [0,87V 1 / 2 X] 2 . The constant X is the size of the smallest feature

resolvable by the implementation process. We further assume that the rectangles are aligned to X boundaries,

and that the total number of transistors in the circuit is proportional to N. Under these assumptions the

expected number of boxes that intersect the scanline is 0(Nl/2\ and the expected number of stops that the

scanline makes in going from top-to-bottom of the chip is 0(Nl/2).

The complexity of the back-end is analyzed in context of the algorithm shown in Figure 3-2. Step 1 of the

algorithm is trivial, and takes constant time. The time taken on each iteration of the loop in Step 2 is the sum

of the time taken by Steps 2.a to 2.d. Step 2.a takes O(N) time, because a simple insertion sort is used to

place the incoming geometry into newGeometry lists. Insertion sort requires quadratic time, and since there

are 0(Nl/1) boxes to be inserted, the time taken is O(N). The time spent in steps 2.b and 2.c is 0(Nl/2\ as

this involves traversing down the lists of geometry that are 0(Nl/1) long. The constant associated with the

big-O of steps 2.b and 2.c is much larger than the constant associated with step 2.a, because the complexity of

steps 2.b and 2.c is much more. Step 2.d is trivial, and takes constant time. Thus time taken by each iteration

of the loop is ^N+^N1'2, where <Y«C 2 . Since the loop in step 2 is executed 0(N1/2) times (this is the

expected number of stops made by the scanline), the total time taken by step 2 is cxN3/1 + c2N. Step 3 takes

8

linear time as the total number of devices and nets in the circuit is O(N). The time complexity of the

back-end is then given by CjN 3 / 2 + c3N, where c3 is much greater than q.

The observed performance of ACE is linear in N over a wide range of chips, as shown by Table 5-1. This is

not too surprising in light of the above discussion. The term containing N3/1 can be made linear by using

bin-sort instead of insertion-sort [3], but cx is so small that it has not been necessary to do so.

Space Complexity

ACE does not output any transistors or nets until the scanline has reached the bottom of the chip. This is

because two nets that were earlier distinct can be merged after they have been output, causing the output to

be in error. Thus ACE requires space at least linear in the number of transistors and nets in the circuit. Since

2N boxes can result in A"2 transistors (refer to the worst case time complexity analysis), the worst case space

complexity is 0(N2).

The expected space complexity of ACE can be calculated using the same model as was used for the time

complexity. The expected space complexity for the front-end lies between 0(log AO and O(N) depending

on the amount of hierarchy present in the layout description. The storage requirements for the geometry lists

associated with the scanline is 0(Nl/1), which is the expected number of boxes intersecting the scanline.

Since the expected number of transistors and nets is 0(N\ the space required for these is 0(N). Thus the

overall expected space complexity of ACE is O(N). This result corresponds to actual observations.

5, Performance
Table 5-1 shows the measured performance of ACE for a number of chips designed within the ARPA

community. As the last column shows, the time complexity is linear with the number of boxes over a wide

range of chips. This is consistent with the analysis carried out in the previous section.

Name Devices
of Boxes
(in lOOO's)

User +
Sys Time
(min:sec)

Devices/
Time

(devs/sec)

of Boxes/
Time

(boxes/sec)

Cherry
Dchip
Schip2
Testram
PSC

4884
9473

20480
25521
32031
42084

881
50.7

109.0
196.9
251.5
418.3
533.0

7.4 1:05
10:12
18:12
26:36
41:14
73:54
92:12

13.69
8.00
8.69

12.98
10.32
7.63
7.24

113.84
82.84
99.81

123.37
101.68
94.33
96.43

Scheme81
Riscb

Table 5-1: Performance

9

The performance of ACE is compared to some other extractors in Table 5-2. Partlist [2,14] is a run-

encoded, raster-scan based extractor that was used prior to ACE at CMU. Cifplot [4] is a flat extractor

provided by Berkeley. All timing measurements were made on a VAX-11/780.

ACE Partlist Cifplot
chip devices (minrsec) (min:sec) (minrsec)

cherry 881 1:05 2:50 4:45
dchip 4884 10:12 18:34 46:21
schip2 9473 18:12 35:06 95:15
testram 20480 26:36 46:07
riscb 42084 96:43

Table 5-2: Comparison of Performance

The main reason for the better performance of ACE over other extractors is its edge-based approach. An

edge-based extractor skips empty space and extracts large boxes at little cost. It does work only at the edges of

a box as compared to a raster-based extractor which must visit each and every grid square spanned by the box.

Since the average size of a box used in the layout is much larger than size of the grid square the savings are

big. The coarse distribution of time over the extraction algorithm was found to be:

• 40% for parsing, interpreting and sorting the CIF file.

• 15% for entering new geometry into lists and updating the data structures.

• 20% for computing devices, nets, etc. •

• 10% for storage allocation, input/output, and initialization.

• 15% Miscellaneous.

6. Conclusions
This paper presents the algorithms and performance of an edge-based extractor developed at CMU. The

expected time complexity of the algorithms is observed to be linear in the number of boxes in the layout, and

the measured performance is significantly better than the performance of other extractors.

An important measure of success for a design tool is its use by the design community. ACE is used

extensively by the VLSI design group at CMU. As a result of its higher performance, it is not unusual to see a

user with a 5,000 transistor chip go through a few iterations of extracting, simulating, and fixing bugs during a

single two-hour session. This constitutes a major change from the way extractors have been used in the past

The edge-based algorithms are well suited for hierarchical and incremental extractors. A modified version

10

of ACE is used as a part of an experimental hierarchical extractor being developed at CMU [6]. The results

obtained so far are very promising.

7. Acknowledgments
Robert Sproull suggested the original idea and algorithm to me. Edward Frank and Robert Hon helped

me with useful suggestions and comments throughout the development of the program. I wish to thank Jon

Bentley, HT Kung, and Hank Walker for careful reading of earlier versions of the manuscript. Finally, thanks

go to all the users of the program, who helped discover the bugs in the program.

References

[1] Bryan Ackland and Neil Weste.
Functional Verification in an Interactive Symbolic IC Design Environment.
In 2nd. Caltech Conference on VLSI. 1981.

[2] Clark Baker.
Artwork Analysis Tools for VLSI Circuits.
Master's thesis, M.I.T., 1980.

[3] Jon Louis Bentley, Dorothea Haken, and Robert Hon.
Statistics on VLSI Designs.
Technical Report, Carnegie-Mellon University, April, 1980.

[4] Daniel Fitzpatrick.
Circuit Analysis from CIF Layouts
Computer Science Division, University of California at Berkeley, 1981.

[5] Edward Frank, Carl Ebeling, and Robert Sproull.
Hierarchical Wirelist Format.
VLSI Document V085, Carnegie-Mellon University, 1981.

[6] Anoop Gupta and Robert Hon.
Two Papers on Circuit Extraction.
Technical Report, Carnegie-Mellon University, 1982.

[7] Robert Hon.
The Hierarchical Analysis of VLSI Designs.
VLSI Document V073, Carnegie-Mellon University, 1981.

[8] Brian W. Kernighan and Dennis M. Ritchie.
The C Programming Language.
Prentice-Hall, 1978.

[9] Carver Mead and Lynn Conway.
Introduction To VLSI Systems.
Addison-Wesley, 1980.

11

Martin E.Newell and Daniel T. Fitzpatrick.
Exploiting Structure in Integrated Circuit Design Analysis.
In Conference on Advanced Research in VLSI. M.I.T., 1982.

Larry Seiler.
A Hardware Assisted Design Rule Check Architecture.
In 19 th Design Automation Conference, 1982.

Robert Sproull.
Names in CIF.
VLSI Document V062, Carnegie-Mellon University, 1980.

Mike Tucker and Lou Scheffer.
A Constrained Design Methodology for VLSI.
VLSI Design, May/June, 1982.

James Wendorf.
NMOS Circuit Partlist Extractor.
VLSI Document V047, Carnegie-Mellon University, 1980.

Telle Whitney;
A Hierarchical Design-Rule Checking Algorithm.
Lambda Magazine, First Quarter, 1981.

HEXT: A Hierarchical Circuit Extractor 1

Anoop Gupta
Robert W. I Ion 2

Department of Computer Science
Carncgic-Mcllon University

Pittsburgh, PA 15213

Abstract
This paper describes the algorithms, implementation, and performance of a hierarchical circuit extractor

for NMOS designs. The input to the circuit extractor is a description of the layout of the chip, and its output

is a hierarchical wirelist describing the circuit. The extractor is divided into two parts, a front-end and a

back-end. The front-end analyzes the CIF description of a layout and partitions it into a set of non-

overlapping rectangular regions called windows: redundant windows arc recognized and arc extracted only

once. The back-end analyzes each unique window found by die front-end. The back-end determines the

electrical circuit represented by the window, and computes an interface that is later used to combine the

window with others that arc adjacent. The paper also presents a simple analysis of the expected performance

of die algorithm, and the results of running the extractor on some real chip designs.

1 . Introduction
Computer aided design (CAD) tools are used to design and debug VLSI circuits. A circuit extractor is one

such tool. Circuit extractors work on a geometric description (i.e., a specification of the features that appear

on the chip surface) of the design and find the equivalent electrical circuit. The circuit is represented as a list

of transistors and their interconnections; this is called a wirelist. Once the wirelist for a chip is available, a

number of other tools can be used to find properties of the circuit: logic simulators, circuit simulators, wirelist

comparators, and static checkers all help to validate and debug the designed chip. A circuit extractor is run

over the layout frequently during the design process, so good performance is desirable. Most extractors

operate on a list of all the geometric shapes on a chip. These fully-instantiated descriptions arc lengthy and

difficult to work with for several reasons.

""This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 3597, monitored by the
Air Force Avionics Laboratory under Contract F33615-81-K-1539.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the US Government.

Now at Atari Research and Department of Computer Science, Columbia University.
2

The number of devices on a VLSI chip is increasing at an exponential rate [5]. Fully-instantiated

descriptions arc therefore increasing in length at an exponential rate. Since the basic element on which circuit

extractors operate is the rectangle, and most extractors have performance that is 0(N)[2] or 0(N log N)y

where N is the number of rectangles in the layout, run-times arc becoming very long.

People who design complex artifacts have long known that an effective way to speed the design process is

to build objects hierarchically. In a hierarchical design, objects arc formed by composing a number of less

complex objects. Bach object in turn is built of subpicces until the most primitive blocks arc reached (in

VLSI, these primitive building blocks arc the rectangles). Hierarchical designs arc usually structured so that

objects that are related arc grouped together. This helps the designer by limiting the amount of detail that

must be considered at a given time. Low-level design is time-consuming, so designers arc motivated to reuse

building blocks where possible. This regularity, the repeated use of a symbol or a group of symbols, serves to

further reduce design time. Because of the recent emergence of hierarchical integrated circuit mask

description formats, the structure and regularity in hierarchical designs arc available to tools that work on

mask descriptions.

Structure and repetition arc of use in reducing the run-time for artwork analysis tools such as circuit

extractors. A key observation is that much of the area of current VLSI chips is covered by similar structures

(for example, repeated memory cells or bit-sliced data paths). Thus determining which parts arc identical can

eliminate redundant work. Recognizing identical groups of rectangles in a fully-instantiated description is

difficult; structure in a hierarchical description makes this task possible. Instead of trying to determine if a

given group of 100 rectangles matches some other group, a hierarchical extractor need only decide if the

groups are instances of the same symbol. The more regular a design is, the greater the reduction in the

repeated analysis. A symbol call that is repeated 1000 times costs little more than the same call repeated 100

times: only one analysis is done in cither case. The same situation is much more expensive for an extractor

that works on a fully-instantiated description, since at least 10 times the work must be done.

While exploiting structure and repetition can reduce the running-time of CAD tools, a problem remains.

In integrated circuits, cells can physically overlap on the chip surface, thus changing their electrical

characteristics. This implies that a cell cannot be circuit extracted without considering what other structures

interfere with it. A number of papers that address this problem [7, 8, 9] have appeared in literature. HEXT,

the circuit extractor described here, solves the problem by first transforming an IC design into one that has no

overlapping cells, and then analyzing the transformed design.

3

2. An Overview of the Hierarchical Circuit Extractor
The input to the HEXT program consists of a description of the layout of the chip in CIF (Caltcch

Intermediate Form) [6]. CIF allows the user to place geometry (rectangles, polygons, and wires) on the

various mask layers of a VLSI design. It further allows the user to define symbols that may consist of

geometry and calls to other symbols. There is no array command, so arrays must be constructed explicitly, for

example by calling a single cell repeatedly, or by defining a row-of-cclls symbol and calling it repeatedly.

Because CIF is a hierarchical format, the staicturc in the chip design is available to layout analysis tools.

HEXT is divided into two parts, a front-end and a back-end. The HEXT program does not assume that the

input CIF description of the layout contains no overlapping instances. The program contains code that takes

the CIF description and builds an internal description containing no overlapping instances. The rest of the

program operates on die transformed representation.

In its simplified form, the main algorithm used by the HEXT program may be viewed as a three-step

process.

1. Find all distinct non-overlapping windows. Determine how these windows should be composed
to cover the entire chip.

2. For each of the windows compute:

a. The electrical network represented by the window.

b. An interface that can be later used to compose adjacent windows.

3. Combine the windows together (according to the composition order specified in first step) to
obtain die circuit corresponding to the complete layout.

The front-end is responsible for eliminating overlapping symbol instances. The result is a set of non-

overlapping windows (rectangular regions containing some number of geometric shapes), and a specification

of how to place the windows so that the entire chip is covered. The set of windows is similar to a set of jigsaw

puzzle pieces and the composition specification tells how to place die pieces to complete the puzzle. The

difference is that identical pieces are highly valued in a hierarchical extractor, since a new piece represents

work that must be done.

The back-end is responsible for analyzing the geometry contained in each of the distinct windows found by

the front-end. For each window the back-end computes the electrical circuit represented by the geometry

inside it and an interface. The interface contains information about geometry diat touches die boundary of

4

the window. Since overlap has been removed, communication with the external environment is only possible

through die interface. The back-end also combines adjacent windows to obtain a circuit for the entire chip.

IMPLANT DIFF
Ms
POLY CUT METAL

/ / / / / / .

S/S.-'SS.

BURIED

windowl
\

wi ndow2

wi ndow3

Figure 2-1: Four inverters

The output of the HEXT program is a hierarchical wirelist. This is a hierarchical representation of the

electrical circuit denoted by the layout The format used for the wirelist was developed by Ed Frank, Carl

Ebcling, and Bob Sproull at CMU [1]. In this format circuits are represented in terms of parts (devices) and

nets (signals). Parts can either be primitive (such as enhancement or depletion transistors) or non-primitive

(defined in terms of other more simple parts). The format permits nested definitions to describe hierarchical

circuits and provides scope rules to resolve naming conflicts. In the wirelist a DefPart statement is used to

encapsulate a circuit fragment. This circuit can then be instantiated any number of times using the Part

statement. The export list of a circuit is the list of all signal names internal to the circuit that may be

referenced from outside, while the local list refers to the set of internal signals that may not be referenced

from outside. The Net statement is used by the wirelist to establish equivalence of signal names.

Figure 2-2 shows a hierarchical wirelist for the four inverters shown in Figure 2-1. In the wirelist fragment

5

associated with Window 1, NO refers to the VI) D signal, N3 refers to the out signal, N8 refers to the in signal,

and N10 refers to the ON I) signal. All four signals arc present in the export list as they arc located on the

boundary of the window and may be referenced from outside. The window consists of two primitive devices,

one enhancement and one depletion mode transistor, that constitute the inverter. The wirelist fragments for

the remaining windows may be interpreted in a similar manner.

(DefPart nDepl (Exports G S D))
(DefPart nEnh (Exports G S D))

(DefPart Windowl
(Exports N3 NO N10 N8)
(Part nDepl (Name Dl) (Loc 1000 4600) (T G N3) (T S NO) (T D N3))
(Part nEnh (Name D2) (Loc 600 1600) (T G N8) (T S N3) (T D N10))
(Local))

(DefPart Window2
(Exports N13 N23 N16 NO N10 N8)

(Part Windowl (Name PI) (NetOffset 13) (LocOffset 3600 0))
(Net P1/N3 N16) (Net P1/N0 N13) (Net P1/N10 N23)
(Net P1/N8 N21)

(Part Windowl (Name P2) (NetOffset 0) (LocOffset 0 0))
(Net P2/N3 N3) (Net P2/N0 NO) (Net P2/N10 N10)
(Net P2/N8 N8)

(Net NO N13) (Net N10 N23) (Net N3 N21)
(Local N21 N3))

(DefPart Window3
(Exports N26 N13 N36 N23 N39 N49 N42 NO N10 N8)

(Part Window2 (Name PI) (NetOffset 26) (LocOffset 7200 0))
(Net P1/N13 N39) (Net P1/N23 N49) (Net P1/N16 N42)
(Net P1/N0 N26) (Net P1/N10 N36) (Net P1/N8 N34)

(Part Window2 (Name P2) (NetOffset 0) (LocOffset 0 0))
(Net P2/N13 N13) (Net P2/N23 N23) (Net P2/N16 N16)
(Net P2/N0 NO) (Net P2/N10 N10) (Net P2/N8 N8)

(Net N13 N26) (Net N23 N36) (Net N16 N34)
(Local N34 N16))

(Part Window3 (Name Top))

Figure 2-2: Hierarchical wirelist for the four inverters

6

3. The Algorithm
The previous section gave a brief overview of the functions that arc performed by the hierarchical

extractor. This section describes in detail the algorithms used to perform diosc functions and discusses some

design and implementation issues.

The front-end

The front-end performs dircc basic operations:

• Recognize redundant windows.

• Divide a window into a set of non-overlapping sub-windows.

• Determine how to connect each sub-window to its neighbors.

The window given initially to the front-end contains the entire design, which may contain symbol instances

and primitive geometry. The front-end divides die window into a set of sub-windows (the second step) and

then applies die algorithm to each sub-window recursively. If a window is reached that cannot be subdivided,

because it contains only geometry, it is sent to the back-end for circuit extraction. Windows that contain only

geometry are always rectangular in shape. (The front-end is independent of die back-end task, i.e., the same

front-end can be used for plotting, design-rule checking, or other tasks.) The front-end remembers each

unique window in a table along with a circuit fragment for the window. Bach time a window is considered for

sub-division, the front-end checks a table to sec if the window was previously analyzed. If so, die associated

circuit fragment is returned, otherwise a new entry is made in die table and the window is subdivided. The

last step results in a circuit fragment for the window. This fragment is associated with the window's table

entry and returned.

A window is divided into sub-windows by the following algoridim:

1. Docs this window contain only geometry? If so, it need not be subdivided, and is sent to the
back-end for analysis.

2. Expand all symbol instances one level, that is, replace each symbol instance by its constituent
parts—other symbol instances and geometry. See Figure 3-la, 3-lb.

3. Whenever the bounding boxes of two or more symbols overlap, create a new window using the
boundaries of the bounding boxes to define die edges 3. We are left with a number of sub-
windows in the original window. See Figure 3-lc.

disjoint transformation was first suggested by Newell and Fitzpatrick [7]. Sec [3] for a discussion of other transformations.

7

4. Slice Line original window into a set of sub-windows, using the sub-windows found in step 3 for
guidance. Sec Figure 3-Id.

When the subdivision phase is completed, the front-end decides in what order to visit each sub-window.

The order determines how a window is covered; many strategics exist. The particular strategy implemented is

quite simple: die sub-windows are sorted by the lower-left corner, bottom to top, left to right, and then visited

in sorted order.

Given Window

Bounding Box of
Instance B

Bounding Bo>\
Instance A

of

(a)

Contents of A

Contents of B

(b)

Sub-Windows

(C)

Given Window

Final Set of Sub-Windows

(d)

Figure 3-1: Sub-division of Windows

This composition strategy has a number of important implications for the back-end. The Compose routine

called by the front-end takes two windows as arguments and returns a third that is die result of merging the

8

two along their common boundaries. Notice that the result of combining two rectangular windows may not

be rectangular (Tor example, a large window and a small one may produce a "L"-shapcd window). In our

discussion, rectangular windows arc called simple windows while non-rectangular windows arc called

complex.

Returning to the composition strategy used here, two observations can be made:

1. Compose will only have to combine two simple windows or one complex and one simple window,
never two complex ones.

2. Complex windows never have holes in them.

Both of these facts are exploited by the back-end to make the Compose routine simpler.

When the front-end completes its partitioning of the chip, a number of v/indows have been extracted by

the back-end and dicn composed into ever larger windows until the chip has been covered (i.e., completely

extracted).

The back-end

The back-end is responsible for two major functions. First, it must compute the electrical circuit and

interface for each of the primitive (geometry only) windows. Second, it must combine adjacent windows to

obtain a circuit for the chip. Notice that primitive windows arc always simple (rectangular) windows, but the

converse is not true since a simple window may result from composing a complex and a simple window.

To analyze the geometry in the primitive windows the hierarchical extractor uses a modified version of the

flat extractor ACE [2]. (A flat extractor disregards hierarchy and regularity, and works on a fully-instantiated

description of the layout.) ACE is a fast edge-based circuit extractor written in the C language and runs on a

VAX-11/780 at CMU. Modifications to ACE were necessary because:

• ACE is optimized to handle large designs (hundreds of thousands of rectangles), while the
primitive windows encountered in the course of hierarchical extraction are very small (a few
hundred to a few thousand rectangles). Overhead that is insignificant for the large chips is
substantial for the small primitive windows. For example, ACE uses a large static table for storing
information about net equivalences. The initialization overhead for this is comparatively small for
large designs, but is a large fraction of the total time for small windows. Selective initialization is
used in the modified version of ACE to reduce this overhead. The complete data structure is
initialized once when the first window is analyzed. For all subsequent windows only die portion
of the data structure used during the analysis of the previous window is initialized.

9

• ACE docs not compute an interface for the layouts it analyzes (this is not necessary). The
modified version of ACE has extra code to output an interface for each window that it analyzes.

• Storage allocation and reclamation arc more frequent, necessitating changes to increase their
efficiency.

The hierarchical extractor makes use of the interface computed for the primitive and non-primitive

windows when combining diem into larger windows. The data structures used for the interface are critical

because it is observed that for most chips, a large fraction of the total time is spent in merging interfaces (see

Table 5-2). The structure of the interface was partly based on the following observations:

• Windows communicate with the external environment via geometry on the conducting layers
(metal, poly and diffusion) that touches the boundary of the window. As die non-conducting
layers (implant, cut, buried and overglass) do not carry any electrical signals, geometry on these
layers cannot transfer any information to the external environment.

• The boundary of a window may cross the active region of transistors, leading to the formation of
partial transistors inside the window. The final form of these transistors is determined by the
contents of the windows adjacent to the partial transistor.

• The boundaries of windows arc always aligned to the coordinate axes, although it is not necessary
diat the windows be rectangular.

The interface consists of a list of boundary segments for each of die four faces (left, right, bottom, and top)

of a window. Simple windows have only one boundary segment for each face, while complex windows may

have one or more boundary segments for each face. For example, the complex window shown in Figure

3-2 has one boundary segment each for its left and bottom faces, but has two segments each for the top and

right faces. Associated with each boundary segment is information about its endpoints, and a sorted list of

rectangle edges (one list for each of the conducting layers) touching the boundary segment. These lists are

called the interface-segment lists. Associated with each element in the interface-segment list is data about the

extent of contact between the rectangle edge and the boundary segment, and die identity of the signal carried

by the rectangle.

The interface for a window also contains a list of partial transistors, i.e., transistors whose channels touch

the boundary. Each pardal transistor keeps pointers to the elements in the interface-segment list that belong

to it, and conversely, elements in the interface-segment list have a pointer to the pardal transistor they are a

part of. When abutting windows are merged and the interface data structure is updated, all partial transistors

that do not have corresponding elements in the interface-segment list are output as completed transistors.

10

t1

b1

Figure 3-2:

Adjacent windows are composed by the following steps:

1. Find all pairs of boundary segments that touch from die two windows diat arc to be merged.

2. For each pair of touching boundary segments, step through the elements of the interface-segment
lists (for corresponding layers) and establish signal equivalences.

3. Compute the interface for the new window.

In the compose operation the circuit and interface information for the component windows must not be

destroyed, because they maybe referenced again in another compose operation. The resulting new window

docs not copy the contents of its component windows, but simply stores pointers to diem. For the interface,

however, all relevant contents are copied over. This is an expensive operation and its cost is proportional to

the number of rectangles touching the boundary of the new window. Storing all information about the

interface with the window greatly simplifies the Compose routine.

4. Algorithm Analysis
The performance of a hierarchical extractor is a strong function of the regularity and hierarchy present in

the layout description. The performance can vary anywhere from worse than to exponentially better 4 than

that of a flat extractor. It is easy to give an example for the case where the hierarchical extractor performs

worse than the flat extractor. A layout containing no hierarchy and no repetition takes longer on a

hierarchical extractor, as it gains nothing from hierarchy or repetition but wastes time trying to find regularity

anyway.

Although numerical measures of hierarchy and regularity have started emerging [3, 7], it is very difficult to

parametrize the performance of the hierarchical extractor. One can predict general trends, but anything more

than that is difficult. It is possible, however, to predict the performance in a few extreme (boundary) cases,

This is the theoretical speedup that can be attained. The algorithms used in IIEXT do not give exponential speedup.

11

which also lend insight into the algorithm. In the following paragraphs we examine the performance of the

extractor on a square array of identical cells. This is the best case for the hierarchical extractor, as maximal

hierarchy and regularity arc present.

Consider a square array containing N identical cells, where N is an even power of 2 (the array is constructed

as a complete binary tree with the leaves forming the /V cells). Bach side of the array has NUl cells touching

it. To extract diis square array HHXT first extracts a single cell using the flat extractor. It dien combines the

extracted circuit with another copy to obtain the circuit corresponding to two cells. The operation is repeated

on the new circuit to obtain the circuit for four cells, and so on. The cost of determining the circuit for the

entire array is the cost of extracting a single cell using the flat extractor plus the cost of log/V compose

operations. Note that the windows being composed arc not of fixed size, but double at each step.

Before going further with the analysis of the array, it is necessary to determine the costs associated with the

steps listed above. The cost associated with extracting a single cell is a constant, say k. There arc two costs

associated faith combining windows, when the circuit and interface for the component windows are already

known:

1. The cost of computing the interface for the new window. In the HFXT program this is
proportional to die number of rectangles touching the boundary of the new window. For the
array this is proportional to the number of cells touching the perimeter of the new window. Let
this cost be cxn, where n is the number of cells touching the perimeter.

2. The cost of establishing signal equivalences at the common boundary. This cost is also
proportional to the number of rectangles on the common boundary. Let this cost for the array be
c2m, where m is number of cells on the common boundary.

The recurrence equation for the cost of extracting the array is obtained by looking at the process of

extraction in a top-down manner, instead of the bottom-up manner actually followed by the extractor. Under

the cost model described above the recurrence equations are:

T\N) = T(N/4) + lcxNl/1 + (3/2)c 2W 1 / 2 ,

7U)=*.

The closed form solution of the above recurrence is T(N) = (14cl + 3c2) Nl/2+ k, indicating that we should

expect 0{Nl/1) behavior from the extractor. Table 4-1 below shows the actual run-time of the hierarchical

extractor on square arrays of increasing dimensions. The basic cell here contained a single transistor formed

by the overlap of diffusion and polysilicon. The table also lists the performance of die flat extractor on the

same array, which is equivalent to the case when hierarchy and regularity are ignored.

12

N, total
tt of cells

HEXT
(seconds)

HEXT - k
(seconds)

flat extractor
(seconds)

1024 (IK)
4096 (4K)
16384 (16K)
65536 (64K)

262144 (256K)

1 6.0 (k, the cost of extracting one cell)
7.6 1.6 25.5
9.2 3.2 103.6
12.8 6.8 410.1
18.7 12.7 1844.1
33.8 27.8

Tabic 4-1: Performance of HEXT in the ideal case

In the above tabic the third column is of main interest. In this column we have subtracted the cost of

initialization and the cost of extracting a single cell (this corresponds to k in the above analysis) from the total

cost of extracting the array. The table shows that for every four-fold increase in the number of cells, the

extraction time in die third column increases only by a factor of two, which is exactly as predicted by the

analysis. The flat extractor exhibits linear behavior in the number of cells, which is asymptotically the best it

can do, as it must look at each and every cell.

It is often necessary to flatten the hierarchical wirelist produced by the HEXT program. This is because

most CAD tools, especially simulators, require a flat wirelist as their input. The hierarchical wirelist can be

flattened by recursively instantiating all calls to subparts of the top level cell. In this case the performance of

the hierarchical extractor is linear in the number of devices in the circuit.

5. Performance
The hierarchical extractor, HEXT, is written in the C language [4] and runs on a VAX-11/780 under UNIX.

The code for the front-end was written by Bob Hon and the back-end was written by Anoop Gupta.

Table 5-1 below, shows the performance of the HEXT program. While it is easy to characterize the

performance of the flat extractor as linear in the number of devices, it is very difficult to characterize the

performance of die HEXT program. The performance is best for the tcstram chip, which is a regular memory

array. This result is expected from the analysis in the previous section. The performance for schip2 and psc

chips, however, is much worse. The extraction time for these designs can be divided into two parts. First, the

time taken to extract regular structures such as memory and register arrays. For HEXT this is only a small

fraction of the total time. Second, the time taken to extract irregular structures like data paths and control.

The front-end of HEXT divides these structures into a large number of small distinct windows. The time

taken to extract these windows using the flat extractor is small, but it takes an extremely long time to compose

them together. This is the main cause for the poor performance of HEXT on these designs.

13

HEXT HEXT HEXT ACE
f ront-end back-end Total flat

chip devices (mi n:sec) (min:sec) (min:sec) (min:sec)

cherry 881 0:49 1:12 2:01 1:05
dch i p 4884 3:07 3:57 7:04 10:12
sch i p2 9473 8:42 19:06 27 :48 18:12
testram 20480 0:24 1:12 1:36 26:36
psc 25521 18:57 30:14 49:11 41:14
ri scb 42084 8:57 18:19 27:16 92:12

Table 5-1: Performance of HEXT

Tradeoffs exist between the amount of work done by the front-end and that done by the back-end. The

front-end uses a number of heuristics to partition a chip. The complexity of these heuristics can be varied to

produce inferior or superior partitionings. If the front-end spends little time and produces an inferior

partitioning of the chip, the back-end has to spend a lot of time in analyzing and composing the circuit for the

chip. If instead the front-end spends a large amount of time and produces a good partitioning, the back-end

will only take a small amount of time to constmct the circuit. Beyond a certain limit, however, the extra time

spent in the front-end docs not lead to a corresponding or larger decrease in the time spent by the back-end.

It is worthwhile (and still an open issue) to determine die point of match between die front-end complexity

and the back-end.

The back-end consists of two relatively independent parts, (i) the flat extractor and (ii) the routines which

compose windows. It is important to have a knowledge of the distribution of time between the two parts to be

able to optimize them. Table 5-2 presents data for the percentage of total back-end time spent in composing

windows. The table shows that on an average 72% of total time is spent in composing windows. The time

spent in composing is large both for regular and irregular designs. This indicates that it is more important to

optimize die algorithms for the compose routine than those for the flat extractor.

Calls Calls to HEXT time for % of time
to flat compose back-end compose spent in

chip devices extractor routi ne (min:sec) (min:sec) composing

cherry 881 205 463 1:12 0:34 47%
dchip 4884 375 1886 3:57 2:37 66%
schip2 9473 538 6409 19:06 17:58 94%
testram 20480 45 1089 1:12 1:02 86%
psc 25521 3756 11565 30:14 23:44 79%
ri scb 42084 1499 8785 18:19 11:03 60%

Table 5-2: Analysis of back-end

14

6. Conclusions
The performance of the HKXT program demonstrates the usefulness of hierarchical tools for VLSI. In

particular, we obtain more than an order of magnitude speedup for regular designs (e.g., the tcstram chip).

While the performance is worse for some designs, primarily because of the large number of compose

operations, preliminary work indicates that the number of compose operations may be reduced by a more

intelligent fracturing algorithm. One such algorithm avoids creating many small, unique windows by

coalescing adjacent windows in some cases. It is clear that diere is still work to be done, in particular, trying to

understand how to reduce the overhead in hierarchical analysis of designs with little hierarchy. Robert Hon

has explored a number of different algorithms to do so in his PhD diesis [3]. While other hierarchical tools

may exhibit better performance, it is often the case diat they do so by forcing the designer to use a restrictive

design style (e.g., restricted overlapping of cells [8]). We believe that it is possible to use hierarchy to make

VLSI design tools faster without constraining the designer.

7. Acknowledgments
We wish to thank Jon Bentley, Allan Fisher, Fdward Frank, Robert Sproull, and Hank Walker for valuable

comments and the careful reading of early drafts of this paper.

References

[1] Edward Frank, Carl Ebeling, and Robert Sproull.
Hierarchical Wirelist Format.
VLSI Document V085, Carnegie-Mellon University, 1981.

[2] Anoop Gupta and Robert Hon.
Two Papers on Circuit Extraction.
Technical Report, Carnegie-Mellon University, 1982.

[3] Robert Hon.
The Hierarchical Analysis of VLSI Designs.
PhD diesis, Carnegie-Mellon University, (in preparation).

[4] Brian W. Kernighan and Dennis M. Ritchie.
The C Programming Language.
Prentice-Hall, 1978.

[5] Bill Lattin.

VLSI Design Methodology: The Problem of the 8CTs for Microprocessor Design.
In Caltech Conference on VLSI. January, 1979.

15

Carver Mead and Lynn Conway.
Introduction To VLSI Systems.
Addison-Wcslcy, 1980.

Martin H.Ncwcll and Daniel T. Fit/patrick.
Exploiting Structure in Integrated Circuit Design Analysis.
In Conference on Advanced Research in VLSI. M.I.T., 1982.

Mike 'flicker and Lou Scheffer.
A Constrained Design Methodology for VLSI.
VLSI Design , May/June, 1982.

Telle Whitney.
A Hierarchical Design-Rule Checking Algorithm.
Lambda Magazine, First Quarter, 1981.

