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Abstract: This paper describes an experiment on the effect of insertions and deletions on the path
length of unbalanced binary search trees. Given a random binary tree, repeatedly inserting and
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better than that of a random tree.
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1. Introduction

A binary tree created by inserting n randomly chosen keys into an empty tree has an expected
internal path length of I, ~= 1.386nlgn.?! Randomly deleﬁng k nodes from such a tree yields
a tree whose expected internal path length is I,_x. Unfortunately, performing insertions after
deletions does not produce binary trees whose internal path length is predicted by this function.
A theoretical explanation of the effect of performing deletions and then insertions on binary trees

is still lacking. [Knuth 73, Section 8.2.2)

This paper presents an empirical study on the effect of applying random insertions and
deletions to random binary search trees and analyzes results of experiments comparing asymmetric
and symmetric deletion algorithms. In a previous empirical study, Knott [Knott 75] suggests that
the expected internal path length tends to decrease after repeated insertions and asymmetric
deletions. In this study, the large number of insertions and asymmetric deletions performed .
suggests that the expected internal path length first decreases but eventually begins to increase.
For sufficiently large trees, expected internal path length becomes worse than that of a random
tree. However, experiments using the symmetric deletion algorithm show that performing a large
number of insertions and symmetric deletions decreases the expected internal path length (making

the trees better than random).

Section 2 describes the insertion and deletion algorithms used in this study and provides an
overview of some of the previous work in this area. The statistics used in this study are defined
in Section 3. Section 3 also mentions a few specifics about how the data was gathered. The
observations in Section 4 give an interpretation of the data and the conclusions are summarized in

Section 5.

2. Background

Insertion Algorithm: The structure of binary trees naturally leads to one insertion algorithm. To
ingert a node into a binary tree (known not to contain the node), compare the new and current
keys and insert the node into the left or right subtree, whichever maintains the invariant of the

data structure. The Pascal code for this algorithm is provided in Figure 1, below. For further

! Throughout this paper, lg = denotes log, z.



PROCEDURE Insert(VAR root : NodePtr; x : DataType);
BEGIN ’
IF root = NIL
THEN BEGIN
NEW(root); roott.data := Xx;
roott.1Child := NIL; roott.rChild := NIL
END
ELSE IF x < roott.data
THEN Insert(roott.lChild, x)
ELSE Insert(roott.rChild, x)
END;

Figure 1: The insertion procedure.

explanation see [Knuth 73, Section 6.2.2, Algorithm T].

Unlike insertion, there are many reasonable deletion algorithms from which to choose. This
paper describes experiments with Knuth’s asymmetric deletion algorithm and a trivially modified

version of this algorithm to make it symmetric.

Asymmetric Deletion Aléorithm: A node’s successor is defined to be the smallest node in the right
subtree. Similarly a node’s predecessor is defined to be the largest node in the left subtree. To
delete 2 node from a binary tree, replace the node with its successor, &.e¢., the node that contains
the next larger key. The Pascal code for this algorithm is given in Figure 2, below. Figure 4! shows
examples of the insertion algorithm and this deletion algorithm applied to a particular binary tree;

for further explanation see [Knuth 73, Section 8.2.2, Algorithm DJ.

Symmetric Deletion Algorithm: To delete a node from a binary tree, replace the node with its
successor or predecessor. Alternately choose the successor and predecessor (so that half the time
the RightDelete routine is called and half the time a suitably modified version of this routine,
LeftDelete, is called).

Consider building a binary tree using n keys chosen randomly from a uniform distribution
(i.e., all n! permutations of the keys are equally likely). There are (2:)/ (m + 1) possible shapes for
this tree [Kauth 68, Section 2.3.4.4], each with some probability of occurring; call the distr:lbution
D,.. By this definition, inserting a new node into this binary tree would yield a tree of size n +1

whose shape occurs with a probahility defined by Dn1. Binary trees whose distribution of shapes

* Figures 411 are at the end of the paper.



PROCEDURE RightDelete(VAR root : NodePtr; x : DataType);
VAR copy. successor, succPtr : NodePtr;
BEGIN
IF x < roott.data
THEN RightDelete(roott.1Child, x)
ELSE IF x > roott.data
THEN RightDelete(roott.rChild, x)
ELSE BEGIN
COpY := root;
IF roottT.rChild = NIL
{ Case I: There i3 no successor. }
THEN root := roott.1Child
ELSE IF roott.rChildt.1Child = NIL
{ Case II: The successor is the right child. }
THEN BEGIN
root?.rChildt.1Child := roott.1Child;
root := roott.rChild
END :
{ Case III: The successor is the lefimost child in the right subiree. }
ELSE BEGIN
succPtr := roott.rChild;
WHILE succPtrt.1Child?.1Child <> NIL DO
succPtr := succPtrt.lChild;
succegsor := succPtrt.lChild;
guccPtrt.1Child := successort.rChilld;
guccessort.1lChild := roott.1Child;
guccesgort.rChild := roott.rChild;
root != gucceesor
END;
DISPOSE (copy)
END
END;

Figure 2: The asymmetric deletion procedure.

is D, are called random binary trees.

Thomas Hibbard [Hibbard 62] proved that deleting a random node (i.e., where each node has
an equal probability of being deleted) from a binary tree of size n, with distribution of shapes D,

yields a tree with a distribution of shapes Dp—_;.

Strangely, performing random insertion and deletion operations on a random tree does not
preserve this distribution of shapes. Consider building a binary tree of size n, as described above.
Since the keys are chosen from a uniform distribution, the probability of inserting a new node in

any particular interkey gap is -,#1- After one random deletion, the distribution of shapes will be
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Da_1, but the probability of inserting a new node where the deleted node used to be will be %1-
{while all other places are still z1;). Knuth [Knuth 73, Section 8.2.2] describes this phenomenon

as follows:

The shape of the tree is random after deletions, but the relative
distribution of values in a given tree shape may change, and it
turns out that the first random insertion after a delction actually
destroys the randomness property on shapes. This startling fact,
first observed by Gary Knott in 1972, must be seen to be believed.
Empirical evidence suggests strongly that the path length tends to
decrease alter repeated deletions and insertions, so the departure
from randomness secems to be in the right direction; a theoretical
explanation for this behavior is still lacking.

Knuth feels that binary trees tend to improve because “path length tends to decrease.” One
way to compare binary trees is to measure their internal path lengths. The internal path length
of a tree is defined as the sum of the depths of the nodes in the tree,

IPL = E distance(root, 1).
ic{nodea}
For a random tree containing n nodes, the expected IPL is denoted as I, and the expected number
of comparisons in a successful search is denoted as C,,. Knuth {Knuth 73, Section 6.2.2] gives the
expected number of comparisons in a successful search, Cn, a8 approximately equal to 1.388Ign.
Substituting into the relation I, = n(Cn — 1), one obtains the approximation I, == 1.386nlgn.
A distribution of trees is said to be “better than random” when the expected IPL is less than I,

(since the expected number of comparisons is proportional to the IPL).

3. Methodology

If a random sequence of insertions and deletions were applied to a random tree of size n, the
resulting tree would probably not have the same number of nodes. The original tree's IPL would
therefore not be directly comparable with the IPL of the new tree. In this study, sequences of
insertion/deletion pairs (I/D pairs) are applied to random trees. Since the resulting tree always
has the same size, it is easy to see whether any improvement has been made. (Knott’s data was
also obtained by using I/D pairs.) The first step of the simulation is therefore to insert n nodes

into-an empty tree, after which successive pairs of insertions followed by deletions are performed.

Let TPL, ; denote the measured mean IPL of an n-node binary tree after applying ¢ 1/D pairs.
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Figures 5 through 10 show /PL, ;/I, plotted as a function of 7. This ratio shows the improvement

of the resulting tree’s expected IPL as a fraction of the random tree's expected IPL.

The deletion algorithm given above generally replaces the node to be deleted with its successor,
the “left-most node in the right subtree”. The left and right subtrees are treated differently and,
as observed below, this appears to have a profound affect on the behavior of binary trees. Such a
deletion algorithm is called an esymmetric deletion algorithm. The symmetric deletion algorithm
which is examined in this study is a trivially modified version of the asymmetric algorithm. This
symmetric algorithm alternately replaces the node to be deleted with its suceessor or its predecessor.
The algorithm requires a small amount of state information, but similar results have been obtained

by randomliy replacing the node to be deleted by its successor or predecessor.

To ensure that the results were not an artifact of the random number generator, simulations
were performed on both DEC-20s and Perqs. In the DEC-20 simulations the random number
generator used the linear congruential methed to produce 36-bit pseudorandom numbers [Knuth
69, Section 3.2]. The random number generator for the Perqs is the feedback shift-register
pseudorandom number generator as described in [Lewis 73]. The data presented in this paper
was generated on the Pergs and took about one month of CPU time, but similar results were

obtained for the smaller trees on the DEC-20s.

The outer loop of the simulation program is very simple. First, build a tree with tsize nodes,
then gather data before and after each interval of isize I/D pairs.
FOR i := 1 TO tsize DO RndIngert;
... gather data ... )
FOR 1 := 1 TO intervals DO BEGIN
FOR j := 1 TO isize DO BEGIN RndInsert; RndDelete END;
... gather data ...
END;
FreeTrae;

Figure 3: The inner loop of a simulation.

4. Observations

The graphs in Figures 5 and 8 show the expected internal path length of n-node binary
trees plotted against the number of insertion and asymmetric deletion pairs. Initially, TPL,
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decreases, as Knott and Knuth observed. Afler some critical  point, though, IP°L, ; starts to
increase, eventually levelling off after approximately n? 1/D pairs. Figure 7 is a comparison chart
in which TPL, ;/I, is plotied as a function of 7/n? for each of the values of n tested. (The latter

ratio normalizes the z-axis.)

Perhaps the most significant observation is that as n increases so does the asymptotic value
for ﬁ’—ﬁﬂ,;/f,.. Since binary trees can be modeled by Markov Chains, and any binary tree may be
obtained by applying some combination of I/D pairs to any other binary tree, the lim;_, IPL,;
exists [Ross 70, Theorem 4.9]. Figure 7 suggests that

lim TPL,; > I,

i— oo
for sufficiently large values of n (roughly greater than 128). Thus binary trees seem to become

“worse than random” after many insertions and deletions.

The comparison chart in Figure 11 shows the asymptotic values of f/PL, /I, for both deletion
algorithms plotted against n (on a log scale). The data given in Table 1 was obtained by summing
all the TPL, ; and TPL, ;, when i > n?.

n  Samples ITPL, ;.2 Variance

84 6000 0.97 0.01652
128 6800 1.00 0.01340
256 2300 1.08 0.00985
512 1200 116 0.00970

1024 750 1.30 0.01013

2048 5340 1.49 0.00771

Table 1: Data for Asymmetric Deletions.

The asymmetric curve appears to be quadratic. A least-squares multiple regression weighted by

the inverse of the variance yields the following approximation:

IPLn 2
lim == 0.02021g° n — 0.2411gn + 1.69.
3400 ”n

Substituting I, == 1.386nlgn we obtain

lim TPL,; == 0.0280n1g® n — 0.334n]g? n + 2.34nlgn.

1—o0



The graphs in Figures 8 and 9 show the corresponding plots of the data in Table 2 for the

expected internal path length for symmetric deletions.

n  Samples [PL,,.,2 Variance

64 6000 0.905 0.01654
128 6800 0.890 0.00916
256 2300 0.888 0.00815
512 1200 0.890 0.00347

1024 750 0.881 0.00235
2048 5340 0.883 0.00269

Table 2: Data for Symmetric Deletions.

The TPL, decreases initially, as in the case of asymmetric deletions, but the asymptotic value
of the expected internal path length seems to remain lower than that of a random tree. The

comparison charts in Figures 10 and 11 indicate that

. IPLy;
1> lim

i—oo n

=2 0.88

or that
I, > lim IPI,‘I.- =z 1.22nlgn.

1—on
The comparison chart in Figure 11 shows the asymptotic value of TFI,.,.- slowly decreasing as n
increases. Since a binary tree with n nodes cannot have an internal path length less than that of
a perfect tree, we know that

lim TPL, ; = (nlogn).

i—o0

5. Conclusions

The expected internal path length of a random binary tree is I, = ©{nlogn). Empirical
evidence suggests that ‘performing many insertion and asymmetric deletions yields binary trees
with an expected internal path length of TPT,,_.- = 9(1'11033 n). Thus performing asymmetric
deletions causes binary trees to become more unbalanced. Amazingly, the expected path length

does not increase by a constant factor, but rather by a factor of log® n. However, experiments show
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that the symmetric deletion algorithm improves the balance of binary trees leaving the expected
internal path length 6(nlogn), but with a smaller constant coeflicient than the expected internal
path length of a random binary tree.

Because this is an empirical study, the above conclusions can only be conjectures. No one has
provided a theoretical explanation of the behavior of a binary tree’s path length after applying
deletions and then insertions. There is no proof that the asymptotic value of TPL,; is less than
I, when performing random insertions and symmetric deletions or that the asymptotic value of

IPL, ; is greater than I, when applying insertions and asymmetric deletions.

In closing, it should be noted that the results of this study will have little impact on the use
of binary trees in practice. It takes approximately 1.5 million random insertions and asymmetric
deletions to make a 2048-node binary tree worse than a random tree, and 4 million before its
expected internal path length reaches the asymptotic value (which is just 50% worse). When so

many operations are required, other data structures are probably more appropriate.
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Figure 4: Examples of Insertion and Asymmetric Deletion.

start with

delete 43
(case )

delete 54
(casell)

delete 19
(case 1)

10



Average [PL(n.i) / I{n)

Average [PL{n.i) 7 l{n)

Figure 5

-

91 L L 2 A L ] I Fl t I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 . 10000
. ) Number of Insertion/Deletion Pairs
Asymmetric Deletions, 64 Node Tree, 200 Runs
31.02
<
=100 A__M P —
B
o 98
g
-
-

&

20000 30000 40000
Number of Insertion/Deleticn Pairs
Asymmetric Deletions, 128 Node Tree, 200 Runs

0 20000 40000 - 60000 80000 100000 120000
. . Number of Insertion/Deletion Pairs
Asymmetric Deletions, 256 Node Tree, 100 Runs

11



o, -

=
%3
=4

Average IPL(n,i) / l{n)

[y

=3

&
T

5

-

[

LY.
T

I
—
L~
v

Figure 6

o
[y
T

8

— b n

(=]

r b
8 &

Average IPL(n,i) / I{n)
-
]

1.10F

1060000 200000 300000
Asymmetric Deletions, 512 Node Tree, S0 Ruas

A _l

400000 500000
Number of Insertion/Deletion Pairs

8

e

Average IPL(nJ) / I(n)
e -
L 58 & &

b

1104

500000 1000000 1500000

Asymmetric Deletions, 1024 Node Tree, 25 Runs

2000000 2500000 -
Number of Insertion/Deletion Pairs

—

Asymmetric Deletions, 2048 Node Tree, 20 Runs

12

7000000 8000000 9000000
Number of Insertion/Deletion Pairs



—
[=a)
=3

—
wy
(=3

Average IPL{(n,i) / I(n)

1.40

130

1.20

110

1.00

Figure 7

A ! "\, /2048 node tree

/ \ - :" -'\ .- \.. ’

. N
,'! A e LU P

PN
i 4 T1024 node tree

812 node tree

50 100 1.50 2.00 2.50
Comparison Chart for Asymmetric Deletions

13

(Number of I/D Pairs) / n2



Average IPL(n,i) / I(n)

Average IPL(n,i) / I(n)

g 8 8

Average IPL(n,i} / I{(n)

Figure 8

8000 9000 10000
Number of Insertion/Deletion Pairs

88 L I A L A L A
0 2000 3000 4000 5000 6000 7000

Symmetric (Alternating) Deletions, 64 Node Tree, 200 Runs

A i

20000 . 30000
Symmetric (Alternating) Deletions, 128 Node Tree, 200 Runs

d

40000 50000
Number of Insertion/Deletion Pairs

10000

A " i

40000

100000 120000
Number of Insertion/Deletion Pairs

80000
Symmetric {Alternating) Deletions, 256 Node Tree, 100 Runs

14



Average IPL(n,i} / I(n)

Average IPL(n,i) / I(n)

Average IPL{n,i) / I(n)

Figure 9

J

Symmetric (Alternating) Deletions, 512 Node Tree, 50 Runs

Number of Insertion/Deletion Pairs

) . Number of Insertion/Deletion Pairs
Symmetric (Alternating) Deletions, 1024 Node Tree, 25 Runs

1000000 2000000 3000000 4000000 5000000 6000000 7000000 £000000 9000000
. . . - Number of Insertion/Deletion Pairs
Symmetric (Alternating) Deletions, 2048 Node Tree, 20 Runs

15



Average IPL(n,i) / I(n)

1.00

x

-
=]
[ %)

Figure 10

36

wome, -

' 128 node tree
RN /

S0 1.00 1..50 2.00 2.50 3.b0 3.56
) ) . . (Number of 1/D Pairs) / n2
Comparison Chart for Symmetric (Alternating) Deletions

16



1

Comparison Chart of the Asymptotic Values of IPL(n,i)

17

E 1.50¢ Figure 11 a
~ /
o ,
ot r
= [
t s
B K
Gy
Q ':
g ]
= 140} !
b= .
g2 ’
S 3
=% rs
£ !
n »
s )
e ’
[ L
1304 Y
by r
8 ¢ Asymmetric Deletions
[
I
,
’
[ 4
4
rJ
)
,
'I
120f K
"
,
ri
[
=g
’
rd
'0
'
’
"
110}
L4 "
'O
ml
- »
L) d ‘
- b ’ :
- - ¢
1.00 A
pane - Random {No Deletiona}
ge=="""
904.
T -
& z -
Symmetric Deletions
80 . — . : o
64 128 256 512 1024 2048
n, the Tree Size



|

SECURITY CLASSIFICATION AF TWIS PAGE /When Dats Entered)

; READ INSTRUCTIONS
] ‘. REPORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALDG _NUMER
CMU-CS-82-146
& TiTLE fand Subtitle) 5. TYPE OF REPOQRT & PERIQOD COVERED
Interim
AN EMPIRICAL STUDY OF INSERTION AND
DELETIO 1IN BINARY SEARCH TREES - [, PERFORMING ORG. REPORT NUMBER
7. AUTHOR(®) 3. CONTRACT OR GRANT NUMBER(®) |
- Jeffrey L. Eppinger N0Q014-76-C-0370
3. PERPORMING ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
cmegiE'de].lon UniverSity .AREA & WORK UNIT NUMBERS

Computer Science Department
Pittsburgh, PA, 15213

1. CONTROLLING QFFICE NAME AND ADDRESS -l 12. REPORT pATE
fice of Naval lResearch December 2, 1982
Arlington, VA - 22217 13. NUMBER Tgnsss

T4 MONITORING AGENCY NAME & ADDRESS(II dilfsrent {rom Contrelling Qtlice) 18, SECURITY CLASS. (of this report)

UNCLASSIFIED

T8a. OECLASSIFICATION/ DOWNGRADING
SCHEDULE :

ey vy Ty R
16, DISTRIBUTION STATEMENT (of this Report)
- . . - [

" ' APPROVED -FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED:

am s ‘
Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the sbetrect sntered In Black 20, i1 different from Raport)

16, SUPPLEMENTARY NOTES

19. KEY WORDS (Continye on reverse aide il necessary and {dentlly by bdlock number)

20. ABSTRACT (Continue on reverse side il necessary and identily by block number)

DD FORM 1473 eoimion oF 1 NOVSS IS omsOLETE : CTAS
taan T $/N 0102-01e-8801 | ' UN STETED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entecad}



