
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-82 -146

An Empirical Study of
Insertion and Deletion in Binary Search Trees

Jeffrey L. Eppinger

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

December 2, 1982

A b s t r a c t : This paper describes an experiment on the effect of insertions and deletions on the path
length of unbalanced binary search trees. Given a random binary tree, repeatedly inserting and
deleting nodes yields a tree that is no longer random. The expected internal path length differs
when different deletion algorithms are used. Previous empirical studies indicated that expected
internal path length tends to decrease after repeated insertions and asymmetric deletions. This
study shows that performing a larger number of insertions and asymmetric deletions actually
increases the expected internal path length, and that for sufficiently large trees, the expected
internal path length becomes worse than that of a random tree. However, with a symmetric
deletion algorithm, the results indicate that performing a large number of insertions and deletions
decreases the expected internal path length, and that the expected internal path length remains
better than that of a random tree.

This research was sponsored in part by the Office of Navel Research under contract N00014-76-C-
0370.

1. Introduction

A binary tree created by inserting n randomly chosen keys into an empty tree has an expected

internal path length of J n « 1.386nlgn.t Randomly deleting k nodes from such a tree yields

a tree whose expected internal path length is In-k- Unfortunately, performing insertions after

deletions does not produce binary trees whose internal path length is predicted by this function.

A theoretical explanation of the effect of performing deletions and then insertions on binary trees

is still lacking. [Knuth 73, Section 6.2.2]

This paper presents an empirical study on the effect of applying random insertions and

deletions to random binary search trees and analyzes results of experiments comparing asymmetric

and symmetric deletion algorithms. In a previous empirical study, Knott [Knott 75] suggests that

the expected internal path length tends to decrease after repeated insertions and asymmetric

deletions. In this study, the large number of insertions and asymmetric deletions performed

suggests that the expected internal path length first decreases but eventually begins to increase.

For sufficiently large trees, expected internal path length becomes worse than that of a random

tree. However, experiments using the symmetric deletion algorithm show that performing a large

number of insertions and symmetric deletions decreases the expected internal path length (making

the trees better than random).

Section 2 describes the insertion and deletion algorithms used in this study and provides an

overview of some of the previous work in this area. The statistics used in this study are defined

in Section 3. Section 3 also mentions a few specifics about how the data was gathered. The

observations in Section 4 give an interpretation of the data and the conclusions are summarized in

Section 5.

2. Background

Insertion Algorithm: The structure of binary trees naturally leads to one insertion algorithm. To

insert a node into a binary tree (known not to contain the node), compare the new and current

keys and insert the node into the left or right subtree, whichever maintains the invariant of the

data structure. The Pascal code for this algorithm is provided in Figure 1, below. For further

t Throughout this paper, Ig x denotes log 2 *.

1

PROCEDURE Insert (VAR root : NodePtr; x : DataType);
BEGIN

IF root = NIL
THEN BEGIN

NEW(root); roott.data := x;
roott.lChild := NIL; roott.rChild := NIL

END
ELSE IF x < roott.data

THEN Insert(roott.lChild, x)
ELSE Insert(roott.rChild, x)

END;

Figure 1: The insertion procedure.

explanation see [Knuth 73, Section 6.2.2, Algorithm T].

Unlike insertion, there are many reasonable deletion algorithms from which to choose. This

paper describes experiments with Knuth's asymmetric deletion algorithm and a trivially modified

version of this algorithm to make it symmetric.

Asymmetric Deletion Algorithm: A node's successor is defined to be the smallest node in the right

subtree. Similarly a node's predecessor is defined to be the largest node in the left subtree. To

delete a node from a binary tree, replace the node with its successor, ue., the node that contains

the next larger key. The Pascal code for this algorithm is given in Figure 2, below. Figure 4* shows
examples of the insertion algorithm and this deletion algorithm applied to a particular binary tree;

for further explanation see [Knuth 73, Section 6.2.2, Algorithm D].

Symmetric Deletion Algorithm: To delete a node from a binary tree, replace the node with its
successor or predecessor. Alternately choose the successor and predecessor (so that half the time
the RightDelete routine is called and half the time a suitably modified version of this routine,

Lef tDelete, is called).

Consider building a binary tree using n keys chosen randomly from a uniform distribution

(ue., all n! permutations of the keys are equally likely). There are (2„)/(n + 1) possible shapes for
this tree [Knuth 68, Section 2.3.4.4], each with some probability of occurring; call the distribution

Dn. By this definition, inserting a new node into this binary tree would yield a tree of size n + 1

whose shape occurs with a probability defined by Dn+1. Binary trees whose distribution of shapes

t Figures 4-11 are at the end of the paper.

2

PROCEDURE RightDelete(VAR root : NodePtr; x : DataType);
VAR copy, successor, succPtr : NodePtr;

BEGIN
IF x < roott.data

THEN RightDelete(roott.IChild, x)
ELSE IF x > roott.data

THEN RightDelete(roott.rChild, x)
ELSE BEGIN

copy := root;
IF roott.rChild = NIL

{ Case I: There is no successor. }
THEN root := roott.IChild

ELSE IF roott.rChildt.IChild = NIL
{ Case II: The successor is the right child. }

THEN BEGIN
roott.rChildt.IChild := roott.IChild;
root := roott.rChild

END
{ Case III: The successor is the leftmost child in the right subtree. }

ELSE BEGIN
succPtr := roott.rChild;
WHILE succPtrt.lChildt.IChild <> NIL DO

succPtr := succPtrt.IChild;
successor := succPtrt.IChild;
succPtrt.IChild := successort.rChild;
successort.IChild := roott.IChild;
successort.rChild := roott.rChild;
root := successor

END;
DISPOSE(copy)

END
END;

Figure 2: The asymmetric deletion procedure,

is Dn are called random binary trees.

Thomas Hibbard [Hibbard 62] proved that deleting a random node (i.e., where each node has

an equal probability of being deleted) from a binary tree of size n, with distribution of shapes Dn9

yields a tree with a distribution of shapes Dn-%.

Strangely, performing random insertion and deletion operations on a random tree does not
preserve this distribution of shapes. Consider building a binary tree of size n, as described above.

Since the keys are chosen from a uniform distribution, the probability of inserting a new node in
any particular interkey gap is After one random deletion, the distribution of shapes will be

3

D n _ i , but the probability of inserting a new node where the deleted node used to be will be

(while all other places are still). Knuth [Knuth 73, Section 6.2.2] describes this phenomenon

as follows:

The shape of the tree is random after deletions, but the relative
distribution of values in a given tree shape may change, and it
turns out that the first random insertion after a deletion actually
destroys the randomness property on shapes. This startling fact,
first observed by Gary Knott in 1972, must be seen to be believed.
Empirical evidence suggests strongly that the path length tends to
decrease after repeated deletions and insertions, so the departure
from randomness seems to be in the right direction; a theoretical
explanation for this behavior is still lacking.

Knuth feels that binary trees tend to improve because "path length tends to decrease." One

way to compare binary trees is to measure their internal path lengths. The internal path length

of a tree is defined as the sum of the depths of the nodes in the tree,

IPL = ^ distance(r oot9 i).

For a random tree containing n nodes, the expected IPL is denoted as In and the expected number

of comparisons in a successful search is denoted as C n . Knuth [Knuth 73, Section 6.2.2] gives the

expected number of comparisons in a successful search, Cn, as approximately equal to 1.386 lgn.

Substituting into the relation J n = n(Cn — 1), one obtains the approximation J n « 1.386nlgn.

A distribution of trees is said to be "better than random" when the expected IPL is less than J n

(since the expected number of comparisons is proportional to the IPL).

3. Methodology

If a random sequence of insertions and deletions were applied to a random tree of size n, the

resulting tree would probably not have the same number of nodes. The original tree's IPL would

therefore not be directly comparable with the IPL of the new tree. In this study, sequences of

insertion/deletion pairs (I/D pairs) are applied to random trees. Since the resulting tree always

has the same size, it is easy to see whether any improvement has been made. (Knott's data was

also obtained by using I/D pairs.) The first step of the simulation is therefore to insert n nodes

into an empty tree, after which successive pairs of insertions followed by deletions are performed.

Let IPLn¿ denote the measured mean IPL of an n-node binary tree after applying i I/D pairs.

4

Figures 5 through 10 show IPLnfi/In plotted as a function of i. This ratio shows the improvement

of the resulting tree's expected IPL as a fraction of the random tree's expected IPL.

The deletion algorithm given above generally replaces the node to be deleted with its successor,

the "left-most node in the right subtree". The left and right subtrees are treated differently and,

as observed below, this appears to have a profound affect on the behavior of binary trees. Such a

deletion algorithm is called an asymmetric deletion algorithm. The symmetric deletion algorithm

which is examined in this study is a trivially modified version of the asymmetric algorithm. This

symmetric algorithm alternately replaces the node to be deleted with its successor or its predecessor.

The algorithm requires a small amount of state information, but similar results have been obtained

by randomly replacing the node to be deleted by its successor or predecessor.

To ensure that the results were not an artifact of the random number generator, simulations

were performed on both DEC-20s and Perqs. In the DEC-20 simulations the random number

generator used the linear congruential method to produce 36-bit pseudorandom numbers [Knuth

69, Section 3.2]. The random number generator for the Perqs is the feedback shift-register

pseudorandom number generator as described in [Lewis 73]. The data presented in this paper

was generated on the Perqs and took about one month of CPU time, but similar results were

obtained for the smaller trees on the DEC-20&.

The outer loop of the simulation program is very simple. First, build a tree with tsize nodes,
then gather data before and after each interval of isize I/D pairs.

FOR i := 1 TO tsize DO Rndlnsert;
... gather data ...
FOR i := 1 TO intervals DO BEGIN

FOR] := 1 TO isize DO BEGIN Rndlnsert; RndDelete END;
... gather data .. •

END;
FreeTree;

Figure 3: The inner loop of a simulation.

4. Observations

The graphs in Figures 5 and 6 show the expected internal path length of n-node binary

trees plotted against the number of insertion and asymmetric deletion pairs. Initially, IPLnt%

5

decreases, as Knott and Knuth observed. After some critical point, though, IPLn,i starts to

increase, eventually levelling off after approximately n 2 I/D pairs. Figure 7 is a comparison chart

in which IPLnti/In is plotted as a function of i/n2 for each of the values of n tested. (The latter

ratio normalizes the x-axis.)

Perhaps the most significant observation is that as n increases so does the asymptotic value

for IPLnti/In. Since binary trees can be modeled by Markov Chains, and any binary tree may be

obtained by applying some combination of I/D pairs to any other binary tree, the l im^oo IPLn,%

exists [Ross 70, Theorem 4.9]. Figure 7 suggests that

lim TPLnti > In

for sufficiently large values of n (roughly greater than 128). Thus binary trees seem to become

"worse than random" after many insertions and deletions.

The comparison chart in Figure 11 shows the asymptotic values of IPLnii/In for both deletion

algorithms plotted against n (on a log scale). The data given in Table 1 was obtained by summing

all the IPLn,% and 7PLni, when t > n 2 .

n Samples 7 F Z „ , .>n* Variance

64 6000 0.97 0.01652

128 6800 1.00 0.01340

256 2300 1.06 0.00985

512 1200 1.16 0.00970

1024 750 1.30 0.01013

2048 5340 1.49 0.00771

Table 1: Data for Asymmetric Deletions.

The asymmetric curve appears to be quadratic. A least-squares multiple regression weighted by

the inverse of the variance yields the following approximation:

TPL

lim r

n , f w 0.0202 lg 2 n - 0.241 Ign + 1.69.

Substituting In w 1.386nlgn we obtain
lim 7FLnti « 0.0280n lg 3 n - 0.334n lg 2 n + 2.34n lg n.

The graphs in Figures 8 and 9 show the corresponding plots of the data in Table 2 for the

expected internal path length for symmetric deletions.

n Samples Variance

64 6000 0.905 0.01654

128 6800 0.890 0.00916

256 2300 0.888 0.00615

512 1200 0.890 0.00347

1024 750 0.881 0.00235

2048 5340 0.883 0.00269

Table 2: Data for Symmetric Deletions.

The IPLnti decreases initially, as in the case of asymmetric deletions, but the asymptotic value

of the expected internal path length seems to remain lower than that of a random tree. The

comparison charts in Figures 10 and 11 indicate that

1 > lim , » 0 . 8 8

or that

In > lim 7FZn,i « 1.22nlgn.
¿—•00

The comparison chart in Figure 11 shows the asymptotic value of JPL n ,» slowly decreasing as n

increases. Since a binary tree with n nodes cannot have an internal path length less than that of

a perfect tree, we know that

lim 7FZn,< = n (n logn) .

5. Conclusions

The expected internal path length of a random binary tree is In = O(nlogn). Empirical

evidence suggests that performing many insertion and asymmetric deletions yields binary trees

with an expected internal path length of IPLn,% = 0 (n l o g 3 n) . Thus performing asymmetric

deletions causes binary trees to become more unbalanced. Amazingly, the expected path length

does not increase by a constant factor, but rather by a factor of log 2 n . However, experiments show

7

that the symmetric deletion algorithm improves the balance of binary trees leaving the expected

internal path length ©(nlogn), but with a smaller constant coefficient than the expected internal

path length of a random binary tree.

Because this is an empirical study, the above conclusions can only be conjectures. No one has

provided a theoretical explanation of the behavior of a binary tree's path length after applying

deletions and then insertions. There is no proof that the asymptotic value of iPL«, t is less than

In when performing random insertions and symmetric deletions or that the asymptotic value of

7PL n > t is greater than In when applying insertions and asymmetric deletions.

In closing, it should be noted that the results of this study will have little impact on the use

of binary trees in practice. It takes approximately 1.5 million random insertions and asymmetric

deletions to make a 2048- node binary tree worse than a random tree, and 4 million before its

expected internal path length reaches the asymptotic value (which is just 50% worse). When so

many operations are required, other data structures are probably more appropriate.

8

r

6. Acknowledgements

I would like to thank Jon Bentlcy, James Gosling, Diane Lambert, and Jim Saxe for their help

and guidance.

7. References

[Hibbard 62] Hibbard, Thomas N.
Some Combinatorial Properties of Certain Trees

with Applications to Searching and Sorting.
Journal of the Association of Computing Machinery 9(l):13-28, January 1962.

[Knott 75] Knott, Gary D.
Deletion in Binary Storage Trees.
Ph.D. thesis, Stanford University, May, 1975.
STAN-CS-75-491.

[Knuth 68] Knuth, Donald E.
The Art of Computer Programming.

Volume I: Fundamental Algorithms.
Addison-Wesley, 1968, Section 2.3.4.4.

[Knuth 69] Knuth, Donald E.
The Art of Computer Programming.

Volume II: Seminumerical Algorithms.
Addison-Wesley, 1969, Section 3.2.

[Knuth 73] Knuth, Donald E.
The Art of Computer Programming.

Volume HI: Searching and Sorting (Second Printing, March 1975).
Addison-Wesley, 1973, Section 6.2.2.
Note: The Second Printing contains important changes in Section 6.2.2.

[Lewis 73] Lewis, T. G., and W. H. Payne
Generalized Feedback Shift Register Pseudorandom Number Generator
Journal of the Association of Computing Machinery 20(3):456-468, July 1973.

[Ross 70] Ross, Sheldon M.
Applied Probability Models with Optimization Applications.
Holden-Day, 1970, Section 4.3.

Figure 4 : Examples of Insertion and Asymmetric Deletion.

Figure 5

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Insertion/Deletion Pairs Asymmetric Deletions, 64 Node Tree, 200 Runs

10000 20000 30000

Asymmetric Deletions, 128 Node Tree, 200 Runs
40000 50000

Number of Insertion/Deletion Pairs

20000 40000 60000 80000

Asymmetric Deletions, 256 Node Tree, 100 Runs
100000 120000

Number of Insertion/Deletion Pairs

11

r

Figure 6

Asymmetric Deletions, 512 Node Tree, 50 Runs

a

Asymmetric Deletions, 1024 Node Tree, 25 Runs

Number of Insertion/Deletion Pairs
Asymmetric Deletions, 2048 Node Tree, 20 Runs

12

Ì

\ i
i

A / ' x v

/ /
/ /
/ /
/ /
/ /

/ /
/ • /

/•' /
/ /
/ /
/ /

U - L

Figure 7

/\ .""2048 node tree

V

A
/ \
/ \ .
/ "'1024 node tree

\ i\f\ r \
'512 node tree

'256 node tree

\

; / / / /'
128 node tree

' \ ' v . ~ ' 64 node tree

.50 LOO 1.50 2.00 2.50 3.00 3.50
^ ^ (Number of I/D Pai rs) /n 2

Comparison Chart for Asymmetric Deletions

13

Figure 8

ol.OO

I i i i 1 1 i 1 ' 1 <
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Insertion/Deletion Pairs
Symmetric (Alternating) Deletions, 64 Node Tree, 200 Runs

^ 1 . 0 2 r

ol.OO -

Number of Insertion/Deletion Pain
Symmetric (Alternating) Deletions, 128 Node Tree, 200 Runs

Number of Insertion/Deletion Pairs
Symmetric (Alternating) Deletions, 256 Node Tree, 100 Runs

14

a 1 . 0 2 r

Figure 9

100000 200000 300000

Symmetric (Alternating) Deletions, 512 Node Tree, 50 Runs
400000 500000

Number of Insertion/Deletion Pairs

500000 1000000 1500000

Symmetric (Alternating) Deletions, 1024 Node Tree, 25 Runs
2000000 2500000

Number of Insertion/Deletion Pairs

1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000
Number of Insertion/Deletion Pairs

Symmetric (Alternating) Deletions, 2048 Node Tree, 20 Runs

15

r

~1 .04 |

a

on J
2
>

1.00

.98

-I
I

.92

.90

.88

•v \\ A *... N >

Figure 10

* / 1
> / »

1 / > ' I

> \ , \
\ f

i p w ^ j f r \ / \ \ V< / \ * Mnodetree

V v : W ; V \ / 8 5 6 node tree \ ^ - ^
\ / \ V . / V " V :*:<VT/5i2.nodetree \ / X

v / \ V • . ^ * > . 7\ /2048 node tree

V f K"*v ' v—' ruv-ta t r a i l

/128 node tree

1024 node tree

.86« .50 1.00 1.50 100 2.50 3.00 3^0
(Number of I/D Pairs) / n 2

Comparison Chart for Symmetric (Alternating) Deletions

16

i

Figure 11 q
•

/

0
0 0 0 0

/ 0 0 0 t
$ 0 0 0 0

0
• a

/ Asymmetric Deletions
/ 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a.' 0 0 0

Random (No Deletions)

Symmetric Deletions

64 128 2S6 512 1024 2048
n, the Tree Size

Comparison Chart of the Asymptotic Values of IPL(n,i)

17

S E C U R I T Y CLASSIFICATION O F T m S P A G E ' * * « n Pete Entered)
REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
B E F O R E COMPLETING FORM

V R E P O R T NUMBER 2 . GOVT ACCESSION NO.

CMU-CS-82-146
4 . T I T L E (end Subtitle)

AN EMPIRICAL STUDY OF INSERTION AND
Interim

DELETIO IN BINARY SEARCH TREES * . P E R F O R M I N G ORG. R E P O R T NUMBER

7 . A U T H O R S i. C O N T R A C T OR GRANT NUMBER^•>

J e f f r e y L . E p p i n g e r N 0 0 0 1 4 - 7 6 - C - 0 3 7 0

S . PER FOR M IN G ORGANIZATION NAME AND AOORESS

Carnegie-Mellon U n i v e r s i t y
Computer Science Department
P i t t s b u r g h , PA. 15213

AREA ft WORK UNIT NUMBERS

1 1 . C O N T R O L L I N G O F F I C E NAME ANO AOORESS

E f i c e o f N a v a l I R e s e a r c h
A r l i n g t o n , VA 2 2 2 1 7

December 2 . 1 9 8 2
1 1 . C O N T R O L L I N G O F F I C E NAME ANO AOORESS

E f i c e o f N a v a l I R e s e a r c h
A r l i n g t o n , VA 2 2 2 1 7 I S . NUMBER O F P A G E S

19
Til"' MONITORING AGENCY NAME ft AOORESSTI/ dittetent Irom Controlling OUicm) IS . SECURITY CLASS, (oi thte report)

UNCLASSIFIED

' Ua. DECLASSIFICATION/DOWNGRADING
SCMEOULE

I t . DISTRIBUTION S T A T E M E N T (oi thle Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED;

17. DISTRIBUTION S T A T E M E N T (oi the obetrmct entered In Block 20. It ditterent from Report) • _;

Approved for p u b l i c r e l e a s e ; d i s t r i b u t i o n unl imited

IB . S U P P L E M E N T A R Y N O T E S

l t . KEY WOROS (Continue on revere* etdo it necemeery m

2 0 . A B S T R A C T (Contlnuo on reeereo elde Ii neceeemry m

00 I j S " M 7 3 1473 e o i T i o * OP « N o v « s i s O B S O L E T E UNCLASSIFIED
S/M 0 1 0 2 - 0 1 4 - « 6 0 1 I / l E C Ü H l T V C L A S S I U C A T I O M Of THIS *»AOt (mfmm DM, M m «

