An O (log? k)-competitive Algorithm for Metric
Bipartite Matching

Nikhil Bansal, Niv Buchbindef, Anupam Guptd, and Joseph (Seffi) Nabr

! IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
2 Computer Science Department, Technion, Haifa, Israel.
3 Department of Computer Science Carnegie Mellon University
4 Microsoft Research, Redmond, WA. On leave from the CS D&pthnion, Haifa, Israel.

Abstract. We consider the online metric matching problem. In this feoh
we are given a graph with edge weights satisfying the treamggquality, and:
vertices that are designated as the right side of the matcQiaer time up tok
requests arrive at an arbitrary subset of vertices in thehgaad each vertex must
be matched to a right side vertex immediately upon arrivaleex cannot be
rematched to another vertex once it is matched. The goalnsronize the total
weight of the matching.

We give aO(log? k) competitive randomized algorithm for the problem. This
improves upon the best known guarante©gfog® k) due to Meyerson, Nanavati
and Poplawski [19]. It is well known that no deterministigalithm can have
a competitive less thadk — 1, and that no randomized algorithm can have a
competitive ratio of less thalm k.

1 Introduction

Matching is one of the most fundamental and well-studiethtpation problems and it
has played a major role in the development of the theory airialyms; see, e.g., [22] for
the history as well as many details and algorithms. In thjepave consider aanline
version of the matching problemhich was first introduced by Khuller, Mitchell and
Vazirani [14], and independently by Kalyanasundaram anth®{9]. In this version,
the input consists of an edge-weighted graph witrertices designated aght-hand
side verticesor “servers”. At each step, a new request vertex is desigiad deft-side
vertexor “client”, appears and must be immediately matched to ailae right-hand
side vertex. The goal is to minimize the total cost of the rhizatg.

Itis easily seen that no online algorithm can be competifittee edge-weights are
allowed to be arbitrary, and hence a natural restriction sonsider the case when the
edge-weights correspond to distancesinedric spacend hence satisfy the triangle in-
equality. We call this problem thanline metric matching probleniThe problem arises
naturally in many settings: for example, consi#dire stations, each of which can han-
dle exactly one fire; when a new fire starts, an available fatost must be assigned
to it immediately. Both Khuller, Mitchell and Vazirani [14dnd Kalyanasundaram and
Pruhs [9] gavek — 1 competitive deterministic algorithms for the online metmatch-
ing problem (and showed that no better deterministic allgoris possible even for the
star graph). Moreover, Kalyanasundaram and Pruhs alsoeshihat the natural greedy

algorithm that matches a request to its closest availakilg (2" — 1)-competitive,
and this bound is tight. The online metric matching probleaswubsequently studied
for special metric spaces, and also in models with resoungenantation; see Sec-
tion 1.2 for more details and several other lines of relateckw

It is not difficult to give a tight©(log k)-competitiverandomizedsolution to the
online metric matching problem on the star graph, whichss &he bad example in the
deterministic case (see, e.g.,Section 3.1 for both upgkloaver bounds). Hence, a nat-
ural question is whether randomization could help obtaiex@onential improvement
for general metric spaces. In a recent breakthrough, Meyelanavati and Poplawski
[19] give a randomized algorithm with an(log® k)-competitive ratio for general met-
rics; this is the first algorithm with a performance sublineak for general metric
spaces. Their approach is to first use results on approximggneral metrics by tree
metrics [2, 3, 6] to obtain an online metric matching probiastance on a class of trees
calledO(log k)-HSTs—these are trees where the edge lengths increase bjoadé
O(log k) as one goes from the leaves to the root. Then, they solve tlreeamet-
ric matching problem on these HSTs with a competitive rafi®@log k); since they
loseO(log? k) in the reduction to the HSTSs, the ultimate competitive ratitained is
O(log® k). In the rest of this paper, we refer to the algorithm from [48]theMNP
Algorithm

One natural approach to improve the competitive ratio ishomasthat the MNP
Algorithm also works oru-HSTSs fora = O(1); this would immediately remove one
of the logarithmic terms from the competitive ratio. Howg\j&9] sketch an example
where running MNP on an-HST with« = o(log k) would result in an extremely poor
competitive ratio; We discuss this issue further in Sec8ch

1.1 Our results

Given that the MNP algorithm cannot be directly improved,degise a new algorithm
that proves our main technical result:

Theorem 1 (Upper Bound for 2-HSTs). There is anO(log k)-competitive algorithm
for the online metric matching problem problem 2STs.

Using standard results on approximating general metricesplay HSTs (see Section 2),
the above theorem immediately implies the following resalarbitrary metric spaces.

Corollary 1 (Upper Bound for Arbitrary Metrics). There is arO(log® k)-competitive
algorithm for the online metric matching problem problemashitrary metric spaces.

Our Techniques. Let us briefly discuss our techniques, as the proof of Thedtem
requires a few conceptual steps. The first step shows thatahaal greedy offline
algorithm that repeatedly matches the closest (requestd@air is optimal for HSTs.
(This is not immediate, since the greedy algorithm is knowhé bad even for a set of
points on the line [21].) This analysis of the greedy aldoritallows us to lower bound
the optimal cost of an instance.

The next step shows that we can imagine working in a more fiexitodel, where
(some) server reassignments are permitted. In partidgfilelient ¢ is previously as-
signed to serves (incurring a cost ofi(c, s)) and a client’’ arrives, we are allowed

to assign’’ to s, and to reassign to somes’ incurring an additional cost af(c, s") +
d(d, s)), as long as the new server (i.€) for ¢ is no closer to it than the old one (i.e.,
s). Given an online algorithm that works in this (restrictedissignment model, we
show how to get an online algorithm in the (no reassignmenigjral model with no
greater cost. Finally, we give an online algorithm in thistrieted-reassignment model
which terminates with the greedy assignment, and whereota¢ éxpected cost in-
curred during all the reassignments is at mo&bg k) times the greedy cost, giving us
the theorem.

1.2 Related Work

Apart from the initial work of Khuller, Mitchell and Vaziraj14], and Kalyanasun-
daram and Pruhs [9] on the online metric matching probleergthre several bodies of
work related to our paper.

Special Metrics. The online metric matching problem has been studied for éise of
special metrics as well. For example, the case of a line matises naturally at ski
shops that have skis of various heights. As the skiers apriecby-one, the goal is to
match skiers to skis such that the total mismatch betweelettyth of the desired skis
and the actual skis is minimized. The line case also gerzesthe well-known “cow-
path” problem [1]. Koutsoupias and Nanavati [15] showed tha Generalized Work
Function algorithm of [10] is not constant competitive ftvetline metric. Fuchs et
al. [7] showed a lower bound of 9.001 for the line metric, whimplies that it is strictly
harder than the cowpath problem. Kalyanasundaram and Prijalso considered the
problem for general metrics when the adversary is allowdd balf as many servers
as the online servers. Recently, Chung, Pruhs and UthaisgBlconsidered the case
when the online algorithm is allowexhe extra serveat each point where the adversary
has a server; somewhat surprisingly, they gave a detenigiaigorithm that achieves
a competitive ratio of polylod(). Many variations of the problem have also been in-
vestigated: e.g., the minimum online bottleneck matching maximization version of
the problem, and the case where the points are uniformlyildised on a disk in the
Euclidean plane; for these, we refer the reader to the suyd¢alyanasundaram and
Pruhs [10] and the references therein.

The k-Server Problem. The online metric matching problem is similar to the well-
studiedk-server problemntroduced by Manasse, McGeoch and Sleator [17]: indeed,
it can be viewed as a restricted case of khgerver problem where the location of the
servers is fixed and not allowed to change. The methods usgidedower and upper
bounds for the online matching problem, particularly onduh&orm metric, are closely
related to the results fdr-server. Moreover, techniques used for khgerver problems,
most notably work-function algorithms, have also beenistlidor the online metric
matching problem [16, 15]. Throughout this paper, we wilbptthek-server view of

the problem: given an underlying metric space ariservers” with fixed locations, find
the minimum cost matching between the servers and the reqaresing online.

Offline Heuristics. The metric caseof the matching problem has also been studied
offline in the context of finding fast and simple heuristicgifgyold and Tarjan [21]
showed that greedily matching the closest (request, Sepaér, and recursing on the

remaining instance gave a(ﬂ(klog%)-approximation to the min-cost matching, and
that this bound was tight. A more sophisticated algorithimedng an approximation
bound ofO(log k) was given by Plaisted [20]. Finally, Goemans and William§&jn
constructed a primal-dual algorithm that achieve2an 2/n-approximation for the
minimum-weight perfect matching problem.

The Online Bipartite Matching Problem. A different (and equally natural) version of
the bipartite matching problem was proposed by Karp, Vaziaad Vazirani [13]. In
their version of the problem, the right side of the bipamjitaph is given in advance and
the vertices on the left side (along with their incident esjgere revealed sequentially.
Upon arrival, each vertex on the left-hand side must be neat¢b a right-hand side
vertex (if possible); moreover, these decisions are icatte. Karp et al. considered
the unweightedcase of the problem, where the goal is to match as many verise
possible, and gave an optim@l — 1/¢)-competitive randomized algorithm. Note that
in this version of the problem triangle inequality does naith A generalization to the
online b-matching was considered in [12], and several extensiows recently been
considered in the context of allocating ad-auctions intedeic markets [18, 4].

2 Preliminaries

The metric matching problens formally defined as follows. We are given a metric
space(V, d). In addition, we are given a set tfquestsk C V where|R| = k, and a

set ofserversS C V with |S| = k; the setsR and.S do not have to be disjoint. The
objective is to find a minimum cost bipartite matching betwé®e requests ik and

the servers irf. In theonlineversion of the problem, we know in advance the metric
space and the server sethowever, the sek of requests arrive one-by-one in an online
fashion. Upon arrival, a request must be immediately amydcably matched to some
unmatched server i§; changing the assignment of a previously-matched request o
server is not allowed. LeR = {ry, 79, ..., 7} be the set of requests according to their
arrival order and leb = {sq, s, ..., sx} be the set of servers.

Hierarchically Well-Separated Trees (HSTs).Our results, as well as the previous
results of [19], use a special type of tree metrics cal®ils (See Figure 1 for an
illustration.)

Definition 1 (HSTSs). Given a parametetr > 1, an a-Hierarchically Well-Separated
Tree @-HST) is a rooted tre@” = (V, E) along with a length functiod on the edges
which satisfies the following properties:

1. For each node, all the children ofv are at the same distance from

2. Forany node, if p(v) is the parent of andc¢(v) is any child ofy, thend(p(v),v) =
a - d(v, c(v)).

3. Each leaf has the same distance to its parent.

We view ana-HST as a leveled tree, where all the leaves are at the sarak dad
the edge-lengths increase geometrically by a facter a we go up the tree from the
leaves to the root.

A—
N(r,0) N(r,1) N(r,2) N(r,3) L(r) =3 L(s) =3
@ (b)

Fig. 1. Figure (a) shows an-HST. For a requestit illustrates the set of nodes (r, -). If request
r is matched to serveras in Figure (b), thed(r) = L(s) = 3.

Let H be ana-HST with n leaves. For each leaf nodéthat can be either request
node or a server node), [E{i, £) be the set of leaf nodes that are in the sub-tree of height
¢ that contains node Let N (4, ¢) be the leaf nodes that are in the sub-tfge, ¢) and
not in sub-tree’(i, ¢ — 1). The distance of nodefrom each node iV (7, ¢) is exactly

2%. It is easy to verify that for each nodethe setsV (i, ¢) induce a partition of
the servers with respect to the nad&iven a matching in which requesis matched
with servers we defineL(r) to be the level for whichs € N (r,). Similarly, letL(s)
be the level for which- € N (s, £). If servers is not matched yet we defig(s) = .

(The definitions are illustrated in Figure 1.)

Reducing from General Metrics to HSTs. The results of [6] imply that given any
metric (V, d) onn points, there is a probability distribution @@HST’s with the fol-
lowing properties(a) For each HSTI" in the support of the distribution, the leaves of
T correspond to the nodes &, and the distance in the trée (u,v) > d(u,v) for all
u,v € V, and(b) the expected distandg[dr (u, v)] between two nodes, v € V is at
mostO(alogn)d(u, v), where the expectation is taken over the random choice of the
HSTT. Furthermore, one can sample from this distribution in potyial time.

Using this result, a&8-competitive randomized algorithm for our problem oncan
HST directly implies arD (a5 log n)-competitive randomized algorithm on the original
metric. Note that a-priori, the number of nodem the metric space can be much larger
thank. However, we can still repladeg n by log & following an idea of Meyerson et
al. [19]: we construct the HST only for the submetric induoadthek server nodes.
Now, whenever a request arrives at some ppjnwe pretend that it has arrived at the
servers(p) closest to it, and handle it accordingly. Using the triangéguality and the
fact thatd(p, s(p)) summed over all requests is a lower bound on the optimumisolut
can change the competitive ratio by at most a constant factor

3 Previous algorithms

In this section we describe several basic results and angtsmehich will crucially be
used in the rest of the paper. We also describe the randomieedy algorithm which

is the basis of the previou(log® k) result of [19]. We show that the analysis is in fact
tight, and hence a different algorithm is necessary to alatdietter result.

3.1 The Uniform Metric

We begin by describing th®(log k) lower and upper bounds for the uniform metric.
Recall that the uniform metric consists of a set of pointhahat any two points are
at unit distance from each other. For the lower bound, censfte uniform metric on

k + 1 points labeled), 1, ..., k, and suppose that points2, ...,k (i.e., all except
0) contain one server each. The adversary places the firseseqtipointd. At each
subsequent step for the néxt- 1 steps, the adversary requests a point that has not been
requested thus far and is most likely to have a matched séoéz that just before the
ith requestis made (far> 2), there arék — i + 2) unrequested points each containing
a server, and one of these servers has already been matarext the probability that
the server at the requested point is already matched issitll&g& — i + 2). Summing
over all the requests, the expected cost incurred by anyemligorithm is at least
1+ ZfZQ 1/(k — i+ 2) = Hy = 2(logk). The offline algorithm on the other hand
only incurs a cost of 1.

We now show a matching upper bound. For a uniform metric @yws> k points),
each request is either collocated with a server, or elsattusit distance from it. Con-
sider the following algorithm inspired by the above lowewuhd: when a request ar-
rives, if there a collocated server still available, we rhatee request to it; otherwise
we choose an available server at unit distance uniformharadom and match the re-
quest to it. Consider an instance wher®f the arriving requests are not collocated
with a server (i.e., lie outside the sg). Clearly, the optimum offline algorithm has cost
u; moreover, the online algorithm also pays cost for each sachcollocated request.
Now consider the requests that arrive at points collocaifdawserver. Just before the
it" such request arrives, suppose there have alreadyhemon-collocated requests.
The crucial observation is that all the previaus 1 server locations where collocated
requests arrived have already been matched (either to solloeated request or one
of the u; requests). Morever, for each of the remaining- ¢ + 1 server locations,
each of them is unavailable with probability exacily/ (k — i + 1), which is at most
u/(k — i+ 1). Hence, tha?" request has an expected cost of at mggtk — i + 1);
summing up over the non-collocated and the collocated stguthe total expected cost
incurred is

w+ SV e < utuHy = O(ulogk).

3.2 The Randomized Greedy Algorithm

Meyerson et al. [19] considered the following simple randwed greedy algorithm:
whenever a request arrives, match it to the nearest unntbselneer. If there are several
unmatched servers that qualify, choose one of these unethdrvers uniformly at
random. In general metrics this approach can yield a comgetatio as bad ag8" —
1[9]. However, this algorithm performs quite well aAHST metrics with large enough
value of a. Specifically, Meyerson et al. analysed this algorithm omaAST with

a > 2Ink + 1, and proved it igD(log k)-competitive. This immediately implied an
O(alog? k) = O(log® k) competitive algorithm for general metrics.

An appealing approach to improve the competitive factooisry to remove the
requirementthat > 21n k+ 1. Meyerson et al. showed that= {2(log k) is necessary
for the randomized greedy algorithm to work. Specificallysipossible to prove the
following Lemma:

Lemma 1 ([19]). For any constant, there exists arf level a-HST and an input in-
stance with optimal cogb(a‘~!), such that the MNP Algorithm incurs
acost of2(Y'Z) (log k)it al=i=1),

i=

We remark that it is easily checked thatdf = o(log k), then the online cost is
substantially larger than the offline cost. A close inspctif the lower bound example
reveals that the lower levels have a disproportionateldrigontribution to the on-
line cost as compared with the offline algorithm. The mairbpgm is that the MNP
algorithm incurs too much cost in the lower levels until ializes that there are no
available servers in a subtree and that it needs to find arsem&de the subtree. The
lower bound example motivates a different approach thagés by our new constructed
algorithm.

4 An O(log k) Algorithm for 2-HST's

In this section we present a simple online algorithm whic®{®g k)-competitive on
an o-HST, for any constant value ef. For simplicity we setv = 2. Our algorithm
has three conceptual steps. First, in Section 4.1 we desardimple offline algorithm
that computes an optimal matching on an HST. In Section 4.2&fme a restricted
reassignment online model which is easier to handle. Weghare that we can obtain
an online algorithm witto reassignmentérom any online algorithm in the restricted
reassignment model without compromising the competitat@r Finally, in Section
4.3, we design a simple online algorithm in the restrictedsggnment model and prove
that it isO(log k)-competitive.

4.1 An Offline Algorithm

In this section we design a simpiéfline algorithm that computes an optimal solution
on an HST metric. This algorithm is essentially the greedyragch that matches the
closest request-server pair, and then recurses on thenagaistance. Reingold and
Tarjan [21] proved that this approach leads to a very pgbioe %)-approximation in
general metrics. However, we show here that this greedyoapprleads to an optimal
solution in the special case of HST metrics.

1. LetR andS be the current sets of unmatched requests and unmatchedssery
respectively. Initially,R and.S contain all requests and servers.

2. lterate on the levels from levél= 0 and up until the highest level.

3. lterate on the requestsc R in any order.

4. For each request if N(r,¢) NS # () matchr to any serverin N(r,{) N S
and remove- ands from R and.S, respectively. Otherwise, continue to the
next request irk.

We refer to this algorithm as th@eneric Algorithmsince it considers the requests
in arbitrary order, and the server it chooses for each requesm the setV(r, £) N .S
is also arbitrary. Thus, the algorithmfiexiblewith respect to these choices, meaning
that the output of the algorithm is not unique. This prop@ftyghe algorithm will be
very important in the sequel. We say that a matchifigs feasiblewith respect to the
Generic Algorithm if there exists a run of the algorithm thah generat@/. The next
Lemma proves that the algorithm outputs an optimal matchingny HST metric.

Lemma 2. The Generic Algorithm generates an optimal matching on am kStric.

Proof. Consider a subtre®; rooted at a nodé at height?. Let R(i) and.S(i) be the
number of requests and the number of servefE;irespectively. Clearly, any solution
must match at least'(:) = max(0, R(¢) — S(¢)) requests belonging t@; to servers
that lie outsideT;;. These requests must incur a cosgaf - £(i) when going up from
level ¢ to level¢ + 1 (nodei’s parent) and then coming down from level 1 back to
level . Thus, the optimum cost ORT') on the whole HST is at lea3t, . 2o/ E (i),
where the summation is over all nodesf 7', and/(i) denotes the level of

Now consider the behavior of our Generic Algorithm. Whenritfconsiders level
£, in each subtred; rooted at levek, no server inT; can be occupied by a request
outsideT;. Moreover, at Step (3), the unsatisfied requests;iare matched withifT;
as much as possible. Thus, exadilyi) requests remain unmatchedfinafter levell is
processed, and hence, by the same reasoning as above, théngaroduced has cost
exactlyy", ., 22/ E(i).

4.2 A Restricted Reassignment Online Model

In this section we define a different online model and prow thsuffices to design

a competitive online algorithm for this modified model. Wéereto the new model
as therestricted reassignment online mogat the name suggests, this model allows
some reassignment of previously arrived requests. Spalbyfin the new model we
are allowed to reassign a previously matched requeaith the following restriction:

if, currently, r, is matched to a server belonging ¥(r,, ¢) for some value/, then
the algorithm is allowed to reassigp only to a server belonging t& (r,,,), where

¢ > (. The online algorithm in the restricted reassignment mpdgk the cost odll
reassignments performed, and not just the cost of the finalhimgy computed.

We claim that any online algorithm in the restricted reassignt model can be
transformed to an online algorithm in the original model éndno reassignments are
allowed) with no additional cost. This is done by a very sienplethod. First, we can
assume without loss of generality that the algorithm in te& model is lazy and does
not reassign requests unnecessarily. That is, it only igress request if a currently
occupied server by it must be used to match another requessider a move of the
algorithm, where- is matched tos; that was previously matched t9. Request is
then matched to serves which was previously matched i@, and so on, until request
r¢ which was previously matched g is reassigned to a vacant serygr; . The change
in the matching is viewed in the following:

81 T1,82«T92,..., 8« Tty = I — 81,1 — S2,...,Tt—1 = T't, Tt — St+1

The original matching The matching after the reassignmerdgss

The cost of reassigning the requests in the new mod(éH&l)—l—Zf:l d(ri, Siv1)-
An algorithm in an online model with no reassignments wouduate this move by
simply matching- directly to s,1, paying a cost ofl(r, s;11). The following lemma
shows that the total cost of this algorithm with no reassignts is no more than the
cost incurred in the restricted reassignment model.

Lemma 3. In any iteration of the algorithmd(r, s;+1) < d(r,s1) + Z‘;Zl d(ri, 8it1)

Proof. The claim follows directly from the restrictions on the reigaments in the new
model. Assume that; was matched to a serverin level . Thus,r; ands; both belong
to the tre€T’(r;, £). By the restriction on the reassignmentscannot be reassigned to a
serverinl'(r;, /—1). Thus, the path from; to server,; passes through the root of the
treeT'(r;, £). Therefore, the path from; (that is, in the sub-tre@(r;, £)) to s; 41 Is at
mostd(r;, s;+1). Thus, we get that for anye {1,2,...,t}, d(s;, siv1) < d(ri, Sit1)-
Using the triangle inequality we get that:

d(r, s0401) < d(r,s1) + Sy d(siys0401) < d(r,s1) + Sy d(ri, si41)

4.3 AnO(log k)-Competitive Algorithm in the Restricted Reassignment Mol

In this section we present af(log k)-competitive algorithm for the online metric
matching in the restricted reassignment model. The alyoris as follows:

Initially, set L(s) = oo for all serversinS.
When request arrives, setf.(r) = 0:

1. Find the lowest level > L(r) in which there exists a servere N(r,£) NS
such thatL(s) > ¢.

2. Choose uniformly at random a serveamong the servers itV (r, ¢) N S for
which L(s) > ¢.

3. Matchr to s (and setL(r) = L(s) = ¢).

4. If s was previously matched to another requésthen reassign’ using the
same procedure (return to Step (1) with

Note that Step (1) above ensures that for each requets level L(r) can only
increase during the execution of the algorithm. Thus, tigerithm satisfies the re-
quirement of the restricted reassignment model. Suppesartival of a new request
causes the reassignment of requesiss, . . . ,r,. Then, the number of reassignments
is at most the height of the HST, since for alk p, L(r;) < L(r;+1). Also, by the
condition in Step (1) above, the levels) of each serves can only decrease during
the execution of the algorithm. The next lemma shows thafitta solution produced
by the algorithm is optimal (without taking into account st of reassignments).

Lemma 4. The final matching produced by the online algorithm is optima

Proof. We show that the solution produced by the online algorithrfeasible with
respect to the offline Generic Algorithm of Section 4.1. THuysLemma 2 the solution
is optimal.

Consider the final matching produced upon termination obtilme algorithm. Let
R; C R be the set of requests such tHat:) = i. We show how to obtain the final
online solution using the Generic Algorithm. In the first noliwe match all the servers
in Ry to the servers that are used by the online algorithm. In tberskbround we match
the requests i, to the servers used by the online algorithm, and so on. Itcasffio
show that this corresponds to a feasible run of the Genegomthm. To this end, it
is enough to show that for any after having matched the subget we cannot match

any request € R\ (U;.:O RZ—) to servers in level with respect ta-.

Assuming that this is not true, then after having matched¢heests ink;, there
still exists an unmatched requesthat can be matched with a servere N(r,i).
Consider the online iteration in which requeshad L(r) < ¢ and was matched (or
reassigned) to a server in a level higher theBuch an iteration must exist &¢r) starts
from zero and the requests eventually matched to a level higher thaMoreover, in
this iteration,L(s) > 7, since upon termination of the algorithh{s) > i (none of the
requests from the subs@'@:1 R; is matched ta), and the leveL(s) of each server can
only decrease during the execution of the algorithm. Theegfat this iteration, request
r could have been matched with a server in leMglith respect ta). This contradicts
the fact that in that iteration requesthose to be matched with a server with a level
strictly larger than.

Lemma 5. The expected cost of the reassignments of a regwelsich is matched upon
termination of the online algorithm to a serve(at distancei(r, s)) is O(log k)d(r, s).

Proof. Consider a request which is matched upon termination of the online algo-
rithm to a servek at level L(r) = L(s). During the execution of the algorithni(r)
is monotonically non-decreasing. Consider a lefjeéd < ¢ < L(r). We prove that
the expected number of timesis matched (or reassigned) to serversNiir, £) is
O(log N(r,£)) = O(logk). The intuition is the following. During the execution of
the algorithm, requestcan cause a reassignment of requésinly if ' is matched to
a servers’ which is strictly closer to- (i.e.s’ € N(¢,r), s’ € N(¢',r") andl < ¢'). In
this case we say thatis strongerthanr’. Request’ then chooses a new server which
is at least at the same distance frohass’ and is not occupied by any request which
is at least as strong && The set of servers satisfying the latter condition is tleesitele
set forr’ and its size is monotonically (strictly) decreasing over éxecution of the
algorithm. The main observation is thédtalways chooses uniformly at random a new
server from the set of feasible servers. Thus, the prolatilat the next request which
is stronger than’ will cause another reassignmentsdfis at most the inverse of the
size of the set of feasible servers for This gives us the harmonic number as an upper
bound on the expected number of reassignments, similathetaniform metric case.
Formally, fix any sequence of requests. Assume that at soneediiring the online
algorithm request is matched to a server iN(r, ¢) (if there is no such iteration then
we are done). Next, define the 3&t C N(r, ¢) of feasible matchings for requesto
be the set of servers iN(r, £) for which L(s) > ¢. The size ofi¥ can only decrease
throughout the execution of the algorithm. Next, consitierarrival order of requests
which are at least as strong@aand are matched to serverslin (until either request
is matched to a higher level or until the end of the executitfirjome request having

the same strength asarrives the probability that it causes a reassignmentisfzero.
Otherwise, since in each reassignment, the requesboses uniformly at random a
server among the remaining serversiify the probability that such a request causes
r to be reassigned is at mo%, where|WW| is the current size of the set of feasible
servers for. In either case the size ®F decreases by after each such arrival. Since
initially |[W| < |N(r,£)| (similarly to the uniform metric), it follows that the exped
number of reassignments untiis matched to a higher level, or is matched to its final
server, iSO(H y(r,p)) = O(log |N(r, £)|) = O(log k).

Since the metric is @-HST, the cost of each reassignment of requeist level ;
costs2(2! — 1). Therefore, the total expected cost of reassigning requissat most:
O(log k) S50 2(21—1) = O(log k)24 = O(log k)d(r, s), where the last inequality
follows sinced(r, s) = 2(25(") — 1).

Theorem 2. The online algorithm i$)(log k) competitive on HST’s.

Proof. By linearity of expectation and Lemma 5 the total expectexi obthe algorithm
is O(log k) times the final cost of the solution of the online algorithny. Bemma 4

the final solution is optimal and thus the total expected ob8te algorithm is actually
O(log k) times the optimum. Finally, by Lemma 3 we can translate tigisrithm easily

to the model with no reassignments without increasing tls co

5 Conclusions

In this paper, we designed an algorithm for the online metatching problem which is
O(log k)-competitive or2-HST’s, and thu®)(log® k)-competitive for general metrics.
The main open question is to design an algorithm with cortipetiatio O(log k), or
to improve the known lower bound. The analysis of such anrdlgn cannot proceed
along the same lines as we pursue, since approximating @emetrics by an HST
incurs a loss of2(log k) in the worst case, and moreover, there is(afhog k) lower
bound for the online metric matching problem even on HSTs.

Interestingly, the claims in Sections 4.2 and 4.3 can benebee easily to general
metrics, which implies that our algorithm @3(log k)-competitive for those metrics on
which the greedy approach of Section 4.1 generates a carigtdor approximation.
However, since the lower bound of Reingold and Tarjan [2Dwehthe existence of
metrics for which the greedy approach produces()z(hl"g%)-approximate solution,
applying our algorithm directly on such metrics might be asl IasQ(klOg% log k)-
competitive. Nonetheless, a possible direction to obtai@dog k)-competitive algo-
rithm for general metrics might be to combine our technigueSections 4.2 and 4.3
with a different offline heuristic, that results in &»(1)-approximation. It is some-
what strange to look for af(1)-approximation for a problem that is in polynomi-
ally solvable. However, such an algorithm that takes achgabf the metric properties
of the graph might be a key ingredient. A possible startingptpcan be the “hyper-
greedy” heuristic of Supowit, Plaisted, and Reingold [28]ttachieves a®(log k)-
approximation to the offline metric matching problem, or #he 2/n primal dual ap-
proximation algorithm of Goemans and Williamson [8].

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

R. A. Baeza-Yates, J. C. Culberson, and G. J. Rawlins.cBiegyin the planelnformation
and Computation106(2):234-252, 1993.

. Y. Bartal. Probabilistic approximations of metric spme@d its algorithmic applications. In

IEEE Symposium on Foundations of Computer Sciepages 184—-193, 1996.

. Y. Bartal. On approximating arbitrary metrics by tree fiest In STOC: ACM Symposium

on Theory of Computing (STO()998.

. N. Buchbinder, K. Jain, and J. Naor. The adauctions pnolsled extensions. To Appear in

ESA 2007.

. C. Chung, K. Pruhs, and P. Uthaisombut. The online trataton problem: On the expo-

nential boost of one extra server. Under submission.

. J. Fakcharoenphol, S. Rao, and K. Talwar. A tight boundpgmaximating arbitrary metrics

by tree metrics. I8TOC '03; pages 448-455, 2003.

. B. Fuchs, W. Hochstattler, and W. Kern. Online matchingadime. Theoretical Computer

Sciencepages 251-264, 2005.

. M.X. Goemans, D.P. Williamson. A General Approximatioacfinique for Constrained

Forest ProblemsSIAM Journal on Computin@4, 296-317, 1995.

. B. Kalyanasundaram and K. Pruhs. Online weighted magchinAlgorithms 14(3):478—

488, 1993.

B. Kalyanasundaram and K. Pruhs. Online network opttion problems, 1998. Online
Algorithms: The State of the Art, eds. A. Fiat and G. Woegingecture Notes in Computer
Science 1442, Springer-Verlag.

B. Kalyanasundaram and K. Pruhs. The online transjpamtaroblem. SIAM J. Discrete
Math,, 13(3):370-383, 2000.

B. Kalyanasundaram and K. Pruhs. An optimal deternminialigorithm for online b -
matching.Theoretical Computer Scienc233(1-2):319-325, 2000.

R. Karp, U. Vazirani, and V. Vazirani. An optimal algbrit for online bipartite matching.
In In Proceedings of the 22nd Annual STQrages 352—-358, 1990.

S. Khuller, S. G. Mitchell, and V. V. Vazirani. On-linegalrithms for weighted bipartite
matching and stable marriageEheor. Comput. Sgil27(2):255-267, 1994.

E. Koutsoupias and A. Nanavati. The online matchingleralon a line. I'WAOAQ3 pages
179-191, 2003.

E. Koutsoupias and C. Papadimitriou. On fhserver conjecture.Journal of the ACM
42(5):971-983, 1995.

M. S. Manasse, L. McGeoch, and D. D. Sleator. Competidiyerithms for online problems.
In STOC: ACM Symposium on Theory of Computpapes 322—-333, 1988.

A. Mehta, A. Saberi, U. V. Vazirani, and V. V. Vazirani. vdrds and generalized on-line
matching. INEEE Symposium on Foundations of Computer Scigpages 264—-273, 2005.
A. Meyerson, A. Nanavati, and L. Poplawski. Randomizelthe algorithms for minimum
metric bipartite matching. I8ODA '06; pages 954—-959, 2006.

D. A. Plaisted. Heuristic matching for graphs satisfytime triangle inequalityd. Algorithms
5(2):163-179, 1984.

E. M. Reingold and R. E. Tarjan. On a greedy heuristicéonglete matchingSIAM Journal
on Computing10(4):676—681, 1981.

A. Schrijver. Combinatorial optimization. Polyhedra and efficienayolume 24 ofAlgo-
rithms and CombinatoricsSpringer-Verlag, Berlin, 2003.

K. J. Supowit, E. M. Reingold, and D. A. Plaisted. The ¢thng salesman problem and
minimum matching in the unit squar8lAM J. Comput.12(1):144-156, 1983.

