To appear in the proceedingskWICAD 98, G.C. Gopalakrishnan andJPWindley, eds., Neember 1998.

Bit-Le vel Abstraction in the Verification of Pipelined
Micr oprocessors by Corespondence Checkinty

Mir oslav N. Velev" Randal E. Bryant" "
nvel ev@ce. crmu. edu randy. bryant @s. cnu. edu
http://ww. ece. crru. edu/ ~nvel ev http://ww. cs. crmu. edu/ ~br yant

*Department of Electrical and Computer Engineering
*School of Computer Science
Carngjie Mellon Unversity, Pittsturgh, A 15213, U.S.A.

Abstract. We present a ay to abstract functional units in symbolic simulation of
actual circuits, thus achimg the efect of uninterpreted functions at the bivdé
Additionally, we propose an fiient encoding technique that can be used to repre-
sent uninterpreted symbols with BDDs, while wafilog these symbols to be propa-
gated by simulation with a ceantional bit-leel symbolic simulatorOur abstraction

and encoding techniques result in an automatic symmetry reduction andttedlo
control and fonarding logic of the actual circuit to be used unmodified. The abstrac-
tion method hilds on the behaoral Efficient Memory Model [18][19] and its capa-
bility to dynamically introduce consistent initial state, which is identical far tw
simulation sequences.aMpply the abstraction and encoding ideas on ¢hiéica-

tion of pipelined microprocessors by correspondence checking, where a pipelined
microprocessor is comparedaigst a non-pipelined specification.

1 Intr oduction

The increasing compiéy of functional units in modern microprocessors and the need
to bagin the \erification at the systemMel early in the design process, before the indi-
vidual modules are implemented aea completely specified, requires the capability
to abstract the details of functional blocks. The focus of this papewidchachiee
such abstraction in formakrification methods based on symbolic simulation, while
keeping intact the control and faawding logic, as well as the bitvied connections in

the actual circuit. W also present anfieient encoding technique, t@ted to the logic

of uninterpreted functions with equality [5], that can be used for representing uninter-
preted symbols by means of BDDs [3]. This techniquenallsuch uninterpreted sym-
bols to be used while symbolically simulating the actual circuit at theuait;lthus
avoiding the need for the abstract model of the circuit required hyopie methods
based on uninterpreted functions [5][8][10]. The abstraction and encod&ugvely
achieve an automatic symmetry reduction of all data streams, whdpikg the con-

trol and forvarding logic of the actual circuit intact.

Our abstraction methodutdds on the Hfcient Memory Model (EMM) [18][19]
and particularly on its capability to dynamically introducer itial state (as required
by a simulation sequence) which is consistent withipusly introduced initial state.
In this paperwe imprae the eficiencgy of the EMM algorithms and data structures.

1. This research as supported in part by the SRC under contract 98-DC-068.

Furthermore, observing thatexry combinational block of logic can be implemented as

a read-only memory with the logic block inputs serving as memory addresses, we
abstract functional units at the bivé by replacing them with read-only EMMs. The
definition of the EMM automatically enforces consistentthe output alues for the
present input pattern with outpualues returned for pveous input patterns.

The presented abstraction and encoding techniques are combined witréhe
spondence checking method for erification of pipelined microprocessors by compari-
son to non-pipelined specifications. Correspondence checkasyinmtroduced by
Burch and Dill [5], who used uninterpreted functions to abstract the details of func-
tional units and memory arrays. Wever, their tool requires an abstract model of the
circuit, leaving room for errors in its description and raising concerns about the cor-
rectness of the actual procesggven the correctness of its abstract model. Correspon-
dence checking &s etended to the bit-leel and made applicable on actual circuits in
[4]. However, preliminary results [19] sheed that it did not scale well enough to be
suitable for application to actual microprocessors. The major sources of gitynple
were the symbolic modeling of all the bits of data in the data path and the feedback
loops, created by the foarding logic. Hence, the need for abstracting cormfulac-
tional units.

I:Spec
QSpec Q Spec

Flmpl
lepl Q Impl

Fig. 1. Commutatie diagram for the correctness criterion

The correctness criterion of correspondence checkingyrshoFig. 1, is due to
Hoare [9] who used it forerifying computations on abstract data types in sar#win
a later vork, Bose and Fisher [2] applied it to therification of pipelined circuits. The
implementation transformatidfy,, is verified by comparison agnst a specification
transformatiorFgpe. It is assumed that the dwtransformations start from a pair of
matching initial statesQmp andQgpe, respectiely - where the match is determined
according to some abstraction functidbs. The correctness criterion is that theotw
transformations should yield a pair of matching final stat€¥|p and Q'gpeq
respectiely - where the match is determined by the same abstraction function. In other
words, the abstraction function should mdke diagram commute. Note that there are
two paths fromQjmp to Q'gpec We will refer to the one that volves F,, as the
implementation side of the commutatidiagram, while the one thatvolves Fgpec
will be called the specification side.

Burch and Dills contritution [5] is a conceptually ajant way to automatically
compute the abstraction functidts that maps the pipeline state of a processor to its

uservisible state by symbolic simulation of the haedes design. Namelystarting
from a general symbolic initial sta@@, they simulate dlushof the pipeline by stall-
ing it for a suficient number of gcles to allev all partially executed instructions to
complete. Then, tlyeconsider the resulting state of the ugisible memories (e.g., the
register file and the program counter) to be the matching Q&g

Burch [6] has gtended the method to superscalar processification by pro-
posing a n& flushing mechanism (notice that the abstraction function can be arbitrary
as long as it mads the correctness criterion diagram commute) and by decomposing
the commutatie diagram into three more easilgrifiable commutatie diagrams. The
correctness of this decomposition isya&o in [21].

In bit-level correspondence checking, we use EMMs to represent both memories
and uninterpreted functional units in the implementation and specification circuits.
Essential to this is the EMM’property to dynamically introduce identical initial state
to two simulation sequences [4]. In replacing these blocks, we assume that their actual
implementations hee been erified separatelyFor example,symbolic tajectory eal-
uation[16][11] has been combined with symmetry reductions [14] to enablettie v
cation of \ery lage memory arrays at the transistaelle An eficient representation of
word-level functions has enabled therification of comple functional units lile float-
ing-point multipliers [7]. Additionallywe assume that the data path connectioms ha
been werified to guarantee that thean be abstracted as only manipulating Boolean
values and uninterpreted symbols.

Previous work on processing of uninterpreted functions with BDDs [8][10]
required an abstract model of the circuit. The modeling of uninterpreted functional
units was done by treating their inputs and outputs as primary outputs and inputs,
respectiely, and imposing constraints that the bleckutput @lues be consistent with
previous ones, gien the equality of their corresponding input patterns. The modeling
of memory arrays as more complicated in that it also required these constraints to
consider the &ct of previous writes on the memory statee\&chiee all these prop-
erties automatically by means of the EMM. While [8] and [10] generateG:Sruc-
tured expression, that thecall an IE netlist, which represents the correctness criterion
and then process itfefne, our method wrks dynamically as part of a symbolic simu-
lator. Finally, the techniques that these yoels methods used for encoding uninter-
preted symbols with BDDs are les$i@ént than ours. Symbolic model checking has
also been combined with uninterpreted functions [1].

In the remainder of the pap&ect. 2 defines the axioms of uninterpreted memo-
ries and functional units. Sect. 3 presents our technique for encoding of uninterpreted
symbols with BDDs. Sect. 4 describes the EMM. Sect. Svshow to achiee bit-
level abstraction of functional units by using the EMM. Dynamic generation of initial
EMM state is presented in Sect. 6. The correspondence checking methodology is the
focus of Sect. 7. Experimental results are presented in Sect. 8. Finaltjusions are
drawn and future wrk is outlined in Sect. 9.

2 Abstracting Memories and Functional Units

We will use the types addresspeession, AExpr, and data »gression,DExpr, for
denoting the kind of information that can be applied at the inputs or produced by the
outputs of an abstract memobet m, : AExpr — DExpr, defined as a mapping from
address xressions to dataxpressions, be the initial state of such a memohen,
mp(a), wherea is an addressxpression, will return the initial data of the memory at
addressa. The write operation for an abstract memory will be defined as
Write(my, a4, d;) —» my,1 [13], i.e., taking as guments the present staeof a mem-

ory, and addressxpressiona, designating the location which is updated to contain
data epressiond;, and producing the subsequent memory smatg, such that
m+1(a) - ITE(a; = ay, d;, m(ay)), where thelTE operator (for “If-Then-Else”)
selectd; when a; = a, is true, andmy(ay,) otherwise.

Based on the obsetion that ap functional block can be represented as a read-
only-memory (FOM), with the block$ inputs serving as memory addresses, we will
represent abstract functional units as abstred¥IR According to the semantics of an
abstract memory an abstract @M will always satisfy the property
a; =ay, O f(ay) =f(ay), wheref() denotes the output function of th®©R-modeled
abstract functional unit.

Motivated by application to actual circuits, we will represent address and data
expressions by actors of Booleanxgressions hang widthn andw, respectiely, for
a memory withN = 2" locations, each holding aond ofw bits. The typeBExpr will
denote Booleanx@ressions.

Address comparison is implemented as:

n
AEA2 = - \/ AL OA2, 1)
i=1
while address selectiohl — ITE(b, A2, A3} is implemented by selecting the corre-
sponding bits:

Al ITE(b, A2, A3), i=1,..n. (2)
The definition of data operations is simjlut over vectors of widthw.

An uninterpieted symbols a compact representation of ardrlevel datum. Wo
uninterpreted symbols are compatible ifyttege compared for equaljtgtored in the
same memoryor produced by the same memory inv&gicircuit. Adomainis a set of
compatible uninterpreted symbolsyplcally, separate domains are introduced for
instruction addresses gister identifiers, and gister file data.

3 Encoding Uninterpreted Symbols

3.1 Background

Decision procedures based on the logic of uninterpreted functions with equality
[13][17] use uninterpreted symbols to abstractly represemtl4evel values. Such
symbols (e.g.lU1, U2, andU3) are manipulated in twways: 1) comparison for equal-

ity, Ul = U2, where the result is a Boolean expression, and 2) selection,
U3 = ITE(b, U1, U2), where b is a Boolean expression, meaning that U3 = U1 if bis
true, and U3 = U2 otherwise. Boolean connectives - e.g., conjuction, digjuction, nega-
tion - can be applied on Boolean expressions and yield Boolean expressions. Although
limited, this logic is sufficient for verification by correspondence checking. However,
theinitial decision procedures for correspondence checking [5][6] have not been based
on BDDs, and thus have failed to exploit the simplification capabilities and manipula-
tive power of BDD packages.

Previous research on adopting these decision procedures to manipulations with
BDDs [10] has required a priori knowledge of the number of uninterpreted symbolsin
the same domain. Given that n uninterpreted symbols are required, Hojati et al. [10]
encode each of them with log(n) Boolean variables. Thus, they require atotal of n -
og(n)d variables. Goel et al. [8] do not explicitly encode the symbals, but introduce a
Boolean variable for every pair of symbols, indicating the conditions under which the
two symbols are equal. Thisresultsin atotal of n.(n-1)/2 variables.

3.2 Our Encoding of Uninterpreted Symbols

Ideally, we would like to use the control and forwarding logic of the actua circuit
intact in the simulations. Given that all thislogic doeswith itsinput bit vectorsis com-
parison for equality and selection, we would like to encode the input bit vectors with as
few Boolean variables as possible and in a way that will allow the resulting expres-
sions to be used for simulation of the actual circuit. Our technique to achieve thisis
illustrated in Table 1 for 4-bit vectors.

Uninterpreted Symbol Encoding
1 0 0 0 0
2 0 0 0 ap
3 0 0 ag1 azo
4 0 0 31 340
5 0 852 a5 350

0 ag ag1 agp
ag3 ag o a9 A0

16 6,3 | 6,2 | 6,1 | 16,0

Table 1. Encoding of 4-hit vectors that allows them to efficiently express the possibility that
they be pairwise either equal or different, so that they can be treated as uninterpreted symbols

When there is a single bit vector generated in a given domain, then it does not
need to be distinguished from other bit vectors, so that it can be represented with avec-
tor of binary constants, e.g., 0s. When a second vector is generated, we need to express

that it can be equal to or different from the first one. This can be done with a single
Boolean variable in the least significant bit of the vector and the same binary constants
in the other bit positions, as used in the first vector. When generating the nth vector, it
could potentially have n possible values, so that we use [log(n) Cnew Boolean variables
in the low order bits of the vector and the same binary constants in the remaining bit
positions. If the vectors have a width of k bits, as determined by the circuit, then the
number of variables generated for a new vector saturates at k. Note that the total num-
ber of Boolean variables that we need to encode n such vectorsis:

Z min([log(i) 7, k) .

i=1

In certain cases, we would like to allow distinguished constants in a given
domain, e.g., registers 0 and 31 in the MIPS microprocessor [15] to be treated differ-
ently from the rest of the registers. Thefirst oneis hardwired to data value 0, while the
second one is used to store the return address on a jump to subroutine instruction. We
can incorporate such constant bit vectors in a given domain by introducing extra vari-
ables that will select one of the constant bit vectors or a new partially symbolic vector,
generated according to our encoding. Additionally, we need to avoid exact replication
of aconstant vector in the encoding, so that when [0, 0, O, 0, OOis such a constant vec-
tor, the vector generator should start from [0, 0, 0, O, ; oLl Then, the number of Bool-
ean variables needed to encode the i uni nterpreted symbol will be
min(og(i + 1)0K).

New bit vectors can be generated in each domain by function GenDataExpr ().

4 Efficient Modeling of Memory Arrays in Symbolic Simulation

4.1 Symbolic Decisions

We will use the term context to refer to an assignment of values to the symbolic vari-
ables. A Boolean expression can be viewed as defining a set of contexts, namely those
for which the expression evaluates to true.

Note that predicate (1) in Sect. 2 is symboalic, i.e., it returns a symbolic Boolean
expression and will be true in some contexts and false in others. Therefore, a symbolic
predicate cannot be used as a control decision in algorithms. The function Valid(),
when applied to a symbolic Boolean expression, will return true if the expression is
valid or equal to true (i.e., true for all contexts), and will return false otherwise. We
can make control decisions based on whether or not an expression is valid.

We have used BDDs [3] to represent the Boolean expressions in our implementa
tion. However, any representation of Boolean expressions can be substituted, as long
as function Valid() can be defined for it.

4.2 EMM Operation

The EMM models memory arrays with write and/or read ports, all of which have the
same numbers of address and data bits - n and w, respectively - as shown in Figure 2.a.

An inward/outward triangle indicates an enable input of awrite/read port. The assump-
tion is that every memory system can be represented with such EMMs and possibly
some extra logic. For example, alatch can be viewed as a memory array with asingle
address, so that it can be represented as an EMM with one write and one read port,
both of which have the same number of data bits and only one address input, which is
identically connected to the same Boolean constant (e.g., true) - see Fig. 2.b.

MEMORY ARRAY

| WriteAddr0 ReadAddr0 [« LATCH
=ep-| WriteDataO ReadDatal |feieie
—p WriteEnableO ReadEnable0 J<—— 1 _ o] \WriteAddr ReadAddr le«— 1
: e | WriteData ~ReadData |ripe
n A n
-7 WriteAddrP ReadAddrQ |ay—
=—p-1 WriteDataP ReadDataQ |=ge Pe—
—p WriteEnableP ReadEnableQ M<e——
(@ (b)

Fig. 2. (a) A memory array that can be modeled by an EMM; (b) A latch modeled by an EMM

The interaction of the memory array with the rest of the circuit is assumed to take
place when a port Enabl e signa is 1 (i.e., true). In case of multiple port Enabl es
being 1 simultaneously, the resulting accesses to the memory array will be ordered
according to the priority of the ports. It will be assumed that the memories respond
instantaneously to any requests.

During symbolic simulation, the state of each EMM is represented with two lists -
init_list and write_list. It should be pointed out that we used a single list for that pur-
pose in our previous work [4][20]. The lists contain entries of the form [¢, a, dCJwhere
c is aBoolean expression denoting the set of contexts for which the entry is defined, a
is an address expression denoting a memory location, and d is a data expression denot-
ing the contents of this location. The context information is included for modeling
memory systems where the Write and Read operations may be performed condition-
ally depending on the value of acontrol signal. Initially the lists are empty.

In simulation, write_list is used for writes, and init_list is used for dynamic ini-
tialization of memory locations that have not been initialized or written before (as will
be explained shortly), so that the state of the EMM is the concatenation of the two lists,
with init_list having lower priority. An additional list, previous write_list, will be used
to store the contents of an EMM’swrite_list from a previous simulation sequence. The
type List will be used to denote such memory lists, and nil will designate the end of a
memory list. Thelist entries are kept in order from head (low priority) to tail (high pri-
ority). The entries towards the low priority end correspond to conceptually earlier
memory state. Entries may be inserted at either end, using procedures InsertHead()
and InsertTail().

The lists interacts with the rest of the circuit by means of a software interface
developed as part of the symbolic simulation engine. The interface monitors the mem-
ory input lines. Should a memory input value change, given that its corresponding port

Enabl e valuec is not 0, a\rite or aRead operation will result, as determined by the
type of the port. Th&ddr ess andDat a lines of the port will be scanned in order to
form the addressxpressioma and the dataxpressiond, respectiely. A Write opera-
tion takes as agguments botla andd, while aRead operation ta&s onlya. These oper-
ations will be presented shortly

A Read operation retriges from the lists (see Sect. 4.4) a daaressiorrd that
represents the data contents of addae3he softvare interbce completes the read by
scheduling th®at a lines of the port to be updated with the dagaression TE(c, rd,

d), i.e. to the retrieed data epressiorrd under the contés c of the operation and to
the old datagressiord otherwise

4.3 Implementation of the Memory Write Operation

procedure Write(List write_list, BExpr ¢, AExpr a, DExpr d)
/* Write datad to locationa under contetsc */
InsertTail(write_list, [¢, a, d0)

Fig. 3. Implementation of th&rite operation

TheWrite operation, shan as a procedure in Fig. 3, is implemented by inserting
an element into th&ail (high priority) end of a memory write list, indicating that this
entry should werwrite aly other entries for this address.

4.4 Dynamically Introducing Consistent Initial States

In correspondence checking, we needay wo enforce the assumption that the tw
sequences, resulting fromeasing the implementation and the specification sides of
the commutatie diagram in Fig. 1, start from the same initial stQlg,,, without
explicitly initializing every memory location. &/ achige this with functionRead(),

and by introducing a separateite list for accumulating the &fcts of Write opera-
tions in each of the sequencest b sharednit_list for storing their common initial
state. Nw initial state for locations that ha never been accessed by either a read or a
write, but are being read in the curremeution sequence, will be introduced on-the-
fly, as shan in Fig. 4.

FunctionRead() scans the concatenation of thdte list for the current xecu-
tion sequence and the commiait_list. It starts from the most recently written data in
thewrite list and proceeds baclands to the “conceptually oldest” initial state at the
beginning of theinit_list. FunctionTail() takes a memory list and returns its tail entry
FunctionPrevious() returns a memory list obtained from itg@ment memory list by
removing the tail entryThe Booleanxgpressiorfound is constructed to reflect the con-
texts under which the read locaticahas been written or has been initializedolind
is not true for all contds, a fresh dataxpressiong is generated for the particular
EMM by functionGenDataExpr(). Then, the entryirue, ra, glis inserted at the Vo
priority end of thenit_list, andg is reflected on the datamessiorrd that is returned.

In this way, subsequeriRead operations in either simulation sequence will encounter
the same initial state for locatioa in the gven memory

function Read(List init_list, List write_list, AExpr ra) : DExpr
/* read from location ra */
found — false
| — Concatenatelists(init_list, write_list)
if |#nil then [* scan backwards from most recently written data */
(@, a, d0 Tail(l)
rd « d
found - cO(a=ra)
| — Previous(l)
while (I # nil O =Valid(found)) do
(@, a, d0 Tail(l)
match — cO(a=ra)
rd — ITE(match, d, rd)
found — found O match
| — Previous(l)
if =Valid(found) then
g « GenDataExpr(init_list) /* introduce new initial state for addressra */
if Valid(=found) then
rd—g [* if found =false */
else
rd — ITE(found, rd, g)
InsertHead(init_list, drue, ra, g0
return rd

Fig. 4. Implementation of the Read operation

4.5 Comparing Final States

In order to verify the correctness criterion of correpondence checking, we need to
check that the two simulation sequences modified the state of each memory array in
the same way. This is done by function Compare(), presented in Fig. 5. It takes as
arguments the two write lists and the init_list for a memory array and returns a Bool-
ean expression representing the conditions under which the two sequences have equal
effects on the memory state. Since the updates of memory state are reflected only on
the write_list for the given execution sequence, while the initial state in init_list isthe
same for both sequences, we need examine only the memory locations in either
write list. We start from the heads of the write lists, as returned by function Head().
Function Next() returns a memory list obtained from its argument memory list by
removing the head entry.

The first while-loop skips pairs of identical writes made in both simulation
sequences, since they would modify the common initial state identically and, hence,
would preserve the equality of the memory state. When a pair of different updates is
detected or one of the write lists terminates, we need to check if every memory loca
tion modified then or later has the same contents at the end of both simulation
sequences. This is done in the subsequent while-loops. The memory list
substitution_list stores new initia state, introduced during the comparison, which is

used for common subexpression elimination of the identical state. It is assumed that
applying function Next() to list | does not affect either of the write lists. As an optimi-
zation, which is not shown, one could keep a table of addresses that have been com-
pared in order to avoid repetition of computations.

function Compare(List write_list;, List write_list,, List init_list): BExpr
identical — true
while (write_list; # nil O write_list, # nil O identical) do
[* eliminateidentical entries at beginning of both writelists */
¢4, aq, d1|:|<— Head(erte_llStl)
[y, ay, d2|:|<— Head(erte_llStz)
identical « ci=c, Day=a, 0 d;=d,
if identical then
write_list; — Next(write list;)
write_list, — Next(write listy)

equal — true
substitution_list — nil [* for substitution of common subexpressions */
| — write listy

while (I # nil O - Valid(-equal)) do
(¢, a, dd— Head(l)
rd; — Read(substitution_list, write_list;, a)
rd, — Read(substitution_list, write_list,, a)
equal — equal O(rd; =rdy)
| — Next(l)

| — write list,

while (I # nil O - Valid(-equal)) do
(¢, a, dd— Head(l)
rd; — Read(substitution_list, write_list, a)
rd, — Read(substitution_list, write_list,, a)
equal — equal O(rd; =rdy)
| — Next(l)

return equal

Fig. 5. Comparing for equality the states of the two write lists for an EMM

The presented version of function Compare() would flag an error when a data
expression has been read from a memory address and then written back unmodified to
the same address during one of the simulation sequences, but has not been accessed
during the other simulation sequence. Assuming that this situation would not occur
allows us to use the optimization of skipping the identical initial state and identical
sequence of writes, which resultsin reduced BDD sizes. In the case of a counterexam-
ple, the unoptimized version of function Compare() [4] can be used to ensure that the
counterexample is not a false negative.

5 Bit-Level Uninterpreted Functions Modeled by the EMM
In order to abstract functional units, while keeping their bit-level inputs and outputs,

10

we exploit the capability of the EMM to dynamically introduce initial state, as required
by the given simulation sequence. Based on the observation in Sect. 2 and the defini-
tion of the EMM, we can model abstract functional units as read-only EMMs, which
have a single read port that is constantly enabled, i.e., its Enabl e signal is connected
to the Boolean constant true. Such EMM’s address inputs are formed by concatenating
the functional unit’s data and control inputs (see Fig. 6), while the EMM’s data outputs
are connected with the functional unit’s data outputs. In this way we use the EMM asa
ROM whose contents are generated on-the-fly.

Out

FunctionControl Dala je—

Ini L Address |- <
A D1
b —= Out FunctionControl
1 N2 i Inl
In2

(@ (b)

Fig. 6. (a) A functiona unit; (b) Its abstraction by aread-only EMM

Since such an EMM is never written to, its two write lists will be empty and the
Read operations will scan only the init_list. The implementation of function Read()
guarantees the consistency of the output data expressions, i.e., that they be equal if
their respective input patterns are equal. Thus, we avoid the need to explicitly impose
such auxiliary constraints as donein [8][12].

6 Generating Initial Memory State

6.1 Motivation

Using BDDs requires a global ordering of the Boolean variables. However, when per-
forming Read operations, an EMM’s address expression will be compared for equality
to other address expressions for the same EMM and the resulting Boolean expression
will select data expressions. Hence, if the variables used in the address expressions are
intermixed with or situated after the variables used in data expressions, then the data
expression variables will need to be replicated for every possible outcome of the
address expressions’ comparisons for equality as these outcomes will become known
at a lower level in the BDD shared DAG. Hence, the exponential complexity of the
BDD representation of the Boolean expressions within that EMM’s data expressions.
This can be avoided by placing the address variables before the data variables in the
global variable ordering.

Similarly, control variables (e.g., that will represent operation-codes and func-
tional-codes) need to be placed before the data variables that they will affect. Again,
the control variables will select one out of many operations to be performed on the data

11

variables, so that the above argument still applies.

In order to account for the above two rules, we introduce the notion of ordered
variable groups. Each variable group contains vectors of symbolic Boolean variables
that are used for the same purpose (e.g., addresses, control, data). These variables can
be either interleaved or placed sequentially in the variable order, but cannot be inter-
mixed with variables from another variable group. Additional vectors from the same
group can be generated dynamically, as required by the circuit for a given symbolic
simulation sequence. Furthermore, when these vectors are used only for comparison
for equality and selection, given the functional units are abstracted by EMMs, the vec-
tors can be encoded as presented in Sect. 3. The variable groups are ordered based on
their relation, according to the above two rules.

Therefore, the ideal global ordering of the variable groups, needed to verify the
MIPS pipeline [15] for its register-register and register-immediate instructions (see
Fig. 7), will be: instruction-addresses, operation-codes, functional-codes, register-
identifiers, immediate-data, and data (when listed from first to last in the global order-
ing of the variables). The need to use two data groups is dictated by the format of the
MIPS register-immediate instructions. Notice that the instruction-address variables
represent the contents of the program counter (PC) and identify locations of the
instruction memory (IMem), so that they need to be placed before the instructions (that
will represent the contents of the IMem), i.e., before all other variable groups. The jus-
tification for the ordering of the other variable groupsis similar.

| Op | Rs | Rt | Rd |00000| Fn | register-register instruction
31 2625 2120 1615 1110 65 0

Rs | Rt | I mm | register-immediate instruction
31 2625 2120 1615 0

| 00000000000000000000000000000000 | NOP instruction
3T 0

Fig. 7. The MIPS formats for register-register, register-immediate, and NOP instructions. The
instructions are encoded with 32 bits, numbered O through 31 - see the digits below the rectan-
gles. Op stands for the operation-code field of 6 bits, Fn represents the functional-code field of 6
bits, and | mmis the immediate field of 16 bits. Rs, Rt and Rd are 5-bit register identifiers. Rs
and Rt are the source registers, while Rd is the destination register, for register-register instruc-
tions. Rs isasource register providing the second operand, and Rt is the destination register for
register-immediate instructions

Furthermore, modern instruction set architectures consist of widely varying
classes of instructions. As Fig. 7 shows, agiven instruction bit may be used in different
ways in the actual hardware under different conditions. For example, the lowest 6 bits
of the MIPS instructions can represent the functional code in register-register instruc-
tions, or part of the immediate data in register-immediate instructions. Ideally, these 6
bits would be encoded with functional-code variables for the register-register instruc-
tions, and data variables for the register-immediate instructions. Furthermore, the func-

12

tional-code wriables need to be placed before the datables, since the functional
code determines what operations are to be performed on the data by the ALU. One
drawvback of BDDs [3], used as a representation of Boolgaressions in our imple-
mentation of the presented algorithms, is that tequire a global ordering of than-

ables. Supplying a singleegtor of Boolean ariables for the initial state of the
instruction memory at a particular address location will mean that a dynanatie-
reordering BDD package will need to find afeliént global ariable orderconditional

on the type of the instruction. This will be impossible for a symbolic instruction repre-
senting man instruction formats simultaneousiSimilarly, the state bits in the pipe-

line latches may be used infeifent ways under dferent conditions.

Finally, not all possible binary states are reachable and we need the capability to
restrict the set of initial statesaduated.

6.2 Indexing of Variable Groups

The state-encoding technique, calledrtable-group indeng,” allows the EMM to
return a diferent data xpression for each distinct control combination. The possible
data epressions are selected by means ofimdgvariables, whoseariable group

has to be situated after the instruction-addresses and before the rest arfiahle v
groups. The resulting datxpression is generated according to a pattern, defined by
the use for each EMM - see Fig. 8.

gendat aexpr | Mem (

Ind : Index
Rs, Rt, Rd : Regld
I'mm: | mmDat a
switch <l nd> (
case <0, 0>: /* ori */
return <0,0,1,1,0,1, Rs, Rt, Imm
case <0, 1>: [* or */
return <0,0,0,0,0,0, Rs, R, Rd,0,0,0,0,0,1,0,0,1,0, 1>
defaul t: /* nop */

return <0,
0,0,0,0,0,0,0>
)
)

Fig. 8. Definition of the wariable-group inddéng pattern for the MIPS instruction memory

(I Mem), when erifying the pipeline for only 3 instructionsri , or, andnop. The operation

and functional codes are represented with constants, as defined in the Instruction Set Architec-
ture of the MIPS. & a complete erification of the pipelined processtite abge inding pat-

tern must bexpanded to includevery legal instruction. Suchariable-group indeng patterns

must be defined for all memories, pipeline latches, and functional units, abstracted with EMMs

I ndex, Regl d, andl mDat a are the declaration names for the idg, regis-
ter-identifier, and immediate-dateaviable groups, respeedly. | nd, Rs, Rt , Rd, and
I rmare \ectors of fresh Boolearaviables generated within the correspondiag-v
able group by being interlead with other suchectors in the sameaviable group.

13

Theswi t ch statement uses the vector of indexing variables in order to select one out
of the three possible patterns for the initial state of the instruction memory, according
tothecase and def aul t directives. A Boolean expression, global_care_set, can be
used to accumulate (by means of conjunction) the effect of any conditions that the
newly generated vectors of Boolean variables must satisfy. Notice that the variable-
group indexing technigque makes possible the verification of a microprocessor for a
subset of itsinstruction set architecture.

As Fig. 8 shows, we might be imposing restrictions on the initial state that is gen-
erated on-the-fly by GenDataExpr (), therefore considering a subset of the system state
space as a possible initial state. These restrictions are due to the sparse encoding of
instructions and the sparse encoding of internal vectors of control signals. However,
the correctness criterion expressed by the commutative diagram from Fig. 1 is a proof
by induction. It proves that if the implementation starts from an arbitrary initial state
Qimpl» and is exercised with an arbitrary instruction, then the reachable state Q'jyy
will be correct, when compared (by means of an abstraction function) to the specifica-
tion’s behavior for an arbitrary instruction. Since the initial state Qg is arbitrary,
thenitisasuperset of the reachable state Q'j), S0 that, by induction, the implementa-
tion will function correctly for an arbitrary instruction applied to Q. However, if
the initial state Q) is restricted to a subset of the system state space, and Q' is
not a subset of Q) then the inductive argument for the correctness criterion would
not hold. Hence, we need to check that Q' is asubset of Q. Thisis equivalent to
proving an invariant of the implementation - see [20] for details on how we do that.

7 Correspondence Checking M ethodology

Stepl. Load the pipelined implementation. Let init_list — nil, write_list — nil for
every memory in thecircuit. global_care set — true.

Step2. Simulate the implementation circuit for one clock cycle with a (legal) sym-
bolic instruction. Verify the invariant of the pipelineinitial state [20].

Step 3. Simulate aflush of the implementation circuit.

Step 4. Let previous write list — write list, write list — nil for each memory in
the implementation.

Step 5. Simulate aflush of the implementation circuit.

Step 6. Swap the implementation and the non-pipelined specification circuits by
keeping the contents of the memory lists for every user-visible memory.

Step7. Simulate the specification circuit for one clock cycle with the same sym-
bolic instruction asused in Step 2.

Step 8. Let eguality; —~ Compare(write listj, previous write_listj, init_list;) ,
i =1, ..., u, whereu isthe number of user-visible memories.

Step 9. Form the Boolean expression for the correctness criterion:

u
global_care set O /\ equality;,

i=1
where global_care_set is updated by function GenDataExpr() with condi-
tions that constrain the initial memory state to be legal.

14

8 Experimental Results

We examined a 3-stage pipelined MIPS processor [20], which is comparable to the
pipelined data paths used in [5][8]. lasvcompared to its non-pipelinedrsion. The
register file and pipeline latches, including the PC, were modeled as EMMs. Addition-
ally, for the eperiments studying abstraction of functional units by EMMs, we
replaced the ALU in the data path and the Sign Extension logic with one EMM, and
the adder that increments the PC with another EMM. The 3 stages in the pipeline are
Fetch-and-Decode, Exute, and Write-Back. In order tovesticate the potential of

our abstraction and encoding techniques to scale for application to morexpipple
lines, we performedx@eriments with pipelines where one,otwor three “Dummy”
stages are inserted between theedie and Write-Back stages. That increases the
total number of pipeline stages to 4, 5, or 6, respagtiThese Dummy stages do not
perform aly function, ecept that thg temporarily store the result and each add
another lgel of forwarding logic for the inputs of the ALU.ef MIPS instructions

[15] were supported by this processor and its non-pipeliaesion: five registerregis-

ter instructions eor , and, add, sl t , andsub; four reggisterimmediate instructions -
ori,andi,addi,andsl ti;and thenop.

The experiments were performed on an IBM RS/6000 43P-140 with a 233MHz
PowerPC 604e microprocessor, having 256 MB of physical memory, and running AIX
4.1.5. Table 2 showthe results for CPU time and memory consumption, required for
theverification. In the gperiments labeled “Gate-icel;” the ALU, the Sign Extension
logic, and the adder that increments the PC were modeled atéhergl, while in the
experiments labeledAbstr,” these functional units were abstracted by read-only
EMMs. In the cases of “Encodifigthe uninterpreted symbols were generated as
described in Sect. 3. When no encodiraswsed, completeeetors of Booleanari-
ables were generatedalile 3 presents the total number afiables and the maximum

number of BDD nodes, produced in thgperiments studying abstraction.

CPU Time|[g] Memory [MB]
;‘;’ Experiment Data Path Width Data Path Width
4 8 16 | 32 | 64 4 8 16 | 32 | 64
Gate-Leel 137 | 392 | 2555| --- - 25 97 193 | --- -
3 ||Abstr. 34 58 138 | 419 | 1569|| 13 23 43 96 241
Abstr. & Encoding| 2 2 2 2 3 2 2 2 2 2
Abstr. 582 | 1413| -- 97 | 192 | -
4 Abstr. & Encodingd| 12 12 13 13 16 4 4 4 4 4
5 ||Abstr. & EncodingI 115 | 115 | 117 | 118 | 124 || 25 25 25 25 25
6 ||Abstr. & Encodind 958 | 969 | 967 | 1018 1010(| 97 97 97 97 97

Table 2. Experimental results. The “Gateatad” experiments ran out of memory for more than
3 pipeline stages, while thegeriments with abstraction without encoding ran out of memory
for more than 4 stages. Additionalbxperiments designated with “---" ran out of memory too

15

The use of abstraction reduces the CPU time and memory consumption by an
order of magnitude. However, the CPU time depends quadratically on the data path
width, while the memory has a dependence that is between linear and quadratic. The
combination of abstraction and encoding further reduces the CPU time and memory
and makes them invariant with the data path width. As Table 3 shows, the max. number
of BDD nodes is constant with the data path width for the cases of abstraction and
encoding, while it grows linearly with the data path width for the cases of abstraction
only. Hence, our abstraction and encoding techniques effectively achieve a symmetry
reduction, while keeping intact the control and forwarding logic of the processor.

Extralevels of forwarding logic, due to dummy stages, increase the complexity of
the Boolean expressions at the inputs of the abstracted ALU and result in an exponen-
tial complexity. Thisis due to the fact that the read-only EMM, that replacesthe ALU,
is addressed with Dat a uninterpreted symbols coming from the register file or from
the subsequent pipeline latches by means of the forwarding logic. On the other hand,
thisEMM hasto produce data expressions of Dat a uninterpreted symbols, since these
will be written back to the register file. Hence, Dat a uninterpreted symbols are com-
pared for equality as EMM addresses against other Dat a uninterpreted symbols,
which are already used as addresses in the init_list for that EMM, and are used to
select uninterpreted symbols of the same type. Clearly, this results in an exponential
complexity.

Total BDD Variables Max. BDD Nodes (x10°)
o)
gg)? Experiment Data Path Width Data Path Width
41 8l16|32]|6| 4 8 | 16 | 32 | 64

Abstr. 231 | 267 | 339 | 483 | 771 524 924 1,751 | 4,194 | 8,693
3

Abstr. & Encoding 163 | 167 | 175 | 191 | 223 21 22 22 22 22

Abstr. 252 | 300 | --- --- --- 4,194 | 8,389 - - -
4

Abstr. & Encoding 182 | 186 | 194 | 210 | 242 131 131 131 131 131
5 ||Abstr. & Encoding 202 | 206 | 214 | 230 | 262 || 1,049 | 1,049 | 1,049 | 1,049 | 1,049
6 ||Abstr. & Encoding 222 | 228 | 236 | 252 | 284 || 4,194 | 4,194 | 4,194 | 4,194 | 4,194

Table 3. Variables and max. BDD nodes generated for the experiments with abstraction. When
no encoding was used, complete vectors of variables were generated. “---" means the
experiment ran out of memory

For all of the experiments the variable groups were ordered in the following way:
instruction addresses, indexing variables, register identifiers, immediate data, and data,
when listed from first to last in the variable order. The optimal results for the experi-
ments with abstraction and encoding for 3 or 4 pipeline stages were obtained by bit-
wise interleaving the complete vectors of indexing variables, but placing sequentially
in the variable order the variables for the uninterpreted symbols of type register identi-
fier, immediate data, and data. For example, when generating a new uninterpreted sym-
bol of type register identifier, its variables will be placed sequentialy after the

16

variables of previously generated uninterpreted symbols of the same type, but before
the variables for uninterpreted symbols of type immediate data. Also, the optimal
results were obtained by ordering the pipeline latches from last to first in the pipeline
when generating their initial state, i.e., the latch before the Write-Back stage gets its
initial state generated first, while the latch before the Execute stage getsitsinitial state
generated last. For the experiments with pipelines of 5 or 6 stages, the optimal results
were obtained by bit-wise interleaving the variables of the uninterpreted symbols of
type register identifier and data.

Adding an extra pipeline stage after the Execute stage requires that initial state be
produced for it. That leads to the generation of an extra uninterpreted symbol in the
Regl d group, in order to represent the destination register for the result stored in that
stage, so that the number of Regl d uninterpreted smbols needed is 4 + p, wherep is
the number of pipeline stages. The number of Dat a uninterpreted symbols necessary
for the verification is 6 + p. The number of uninterpreted symbols generated is invari-
ant with the data path width. The use of encoding reduces the total number of Boolean
variables needed for the verification and makes it much less dependent on the data path
width. That number still varies with the data path width because of the need to gener-
ate complete vectors of Boolean variables for checking the invariant of the pipelineini-
tial state [20].

Introducing bugs in the forwarding logic or the instruction decoding PLA of the
pipelined processor resulted in generation of counterexampl es that increased the mem-
ory consumption up to 1.5 times but kept the CPU time almost the same, compared to
the experiments with the correct circuit.

We also extended the initial 3 stage pipeline with a Memory stage between the
Execute and Write-Back stages, and incorporated a load and a store instruction in the
control of the processor. The verification experiments ran out of memory. Thereason is
that the Data Memory (we modeled it separately from the Instruction Memory in order
to avoid the complexity of counterexamples due to self-modifying code) gets
addressed with Dat a uninterpreted symbols produced by the ALU in the Execute
stage. At the same time the Data Memory has to produce Dat a uninterpreted symbols
to be written back to the register file. As discussed for the case of the ALU, that results
in an exponential complexity.

9 Conclusions and Future Work

We proposed a way to abstract functional units at the bit level, by using the Efficient
Memory Model in a read-only mode. We combined that with an encoding technique
that allows uninterpreted symbols to be represented efficiently with Boolean variables,
without a priori knowledge of the number of required symbols. An advantage of these
ideas is that they keep the control and forwarding logic in the actual microprocessor
intact, while achieving the effect of an automatic symmetry reduction.

A weakness of our methodology is that when using Os for the high order bitsin
our encoding of uninterpreted symbols, we do not verify the correctness of the data
transfer paths for these bits. This can be avoided by simulating the circuit entirely sym-

17

bolically for one cycle and then analyzing the reached next state. Additionally, we
need to check that the unabstracted logic of the processor does not use the uninter-
preted symbols in a way that their encoding is not suitable for. These issues will be
addressed in our future research. We will aso work on automating the process of
defining the initial state for pipeline latches and will explore techniques to overcome
the exponential complexity of verifying pipelines with load/store instructions and
many levels of forwarding logic.

References

1. S Berezin, A. Biere, EIM. Clarke, and Y. Zhu, “Combining Symbolic Model Checking with Uninter-
preted Functions for Out-of-Order Processor Verification,” FMCAD’98 (appears in this publication).

2. S.Bose, and A.L. Fisher, “Verifying Pipelined Hardware Using Symbolic Logic Simulation,” Interna-
tional Confeence on Computer Desig@ctober 1989, pp. 217-221.

3. R.E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams,” ACM Com-
puting Servgs Vol. 24, No. 3 (September 1992), pp. 293-318.

4. R.E. Bryant, and M.N. Velev, “Verification of Pipelined Microprocessors by Comparing Memory Exe-
cution Sequences in Symbolic Simulation,”2 Asian Computer Science Cordace(ASIAN'97, RK.
Shyamasundar and K. Ueda, eds., LNCS 1345, Springer-Verlag, December 1997, pp. 18-31.

5. JR.Burch,and D.L. Dill, “Automated Verification of Pipelined Microprocessor Control,” CA/'94, D.L.
Dill, ed., LNCS 818, Springer-Verlag, June 1994, pp. 68-80.

6. J.R. Burch, “Techniques for Verifying Superscalar Microprocessors,” DAC'96, June 1996, pp. 552-557.

7. Y.-A. Chen, “Arithmetic Circuit Verification Based on Word-Level Decision Diagrams,” Ph.D. thesis,
School of Computer Science, Carnegie Mellon University, May 1998.

8. A.Godl, K. Sgjid, H. Zhou, A. Aziz, and V. Singhal, “BDD Based Procedures for a Theory of Equality
with Uninterpreted Functions,” CA/'98, June, 1998.

9. C.A.R. Hoare, “Proof of Correctness of Data Representations,” Acta Informatica1972, Vol.1, pp. 271-
281.

10. R. Hojati, A. Kuehimann, S. German, and R.K. Brayton, “Validity Checking in the Theory of Equality
with Uninterpreted Functions Using Finite Instantiations,” International Vérkshop on Lgic Synthesis
May 1997.

11. A. Jain, “Formal Hardware Verification by Symbolic Trajectory Evaluation,” Ph.D. thesis, Department
of Electrical and Computer Engineering, Carnegie Mellon University, August 1997.

12. T.-H. Liu, K. Sgjid, A. Aziz, and V. Singhal, “Optimizing Designs Containing Black Boxes,” 34th
Design Aitomation Confence June 1997, pp. 113-116.

13. G. Nelson, and D.C. Oppen, “Simplification by Cooperating Decision Procedures,” ACM Transactions
on Programming Languges and System¥ol. 1, No. 2, October 1979, pp. 245-257.

14. M. Pandey, “Formal Verification of Memory Arrays,” Ph.D. thesis, School of Computer Science, Carn-
egie Mellon University, May 1997.

15. D.A. Patterson, and J.L. Hennessy, Computer Oganization and Design: The Haware/Softwae Inter-
face 2nd Edition, Morgan Kaufmann Publishers, San Francisco, CA, 1998.

16. C.-J.H. Seger, and R.E. Bryant, “Formal Verification by Symbolic Evaluation of Partially-Ordered Tra-
jectories,” Formal Methods in System Desjdfol. 6, No. 2, March 1995, pp. 147-190.

17. R.E. Shostak, “A Practical Decision Procedure for Arithmetic with Function Symbols,” J. ACM, Vol.
26, No. 2, April 1979, pp. 351-360.

18. M.N. Velev, R.E. Bryant, and A. Jain, “Efficient Modeling of Memory Arrays in Symbolic Simula-
tion;"2 CAV'97, O. Grumberg, ed., LNCS 1254, Springer-Verlag, June 1997, pp. 388-399.

19. M.N. Velev, and R.E. Bryant, “Efficient Modeling of Memory Arrays in Symbolic Ternary Simula-
tion? International Confeznce on @ols and Algorithms for the Construction and Analysis of Systems
(TACAS'98) B. Steffen, ed., LNCS 1384, Springer-Verlag, March-April 1998, pp. 136-150.

20. M.N. Velev, and R.E. Bryant, “Verification of Pipelined Microprocessors by Correspondence Checking
in Symbolic Ternary Simulation”2 International Confeznce on Application of Concueemcy to System
Design (CSD*'98)IEEE Computer Society, March 1998, pp. 200-212.

21. PJ. Windley, and J.R. Burch, “Mechanicaly Checking a Lemma Used in an Automatic Verification
Tool,” FMCAD'96, M. Srivas and A. Camilleri, eds., LNCS 1166, Springer-Verlag, November 1996,
pp. 362-376.

2. Availablefrom: http://ww. ece. crmu. edu/ ~nvel ev

18

