
To appear in the proceedings ofFMCAD ’98, G.C. Gopalakrishnan and P.J. Windley, eds., November 1998.

1

Bit-Level Abstraction in the Verification of Pipelined
Micr oprocessors by Correspondence Checking1

Abstract. We present a way to abstract functional units in symbolic simulation of
actual circuits, thus achieving the effect of uninterpreted functions at the bit-level.
Additionally, we propose an efficient encoding technique that can be used to repre-
sent uninterpreted symbols with BDDs, while allowing these symbols to be propa-
gated by simulation with a conventional bit-level symbolic simulator. Our abstraction
and encoding techniques result in an automatic symmetry reduction and allow the
control and forwarding logic of the actual circuit to be used unmodified. The abstrac-
tion method builds on the behavioral Efficient Memory Model [18][19] and its capa-
bility to dynamically introduce consistent initial state, which is identical for two
simulation sequences. We apply the abstraction and encoding ideas on the verifica-
tion of pipelined microprocessors by correspondence checking, where a pipelined
microprocessor is compared against a non-pipelined specification.

1 Intr oduction

The increasing complexity of functional units in modern microprocessors and the need
to begin the verification at the system level early in the design process, before the indi-
vidual modules are implemented or even completely specified, requires the capability
to abstract the details of functional blocks. The focus of this paper is how to achieve
such abstraction in formal verification methods based on symbolic simulation, while
keeping intact the control and forwarding logic, as well as the bit level connections in
the actual circuit. We also present an efficient encoding technique, targeted to the logic
of uninterpreted functions with equality [5], that can be used for representing uninter-
preted symbols by means of BDDs [3]. This technique allows such uninterpreted sym-
bols to be used while symbolically simulating the actual circuit at the bit-level, thus
avoiding the need for the abstract model of the circuit required by previous methods
based on uninterpreted functions [5][8][10]. The abstraction and encoding effectively
achieve an automatic symmetry reduction of all data streams, while keeping the con-
trol and forwarding logic of the actual circuit intact.

Our abstraction method builds on the Efficient Memory Model (EMM) [18][19]
and particularly on its capability to dynamically introduce new initial state (as required
by a simulation sequence) which is consistent with previously introduced initial state.
In this paper, we improve the efficiency of the EMM algorithms and data structures.

1. This research was supported in part by the SRC under contract 98-DC-068.

Mir oslav N. Velev*

mvelev@ece.cmu.edu
http://www.ece.cmu.edu/~mvelev

Randal E. Bryant‡, *

randy.bryant@cs.cmu.edu
http://www.cs.cmu.edu/~bryant

*Department of Electrical and Computer Engineering
‡School of Computer Science

Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

2

Furthermore, observing that every combinational block of logic can be implemented as
a read-only memory with the logic block inputs serving as memory addresses, we
abstract functional units at the bit level by replacing them with read-only EMMs. The
definition of the EMM automatically enforces consistency of the output values for the
present input pattern with output values returned for previous input patterns.

The presented abstraction and encoding techniques are combined with thecorre-
spondence checking method for verification of pipelined microprocessors by compari-
son to non-pipelined specifications. Correspondence checking was introduced by
Burch and Dill [5], who used uninterpreted functions to abstract the details of func-
tional units and memory arrays. However, their tool requires an abstract model of the
circuit, leaving room for errors in its description and raising concerns about the cor-
rectness of the actual processor, given the correctness of its abstract model. Correspon-
dence checking was extended to the bit-level and made applicable on actual circuits in
[4]. However, preliminary results [19] showed that it did not scale well enough to be
suitable for application to actual microprocessors. The major sources of complexity
were the symbolic modeling of all the bits of data in the data path and the feedback
loops, created by the forwarding logic. Hence, the need for abstracting complex func-
tional units.

Fig. 1. Commutative diagram for the correctness criterion

The correctness criterion of correspondence checking, shown in Fig. 1, is due to
Hoare [9] who used it for verifying computations on abstract data types in software. In
a later work, Bose and Fisher [2] applied it to the verification of pipelined circuits. The
implementation transformationFImpl is verified by comparison against a specification
transformationFSpec. It is assumed that the two transformations start from a pair of
matching initial states -QImpl andQSpec, respectively - where the match is determined
according to some abstraction functionAbs. The correctness criterion is that the two
transformations should yield a pair of matching final states -Q′Impl and Q′Spec,
respectively - where the match is determined by the same abstraction function. In other
words, the abstraction function should make the diagram commute. Note that there are
two paths fromQImpl to Q′Spec. We will refer to the one that involves FImpl as the
implementation side of the commutative diagram, while the one that involves FSpec
will be called the specification side.

Burch and Dill’s contribution [5] is a conceptually elegant way to automatically
compute the abstraction functionAbs that maps the pipeline state of a processor to its

Abs

QImpl

QSpec

Abs

Q′Impl

Q′Spec

FSpec

FImpl

3

user-visible state by symbolic simulation of the hardware design. Namely, starting
from a general symbolic initial stateQImpl they simulate aflush of the pipeline by stall-
ing it for a sufficient number of cycles to allow all partially executed instructions to
complete. Then, they consider the resulting state of the user-visible memories (e.g., the
register file and the program counter) to be the matching stateQSpec.

Burch [6] has extended the method to superscalar processor verification by pro-
posing a new flushing mechanism (notice that the abstraction function can be arbitrary,
as long as it makes the correctness criterion diagram commute) and by decomposing
the commutative diagram into three more easily verifiable commutative diagrams. The
correctness of this decomposition is proven in [21].

In bit-level correspondence checking, we use EMMs to represent both memories
and uninterpreted functional units in the implementation and specification circuits.
Essential to this is the EMM’s property to dynamically introduce identical initial state
to two simulation sequences [4]. In replacing these blocks, we assume that their actual
implementations have been verified separately. For example,symbolic trajectory eval-
uation [16][11] has been combined with symmetry reductions [14] to enable the verifi-
cation of very large memory arrays at the transistor level. An efficient representation of
word-level functions has enabled the verification of complex functional units like float-
ing-point multipliers [7]. Additionally, we assume that the data path connections have
been verified to guarantee that they can be abstracted as only manipulating Boolean
values and uninterpreted symbols.

Previous work on processing of uninterpreted functions with BDDs [8][10]
required an abstract model of the circuit. The modeling of uninterpreted functional
units was done by treating their inputs and outputs as primary outputs and inputs,
respectively, and imposing constraints that the block’s output values be consistent with
previous ones, given the equality of their corresponding input patterns. The modeling
of memory arrays was more complicated in that it also required these constraints to
consider the effect of previous writes on the memory state. We achieve all these prop-
erties automatically by means of the EMM. While [8] and [10] generate a DAG-struc-
tured expression, that they call an IE netlist, which represents the correctness criterion
and then process it off-line, our method works dynamically as part of a symbolic simu-
lator. Finally, the techniques that these previous methods used for encoding uninter-
preted symbols with BDDs are less efficient than ours. Symbolic model checking has
also been combined with uninterpreted functions [1].

In the remainder of the paper, Sect. 2 defines the axioms of uninterpreted memo-
ries and functional units. Sect. 3 presents our technique for encoding of uninterpreted
symbols with BDDs. Sect. 4 describes the EMM. Sect. 5 shows how to achieve bit-
level abstraction of functional units by using the EMM. Dynamic generation of initial
EMM state is presented in Sect. 6. The correspondence checking methodology is the
focus of Sect. 7. Experimental results are presented in Sect. 8. Finally, conclusions are
drawn and future work is outlined in Sect. 9.

4

2 Abstracting Memories and Functional Units

We will use the types address expression,AExpr, and data expression,DExpr, for
denoting the kind of information that can be applied at the inputs or produced by the
outputs of an abstract memory. Let m0 : AExpr → DExpr, defined as a mapping from
address expressions to data expressions, be the initial state of such a memory. Then,
m0(a), wherea is an address expression, will return the initial data of the memory at
address a. The write operation for an abstract memory will be defined as
Write(mi, a1, d1) → mi+1 [13], i.e., taking as arguments the present statemi of a mem-
ory, and address expressiona1 designating the location which is updated to contain
data expressiond1, and producing the subsequent memory statemi+1, such that
mi+1(a2) → ITE(a1 = a2, d1, mi(a2)), where theITE operator (for “If-Then-Else”)
selectsd1 when a1 = a2 is true, andmi(a2) otherwise.

Based on the observation that any functional block can be represented as a read-
only-memory (ROM), with the block’s inputs serving as memory addresses, we will
represent abstract functional units as abstract ROMs. According to the semantics of an
abstract memory, an abstract ROM will always satisfy the property
a1 = a2 ⇒ f(a1) = f(a2), wheref() denotes the output function of the ROM-modeled
abstract functional unit.

Motivated by application to actual circuits, we will represent address and data
expressions by vectors of Boolean expressions having widthn andw, respectively, for
a memory withN = 2n locations, each holding a word of w bits. The typeBExpr will
denote Boolean expressions.

Address comparison is implemented as:

 A1 = A2 =̇ ¬ A1i ⊕ A2i , (1)

while address selectionA1 ← ITE(b, A2, A3) is implemented by selecting the corre-
sponding bits:

 A1i ← ITE(b, A2i, A3i) , i = 1, ... ,n . (2)

The definition of data operations is similar, but over vectors of widthw.

An uninterpreted symbol is a compact representation of a word-level datum. Two
uninterpreted symbols are compatible if they are compared for equality, stored in the
same memory, or produced by the same memory in a given circuit. Adomain is a set of
compatible uninterpreted symbols. Typically, separate domains are introduced for
instruction addresses, register identifiers, and register file data.

3 Encoding Uninterpreted Symbols

3.1 Background

Decision procedures based on the logic of uninterpreted functions with equality
[13][17] use uninterpreted symbols to abstractly represent word-level values. Such
symbols (e.g.,U1, U2, andU3) are manipulated in two ways: 1) comparison for equal-

n

i = 1

5

ity, U1 = U2, where the result is a Boolean expression, and 2) selection,
U3 = ITE(b, U1, U2), where b is a Boolean expression, meaning that U3 = U1 if b is
true, and U3 = U2 otherwise. Boolean connectives - e.g., conjuction, disjuction, nega-
tion - can be applied on Boolean expressions and yield Boolean expressions. Although
limited, this logic is sufficient for verification by correspondence checking. However,
the initial decision procedures for correspondence checking [5][6] have not been based
on BDDs, and thus have failed to exploit the simplification capabilities and manipula-
tive power of BDD packages.

Previous research on adopting these decision procedures to manipulations with
BDDs [10] has required a priori knowledge of the number of uninterpreted symbols in
the same domain. Given that n uninterpreted symbols are required, Hojati et al. [10]
encode each of them with log(n) Boolean variables. Thus, they require a total of n .

log(n) variables. Goel et al. [8] do not explicitly encode the symbols, but introduce a
Boolean variable for every pair of symbols, indicating the conditions under which the
two symbols are equal. This results in a total of n . (n - 1) / 2 variables.

3.2 Our Encoding of Uninterpreted Symbols

Ideally, we would like to use the control and forwarding logic of the actual circuit
intact in the simulations. Given that all this logic does with its input bit vectors is com-
parison for equality and selection, we would like to encode the input bit vectors with as
few Boolean variables as possible and in a way that will allow the resulting expres-
sions to be used for simulation of the actual circuit. Our technique to achieve this is
illustrated in Table 1 for 4-bit vectors.

When there is a single bit vector generated in a given domain, then it does not
need to be distinguished from other bit vectors, so that it can be represented with a vec-
tor of binary constants, e.g., 0s. When a second vector is generated, we need to express

Uninterpreted Symbol Encoding

1 0 0 0 0

2 0 0 0 a2,0

3 0 0 a3,1 a3,0

4 0 0 a4,1 a4,0

5 0 a5,2 a5,1 a5,0

... ...

8 0 a8,2 a8,1 a8,0

9 a9,3 a9,2 a9,1 a9,0

... ...

16 a16,3 a16,2 a16,1 a16,0

... ...

Table 1. Encoding of 4-bit vectors that allows them to efficiently express the possibility that
they be pairwise either equal or different, so that they can be treated as uninterpreted symbols

6

that it can be equal to or different from the first one. This can be done with a single
Boolean variable in the least significant bit of the vector and the same binary constants
in the other bit positions, as used in the first vector. When generating the nth vector, it
could potentially have n possible values, so that we use log(n) new Boolean variables
in the low order bits of the vector and the same binary constants in the remaining bit
positions. If the vectors have a width of k bits, as determined by the circuit, then the
number of variables generated for a new vector saturates at k. Note that the total num-
ber of Boolean variables that we need to encode n such vectors is:

In certain cases, we would like to allow distinguished constants in a given
domain, e.g., registers 0 and 31 in the MIPS microprocessor [15] to be treated differ-
ently from the rest of the registers. The first one is hardwired to data value 0, while the
second one is used to store the return address on a jump to subroutine instruction. We
can incorporate such constant bit vectors in a given domain by introducing extra vari-
ables that will select one of the constant bit vectors or a new partially symbolic vector,
generated according to our encoding. Additionally, we need to avoid exact replication
of a constant vector in the encoding, so that when 〈0, 0, 0, 0, 0〉 is such a constant vec-
tor, the vector generator should start from 〈0, 0, 0, 0, a1,0〉. Then, the number of Bool-
ean variables needed to encode the ith uninterpreted symbol will be
min(log(i + 1), k).

New bit vectors can be generated in each domain by function GenDataExpr().

4 Efficient Modeling of Memory Arrays in Symbolic Simulation

4.1 Symbolic Decisions

We will use the term context to refer to an assignment of values to the symbolic vari-
ables. A Boolean expression can be viewed as defining a set of contexts, namely those
for which the expression evaluates to true.

Note that predicate (1) in Sect. 2 is symbolic, i.e., it returns a symbolic Boolean
expression and will be true in some contexts and false in others. Therefore, a symbolic
predicate cannot be used as a control decision in algorithms. The function Valid(),
when applied to a symbolic Boolean expression, will return true if the expression is
valid or equal to true (i.e., true for all contexts), and will return false otherwise. We
can make control decisions based on whether or not an expression is valid.

We have used BDDs [3] to represent the Boolean expressions in our implementa-
tion. However, any representation of Boolean expressions can be substituted, as long
as function Valid() can be defined for it.

4.2 EMM Operation

The EMM models memory arrays with write and/or read ports, all of which have the
same numbers of address and data bits - n and w, respectively - as shown in Figure 2.a.

min i()log k,()
i 1=

n

∑ .

7

An inward/outward triangle indicates an enable input of a write/read port. The assump-
tion is that every memory system can be represented with such EMMs and possibly
some extra logic. For example, a latch can be viewed as a memory array with a single
address, so that it can be represented as an EMM with one write and one read port,
both of which have the same number of data bits and only one address input, which is
identically connected to the same Boolean constant (e.g., true) - see Fig. 2.b.

Fig. 2. (a) A memory array that can be modeled by an EMM; (b) A latch modeled by an EMM

The interaction of the memory array with the rest of the circuit is assumed to take
place when a port Enable signal is 1 (i.e., true). In case of multiple port Enables
being 1 simultaneously, the resulting accesses to the memory array will be ordered
according to the priority of the ports. It will be assumed that the memories respond
instantaneously to any requests.

During symbolic simulation, the state of each EMM is represented with two lists -
init_list and write_list. It should be pointed out that we used a single list for that pur-
pose in our previous work [4][20]. The lists contain entries of the form 〈c, a, d〉, where
c is a Boolean expression denoting the set of contexts for which the entry is defined, a
is an address expression denoting a memory location, and d is a data expression denot-
ing the contents of this location. The context information is included for modeling
memory systems where the Write and Read operations may be performed condition-
ally depending on the value of a control signal. Initially the lists are empty.

In simulation, write_list is used for writes, and init_list is used for dynamic ini-
tialization of memory locations that have not been initialized or written before (as will
be explained shortly), so that the state of the EMM is the concatenation of the two lists,
with init_list having lower priority. An additional list, previous_write_list, will be used
to store the contents of an EMM’s write_list from a previous simulation sequence. The
type List will be used to denote such memory lists, and nil will designate the end of a
memory list. The list entries are kept in order from head (low priority) to tail (high pri-
ority). The entries towards the low priority end correspond to conceptually earlier
memory state. Entries may be inserted at either end, using procedures InsertHead()
and InsertTail().

The lists interacts with the rest of the circuit by means of a software interface
developed as part of the symbolic simulation engine. The interface monitors the mem-
ory input lines. Should a memory input value change, given that its corresponding port

ReadAddr0
ReadData0

ReadEnable0

WriteAddr0
WriteData0
WriteEnable0

MEMORY ARRAY

WriteAddrP
WriteDataP
WriteEnableP

n

nReadAddrQ
ReadDataQ

ReadEnableQ

LATCH

WriteAddr

WriteDataw
ReadAddr

ReadData w

w

w

n

n

w

w

. . .

. . .

. . .

. . .

 (a) (b)

1 1

8

Enable valuec is not 0, aWrite or aRead operation will result, as determined by the
type of the port. TheAddress andData lines of the port will be scanned in order to
form the address expressiona and the data expressiond, respectively. A Write opera-
tion takes as arguments botha andd, while aRead operation takes onlya. These oper-
ations will be presented shortly.

A Read operation retrieves from the lists (see Sect. 4.4) a data expressionrd that
represents the data contents of addressa. The software interface completes the read by
scheduling theData lines of the port to be updated with the data expressionITE(c, rd,
d), i.e. to the retrieved data expressionrd under the contexts c of the operation and to
the old data expressiond otherwise.

4.3 Implementation of the Memory Write Operation

procedure Write(List write_list, BExpr c, AExpr a, DExpr d)
/* Write datad to locationa under contexts c */

InsertTail(write_list, 〈c, a, d〉)

Fig. 3. Implementation of theWrite operation

TheWrite operation, shown as a procedure in Fig. 3, is implemented by inserting
an element into thetail (high priority) end of a memory write list, indicating that this
entry should overwrite any other entries for this address.

4.4 Dynamically Introducing Consistent Initial States

In correspondence checking, we need a way to enforce the assumption that the two
sequences, resulting from traversing the implementation and the specification sides of
the commutative diagram in Fig. 1, start from the same initial state,QImpl, without
explicitly initializing every memory location. We achieve this with functionRead(),
and by introducing a separatewrite_list for accumulating the effects ofWrite opera-
tions in each of the sequences, but a sharedinit_list for storing their common initial
state. New initial state for locations that have never been accessed by either a read or a
write, but are being read in the current execution sequence, will be introduced on-the-
fly, as shown in Fig. 4.

FunctionRead() scans the concatenation of thewrite_list for the current execu-
tion sequence and the commoninit_list. It starts from the most recently written data in
the write_list and proceeds backwards to the “conceptually oldest” initial state at the
beginning of theinit_list. FunctionTail() takes a memory list and returns its tail entry.
FunctionPrevious() returns a memory list obtained from its argument memory list by
removing the tail entry. The Boolean expressionfound is constructed to reflect the con-
texts under which the read locationra has been written or has been initialized. Iffound
is not true for all contexts, a fresh data expressiong is generated for the particular
EMM by functionGenDataExpr(). Then, the entry〈true, ra, g〉 is inserted at the low
priority end of theinit_list, andg is reflected on the data expressionrd that is returned.
In this way, subsequentRead operations in either simulation sequence will encounter
the same initial state for locationra in the given memory.

9

function Read(List init_list, List write_list, AExpr ra) : DExpr
/* read from location ra */

found ← false
l ← ConcatenateLists(init_list, write_list)
if l ≠ nil then /* scan backwards from most recently written data */

〈c, a, d〉 ← Tail(l)
rd ← d
found ← c ∧ (a = ra)
l ← Previous(l)
while (l ≠ nil ∧ ¬Valid(found)) do

〈c, a, d〉 ← Tail(l)
match ← c ∧ (a = ra)
rd ← ITE(match, d, rd)
found ← found ∨ match
l ← Previous(l)

if ¬Valid(found) then
g ← GenDataExpr(init_list) /* introduce new initial state for address ra */
if Valid(¬found) then

rd ← g /* if found ≡ false */
else

rd ← ITE(found, rd, g)
InsertHead(init_list, 〈true, ra, g〉)

return rd

Fig. 4. Implementation of the Read operation

4.5 Comparing Final States

In order to verify the correctness criterion of correpondence checking, we need to
check that the two simulation sequences modified the state of each memory array in
the same way. This is done by function Compare(), presented in Fig. 5. It takes as
arguments the two write lists and the init_list for a memory array and returns a Bool-
ean expression representing the conditions under which the two sequences have equal
effects on the memory state. Since the updates of memory state are reflected only on
the write_list for the given execution sequence, while the initial state in init_list is the
same for both sequences, we need examine only the memory locations in either
write_list. We start from the heads of the write lists, as returned by function Head().
Function Next() returns a memory list obtained from its argument memory list by
removing the head entry.

The first while-loop skips pairs of identical writes made in both simulation
sequences, since they would modify the common initial state identically and, hence,
would preserve the equality of the memory state. When a pair of different updates is
detected or one of the write lists terminates, we need to check if every memory loca-
tion modified then or later has the same contents at the end of both simulation
sequences. This is done in the subsequent while-loops. The memory list
substitution_list stores new initial state, introduced during the comparison, which is

10

used for common subexpression elimination of the identical state. It is assumed that
applying function Next() to list l does not affect either of the write lists. As an optimi-
zation, which is not shown, one could keep a table of addresses that have been com-
pared in order to avoid repetition of computations.

function Compare(List write_list1, List write_list2, List init_list): BExpr
identical ← true
while (write_list1 ≠ nil ∧ write_list2 ≠ nil ∧ identical) do

/* eliminate identical entries at beginning of both write lists */
〈c1, a1, d1〉 ← Head(write_list1)
〈c2, a2, d2〉 ← Head(write_list2)
identical ← c1 ≡ c2 ∧ a1 ≡ a2 ∧ d1 ≡ d2
if identical then

write_list1 ← Next(write_list1)
write_list2 ← Next(write_list2)

equal ← true
substitution_list ← nil /* for substitution of common subexpressions */
l ← write_list1
while (l ≠ nil ∧ ¬Valid(¬equal)) do

〈c, a, d〉 ← Head(l)
rd1 ← Read(substitution_list, write_list1, a)
rd2 ← Read(substitution_list, write_list2, a)
equal ← equal ∧ (rd1 = rd2)
l ← Next(l)

l ← write_list2
while (l ≠ nil ∧ ¬Valid(¬equal)) do

〈c, a, d〉 ← Head(l)
rd1 ← Read(substitution_list, write_list1, a)
rd2 ← Read(substitution_list, write_list2, a)
equal ← equal ∧ (rd1 = rd2)
l ← Next(l)

return equal

Fig. 5. Comparing for equality the states of the two write lists for an EMM

The presented version of function Compare() would flag an error when a data
expression has been read from a memory address and then written back unmodified to
the same address during one of the simulation sequences, but has not been accessed
during the other simulation sequence. Assuming that this situation would not occur
allows us to use the optimization of skipping the identical initial state and identical
sequence of writes, which results in reduced BDD sizes. In the case of a counterexam-
ple, the unoptimized version of function Compare() [4] can be used to ensure that the
counterexample is not a false negative.

5 Bit-Level Uninterpreted Functions Modeled by the EMM

In order to abstract functional units, while keeping their bit-level inputs and outputs,

11

we exploit the capability of the EMM to dynamically introduce initial state, as required
by the given simulation sequence. Based on the observation in Sect. 2 and the defini-
tion of the EMM, we can model abstract functional units as read-only EMMs, which
have a single read port that is constantly enabled, i.e., its Enable signal is connected
to the Boolean constant true. Such EMM’s address inputs are formed by concatenating
the functional unit’s data and control inputs (see Fig. 6), while the EMM’s data outputs
are connected with the functional unit’s data outputs. In this way we use the EMM as a
ROM whose contents are generated on-the-fly.

Fig. 6. (a) A functional unit; (b) Its abstraction by a read-only EMM

Since such an EMM is never written to, its two write lists will be empty and the
Read operations will scan only the init_list. The implementation of function Read()
guarantees the consistency of the output data expressions, i.e., that they be equal if
their respective input patterns are equal. Thus, we avoid the need to explicitly impose
such auxiliary constraints as done in [8][12].

6 Generating Initial Memory State

6.1 Motivation

Using BDDs requires a global ordering of the Boolean variables. However, when per-
forming Read operations, an EMM’s address expression will be compared for equality
to other address expressions for the same EMM and the resulting Boolean expression
will select data expressions. Hence, if the variables used in the address expressions are
intermixed with or situated after the variables used in data expressions, then the data
expression variables will need to be replicated for every possible outcome of the
address expressions’ comparisons for equality as these outcomes will become known
at a lower level in the BDD shared DAG. Hence, the exponential complexity of the
BDD representation of the Boolean expressions within that EMM’s data expressions.
This can be avoided by placing the address variables before the data variables in the
global variable ordering.

Similarly, control variables (e.g., that will represent operation-codes and func-
tional-codes) need to be placed before the data variables that they will affect. Again,
the control variables will select one out of many operations to be performed on the data

A
L
U

Address

Data

1
Out

In1

In2

Out

In1

In2

 (a) (b)

FunctionControl

FunctionControl

12

variables, so that the above argument still applies.

In order to account for the above two rules, we introduce the notion of ordered
variable groups. Each variable group contains vectors of symbolic Boolean variables
that are used for the same purpose (e.g., addresses, control, data). These variables can
be either interleaved or placed sequentially in the variable order, but cannot be inter-
mixed with variables from another variable group. Additional vectors from the same
group can be generated dynamically, as required by the circuit for a given symbolic
simulation sequence. Furthermore, when these vectors are used only for comparison
for equality and selection, given the functional units are abstracted by EMMs, the vec-
tors can be encoded as presented in Sect. 3. The variable groups are ordered based on
their relation, according to the above two rules.

Therefore, the ideal global ordering of the variable groups, needed to verify the
MIPS pipeline [15] for its register-register and register-immediate instructions (see
Fig. 7), will be: instruction-addresses, operation-codes, functional-codes, register-
identifiers, immediate-data, and data (when listed from first to last in the global order-
ing of the variables). The need to use two data groups is dictated by the format of the
MIPS register-immediate instructions. Notice that the instruction-address variables
represent the contents of the program counter (PC) and identify locations of the
instruction memory (IMem), so that they need to be placed before the instructions (that
will represent the contents of the IMem), i.e., before all other variable groups. The jus-
tification for the ordering of the other variable groups is similar.

Fig. 7. The MIPS formats for register-register, register-immediate, and NOP instructions. The
instructions are encoded with 32 bits, numbered 0 through 31 - see the digits below the rectan-
gles. Op stands for the operation-code field of 6 bits, Fn represents the functional-code field of 6
bits, and Imm is the immediate field of 16 bits. Rs, Rt and Rd are 5-bit register identifiers. Rs
and Rt are the source registers, while Rd is the destination register, for register-register instruc-
tions. Rs is a source register providing the second operand, and Rt is the destination register for
register-immediate instructions

Furthermore, modern instruction set architectures consist of widely varying
classes of instructions. As Fig. 7 shows, a given instruction bit may be used in different
ways in the actual hardware under different conditions. For example, the lowest 6 bits
of the MIPS instructions can represent the functional code in register-register instruc-
tions, or part of the immediate data in register-immediate instructions. Ideally, these 6
bits would be encoded with functional-code variables for the register-register instruc-
tions, and data variables for the register-immediate instructions. Furthermore, the func-

register-register instruction Op 00000 Fn

register-immediate instruction

NOP instruction00000000000000000000000000000000

Rs Rt Rd

 Op Rs Rt Imm

31

31

31

0

0

0

26

26

25

25

21

21

20

20

16

16

15

15

11 10 56

13

tional-code variables need to be placed before the data variables, since the functional
code determines what operations are to be performed on the data by the ALU. One
drawback of BDDs [3], used as a representation of Boolean expressions in our imple-
mentation of the presented algorithms, is that they require a global ordering of the vari-
ables. Supplying a single vector of Boolean variables for the initial state of the
instruction memory at a particular address location will mean that a dynamic-variable-
reordering BDD package will need to find a different global variable order, conditional
on the type of the instruction. This will be impossible for a symbolic instruction repre-
senting many instruction formats simultaneously. Similarly, the state bits in the pipe-
line latches may be used in different ways under different conditions.

Finally, not all possible binary states are reachable and we need the capability to
restrict the set of initial states evaluated.

6.2 Indexing of Variable Groups

The state-encoding technique, called “variable-group indexing,” allows the EMM to
return a different data expression for each distinct control combination. The possible
data expressions are selected by means of indexing variables, whose variable group
has to be situated after the instruction-addresses and before the rest of the variable
groups. The resulting data expression is generated according to a pattern, defined by
the use for each EMM - see Fig. 8.

gendataexpr IMem (

Ind : Index
Rs, Rt, Rd : RegId
Imm : ImmData
switch <Ind> (
case <0,0>: /* ori */
return <0,0,1,1,0,1, Rs, Rt, Imm>

case <0,1>: /* or */
return <0,0,0,0,0,0, Rs, Rt, Rd,0,0,0,0,0,1,0,0,1,0,1>

default: /* nop */
return <0,

0,0,0,0,0,0,0>
)

)

Fig. 8. Definition of the variable-group indexing pattern for the MIPS instruction memory
(IMem), when verifying the pipeline for only 3 instructions:ori, or, andnop. The operation
and functional codes are represented with constants, as defined in the Instruction Set Architec-
ture of the MIPS. For a complete verification of the pipelined processor, the above indexing pat-
tern must be expanded to include every legal instruction. Such variable-group indexing patterns
must be defined for all memories, pipeline latches, and functional units, abstracted with EMMs

Index, RegId, andImmData are the declaration names for the indexing, regis-
ter-identifier, and immediate-data variable groups, respectively. Ind, Rs, Rt, Rd, and
Imm are vectors of fresh Boolean variables generated within the corresponding vari-
able group by being interleaved with other such vectors in the same variable group.

14

The switch statement uses the vector of indexing variables in order to select one out
of the three possible patterns for the initial state of the instruction memory, according
to the case and default directives. A Boolean expression, global_care_set, can be
used to accumulate (by means of conjunction) the effect of any conditions that the
newly generated vectors of Boolean variables must satisfy. Notice that the variable-
group indexing technique makes possible the verification of a microprocessor for a
subset of its instruction set architecture.

As Fig. 8 shows, we might be imposing restrictions on the initial state that is gen-
erated on-the-fly by GenDataExpr(), therefore considering a subset of the system state
space as a possible initial state. These restrictions are due to the sparse encoding of
instructions and the sparse encoding of internal vectors of control signals. However,
the correctness criterion expressed by the commutative diagram from Fig. 1 is a proof
by induction. It proves that if the implementation starts from an arbitrary initial state
QImpl, and is exercised with an arbitrary instruction, then the reachable state Q′Impl
will be correct, when compared (by means of an abstraction function) to the specifica-
tion’s behavior for an arbitrary instruction. Since the initial state QImpl is arbitrary,
then it is a superset of the reachable state Q′Impl, so that, by induction, the implementa-
tion will function correctly for an arbitrary instruction applied to Q′Impl. However, if
the initial state QImpl is restricted to a subset of the system state space, and Q′Impl is
not a subset of QImpl, then the inductive argument for the correctness criterion would
not hold. Hence, we need to check that Q′Impl is a subset of QImpl. This is equivalent to
proving an invariant of the implementation - see [20] for details on how we do that.

7 Correspondence Checking Methodology

Step 1. Load the pipelined implementation. Let init_list ← nil, write_list ← nil for
every memory in the circuit. global_care_set ← true.

Step 2. Simulate the implementation circuit for one clock cycle with a (legal) sym-
bolic instruction. Verify the invariant of the pipeline initial state [20].

Step 3. Simulate a flush of the implementation circuit.
Step 4. Let previous_write_list ← write_list, write_list ← nil for each memory in

the implementation.
Step 5. Simulate a flush of the implementation circuit.
Step 6. Swap the implementation and the non-pipelined specification circuits by

keeping the contents of the memory lists for every user-visible memory.
Step 7. Simulate the specification circuit for one clock cycle with the same sym-

bolic instruction as used in Step 2.
Step 8. Let equalityi ← Compare(write_listi, previous_write_listi, init_listi) ,

i = 1, ..., u, where u is the number of user-visible memories.
Step 9. Form the Boolean expression for the correctness criterion:

global_care_set ⇒ equalityi ,

where global_care_set is updated by function GenDataExpr() with condi-
tions that constrain the initial memory state to be legal.

u

i = 1

15

8 Experimental Results

We examined a 3-stage pipelined MIPS processor [20], which is comparable to the
pipelined data paths used in [5][8]. It was compared to its non-pipelined version. The
register file and pipeline latches, including the PC, were modeled as EMMs. Addition-
ally, for the experiments studying abstraction of functional units by EMMs, we
replaced the ALU in the data path and the Sign Extension logic with one EMM, and
the adder that increments the PC with another EMM. The 3 stages in the pipeline are
Fetch-and-Decode, Execute, and Write-Back. In order to investigate the potential of
our abstraction and encoding techniques to scale for application to more complex pipe-
lines, we performed experiments with pipelines where one, two, or three “Dummy”
stages are inserted between the Execute and Write-Back stages. That increases the
total number of pipeline stages to 4, 5, or 6, respectively. These Dummy stages do not
perform any function, except that they temporarily store the result and each add
another level of forwarding logic for the inputs of the ALU. Ten MIPS instructions
[15] were supported by this processor and its non-pipelined version: five register-regis-
ter instructions -or, and, add, slt, andsub; four register-immediate instructions -
ori, andi, addi, andslti; and thenop.

The experiments were performed on an IBM RS/6000 43P-140 with a 233MHz
PowerPC 604e microprocessor, having 256 MB of physical memory, and running AIX
4.1.5. Table 2 shows the results for CPU time and memory consumption, required for
theverification. In the experiments labeled “Gate-Level,” the ALU, the Sign Extension
logic, and the adder that increments the PC were modeled at the gate level, while in the
experiments labeled “Abstr.,” these functional units were abstracted by read-only
EMMs. In the cases of “Encoding,” the uninterpreted symbols were generated as
described in Sect. 3. When no encoding was used, complete vectors of Boolean vari-
ables were generated. Table 3 presents the total number of variables and the maximum
number of BDD nodes, produced in the experiments studying abstraction.

St
ag

es

Experiment

CPU Time [s] Memory [MB]

Data Path Width Data Path Width

4 8 16 32 64 4 8 16 32 64

3

Gate-Level 137 392 2555 --- --- 25 97 193 --- ---

Abstr. 34 58 138 419 1569 13 23 43 96 241

Abstr. & Encoding 2 2 2 2 3 2 2 2 2 2

4
Abstr. 582 1413 --- --- --- 97 192 --- --- ---

Abstr. & Encoding 12 12 13 13 16 4 4 4 4 4

5 Abstr. & Encoding 115 115 117 118 124 25 25 25 25 25

6 Abstr. & Encoding 958 969 967 1018 1010 97 97 97 97 97

Table 2. Experimental results. The “Gate-Level” experiments ran out of memory for more than
3 pipeline stages, while the experiments with abstraction without encoding ran out of memory
for more than 4 stages. Additionally, experiments designated with “---” ran out of memory too

16

The use of abstraction reduces the CPU time and memory consumption by an
order of magnitude. However, the CPU time depends quadratically on the data path
width, while the memory has a dependence that is between linear and quadratic. The
combination of abstraction and encoding further reduces the CPU time and memory
and makes them invariant with the data path width. As Table 3 shows, the max. number
of BDD nodes is constant with the data path width for the cases of abstraction and
encoding, while it grows linearly with the data path width for the cases of abstraction
only. Hence, our abstraction and encoding techniques effectively achieve a symmetry
reduction, while keeping intact the control and forwarding logic of the processor.

Extra levels of forwarding logic, due to dummy stages, increase the complexity of
the Boolean expressions at the inputs of the abstracted ALU and result in an exponen-
tial complexity. This is due to the fact that the read-only EMM, that replaces the ALU,
is addressed with Data uninterpreted symbols coming from the register file or from
the subsequent pipeline latches by means of the forwarding logic. On the other hand,
this EMM has to produce data expressions of Data uninterpreted symbols, since these
will be written back to the register file. Hence, Data uninterpreted symbols are com-
pared for equality as EMM addresses against other Data uninterpreted symbols,
which are already used as addresses in the init_list for that EMM, and are used to
select uninterpreted symbols of the same type. Clearly, this results in an exponential
complexity.

For all of the experiments the variable groups were ordered in the following way:
instruction addresses, indexing variables, register identifiers, immediate data, and data,
when listed from first to last in the variable order. The optimal results for the experi-
ments with abstraction and encoding for 3 or 4 pipeline stages were obtained by bit-
wise interleaving the complete vectors of indexing variables, but placing sequentially
in the variable order the variables for the uninterpreted symbols of type register identi-
fier, immediate data, and data. For example, when generating a new uninterpreted sym-
bol of type register identifier, its variables will be placed sequentially after the

St
ag

es

Experiment

Total BDD Variables Max. BDD Nodes (×103)

Data Path Width Data Path Width

4 8 16 32 64 4 8 16 32 64

3
Abstr. 231 267 339 483 771 524 924 1,751 4,194 8,693

Abstr. & Encoding 163 167 175 191 223 21 22 22 22 22

4
Abstr. 252 300 --- --- --- 4,194 8,389 --- --- ---

Abstr. & Encoding 182 186 194 210 242 131 131 131 131 131

5 Abstr. & Encoding 202 206 214 230 262 1,049 1,049 1,049 1,049 1,049

6 Abstr. & Encoding 222 228 236 252 284 4,194 4,194 4,194 4,194 4,194

Table 3. Variables and max. BDD nodes generated for the experiments with abstraction. When
no encoding was used, complete vectors of variables were generated. “---” means the
experiment ran out of memory

17

variables of previously generated uninterpreted symbols of the same type, but before
the variables for uninterpreted symbols of type immediate data. Also, the optimal
results were obtained by ordering the pipeline latches from last to first in the pipeline
when generating their initial state, i.e., the latch before the Write-Back stage gets its
initial state generated first, while the latch before the Execute stage gets its initial state
generated last. For the experiments with pipelines of 5 or 6 stages, the optimal results
were obtained by bit-wise interleaving the variables of the uninterpreted symbols of
type register identifier and data.

Adding an extra pipeline stage after the Execute stage requires that initial state be
produced for it. That leads to the generation of an extra uninterpreted symbol in the
RegId group, in order to represent the destination register for the result stored in that
stage, so that the number of RegId uninterpreted smbols needed is 4 + p, where p is
the number of pipeline stages. The number of Data uninterpreted symbols necessary
for the verification is 6 + p. The number of uninterpreted symbols generated is invari-
ant with the data path width. The use of encoding reduces the total number of Boolean
variables needed for the verification and makes it much less dependent on the data path
width. That number still varies with the data path width because of the need to gener-
ate complete vectors of Boolean variables for checking the invariant of the pipeline ini-
tial state [20].

Introducing bugs in the forwarding logic or the instruction decoding PLA of the
pipelined processor resulted in generation of counterexamples that increased the mem-
ory consumption up to 1.5 times but kept the CPU time almost the same, compared to
the experiments with the correct circuit.

We also extended the initial 3 stage pipeline with a Memory stage between the
Execute and Write-Back stages, and incorporated a load and a store instruction in the
control of the processor. The verification experiments ran out of memory. The reason is
that the Data Memory (we modeled it separately from the Instruction Memory in order
to avoid the complexity of counterexamples due to self-modifying code) gets
addressed with Data uninterpreted symbols produced by the ALU in the Execute
stage. At the same time the Data Memory has to produce Data uninterpreted symbols
to be written back to the register file. As discussed for the case of the ALU, that results
in an exponential complexity.

9 Conclusions and Future Work

We proposed a way to abstract functional units at the bit level, by using the Efficient
Memory Model in a read-only mode. We combined that with an encoding technique
that allows uninterpreted symbols to be represented efficiently with Boolean variables,
without a priori knowledge of the number of required symbols. An advantage of these
ideas is that they keep the control and forwarding logic in the actual microprocessor
intact, while achieving the effect of an automatic symmetry reduction.

A weakness of our methodology is that when using 0s for the high order bits in
our encoding of uninterpreted symbols, we do not verify the correctness of the data
transfer paths for these bits. This can be avoided by simulating the circuit entirely sym-

18

bolically for one cycle and then analyzing the reached next state. Additionally, we
need to check that the unabstracted logic of the processor does not use the uninter-
preted symbols in a way that their encoding is not suitable for. These issues will be
addressed in our future research. We will also work on automating the process of
defining the initial state for pipeline latches and will explore techniques to overcome
the exponential complexity of verifying pipelines with load/store instructions and
many levels of forwarding logic.

References

1. S. Berezin, A. Biere, E.M. Clarke, and Y. Zhu, “Combining Symbolic Model Checking with Uninter-
preted Functions for Out-of-Order Processor Verification,” FMCAD’98 (appears in this publication).

2. S. Bose, and A.L. Fisher, “Verifying Pipelined Hardware Using Symbolic Logic Simulation,” Interna-
tional Conference on Computer Design, October 1989, pp. 217-221.

3. R.E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams,” ACM Com-
puting Serveys, Vol. 24, No. 3 (September 1992), pp. 293-318.

4. R.E. Bryant, and M.N. Velev, “Verification of Pipelined Microprocessors by Comparing Memory Exe-
cution Sequences in Symbolic Simulation,”2 Asian Computer Science Conference(ASIAN’97), R.K.
Shyamasundar and K. Ueda, eds., LNCS 1345, Springer-Verlag, December 1997, pp. 18-31.

5. J.R. Burch, and D.L. Dill, “Automated Verification of Pipelined Microprocessor Control,” CAV‘94, D.L.
Dill, ed., LNCS 818, Springer-Verlag, June 1994, pp. 68-80.

6. J.R. Burch, “Techniques for Verifying Superscalar Microprocessors,” DAC‘96, June 1996, pp. 552-557.
7. Y.-A. Chen, “Arithmetic Circuit Verification Based on Word-Level Decision Diagrams,” Ph.D. thesis,

School of Computer Science, Carnegie Mellon University, May 1998.
8. A. Goel, K. Sajid, H. Zhou, A. Aziz, and V. Singhal, “BDD Based Procedures for a Theory of Equality

with Uninterpreted Functions,” CAV‘98, June, 1998.
9. C.A.R. Hoare, “Proof of Correctness of Data Representations,” Acta Informatica, 1972, Vol.1, pp. 271-

281.
10. R. Hojati, A. Kuehlmann, S. German, and R.K. Brayton, “Validity Checking in the Theory of Equality

with Uninterpreted Functions Using Finite Instantiations,” International Workshop on Logic Synthesis,
May 1997.

11. A. Jain, “Formal Hardware Verification by Symbolic Trajectory Evaluation,” Ph.D. thesis, Department
of Electrical and Computer Engineering, Carnegie Mellon University, August 1997.

12. T.-H. Liu, K. Sajid, A. Aziz, and V. Singhal, “Optimizing Designs Containing Black Boxes,” 34th
Design Automation Conference, June 1997, pp. 113-116.

13. G. Nelson, and D.C. Oppen, “Simplification by Cooperating Decision Procedures,” ACM Transactions
on Programming Languages and Systems, Vol. 1, No. 2, October 1979, pp. 245-257.

14. M. Pandey, “Formal Verification of Memory Arrays,” Ph.D. thesis, School of Computer Science, Carn-
egie Mellon University, May 1997.

15. D.A. Patterson, and J.L. Hennessy, Computer Organization and Design: The Hardware/Software Inter-
face, 2nd Edition, Morgan Kaufmann Publishers, San Francisco, CA, 1998.

16. C.-J.H. Seger, and R.E. Bryant, “Formal Verification by Symbolic Evaluation of Partially-Ordered Tra-
jectories,” Formal Methods in System Design, Vol. 6, No. 2, March 1995, pp. 147-190.

17. R.E. Shostak, “A Practical Decision Procedure for Arithmetic with Function Symbols,” J. ACM, Vol.
26, No. 2, April 1979, pp. 351-360.

18. M.N. Velev, R.E. Bryant, and A. Jain, “Efficient Modeling of Memory Arrays in Symbolic Simula-
tion,”2 CAV‘97, O. Grumberg, ed., LNCS 1254, Springer-Verlag, June 1997, pp. 388-399.

19. M.N. Velev, and R.E. Bryant, “Efficient Modeling of Memory Arrays in Symbolic Ternary Simula-
tion,”2 International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’98), B. Steffen, ed., LNCS 1384, Springer-Verlag, March-April 1998, pp. 136-150.

20. M.N. Velev, and R.E. Bryant, “Verification of Pipelined Microprocessors by Correspondence Checking
in Symbolic Ternary Simulation,”2 International Conference on Application of Concurrency to System
Design (CSD‘98), IEEE Computer Society, March 1998, pp. 200-212.

21. P.J. Windley, and J.R. Burch, “Mechanically Checking a Lemma Used in an Automatic Verification
Tool,” FMCAD‘96, M. Srivas and A. Camilleri, eds., LNCS 1166, Springer-Verlag, November 1996,
pp. 362-376.

2. Available from: http://www.ece.cmu.edu/~mvelev

