
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



BLISS REFERENCE MANUAL 

A Basic Language for Implementation of 
System Software for the PDP-10 

W. A. Wulf 
D. Russell 
A. N. Habermann 
C. Geschke 
J. Apperson 
D. Wile 

Computer Science Department 
Carnegie-Mellon University 
Pittsburgh, Pennsylvania 

January 15, 1970 

This work was supported by the Advanced Research Projects Agency 
of the Office of the Secretary of Defense (F44620-67-C-0058) and 
is monitored by the Air Force Office of Scientific Research. This 
document has been approved for public release and sale; its distri
bution is unlimited. 



PREFACE 

This manual is a definitive description of the BLISS language as 

implemented for the PDP-10. BLISS is a language specifically designed for 

writing software systems such as compilers and operating systems for the 

PDP-10. While much of the language is relatively "machine independent11 and 

could be implemented on another machine, the PDP-10 was always present in 

our minds during the design, and as a result BLISS can be implemented very 

efficiently on the 10. This is probably not true for other machines. 

We refer to BLISS as an "implementation language". This phrase has 

become quite popular latelybut apparently does not have a uniform meaning. 

Hence it is worthwhile to explain what we mean by the phrase and consequently 

what our objectives were in the language1s design. To us the phrase "imple

mentation language" connotes a higher level language suitable for writing 

production software; a truly successful implementation language would 

completely remove the need and/or desire to write in assembly language. 

Furthermore, to us, an implementation language need not be machine inde

pendent—in fact, for reasons of efficiency, it is unlikely to be. 

Many reasons have been advanced for the use of a higher level language 

for implementing software. One of the most often mentioned is that of speed-

r ing up its production. This will undoubtedly occur, but it is one of the less 

important benefits, except insofar as it permits fewer, and better program-

mers to be used. Far more important, we believe, are the benefits of docu

mentation, clarity, correctness and modifiability. These were the most 

important goals in the design of BLISS. 

Some people, when discussing the subject of implementation languages, 

have suggested that one of the existing languages, such as PL/l, or at most 



a derivative of one, should be used; they argue that there is already a pro

liferation of languages, so why add another. The only rational excuse for 

the creation of yet another new language is that existing languages are 

unsuitable for the specific applications in mind. In the sense that all 

languages are sufficient to model a Turing machine, any of the existing 

languages, LISP for example, would be adequate as an implementation language. 

However, this does not imply that each of these languages would be equally 

convenient. For example, FORTRAN can be used to write list processing pro

grams, but the lack of recursion coupled with the requirement that the pro

grammer code his own primitive list manipulations and storage control makes. 

FORTRAN vastly inferior to, say, LISP for this type of programming. 

What, then, are the characteristics of systems programming which should 

be reflected in a language especially suited for the purpose? Ignoring 

machine dependent features (such as a specific interrupt structure) and 

recognizing that all differences in such programming characteristics are 

only ones of degree, three features of systems programming stand out: 

1. Data structures. In no other type of programming does the 

variety of data structures nor the diversity of optimal 

representations occur. 

2. Control structures. Parallelism and time are intrinsic 

parts of the programming system problem.* 

3. Frequently, systems programs cannot presume the existence 

of large support routines (for dynamic storage allocation, 

for example). 

Of course, parallelism and time are intrinsic to real time programming 

as well. 



-3-

These are the principal characteristics which the design of BLISS 

attempts to address. For example, taking point (3), the language was 

designed in such a way that no system support is presumed or needed, 

even though, for example, dynamic storage allocation is provided. Thus, 

code generated by the compiler can be executed directly on a "bare11 

machine. Another example, taking point (1), is the data structure defini

tion facility. BLISS contains no implicit data structures (and hence no 

presumed representations for structures), but rather provides a method 

for defining a representation by giving the explicit accessing algorithm. 

One final point before proceeding with the description of the lan

guage—namely, the method of syntax specification* The syntax is given 

in BNF, for example 

escapeexpression ->EXITBLOCK escapeexpression)EXITLOOP escapeexpression 

escapeexpression -» | e 

where: (1) lower case words are metalinguistic variables, and (2) the 

'empty1 construct is represented by a blank (as in the first alternative 

of the second rule above)• 



TABLE OF CONTENTS 

I. LANGUAGE DEFINITION 
1.1.1 Modules 1.1 
1.1.2 Blocks and Comments.... 1.2 
1.1.3 Literals 1.3 
1.1.4 Names 1.4 
1.1.5 Pointers 1.5 
1.1.6 The "contents of" Operators 1.6 
1.2.1 Expressions 2.1 
1.2.2 Simple Expressions 2.2 
1.2.3.1 Control Expressions 2.3.1 
1.2.3.2 Conditional Expressions 2.3.2 
1.2.3.3 Loop Expressions 2.3.3 
1.2.3.4 Escape Expressions 2.3.4 
1.2.3.5 Parallel Expressions. 2.3.5 
1.2.3.6 Co-routine Expressions 2.3.6 
1.3.1 Declarations 3.1 
1.3.2 Memory Allocation 3.2 
1.3.3 Module Communication 3.3 
1.3.4 Functions 3.4 
1.3.5 Structures 3.5 
1.3.6 Macros 3.6 

II. SPECIAL LANGUAGE FEATURES 
II. 1.1 Special Functions II-l.l 
II. 1.2 Character Manipulation Functions II-1.2 
II. 1.3 Machine Language II-1.3 

III. SYSTEM FEATURES 
(not yet available) 



IV. RUN TIME REPRESENTATION OF PROGRAMS 
IV. 1.1 Introduction IV-1.1 
IV. 1.2 The Stack and Functions IV-1.2 
IV. 1.3 Access to Variables IV-1.3 
IV. 1.4 Co-routine Creation and Calls IV-1.4 

V. IMPLEMENTATION OF THE BLISS COMPILER 
(not yet available) 

APPENDIX: 
A. Syntax A. 1 
B. Input-Output Codes B.l 
C. Word Formats C.l 



I. LANGUAGE DEFINITION 

1.1 Modules 

A module is a program element which may be compiled independently of 

other elements and subsequently loaded with them to form a complete program. 

module -+ block 

A module may request access to other modules1 variables and functions by 

declaring their names in EXTERNAL declarations. A module permits general 

use of its own variables and ROUTINES by means of GLOBAL declarations. 

These lines of communication between modules are linked by the loader prior 

to execution. A complete program consists of an ordered set of compiled 

modules linked by the loader. 



1.2 

1 «2 Blocks and Comments 

A block is an arbitrary number of declarations followed by an arbi

trary number of expressions all separated by semicolons and enclosed in a 

watching begin-end pair. 

block -»begin declarations compoundexpression end 

declarations -» |declaration;|declarations; declaration; 

compoundexpression -» |e| e; compoundexpression 

begin -> BEGIN 

end -»END 

comment -» | I restofline endoflinesymbol]$ stringwithnopercent $ 

Comments may be enclosed between the symbol 1 and the end of the line on 

which the 1 appears. However, a 1 may appear in the quoted string of a 

literal, or between two $ symbols, without being considered the beginning 

of a comment. Likewise, a $ enclosed within quotes will be considered part 

of a string. 

As in Algol the block indicates the lexical scope of the names declared 

at its head. However, in contrast to Algol, there is an exception. The 

names of GLOBAL variables and ROUTINES have a scope beyond the block and 

although they are declared within the module, the effect, for a module 

citing them in an EXTERNAL declaration, is as if they were declared in the 

current block. 



1.3 

1.3 Literals 

The basic data element is a PDP-10 36 bit word. However, the hard

ware provides the capability of pointing to an arbitrary contiguous field 

within a word and so a 36 bit word may be regarded as a special case of 

the "partial word". Literals are normally converted to a single word. 

literal -»number | quotedstring 

number -»decimal | octal 

decimal digit | decimal digit 

octal -» # oit | octal oit 

digit -> 0| 11 2 — | 9 

oit —> 0| 11 2 — | 7 

36 
Numbers (unsigned integers) are converted to binary modulo 2 residue 

35 

-2 . The binary number is 2 fs complement and is signed. Octal constants 

are prefixed by the sharp sign, 

quotedstring leftadjustedstring j rightadjustedstring 

leftadjustedstring -» 'string1 

rightadjustedstring ->"string" 

Quoted-string literals may be used to specify bit patterns corresponding to 

the 7-*bit ASCII code for visable graphic characters on the external l/o 

media. Two types of single-word strings are provided for left or right justi

fication of the string within a word. Normally quoted strings are limited to 

five characters and the unused bit positions are filled with zeroes. In OWN 

and GLOBAL declarations, the namesizevalue (see later material) may be of 

the form 
namesizevalue name «- (quotedstring) 



1.3a 

In this special case, if the string is a leftadjustedstring, the string 

may be of arbitrary length and is bitten off in five character hunks and 

placed in successive words. The last word is leftadjusted and filled with 

trailing zero bits. The number of words so filled is such that there is 

at least one word with some zero (null) characters at the end. 

Within a quoted string the quoting character is represented by two 

successive occurrences of that character. 



1.4 

1.4 Names 

Syntactically an identifier, or name, is composed of a sequence of 

letters and/or digits, the first of which must be a letter. Certain names 

are reserved as delimiters, see Appendix A. Semantically the occurrence 

of a name is exactly equivalent to the occurrence of a pointer to the named 

item. The term "pointer" will take on special connotation later with 

respect to contiguous sub-fields (bytes) within a word; however, for the 

present discussion the term may be equated with "address". This interpre

tation of name is uniform throughout the language and there is no distinc

tion between left and right hand values. Contrast this with Algol where a 

name usually, but not always, means "contents of". 

The pointer interpretation requires a "contents of" operator, and "." 

has been chosen. Thus .A means 'bontents of location A"and ..A means 

"contents of the location whose name is stored in location A\ To illustrate 

the concept, consider the assignment expression 

simpleexpression pll «- e 

This means 'btore the value computed from e into the location whose pointer 

is the value of pll". (Further details are given in 2.2.) Thus the Algol 

statement "A :=* B" is written "A «- .B". It is impossible to express in 

Algol BLISS expressions such as: "A*- B", "A*- ..B", ".A*- .B", etc. 



1.5 

1.5 Pointers 

location "x" location "x+1" | 
«-3-» *y" bits ̂  

As explained in 1.4, the value of a name is a pointer which names a 

location in memory. However, pointers are more general than mere ad

dresses since they may name an arbitrary contiguous portion of a word, and 

may, further, involve index modification and indirect addressing. (For 

full details, the reader should refer to the PDP-10 System Reference 

Manual.) The most general form of pointer specifies five quantities; an 
18 

example is €Q <€^,^,£J,6^>, where 6Q is computed modulo 2 and forms 
the base word address (Y field); ^>^2> a r e computed modulo 2^ and form 

the position, size fields respectively (P, S fields); €^ is computed 
4 

modulo 2 and forms the index field (X field); €^ is computed modulo 2 

and forms the indirect address bit (I field). Each of €j,€^,€3, may 

optionally be omitted, in which case a default value is supplied. €^,€j,€^ 

have defaults of 0, but ^ ^ a s t* i e default of 36. Thus, for example, 

the expression 
(x+l)<.y,3> 

defines a three bit field in the first location beyond x. The position 

of this three bit field is fl.yff bits from the right end of the word. 



1 .6 

1 .6 The "contents of" Operators 

The interpretation placed on identifiers in Bliss coupled with the dot 

operator discussed earlier allow a programmer direct access to, and control 

over, fields within words, to pointers to such fields which are themselves 

stored within memory, to chains of such pointers, etc. Two additional 

"contents of" operations besides the dot are provided which are more effi

cient in certain cases, but which are defined in terms of the dot and 

pointer operations. These operators are @ and\, and are defined by the 

following (where t is a temporary): 

@€ = .€ < 0, 36, 0, 0 > 

\€ = .(t <- 6) < 0, 36, .t < 18, 4 >, .t < 22, 1 » 

Thus, both @6 and \€ specify a full 36 bit value. @€ uses only the right

most 18 bits of € as the absolute address from which to fetch the value. 

\€ interprets the rightmost 23 bits of 6 as an indirect bit, index register 

field and base address. Whichever form is used, the compiler attempts to 

optimize the code produced; thus, for example, identical code is produced 

for .x, @x, and\x t if they occur in an expression. 

Suppose that the assignment "X <-Y < 3, 15, Rl, 0>;" has been executed, 

that is a pointer has been stored in X (that pointer has P=3, S=15, X=Rl, 

1=0), and further that register Rl contains two. Now: 

(1) Z <- .X stores the value of X, i.e.,the pointer, into Z 

(2) Z <- ..X stores the value of the fifteen bit field (which ends three 
bits from the right) on the second word following Y into Z 

(3) Z <r-® .X stores the value of Y into Z 

(4) Z <-\ .X stores the value of the second word following Y into Z 

(5) .X <- 5 stores 5 into the relevant fifteen bit field of the second 
word following Y 

(6) @ X <r~ 5 stores 5 into Y 

(7) \X <- 5 stores 5 into the second word following Y 



2.1 

2.1 Expressions 

Every executable form in the BLISS language (that is, every form 

except the declarations) computes a value. Thus all commands are expres

sions and there are no "statements11 in the sense of Algol or Fortran. 

In the syntax description e is used as an abbreviation for expression. 

e -> simpleexpression | controlexpression 



2.2 

2.2 Simple Expressions 

Precedence 

2 

3 

3 

3 

4 

5 

5 

5 

6 

6 

6 

Example 
(compoundexpression) 

block 

n a m e ^ , ^ , . . . ,€ n] 

name 

literal 

GCpointer parameters> 

.€ 

\ e 

€ l t € 2 

€*€ 

€ x MOD ^ 

a-e 

Semantics 
The component expressions are 
evaluated from left to right 
and the final value is that of 
the last component expression. 
A function call, see 3.4. 

A structure access, see 3.5. 

A pointer to the named item, 
see 1.4. 

Value of the converted literal, 
see 1.3. 

A partial word pointer, see 1.5. 

Value (possibly partial word) 
pointed at by €. 

Eauivalent to .£<0.36.0.0>. 

Equivalent to .(t<-6)< 0,36,.t< 18,4>, 
.t<22,l». 
€^ shifted logically by ^ bits; 
left if C positive; right if 
^2 negative. (Shifts are modulo 256.) 

Product of €'s. 

€^ divided by 

€^ modulo 

Negative of €• 

Sum of 6 fs. 

Difference between €^ and 

The semantics of simpleexpressions is most easily described in terms 

of the relative precedence of a set of operators, but readers should also 

refer to the BNF-like description in 4.1. The precedence number used 

below should be viewed as an ordinal, so that 1 means first and 2 second 

in precedence. In the following table the letter 6 has been used to denote 

an actual expression of the appropriate syntactic type, see 4.1. 



2.2a 

[Note all arithmetic is carried out modulo 2 with a residue of -2 . 

All arithmetic is integer; if floating point arithmetic is introduced 

it will be by means of special operators, viz.,FMP, FDV, FNE, FAD, FSU.] 

Precedence Example Semantics 
7 $1 EQL € 2 €1 = «Z 
7 € x NEQ ^ € ^ ^ 

7 e L LSS ^ €,< €2 
7 € x LEQ ^ 

7 6 X GTR €2 

7 € x GEQ ^ e l ^ 
[Truth is represented by 1, falsity by 0.] 

8 NOT € bitwise complement of £ 

9 € AND € bitwise and of <Efs 

10 € OR e bitwise inclusive or of €'s 
11 € XOR € bitwise exclusive or of €'s 

11 € EQV € bitwise equivalence of €'s 
12 The value of this expression is 

identical to that of but as a 
side effect this value is stored 
into the partial word pointed to 
by G^; with associative use of «-, 
the assignments are executed from 
right to left: thus ^ «- C «- €~ 
means ^ «- «- £j) • However,  
in general, there is no guarantee  
regarding the order in which a  
simpleexpression is evaluated  
other than that provided by pre 
cedence and nesting: thus  
(R <- 2; @ R * (R «- 3)) may evaluate  
to 6 or 9~. 

The reader should refer to the. PDP-10 reference manual for a complete 

definition of the arithmetic operators under various special input value 

conditions. 



2.3.1 

2.3.1 Control Expressions 

The controlexpressions provide sequencing control over the execution 

of his program; there are five forms: 

controlexpression -»conditionalexpression | loopexpression | 

parallelexpression | escapeexpression | coroutineexpression 

The general goto statement has deliberately been omitted from the 

language to improve readability and structuring of programs. 



2.3.2 

2.3.2 Conditional Expressions 

Only the least significant bit of e ] is tested; a zero bit is interpreted as 
false and a one bit as true. Thus any odd integer value is interpreted as 
true and any even value as false. 

conditionalexpression -»IF e^ THEN ELSE e^ 

e^ is computed and the resulting value is tested. If it is odd*, then 

is evaluated to provide the value of the conditional expression, otherwise 

e^ is evaluated. 

conditionalexpression -»IF THEN e^ 

This form is equivalent to the IF^THEN-ELSE form with 0 replacing e^. 

However, it does introduce the "dangling else" ambiguity. This is resolved 

by matching each ELSE to the most recent unmatched THEN as the conditional 

expression is scanned from left to right. 



2.3.3 

2.3.3 Loop Expressions 

The value of each of the six loop expressions is -1, except when an 

EXITLOOP is used, see 2.3.4. 

loopexpression -»WHILE e^ DO e 2 

The e^ is computed and the resulting value is tested. If it is odd, then 

e2 is computed and the complete loopexpression is recomputed; if it is even, 

then the loopexpression evaluation is complete, 

loopexpression ->UNTIL e^ DO e 2 

This form is equivalent to the WHILE-DO form except that e^ is replaced by 

NOT(e 3). 

loopexpression DO e 2 WHILE e^ 

The expressions ^2 , el a r e c o m P u t e < * * n that sequence. The value resulting 

from e^ is tested: if it is odd, then the complete loop expression is 

recomputed; if it is even, then the loopexpression evaluation is complete. 

loopexpression -»DO e 2 UNTIL e^ 

This form is equivalent to the DO-WHILE form except that e^ is replaced by 

NOT(e 3). 

loopexpression -» INCR name FROM e-j TO BY e 3 DO e^ 

This is a simplified form of the Algol 68 for-loop. The "name11 is declared 

to be a REGISTER or a LOCAL for the scope of the loop. The expression e^ is 

computed and stored in name. The expressions e 2 and e^ are computed and 

stored in unnamed local memory which for explanation purposes we shall name 

U 2 and U 3. Any of the phrases "FROM e^' "To e 2" or "BY e 3" may be omitted--



2.3.3a 

in which case default values of e^ = 0, e 2 = 0, e^ = 1 are supplied. The 

following loopexpression is then executed: 

DO (e 3; name <- .name-HJ3) UNTIL .name GTR .U2; 

The final form of a loopexpression is: 

loopexpression -» DECR name FROM e^ TO e 2 BY e^ DO e^ 

This is equivalent to the INCR-FROM-TO-BY-DO form except that the final loop 

is replaced by 

DO (e^; name .name-U^) UNTIL .name LSS .U0; 



2.3.4 

2.3.4 Escape Expressions 

The various forms of escapeexpressions permit control to leave its 

current environment. They are intended for those circumstances when other 

controlexpressions would have to be contorted to achieve the desired effect. 

escapeexpression -* environment level escapevalue | RETURN escapevalue 

environment EXIT | EXITBLOCK | EXITCOMPOUND | EXITLOOP | EXITCONDITIONAL 

levels -* | [e] 

escapevalue -* | e 

Each of these expressions conveys to its new environment a value, say 6, 

obtained by evaluating the escapevalue, which may optionally be omitted imply

ing € - 0. The levels field, which must evaluate to a constant, say n, at 

compile time, determines the number of levels of the specified control environ

ment to be exited; the levels field may optionally be omitted in which case 

one level is implied. The maximum number of levels which may be exited in 

this way is limited by the current function (routine) body or the outermost block. 

RETURN terminates the current function, or routine, with value €. 

EXITBLOCK terminates the innermost n (where n is the value of the 
"levels" field) blocks, yielding a value of € for the 
outermost one exited. 

EXITCOMPOUND terminates the innermost n compound expressions, yielding 
a value of 6 for the outermost one exited. 

EXITLOOP terminates the innermost n loop expressions, yielding a 
value of 6 for the outermost one exited. 

EXITCOND terminates the innermost n conditional expressions, 
yielding a value of 6 for the outermost one exited. 

EXIT terminates the innermost n control scopes (whether blocks, 
compounds, conditionals, or loops with 6 as the value 
of the outermost. 



2.3.5 

2.3.5 Parallel Expressions 

parallelexpression -> SET expressionset TES 

expressionset -»|e|; expressionset | e ; expressionset 

When a compoundexpression is enclosed between a pair of parentheses or a 

BEGIN-END pair, its component e's are evaluated sequentially from left to 

right, the rightmost providing the final value. However, when an expression-

set is enclosed between a SET-TES pair the order of evaluation is undefined 

which implies that the constituent e fs may even be evaluated in whatever order 

the compiler finds convenient, and possibly even in parallel. The value of 

the SET-TES expression is that of the last e to be evaluated at execution 

time. Thus, unless there is only one e the value is unpredictable. 

The n expressions should be sufficiently restrictive that -the final 

state is independent of the actual order in which the component expressions 

are evaluated. An escape expression is illegal where its use would imply 

escaping from the SET-TES environment. Another form of parallelexpression is: 

parallelexpression -> CASE elist OF SET expressionset TES 

Let us suppose that the actual e's within the elist are ^ . ^ . . . . i and that 
1 2 ' m 

the actual expressions within the expressionset are ;,,, ;II • Then the 

expressions [ilg | i = 1,2,...,m] are executed as if sandwiched between a 
i 

SET and a TES. The number of selected expressions is m. For m=l the case 

expression is sequential with no forking and has a predicatable value (that 

of the selected expression). 

parallelexpression -> SELECT elist OF NSET nexpressionset TESN 

nexpressionset -> | ne | ne; nexpressionset 

ne -» e: e 



2.3.5a 

This form is somewhat similar to the case expression except that the express 

sions in the nexpressionset are not thought of as being sequentially numbered 

instead each expression in the nexpressionset is tagged with an "activation" 

expression. Suppose we have the following select expression 

SELECT € 2, 63 OF NSET € 4: € 5; € y; €g. € 9; € 1 Q : € n TESN 

then the execution proceeds as follows: first €^, G 2, €3 are evaluated, 

then €g and €^Q are evaluated; correspondingly €^ is evaluated if 

and only if 6^ is equal to one of €^, € 2, or €3. Similarly €^ is evaluated 

if an only if €g is equal to one of 6^, € 2, or €3, etc. As with the case 

expression, the order of evaluation of the nset elements is not defined 

and the value of the entire expression is that of the last one to be executed 

at execution time. Thus, the value of the complete select expression is 

uniquely determined only in the case that the elist contains precisely one 

element. 

An escape expression is illegal where its execution would imply escape 

from an NSET-TESN environment. 



2.3.6 

2.3.6 Co-routine Expressions 

The body of a function or routine may be activated as a co-routine 

and/or asynchronous process; the additional syntax is 

coroutineexpression -> CREATE e1 (elist) AT e 2 LENGTH e 3 THEN 

EXCHJ (e 4, e 5) 

The effect of a 1 create1 expression is to create a context, that is 

an independent stack, for the routine (function) named by e^, with para

meters specified by the elist, at the location whose address is specified by e 2 and of 

size e 3 words. Control then passes to the statements following the 1 create1. When 

two or more such contexts have been established, control may be passed from 

any one to any other by executing an exchange-jump, EXCHJ (e^, where the 

value of e^ must be the stack base, e 2, of a previous 'create1 expression. 

The value of e^ is made available to the called routine as the value of its 

own EXCHJ which caused control to pass out of that routine. Thus the 

value of the EXCHJ operation is defined dynamically by the co-routine which 

at some later time re-activates execution of the current co-routine. 

Should a process, the body of which is necessarily that of a function 

(or routine), execute a 'return1, either explicitly or implicitly, the ex

pression e^ 'following the 'then1 in the 'create' expression of the creating 

process) is executed in the context of the created process* The normal 

responsibilities of e^ include making the stack space used for the created 

context available for other uses and performing an EXCHJ to some other 

process. 

The facilities described above, namely 'create' and 'exchj', are 

adequate either for use directly as co-routine linkages or for use as primi

tives in constructing more sophisticated co-routine facilities with macros 
Note that the 1st EXCHJ to a newly created process causes control to enter 

from its head with actual parameters as set up by the CREATE. 
The value e c is not available to the called routine on the 1st EXCHJ to it. 



2.3.6a 

and/or procedures. It should be noted in the context that if the created 

processes are functions (rather than routines) the resulting processes con

tinue to have access to lexically global variables which may be local to an 

embracing function (access to lexically local variables which have been 

declared 'own1 is available in either case). In such a case the resulting 

structure is a stack tree in which all segments of the tree below the 

lexical level of the (function) process are available to it. 

Two additional complexities are added if the create and exchj 

are to be used for asynchronous, and possibly parallel, execution of pro

cesses. One is synchronization, by which we man a mechanism by which a 

process can coordinate its execution with that of one or more others. A 

typical example of the need for synchronization occurs when two processes, 

independently update a common data base, and each must be sure that the 

entire updating process is complete before any other process attempts to 

use the data base. The second complexity arises in connection with inter

rupts, and in particular from the fact that certain operations must not be 

interrupted (some exchj operations for example)• It is possible that cer

tain situations require synchronization mechanisms but do not need to be 

concerned about the interrupt problem—as for example, a user program with 

asynchronous processes, which is 'blind1 to interrupts, and which some 

monitor systems view as a single 'job1. 

The nature of "appropriate" synchronization primitives and mechanisms 

for temporarily blinding the processor to interrupts (or interrupts in a 

certain class) are highly dependent upon the nature of the processes being 

used and the operating system, or lack of one, underlying the Bliss program. 

As a consequence, no syntax for dealing with either problem is included in 



2.3.6b 

the language; in any case, the amount of code necessary for these facilities 

Is quite small. 

The co-routine user is well advised to read and understand the material 

on the run-time representation of Bliss programs contained in section IV. 



3.1 

3.1 Declarations 

All declarations, except MAP, introduce names each of which is unique 

to the block in which the declaration appears. Except with STRUCTURE and 

MACRO declarations, the name introduced has a pointer bound to it. 



3.2 

3.2 Memory Allocation 

There are four classes of declaration which allocate memory space. 

declaration -> LOCAL namesizelist | 

REGISTER namesizelist | 

OWN namesizevaluelist | 

GLOBAL namesizevaluelist 

namesizelist -»namesize | namesizelist, namesize 

namesize ->name^ | name2 C ^ ] 

namesizevaluelist ->namesizevalue | namesizevaluelist, namesizevalue 

namesizevalue -> namesize | name^ <-e^ | nan^ C^l <- (valuelist) | 

name^ «- quotedstring 

valuelist -rvalue | valuelist, value 

value -»e^ | e^ (valuelist) 

With LOCAL and REGISTER every name in the namesize list is declared to 

have a scope coincident with the current block. For every incarnation of 

the block at run time (including parallel incarnations of the same routine 

via the 'create1 mechanism) one word of memory is allocated for namej and e 2 

words of memory are allocated for name 2. The memory space for a particular 

incarnation is released at the corresponding block exit. The names have as 

value the pointer to the first (or only) word of memory allocated. The contents  

of the allocated memory is undefined and should not be presumed. The memory 

space is taken from core (LOCAL) or the high speed registers (REGISTER) as 

specified. Also, e 2 is restricted to an expression which is calculable at 

compile time. Registers must be used sparingly since less than the full 16 

will be available for general use. 



3.2a 

With OWN and GLOBAL, for every name in the namesizevalue list one 

word of memory is allocated for name^ and words are allocated for name^* 

The memory space is taken from core at compile time and survives for the 

complete run. The names have as value the pointer to the first (or only) 

word of memory allocated. The content of word name^ may be initialized at 

compile time to e^. The contents of the words commencing at name 2 may 

be initialized to the values in a valuelist. Whereas e^ is a single value, 

there are e^ occurrences of its ensuing valuelist. The expressions 
e l , e 2 , e 4 , e 5 a r e r e s t r * c t e c * t o ^ e i n 8 calculable at compile time. Enough 

words are allocated for name^ to store the quoted string. The scope of an 

OWN name is that of the block in which it is declared and of a GLOBAL name 

is that of the outermost block of the final program. GLOBAL names are made 

available to another module by citation in that module1s EXTERNAL list. 

Note that co-executing incarnations of the same block, whether invoked as a 

recursive subroutine or as a co-routine (or both) refer to the same location 

if that location was declared by OWN or GLOBAL declarations. 



3.3 

3.3 Module Communication 

There are two declarations by means of which modules may access names 

of another module. The GLOBAL declaration has already been discussed (3.2). 

declaration -> EXTERNAL namelist 

namelist name | namelist, name 

Each name in the namelist of an EXTERNAL declaration must be defined by a 

GLOBAL declaration in another module to which the current module will be 

linked before execution. The EXTERNAL declaration makes these names known 

to the current block of the current module via the loader. 



3.4 

3.4 Functions 

declaration -^FUNCTION name (namelist) = e | 

FUNCTION name = e | 

ROUTINE name(namelist) = e | 

ROUTINE name = e 

The FUNCTION and ROUTINE declarations define the name to be that of a poten

tially recursive and re-entrant function whose value is the expression e. 

The syntax of a normal subroutine-like function call is 

pi -»pl (elist) | pi ( ) 

elist -» e | elist, e 

where pi is a primary expression. Clearly, pi must evaluate to a name which 

has been declared as a FUNCTION or ROUTINE either at compile time or at run 

time. The names in the namelist of the declaration define (lexically local) 

the names of formal parameters whose actual values on each incarnation are deter 

mined by the elist at the call site. All parameters are implicitly Algol 

"call-by-value11; but notice that call-by-reference is achieved by simply pre

senting pointer values at the call site. Parentheses are required at the call 

site even for a ROUTINE or a FUNCTION with no formal parameters since the name 

on its own is simply a pointer to the function or routine. Extra actual para

meters above the number mentioned in the namelist of the function (or routine) 

declaration are always allowed; however, too few actual parameters can cause 

erroneous results at run time. A ROUTINE differs from a FUNCTION in having an 

abbreviated and hence faster prolog. Restriction: a routine may not refer 

directly to local variables declared outside it, nor may it call a FUNCTION. 



3.4a 

declaration GLOBAL ROUTINE name (namelist) = e | 

GLOBAL ROUTINE name = e 

A ROUTINE name is like an OWN name in that its scope is limited to the block 

in which it is declared and its value is already initialized at block entry. 

The prefix GLOBAL changes the scope of the ROUTINE to that of the outer 

block of the program enveloping all the modules. Note that this inhibits 

a GLOBAL ROUTINE from access to REGISTER names declared outside it. This is 

in addition to the other limitations of ROUTINES cited on the previous page. 

Functions and routines may also be activated as co-routines and/or 

asynchronous processes, and indeed, the body of a single function may be 

used in any or all of these modes simultaneously. (See 2.3.6.) 

declaration -^EXTERNAL nameparlist j 

FORWARD nameparlist 

nameparlist -»namepar | nameparlist, namepar 

namepar -> name (e) 

EXTERNAL and FORWARD each tell the compiler how many parameters, given 

by e, are expected by an undeclared function (or routine), name. FORWARD 

is for functions (or routines) declared later in the current block and 

EXTERNAL is for routines from another module. The compiler permits the 

number of actual parameters in a function (or routine) call to be greater 

than or equal to the number of formals declared. 

Clearly e must evaluate to a constant at compile time. 



3.5 

3.5 Structures 

Structure declarations serve to define data structures by giving an 

explicit algorithm for the "indexing rule11 associated with that class of 

structures. 

declaration -» STRUCTURE name [namelist] = e 

This declaration introduces name as a new "structure class" by which 

specific data names will be mapped in a MAP declaration. The names in the 

namelist are formal parameter names which positionally correlate with actual 

parameters in the usual manner. In addition, the structure class name is 

used to denote the Oth formal parameter which will correlate with the name 

(base address) of the data space used at the call site. The syntax of a 

structure access is 

pi -»name [elist] 

Before describing the meaning of this we must examine the MAP declaration, 

declaration ->MAP name: namelist 

Here name must be defined by a STRUCTURE declaration, and the names in the 

namelist must be defined as memory space. The MAP declaration permits the 

memory space to be accessed by the indexing rule specified by the STRUCTURE 

declaration. In the following example, TRI may be accessed as a symmetric 

matrix although only the lower triangle is stored. 

OWN TRI[5*6/2],DOPE[5] <- (0,1,3,6,10); 
STRUCTURE VEC[I] = (.VEC-1+.I); 
STRUCTURE SYM[I,J] = (.SYM-1+(IF.I GTR.J THEN.DOPE[ .1]+.J ELSE 

.DOPE[.J]+.I)); 
MAP VEC:DOPE; 
MAP SYM: TRI; 



3.5a 

A given memory space may be accessed in more than one way by binding alias 

names to it and mapping a different structure on each alias. 

declaration BIND equivalencelist 

equivalencelist -»equivalence j equivalencelist, equivalence 

equivalence -» name = e 

Referring to the previous example we could access TRI linearly by means of 

the alias LIN, thus: 

BIND LIN = TRI; 
MAP VEC : LIN; 

Notice that the value to which a name may be bound need not evaluate 

at compile time but may be determined at execution time. For example, in 

the following code this feature is used to effect a row interchange within 

a matrix. 

BEGIN 
STRUCTURE ARY2[I,J] = •ARY2 + (.I-l)*10 + (.J-l); 
STRUCTURE ARYl[I] = .ARYl + .1-1; 
OWN X[100]; 
MAP ARY2:X; 
... 
BEGIN BIND XXl = X[.K,1], XX2 = [.n,l]; MAP ARYl:XXl,XX2; REGISTER T 

INCR I FROM. 1 TO 10 DO 
(T - XX1[.I]; XX1[.I] «- XX2[.I]; XX2[.I] «- T); 

END; 

End; 



3.6 

3.6 Macros 

Macro expansion takes place during compilation after lexical analysis 

but before syntactic analysis. The range of a macrocall is sufficiently 

general that it cannot be described in simple BNF. The only restrictions 

on the positioning of a macrocall are that it may not appear as part of a 

literal, name or reserved word, nor may it appear until lexically after the 

corresponding declaration, so that the recursive macros are impossible, 

declaration -» MACRO definitionlist 

definitionlist -» definition | definitionlist, definition 

definition -»name^ (namelist) = matchedstring^ $ | 

nan^ = matchedstring2 $ 

The matchedstring may be an arbitrary string of atoms of the language, except 

that any occurrences of "MACRO11 and "$;" must be as nested ordered pairs. 

macrocall ->name1 (stringlist) | name 2 

stringlist -» string | stringlist, string 

Each string in the stringlist may contain any symbol other than a comma. 

For the simple macro without parameters, expansion consists of simply 

replacing every appearance of nan^ for its scope by matchedstring2« For 

the parameterized macro, every occurrence in the matchedstring^ of each 

name in the namelist is replaced by the corresponding string in the string-

list. The modified (expanded) string then replaces the call in the program. 

After expansion the input scanner is left pointing at the first symbol of 

the expanded string so that macrocalls may be nested. Where a macrocall 

appears in the matchedstring it is not expanded at the declaration but at 

call sites of the enclosing macro. 



3.6a 

Macros may be used to provide names to bit fields so as to improve 

readability. 

MACRO EXPONENT = 27,8 $; 
MACRO MANTISSA = 0,27 $; 
MACRO SIGN = 35,1 $; 
LOCAL X; 
X <SIGN> *- 0; X <EXPONENT> <- 27; X <MANTISSA> <- .1; 

Macros may be used to extend the syntax in a limited way. 

MACRO NEG = 0 GTR $; 
MACRO UNLESS (X) = IF NOT(X) $; 

Macros may be used to effect in-line coding of a function. 

MACRO ABS(X) = BEGIN REGISTER TEMP; 
IF NEG(TEMP <- X) THEN -.TEMP ELSE .TEMP END $; 

I HERE THE ACTUAL PARAMETER SUBSTITUTED FOR X MAY NOT INCLUDE THE 
1 NAME TEMP. 



II-1.1 

II. SPECIAL LANGUAGE FEATURES 

The previous chapter describes the basic features of the BLISS 

language. In this chapter we describe additional features which are 

highly machine and implementation dependent. 

1.1 Special Functions 

A number of features have been added to the basic BLISS language which 

allow greater access to the PDP-10 hardware features. These features have 

the syntactic form of function calls and are thus referred to as "special 

functions". Code for special functions is always generated in line. 



II-1.2 

1.2 Character Manipulation Functions 

Ten functions have been specified to facilitate character manipula

tion operations, They are: 

scann (ap) copynn (ap^, ap 2) 

scani (ap) copyni (app 

replacen (ap, 6) copyin (ap.., ap^) 

replacei (ap, €) copyii (ap.., ap 2) 

incp (ap) 

deep (ap) 

For each of these € is an arbitrary expression, and ap is an expression 

whose value is a pointer to a pointer. The second of these pointers is assumed 

to point to a character in a string. 

scann (ap) is a function whose value is the character from the 
string. 

scani (ap) is like scann except that, as a side effect, the 
string pointer is set to point at the next character 
of the string before the character is scanned. 

replacen (ap, €) is a function whose value is 6 and which, as a side 
effect, replaces the string character by €. 

replacei (ap, €) is similar to replacen except that the string pointer 
is set to point at the next character of the string 
before the value of 6 is stored. 

copynn (ap.,, apJV. 
copyni (ap p ap 2) 
copyin (ap , a p j 
copyii (ap , ap ) 

these functions are similar in that they each effect 
a copy of one character from a source string (pointed 
at by .app to a destination string (pointed at by .ap 2) 
and have as value the character copied. They differ 
in that copynn advances neither pointer,\4iile copyni 
advances •aPo» copyin advances »ap^, and copyii advances 
both. In each case the pointer is advanced before the 
copy is effected. 

incp (ap) advances .ap to the next character 

deep (ap) resets .ap to point at the previous character of the 
string. 

file:///4iile


II-1.2a 

Suppose that a string (of 7 bit ASCII characters) is stored in memory 

beginning at location S. The string is terminated by a null (zero) 

character. The following skeletal code will transform it into a 6-bit 

string with blanks deleted: 

begin 
register p7, p6, c; 
p7 <- (s-1) <L, 7>; p6 <- (s-1) <0,6>; 
while (c <- scani (p7)) neq 0 do 

if .c neq 11 fl then replacei (p6, .c); 
• • • 

end; 



II-1.3 

1.3 Machine Language 

It is possible to insert PDP-10 machine language instructions into a 

Bliss program in the syntactic form of a special function 

op (€•,, € 2, € 3, € 4) 

where 

op i§ one of the PDP-10 machine language mnemonics (see table 
below)• 

€^ is an expression whose least significant 4 bits will become 
the accumulator (A) field of the compiled instruction. 
This expression must yield a value at compile time of a 
declared register name or a literal. 

€ 2 is an expression whose least significant 18 bits will 
become the address (Y) field of the compiled instruction. 

€3 is an expression whose least significant 4 bits will become 
the index (X) field of the compiled instruction. 

€^ is an expression whose least significant bit will become 
the indirect (I) bit of the compiled instruction. 

(A table of machine language instruction mnemonics follows. Defaults for €^-^ a*e 0.) 

The 'value1 of these machine language instructions is uniformly taken 

to be the contents of the register specified in the accumulator (A) field 

of the instruction. (This makes little sense in a few cases, but was 

adopted for uniformity.) 

In order for the compiler to conserve space during compilation, the 

mnemonics for the machine language operators are not normally preloaded 

into the symbol table. Therefore, in order to use this feature of the 

language, it is necessary for the programmer to include one of the follow

ing special declarations 

declaration -»MACH0P mlist | ALLMACHOP 

mlist -» name = e | mlist , name = e 

in the head of a block which embraces occurrences of these special functions. 

(Note: the e's in an mlist must be the actual values of the machine operation 

and must evaluate at compile time.) Symbol table space for these names is 

released when the block in which the declaration occurs is exited. 



II-1.3a 

* 
PDP-10 Instruction Mnemonic Table 

MOV 
E 
e Negative 
e Magnitude 
e Swapped 

Half word Right Left t 0 {Left I 

no effect 
Ones 
Zeros 
Extend sign 

to AC 

Immediate to AC 
to Memory 
to Self 

BLock Transfer 
EXCHange AC and memory 

use present pointerl ^ | LoaD Byte into AC 
Increment pointer | \ DePosit Byte in memory 
Increment Byte Pointer 

PUSH down 
POP up ii and Jump 

SET to 

Zeros 
Ones 
Ac 
Memory 
Complement of Ac 
[Complement of Memory J 

AND \ 
inclusive OR J 

Inclusive OR 
eXclusive OR 
EQuiValence 

with Complement of Ac 
with Complement of Memory 
Complements of Both 

to 
AC 

AC Immediate 
Memory 
Both 

SKIP if memory 1 
JUMP if AC J 
Add One to H memory and Skipl 

AC and Jump J 

Compare Ac [ J ^ ^ H t f ! a" d S k i p l f ^ 

never 
Less 
Equal 
Less or Equal 
Always 
Greater 
Greater or Equal 
Not equal 

^ « , . . r i r (Positive Add One to Both halves of AC and Jump if | N e g a t i v e 

ADD 
SUBtract 
MULtiply 
Integer MULtiply 
DIVide 
Integer DIVide 

and Round-! 
Floating AdD 
Floating SuBtract 
Floating MultiPly 
Floating DiVide 
Floating SCale 
Double Floating Negate 
Unnormalized Floating Add 

Immediate 
to Memory 
to Both 

Long 
to Memory 
to Both 

Arithmetic SHift 
Logical SHift 
ROTate Combined 

Jump 

to SubRoutine 
and Save Pc 
and Save Ac 
and Restore Ac 
if Find First One 
on Flag and CLear it 
on OVerflow (JFCL 10,) 
on CaRrY 0 (JFCL 4,) 
on CaRrY 1 (JFCL 2,) 
on CaRrY (JFCL 6,) 
on Floating OVerflow (JFCL 1,) 
and ReSTore 
and ReSTore Flags (JRST 2,) 
and ENable PI channel (JRST 12,) 

HALT (JRST 4,) 
eXeCuTe 

DATAl 
BLocKl 
CONditions 

in and Skip if | all masked bits Zero some masked bit One 

Test AC 

with Direct mask 
with Swapped mask 
Right with E 
Left with E 

No modification 
set masked bits to Zeros 
set masked bits to Ones 
Complement masked bits 

and skip 
never 
if all masked bits Equal 0 
if Not all masked bits equal 0 
Always 

Reproduced with permission of Digital Equipment Corporation from the PDP-10 
Reference Handbook. 



IV -1.1 

IV. RUN TIME REPRESENTATION OF PROGRAMS 

1#1 Introduction 

In order to make the fullest possible use of Bliss, it is important 

to understand the run-time environment in which Bliss programs run. The 

address space is occupied by various types of information: 

(1) program 

(2) constants 

(3) static size variable areas (globals and owns) 

(4) stacks 

Programs are 'pure' (they do not modify themselves) therefore program 

and constant areas are placed in contiguous, write-protected regions 

and may be shared. Static variable storage and stack space are placed 

in readable/writable memory. The key to understanding the run-time 

environment in the stack configuration and register allocation is illustrated 

in Figure IV.1. Each process (co-routine) has its own stack configured as 

shown in IV. 1 • 



IV-1.2 

1.2 The Stack and Functions 

The first 17jg locations of each stack are reserved for state informa

tion (registers plus program counter) for a process when it is inactive. The 

use of these cells is explained more fully in 1.4. The configuration 

above these 17 state words depends upon the depth of nesting of function 

calls, but each such nested call involves a similar (not identical) use 

of the stack; Figure IV.1 illustrates a typical stack configuration 

after several nested functional calls* At a time when one of these 

functions is executing 

(1) The S-register points to the highest assigned cell in the 

stack; the S-register is used to control the allocation 

of the stack area. 

(2) The F-register points to the 'local base of stack1; below 

the F-register are the parameters to the function and the 

return address. The stack cell actually pointed to by 

the F-register contains the previous value of the F-register 

at the time at which the current function was entered. 

(3) The calling sequence which is used to enter a function (or 

routine) is 

PUSH S,p1 

PUSH S,p2 

PUSH S,p n 

PUSHJ S,FCN 

SUB S,[nooooon] 

push 1st parameter onto the 
stack 
push 2nd parameter onto the 
stack 

push nth parameter onto the 
stack 

jump to the called function 

delete the parameters 
(4) Above the F-register are stored the "displays", D i»..D f 

'below1 in the sense of decreasing address values, 



IV-1.2a 

One display is used for each lexical nesting of the decla

ration of the function which is currently executing. The 

value of the displays are the F-register values for the 

most recent recursive entries for the lexically embracing 

functions. The displays are needed and used to access 

variables global to the current functions but local to-

embracing functions. Such access is prohibited in routines, 

and consequently no displays are saved on a routine entry. 

(5) Above the displays are saved any working registers which 

are destroyed by the execution of the function body. 

These registers are restored before the function exits. 

(6) Any local variables in the function are stored on top of 

the saved registers. Space is acquired/deleted for locals 

on block entry/exit by simply adding/subtracting a constant 

to the S-register. 

(7) An excessive number of declared registers, or the evaluation 

of an unbelievably complex expression may exhaust the avail

able registers, forcing the area above the locals to be used 

for storing partial results of an expression evaluation. 

(8) The V-register is used to return the value of the function 

or routine. 

Figure IV.2 illustrates the code generated surrounding the body of a func

tion. The code surrounding a routine body is identical with the exception 

that the displays are never saved. 



Figure IV.1 

Stack Structure and Registers for a Process 

T hi 1'in in {<! 
//////temps///, 

Local Variables 

Register Save Area 

A 
< Display 

Parameters 

"A 

m 

The stack con 
figuration shown 
above is repeate^ 
for each nested 
call. 

20 
Register save 17 
area when process 
is inactive 5 

4 

State info for 
inactive pro
cess A 

3 

2 
1 

T 
Declared and 
working registers 

STACK 



Figure IV.2 

Function Prolog and Epilog 

FCN: PUSH S,F 
PUSH S,1(F) 

PUSH 
HRRZ 
SUBI 
PUSH 
PUSH 

S,f(F) 
F,S 
F,f 
S,F 
S,R 

PUSH S,R 
9 n 

save old F-register 
copy display zero 

copy display f 
set up new F 
subtract no. displays 
new display created 
save register 

save register 

BODY OF FUNCTION OR ROUTINE 

POP S,R ; restore register z 

POP S,R ; restore register 
EL 

SUB S,[(f+l)(WO00(£+l)] ; eliminate displays I f-
POP S,F 
POPJ S, 

Not 
Generated 

[_For 
Routines 

BENTER: MOVEM 
• • • 
MOVEM 
ADD 

Figure IV.3 
Block Entry and Exit 

I, J+1 (F) 

RjJ+j(F) 
S ,[n00000n] 

; save in-use working registers 
• • • 

; save in-use working registers 
; INCR S-register by no. locals in blk 

BEXIT: SUB S,[(n+j)00000(n+j)] ; DECR S-register by no. locals in blk 
; (note: in-use reg?.s left in stack, 
; re-loaded only when used) 



IV-1.3 

1.3 Access to Variables 

This section briefly indicates the mechanisms by which generated code 

accesses various types of variables (formaIs, owns and globals, locals, 

etc.) The exact addressing scheme used by the compiler in any particular 

case is highly dependent upon the context; however, the following material 

should aid in understanding the overall strategy. 

(a) OWN and GLOBAL variables are accessed directly. 

(b) Formal parameters of the current routine are accessed negatively 

with respect to the F-register. If the current routine has n 

formats, then the ith one is addressed by 

(-n + i - 2) (F) 

(c) Local variables of the current routine are accessed positively 

with respect to the F-register. To access the ith local cell, 

one uses 

(i + d + r + 1)(F) 

where d is the number of displays saved and r is the number of 

registers saved on function entry. 

(d) Formal parameters and local variables which are not declared in 

the currently executing function are accessed through the dis

play. The appropriate display is copied into one of the working 

registers then accessed by indexing through that register in a 

manner similar to that shown in (b) or (c) above. 



IVT1.4 

1.4 Co-routine Creation and Calls 

The two co-routine mechanisms are the 'create1 and the 'exchj1 expres

sions; an understanding of the latter is necessary to an understanding of 

the former--therefore, we shall describe it first. 

Assume two processes Pi and P2 with respective stack bases P^ and 

Further, assume Pi is active (P2 inactive) and executes 

x <- exchj (P 2,V); 

The following code is compiled in Pi*' 

PUSH B,[P 2] I store new stack base addr. in temp. 
MOVE(I)** V,TJ ; parameter to ^ left in value register 
PUSHJ B,EXCHRT ; jump to routine to handle the exchange 

where 

EXCHRT: PUSH B,S ; save caller's S-register 
ADD I B,l ; sat up destn for BLT, end test 
MOVE S,B ; copy B in preparation for BLT 
BLT S,(17-3XB) ; save caller's registers 
HRRZ B,-2(B) ; pick up new stack base 
HRLI S, (B) ; set up source for BLT 
HRRI S,3 ; set up destination for BLT 
BLT S,17 ; restore called program's registers 
MOVE S, (B) ; restore called program's stack ptr. 
JRSTF @ (B) ; jump to called program 

The instructions generated for a 'create1 simply establishes a stack 

configuration appropriate for a later EXCHJ. In particular, suppose a 

process executes 

CREATE P Q(P 1,P 2,...,P n) AT e f LENGTH e 2 THEN e 3 

Then the following code is generated 

** The exact form of this code depends upon the nature of the expression 
* Note all numbers in code are octal. 



IV-1.4a 

HRRZ(I)* pick up the new stack base addr 

ADD I 4,1 ; move past WASTE cell 

MOVE make another copy for the BLT 

BLT t 2,20(t 1) ; save the registers 

MOVEN* t 2,e 2 ; get negative length 

HRL t x,t 2 ; set length in stack pointer 

MOVE t2,tx ; be sure to have good copy of base addr. 

ADD ^,[20000020]; bump pointer above save area 

PUSH 

• • • push parameters 

PUSH 

PUSH t r[E3] ; phoney return to e^ 

MOVEM t 1,3(t 2) ; save S-register for new process 

MOVE(I)* get entry point for new process 

MOVEM tv2(t2) ; save entry point in state area 

JRST ARNDIT ; skip around e^ code 

ETWO: code for e( 

ARNDIT: 

*The form of the code obviously depends upon its actual form in the 'create' 
expression. 



A.1 

APPENDIX A: SYNTAX 

module 

block 

begin 

end 

comment 

declarations 

declaration 

-> block 

-»begin declarations compoundexpression end 

-» BEGIN 

-> END 

-» | I restofline endoflinesymbol | # stringwithnopercent 

-» | declaration; | declarations declaration; 

-» LOCAL namesizelist | 

REGISTER namesizelist | 

OWN namesizevaluelist | 

GLOBAL namesizevaluelist | 

EXTERNAL namelist | 

FORWARD nameparlist | 

FUNCTION name (namelist) = e | 

FUNCTION name = e j 

ROUTINE name (namelist) = e | 

ROUTINE name = e | 

GLOBAL ROUTINE name (namelist) = | 

BIND equivalencelist | 

STRUCTURE name [namelist] e | 

MAP name: namelist I 

namesizelist 

namesize 

MACRO definitionlist 

namesize | namesizelist, namesize 

name | name [e] 



A. 2 

valuelist 

value 

namelist 

nameparlist 

namepar 

equivalencelist 

equivalence 

definitionlist 

definition 

namesizevaluelist -> namesizevalue | namesizevaluelist, namesizevalue 

namesizevalue -» namesize | name <~ e | name [e] <- (valuelist) | 

name <-quotedstring 

-rvalue | valuelist, value 

-> e | e (valuelist) 

name | namelist, name 

-»namepar | nameparlist, namepar 

-» name (e) 

-»equivalence | equivalencelist, equivalence 

-> name = e 

-» definition | def initionlist, definition 

-»name (namelist) = matchedstring $ | 

name = matchedstring $ 

compoundexpression | e | e ; compoundexpression 
e -»controlexpression | simpleexpression 

controlexpression -> conditionalexpression | 

loopexpression | 

escapeexpression | 

parallelexpression | 
c or ou t ineexp res si on 

conditionalexpression -£F e THEN e ELSE e | 

IF e THEN e 

loopexpression -»WHILE e DO e | 

UNTIL e DO e | 

DO e WHILE e | 

DO e UNTIL e | 



A. 3 

escapeexpression 

levels 

escapevalue 

environment 

INCR name FROM e TO e BY € DO e | 

DECR name FROM e TO e BY € DO e 

->environment levels escapevalue | RETURN escapevalue 

-*| [e] 

- I e 

-»EXIT | EXITBLOCK | EXITCOMPOUND | 
EXITLOOP | EXITCOND 

parallelexpression -» SET expressionset TES j 

CASE elist OF SET expressionset TES | 

SELECT elist of NSET nexpressionset TESN 

-»|e| ; expressionset | e ; expressionset 

-» |ne| ne ; nexpressionset 

-»e | elist, e 

-* e:e 

expressionset 

nexpressionset 

elist 

ne 

coroutineexpression-* CREATE e (elist) AT e LENGTH e THEN e 

simpleexpression —> pll «-e | pll 

plO | pll XOR plO | pll EQV plO 

| plO OR p9 

| p9 AND p8 

| NOT p7 

| p6 relation p6 

| - p5 | p6 + p5 | p6 - p5 

| p5 * p4 | p5 / p4 | p5 MOD p4 

| p4 t P 3 

| . P3 | Op3 | \ P 3 

| pi <pointerparameters> 

EXCHJ (e,e) 

p l l 

plO 

P9 

p8 

P7 

p6 

P5 

p4. 

P3 

P2 

pi 

-»P9 

->p8 

-»p7 

-»p6 

-»P5 

-» p4 

-> P3 

-> p2 

-» pi 

literal 



name | 

name [elist] | 

pi (elist) | 

P 1 ( ) I 

block | 

(c ompoundexpre s s ion) 

relation -»EQL | NEQ | LSS | LEQ | GTR | GEQ 

pointerparameters -» position, size modification 

modification -> | , index | , index, indirect 

position -> | e 

size -» | e 

index -» j e 

indirect -> | e 

literal -» number | quotedstring 

number -» decimal | octal 

decimal -» digit | decimal digit 

octal -»# oit | octal oit 

digit -> 0 | 1 | 2 | ...\ 9 

oit ->0 | 1 | 2 |...| 7 

name ->letter | name letter name digit 

letter -»A | B | C | ... | Z | a | b | c | 

quotedstring -»leftadjusted string | rightadjusted 

lef tad j us teds tr ing 1 string1 

rightadjustedstring-* "string" 

macrocall -*name (stringlist) 

stringlist string | stringlist, string 



The following list contains all the names reserved in the language: 

AND EXTERNAL OF 
AT FORWARD OR 
BEGIN FROM OWN 
BIND FUNCTION REGISTER 
BY GEQ RETURN 
CASE GLOBAL ROUTINE 
CREATE GTR SELECT 
DECR IF SET 
ELSE INCR 
END LEQ STRUCTURE 
EQL LOCAL TES 
EQV LSS TESN 
EXCHJ MACRO THEN 
EXIT MAP TO 
EXITBLOCK MOD UNTIL 
EXITCOMPOUND NEQ WHEN 
EXITCOND NOT WHILE 
EXITLOOP NSET XOR 



B.l 

APPENDIX B: INPUT-OUTPUT CODES 

The table beginning on the next page lists the complete teletype code. The 
lower case character set (codes 140-176) is not available on the Model 35, 
but giving one of these codes causes the teletype to print the corresponding 
upper case character. Other differences between the 35 and 37 are men
tioned in the table. The definitions of the control codes are those given by 
ASCII. Most control codes, however, have no effect on the console teletype, 
and the definitions bear no necessary relation to the use of the codes in con
junction with the PDP-10 software. 

The line printer has the same codes and characters as the teletype. The 
64-character printer has the figure and upper case sets, codes 040-137 
(again, giving a lower case code prints the upper case character). The *496"-
character printer has these plus the lower case set, codes 040-176. The 
latter printer actually has only ninety-five characters unless a special charac
ter is "hidden" under the delete code, 177. A hidden character is printed by 
sending its code prefixed by the delete code. Hence a character hidden under 
DEL is printed by sending the printer two 177s in a row. 

Besides printing characters, the line printer responds to ten control charac
ters, HT. CR, LF, VT, FF, DLE and DC1 -4. The 128-character printer uses 
the entire set of 7-bit codes for printable characters, with characters hidden 
under the ten control characters that affect the printer and also under null 
and delete. In all cases, prefixing DEL causes the hidden*character to be 
printed. The extra thirty-three characters that complete the set are ordered 
special for each installation. 
The first page of the table of card codes \pages ) lists the column 

punch required to represent any character in the two DEC codes. The octal 
codes listed are those used by the PDP-10 software. In other words, when 
reading cards, the Monitor translates the column punch into the octal code 
shown; when punching cards, it produces the listed column punch when 
given the corresponding code. The remaining pages of the table show the 
relationship between the DEC card codes and several IBM card punches. 
Each of the column punches is produced by a single key on any punch for 
which a character is listed, the character being that which is printed at the 
top of the card. 

*Thl, appendix reproduced with the permission of Digital Equipment 
Srporationfroithe PDP-10 Reference Handbook. 



B.2 

Even 7-Bit 
Pari ty Octa l 

Bit Code Charac te r Remarks 

0 0 0 0 NUL Null , t ape feed. Repea t s on Model 37 . Con t ro l shift P on Model 3 5 . 
1 001 SOH Star t of heading; also SOM. start of message. Con t ro l A. 
1 0 0 2 STX Star t of t e x t ; a l s o E O A . end of address . Con t ro l B. 
0 oo.v ETX End of t e x t : also EOM. end of message. Con t ro l C. 
1 0 0 4 E O T End of t ransmission ( E N D ) ; shuts off TWX machines . Con t ro l D. 
0 0 0 5 E N Q Enqu i ry ( E N Q R Y ) ; also WRU. " W h o are y o u ? " Triggers ident i f icat ion 

( " H e r e is . . . " ) at r emo te stat ion if so equ ipped . Con t ro l E. 
0 0 0 6 ACK Acknowledge ; also R U . " A r e you . . ? " Con t ro l F . 
1 0 0 7 BEL Rings the bell. Con t ro l Ci. 
1 0 1 0 BS Backspace: also F E D , format effector . Backspaces some machines . 

Repea t s on Model 3 7 . Con t ro l II on Model 3 5 . 
0 011 HT Hor izon ta l tab . C o n t r o l 1 on Model 3 5 . 
0 0 1 2 LF Line feed or line space (NEW LINE >; advances pape r t o nex t l ine. Repea t s 

on Model 3 7 . Dupl ica ted In cont ro l J on. Model 3 5 . 
1 0 1 3 VT Vert ical t ab fVTAB). Con t ro l K on Model 3 5 . 
0 0 1 4 F F F o r m feed to t o p of next page ' (PAGE) . Con t ro l L. 
.1 0 1 5 CR Carriage re tu rn to beginning of line. Con t ro l M on Model 3 5 . 
1 0 1 6 SO Shift o u t ; changes r ibbon color to red C o n t r o l N. 
0 0 1 7 SI Shift in; changes r ibbon co lor to black. Con t ro l O . 
1 0 2 0 DLE Data link escape. Con t ro l P (DC0) . 
0 021 DC I Device con t ro l 1. turns t r ansmi t t e r ( reader ) o n . C o n t r o l Q (X O N ) . 
0 0 2 2 DC2 Device con t ro l 2, t u rns punch or auxil iary on . Con t ro l R ( T A P E 

A U X O N ) . 
1 0 2 3 DC3 Device con t ro l 3 . t u rns t r ansmi t t e r ( reader ) off. Con t ro l S (X O F F ) . 
0 0 2 4 DC4 Device con t ro l 4 . tu rns punch or auxil iary off. Con t ro l T (TAPE 

A U X O F F ) . 
1 0 2 5 NAK Negative acknowledge : also E R R . error . C o n t r o l U. 
1 0 2 6 SYN S y n c h r o n o u s idle (SYNCi . C o n t r o l V. 
0 0 2 7 ETB E n d of t ransmission b lock: also LEM. logical end of m e d i u m . C o n t r o l W. 
0 0 3 0 CAN Cancel (CANCL) . Con t ro l X. 
] 031 EM End of m e d i u m . Con t ro l Y. 
1 0 3 2 SUB Subs t i t u t e . Con t ro l Z. 
0 0 3 3 ESC Escape, prefix. This code is genera ted by con t ro l shift K on Model 3 5 . 

but the Mon i to r t ranslates it to 1 75 . 
1 0 3 4 FS File separa tor . Con t ro l shift 1. on Model 3 5 . 
0 0 3 5 GS G r o u p separa tor . Cont ro l <hilt M on Model 35 . 

INPUT Ol' ri'l' I ((>!>(>. 

T E L E T Y P E ( O D I 



B . 3 

Even 7-Bit 
Parity Octal 
Bit Code Character R e m a r k s 

0 0 3 6 RS Record separa tor . Con t ro l shift N on Model 3 5 . 
1 0 3 7 US Uni t separa tor . Con t ro l shift C) on Model \S. 
I 0 4 0 SP Space . 
0 041 i 

0 0 4 2 

1 0 4 3 # 
0 0 4 4 $ 
1 0 4 5 % 
1 0 4 6 & 
0 0 4 7 I Accen t acu te o r a p o s t r o p h e . 

0 0 5 0 ( 
1 0 5 1 ) 

1 0 5 2 * R e p e a t s on Model 3 7 . 

0 0 5 3 

1 0 5 4 > 

0 0 5 5 R e p e a t s on Model 3 7 . 

0 0 5 6 . R e p e a t s on Model 3 7 . 

1 0 5 7 / 
0 0 6 0 0 
1 0 6 1 1 

1 0 6 2 2 

0 0 6 3 3 

1 0 6 4 4 

0 0 6 5 5 

0 0 6 6 6 

1 0 6 7 7 

1 0 7 0 8 

0 0 7 1 9 

0 0 7 2 

1 0 7 3 

0 0 7 4 < 

1 0 7 5 R e p e a t s on Model 37 . 

1 0 7 6 > 

0 0 7 7 9 
1 100 

0 101 A 

0 102 B 

II I MM I ( < >I>I 



IN I T I OR I IM 

Even 7-Bit 
Pari ty Octal 

Bit Code Charac te r 

1 103 C 

0 104 1) 

1 105 E 

1 106 F 
0 107 G 
0 1 10 H 

1 I I I 1 

1 112 J 

0 1 13 K 

1 1 14 L 

0 115 M 

0 116 N 

1 117 0 

0 120 P 

I 121 Q 
1 122 R 

0 123 S 

1 124 T 
0 125 U 

0 126 V 

I 127 w 

] 130 X 

0 131 Y 

0 132 Z 

I 133 I 
0 134 \ 
1 135 ] 
1 136 t 

0 137 

0 140 

1 141 a 
1 142 b 

0 143 c 
1 144 d 
0 145 e 
0 146 f 
1 147 g 

Repea t s on Model 37 . 

Shift K on Model 3 5 . 

Shift L o n Model 3 5 . 

Shift M on Model 35. 

Repea t s on Model 37 . 

Accen t grave. 



B . 5 

11.11 I V I I com 

Even 7-Bit 
Pari ty Octa l 

Bit C o d e Charac ter Remarks 

1 150 h 

0 151 i 

0 152 j 
1 153 k 

0 154 1 

1 155 m 

1 156 n 

0 157 o 

1 160 P 
0 161 q 
0 162 r 

1 163 s 

0 164 t 

1 165 u 

1 166 V 

0 167 w 

0 170 X 

1 171 y 
1 172 z 

0 

) 

173 

174 
\ 
1 

0 175 ( 
0 176 

R e p e a t s on Model 3 7 . 

177 DEL 

Thi s c o d e genera ted by A L T M O D E o n Model 3 5 . 

Th i s code genera ted by ESC key (if p resen t ) on Model 3 5 . bu t the 
M o n i t o r t rans la tes it t o 175. 

Dele te , rub o u t . Repea t s on Model 3 7 . 

R E P T 

P A P E R A D V A N C E 

L O C A L R E T U R N 

LOC L F 

L O C C R 

I N T E R R U P T , B R E A K 

P R O C E E D , BRK RLS 

H E R E IS 

Keys T h a t G e n e r a t e N o Codes 

Model 35 o n l y : causes any o t h e r key tha t is s t ruck t o repea t c o n t i n u o u s l y 
unt i l REPr is released. 

Model 37 local line feed. 

Model 37 local carriage r e tu rn . 

Model 3 5 local line feed. 

Model 35 local carriage r e tu rn . 

O p e n s the line ( m a c h i n e sends a c o n t i n u o u s s tr ing of null charac te r s ) . 

Break release,*not appl icable) . 

T r a n s m i t s p r ede t e rmined 21-charac ter message. 

MAY 1968 



B . 6 

IN H i I <>l' I IT I • MI >| 

C A R D ( OD1 S 

P D P - 1 0 P D P - 1 0 
Charac te r ASCII DEC 0 2 9 DEC 0 2 6 ( li;n,Hlcr ASCII DEC 0 2 9 DEC 0 2 6 

Space 0 4 0 t\OHV V o w 100 8 4 8 4 
\ 041 1 1 X 2 12 8 7 A 101 12 1 12 1 

0 4 2 8 7 0 8 5 li 102 i : : 12 2 
# 0 4 3 8 3 0 8 6 ( 103 12 3 12 3 
$ 0 4 4 1 1 8 3 1 1 8 3 1) 104 12 4 12 4 

0 4 5 0 8 4 0 8 7 1 105 12 5 12 5 
& 0 4 6 12 1 1 8 7 1 106 12 6 12 6 
1 0 4 7 8 5 8 6 (i 107 12 7 12 7 
( 0 5 0 12 8 5 0 8 4 A II 1 10 12 8 12 8 
) 051 1 1 8 5 12 8 4 A 1 1 1 1 12 ') 12 9 
* 0 5 2 1 1 8 4 1 1 8 4 J 112 11 1 11 1 
+ 0 5 3 12 8 6 12 K 113 11 2 11 2 
J 0 5 4 0 8 3 0 8 3 L 1 14 11 3 11 3 

0 5 5 11 11 M 115 11 4 11 4 
0 5 6 12 8 3 12 8 3 N 1 Id 1 I 5 11 5 

/ 0 5 7 0 1 0 1 0 117 11 6 11 6 
0 0 6 0 0 0 P 120 11 7 11 7 
1 0 6 1 1 1 0 121 11 8 11 8 
2 0 6 2 2 t R 122 11 9 11 9 
3 0 6 3 3 3 S 123 0 2 0 2 
4 0 6 4 4 4 T 124 0 3 0 3 
5 0 6 5 5 5 U 125 0 4 0 4 
6 0 6 6 6 6 V 126 0 5 0 5 
7 0 6 7 7 7 w 127 0 6 0 6 
8 0 7 0 8 8 X 130 0 7 0 7 
9 0 7 1 9 9 Y 131 0 8 0 8 

0 7 2 8 2 11 8 2 o r 11 0 z 132 0 9 0 9 
» 0 7 3 1 1 8 6 0 8 2 1 133 12 8 2 1 1 8 5 
< 0 7 4 12 8 4 12 8 6 \ 134 1 1 8 7 8 7 

0 7 5 8 6 8 3 1 135 0 8 2 12 8 5 
> 0 7 6 0 8 6 1 1 8 6 r 136 12 8 7 8 5 
7 0 7 7 0 8 7 12 8 2 o r 12 0 137 0 8 5 8 2 

/Unary 7 9 
Mode Switch 12 0 2 4 6 8 
End of File 12 1 1 0 1 

T h e octa l codes given above are those genera ted hy the Moni to r from the c o l u m n punches . T h e card 
reader in te r lace actual ly suppl ies a direct b inary equivalent of the co lumn p u n c h , as listed in the following 
t w o pages. 

MAY I96H 



B . 7 

CARD CODI-s 

Column 
Punch 

None 

0 

1 
•> 

3 

4 

5 

6 

7 

8 

9 

12 1 

12 2 

12 3 

12 4 

12 5 

12 6 

12 7 

12 8 

Character 

Space 

0 

1 
i 

3 

4 

5 

6 

7 

8 

9 

A 
B 

C 

D 

E 
F 

G 

H 

Octal 

0 0 0 0 

1000 

0 4 0 0 

0 2 0 0 

0 1 0 0 

0 0 4 0 

0 0 2 0 

0 0 1 0 

0 0 0 4 

0 0 0 2 

0 0 0 1 

4 4 0 0 

4 2 0 0 

4 1 0 0 

4 0 4 0 

4 0 2 0 

4 0 1 0 

4 0 0 4 

4 0 0 2 

C o l u m n 
Punch 

i 
1 2 (> 

I I I 
i i : 
I I 3 

I I 4 

I 1 .5 

1 1 6 

I I 7 

11 8 

1 I 9 

0 I 

0 2 

0 3 

0 4 

0 5 

0 6 

0 7 

6 8 

0 9 

Character 

I 

J 

K 

L 

M 

N 

O 

P 

Q 
R 

/ 

S 

T 

U 
V 

W 

X 
Y 

Z 

Octal 

4 0 0 1 

2 4 0 0 

2 2 0 0 

2 1 0 0 

2 0 4 0 

2 0 2 0 

2 0 1 0 

2 0 0 4 

2 0 0 2 

2001 

1400 

1200 

1100 

1040 

1020 

1010 

1004 

1002 

1001 

Column 
Punch 

12 

11 

12 0 

11 0 

8 2 

8 3 

8 4 

8 5 

8 6 

8 7 

12 8 2 

12 8 3 

12 8 4 

12 8 5 

12 8 6 

026 Data 
Processing 

& 

026 
Fortran 

# 
(ft 

029 

Hi 

DEC 026 

(a 

< 

( 

(a. 

r 

v 
•> 

) 

) 

< 

DEC 029 

& 

< 
( 
+ 

Octal 

4 0 0 0 

2 0 0 0 

5 0 0 0 

3 0 0 0 

0 2 0 2 

0 1 0 2 

0 0 4 2 

0 0 2 2 

0 0 1 2 

0 0 0 6 

4 2 0 2 

4 1 0 2 

4 0 4 2 

4 0 2 2 

4 0 1 2 



B . 8 

! INPUT1 OUTPUT CODES 

slumn 0 2 6 Data 0 2 6 
Punch Processing Fortran 0 2 9 DEC 0 2 6 DEC 0 2 9 Octal 

12 8 7 | ! t 4 0 0 6 

1 1 8 2 ! ! 2202 

1 1 8 3 $ $ $ S $ 2 1 0 2 

11 8 4 * * * * * 2 0 4 2 

1 1 8 5 ) [ ) 2 0 2 2 

1 1 8 6 ; > ; 2 0 1 2 

1 1 8 7 - | & \ 2 0 0 6 

0 8 2 See note ; J 1202 
0 8 3 , , , , , 1102 

0 8 4 % ( % ( % 1042 

0 8 5 «- <- 1022 

0 8 6 > # > 1012 

0 8 7 ? <1 ? 1006 

12 1 1 0 1 End of File End of File 7 4 0 0 
12 0 2 4 6 8 Mode Switch Mode Switch 5 2 5 2 
7 9 Binary Binary xxOS 

NOTE : There is a single key for the 0 8 2 punch on the 0 2 9 but printing is suppressed. 
The Monitor translates the octal code for the 12 0 punch in DEC 0 2 6 to 4 2 0 2 (which corresponds to a , 

12 8 2 punch), and the code for 11 0 to 2 2 0 2 ( 1 1 8 2). 



C.l 

APPENDIX C; WORD FORMATS 

<P,S> refers to a field S bits wide and P bits up from the right hand 

end of the word, thus: 

H (36 - S - P) 4 

A 
referenced partial word 

The format of a pointer is 

P = <30,6> 
S = <24,6> 
I = <22,1> 
X = <18,4> 
Y = <0,18> 

Position 
Size 
Indirect address 
IndeX 

The format of an (non i / o ) instruction is 

F = <27,9> 
A = <23,4> 
I,X,Y as above 

Function code 
Accumulator 

The format of an integer number is 

SIGN = <35,1> 
MAGNITUDE = <0,35> 

The format of a floating point number is 

SIGN = <35,1> 
EXPONENT = <27,8> 
MANTISSA = <0,27> 



Securi ty C l a s s i f i c a t i o n 

DOCUMENT CONTROL DATA - R & D 
(S0curlty cl.M.mc.tlon ol tltl., body OF mfttmci mnd Indmnlnj mnnotmttoo muBt bm mnimrmd whmn tho ov;.U r.poet U clm.*Hl.d) 

1. ORIGINATING ACTIVITY (Cotpoff muthof) 

Carnegie-Melion University 
Department of Computer Science 
Pittsburgh, Pennsylvania 15213 

20. REPORT SECURITY CLASSIFICATION 

UNCLASSIFIED 
16. GROUP 

BLISS REFERENCE MANUAL 

4. DESCRIPTIVE NOTES (Typm OF rmpoet mnd Inetumtw dmfm) 

Scientific Interim 
mlddli S. AUTHOR(S| (Fttmt i FO Inltlml, Immt nmmm) 

W. A, Wulf, D. Russell, A. N. Habermann, C. Geschke, 
J. Aperson and D. Wile 

6. REPORT O A T E 

January 15. 1970 
7m. TOTAL NO. O P PAGES I76. NO. O P REPS I 

64 j j 
F44620-67-C-0058 

b. PROJCCT NO. 

9718 
6154501R 

d. 681304 

SO. ORIGIN A TOR'S REPORT NUMBER(S) ' 1 F44620-67-C-0058 
b. PROJCCT NO. 

9718 
6154501R 

d. 681304 
**" S7oMAJo?#> P ° R T N O < , >

 ( A n r 0 t h m f n u m b 0 n *»t mmy 60 OOOLJNOO* J 

1. This document has been approved for public release and sale; 1 
its distribution is unlimited. ' | 

12. SPONSORING MILITARY ACTIVITY 1 

TECH, OTHER JAir Force Office of Scientific Research 
1400 Wilson Boulevard (SRMA) 
Arlington, Virginia 22209 

This document describes the BLISS implementation language as written for the 
PDP-10. BLISS is a language specifically designed for use as a tool in imple
menting large software programs. Special attention is given in the language 
design to the requirements of the systems programming task, such as: space and 
time efficiency, the representation of data structures, the lack of run-time 
support facilities, flexible control structures, modularization, and parameteri
zation of programs. 



Security Classification 


