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1. INTRODUCTION

Consider the following variant of the Boolean satisfiability problem. We are given a
Boolean formula � sat over a set of variables � . A subset ����� symbolically encodes
a reflexive, symmetric, and transitive binary relation over � elements. Each of these rela-
tional variables, �4�&� � , where �����:�¡ f�¢� , expresses whether or not the relation holds
between elements � and   . Typically, � will be “sparse,” containing much fewer than the
�¤£���¥¤�
¦E§'¨ possible variables. Note that when � �&� �~©ª � for some value of � and of   , this
does not imply that the relation does not hold between elements � and   . It simply indicates
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2 � R. E. Bryant and M. N. Velev

that � sat does not directly depend on the relation between elements � and   .
A transitivity constraint is a formula of the form

� � ����� �����	� � � ���>� ��
��	���
���
� � � ����� � � ������� � � ����� ����� (1)

where � � �&� ��� equals �
�&� � when �d�   and equals ���$� � when ���   . Let �������! £Y�b¦ denote
the set of all transitivity constraints that can be formed from the relational variables. Our
task is to find an assignment "$#E�&%('*)!+��-, that satisfies � sat, as well as every constraint
in �������! T£Y��¦ . Goel et al. [1998] have shown this problem is NP-hard, even when � sat is
given as an Ordered Binary Decision Diagram (OBDD) [Bryant 1986]. Normally, Boolean
satisfiability is trivial given an OBDD representation of a formula.

We are motivated to solve this problem as part of a tool for verifying pipelined micro-
processors [Velev and Bryant 1999]. This tool proves that the microprocessor has behavior
equivalent to that of an unpipelined, reference implementation for all possible instruction
sequences. The operations of the datapaths in both processor models are abstracted as a set
of uninterpreted functions and uninterpreted predicates operating on symbolic data. The
verifier uses the symbolic flushing technique developed by Burch and Dill [1994]. The ma-
jor computational task is to decide the validity of a formula � ver in a logic of equality with
uninterpreted functions [Bryant et al. 1999; Bryant and Velev 2001]. Our decision proce-
dure transforms � ver first by replacing all function application terms with terms over a set
of domain variables '
.T��/{�f� �����0, . Similarly, all predicate applications are replaced
by formulas over a set of newly-generated propositional variables. The result is a formula
�21ver containing equations of the form . �435.;� , where � �����   � � . Each of these
equations is then encoded by introducing a relational variable � �&� � , similar to the method
proposed by Goel et al. [1998]. The result of the translation is a propositional formula6 �87:9�£�� 1ver ¦ expressing the verification condition over both the relational variables and the
propositional variables appearing in ��1ver. Let � sat denote ; 6 �<7=9b£&��1ver ¦ , the complement
of the formula expressing the translated verification condition. To capture the transitivity
of equality, e.g., that .T�>3?.;� � .;�@3�.BA � .'�	3?.BA , we have transitivity constraints of the
form � � �Y� ����� � � �E� AC�D� � � �&� AC� . Finding a satisfying assignment to � sat that also satisfies the
transitivity constraints will give us a counterexample to the original verification condition
� ver. On the other hand, if we can prove that there are no such assignments, then we have
proved that � ver is universally valid.

We consider three methods to generate a Boolean formula � trans that encodes the tran-
sitivity constraints. The direct method enumerates the set of chord-free cycles in the undi-
rected graph having an edge £Y��+� V¦ for each relational variable �'�&� � ª � . This method
avoids introducing additional relational variables but can lead to a formula of exponential
size. The dense method uses relational variables � �Y� � for all possible values of � and  
such that �x�����   � � . We can then axiomatize transitivity by forming constraints
of the form � � �&� ���8� � � �$� AC�E� � � �&� AC� for all distinct values of � ,   , and F . This will yield a
formula that is cubic in � . The sparse method augments � with additional relational vari-
ables to form a set of variables �HG , such that the resulting graph is chordal [Rose 1970].
We then only require transitivity constraints of the form � � �Y� ���I� � � �E� A��E� � � �&� AC� such that
� � �Y� ��� +E� � �E� AC� +E� � �&� AC� ª � G . The sparse method will generate a formula no larger than the
dense method, and often it does much better.

To use a conventional Boolean Satisfiability (SAT) procedure to solve our constrained
satisfiability problem, we run the checker over a set of clauses encoding both � sat and
� trans. A version of the FGRASP SAT checker [Marques-Silva 1999] was able to com-
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Boolean Satisfiability with Transitivity Constraints � 3

Table I. Microprocessor Verification Benchmarks. Benchmarks with suffix
“t” were modified to require enforcing transitivity.

Circuit Domain Propositional Equations
Variables Variables

1 � DLX-C 13 42 27
1 � DLX-C-t 13 42 37
2 � DLX-CA 25 58 118
2 � DLX-CA-t 25 58 137
2 � DLX-CC 25 70 124
2 � DLX-CC-t 25 70 143
100 Buggy min. 22 56 89
2 � DLX-CC avg. 25 69 124

max. 25 77 132

plete all of our benchmarks, although the run times increase significantly when transitivity
constraints are enforced.

When using Ordered Binary Decision Diagrams to evaluate satisfiability, we could gen-
erate OBDD representations of � sat and � trans and use the APPLY algorithm [Bryant 1986]
to compute an OBDD representation of their conjunction. From this OBDD, finding satis-
fying solutions would be trivial. We show that this approach will not be feasible in general,
because the OBDD representation of � trans can be intractable. That is, for some sets of
relational variables, the OBDD representation of the transitivity constraint formula � trans
will be of exponential size regardless of the variable ordering. The NP-completeness re-
sult of Goel, et al. shows that the OBDD representation of � trans may be of exponential
size using the ordering previously selected for representing � sat as an OBDD. This leaves
open the possibility that there could be some other variable ordering that would yield ef-
ficient OBDD representations of both � sat and � trans. Our result shows that transitivity
constraints can be intrinsically intractable to represent with OBDDs, independent of the
structure of � sat.

We present experimental results on the complexity of constructing OBDDs for the tran-
sitivity constraints that arise in actual microprocessor verification. Our results show that
the OBDDs can indeed be quite large. We consider two techniques to avoid constructing
the OBDD representation of all transitivity constraints. The first of these, proposed by
Goel et al. [1998], generates implicants (cubes) of � sat and rejects those that violate the
transitivity constraints. Although this method suffices for small benchmarks, we find that
the number of implicants generated for our larger benchmarks grows unacceptably large.
The second method determines which relational variables actually occur in the OBDD rep-
resentation of � sat. We can then apply one of our three techniques for encoding the tran-
sitivity constraints in order to generate a Boolean formula for the transitivity constraints
over this reduced set of relational variables. The OBDD representation of this formula is
generally tractable, even for the larger benchmarks.

2. BENCHMARKS

Our benchmarks [Velev and Bryant 1999] are based on applying our verifier [Velev 2001]
to a set of high-level microprocessor designs. Each is based on the DLX RISC processor
described by Hennessy and Patterson [1996]:

1 � DLX-C. is a single-issue, five-stage pipeline capable of fetching up to one new in-
struction every clock cycle. It implements six instruction types: register-register, register-
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4 � R. E. Bryant and M. N. Velev

immediate, load, store, branch, and jump. The pipeline stages are: Fetch, Decode, Exe-
cute, Memory, and Write-Back. An interlock causes the instruction immediately following
a load to stall one cycle if it requires the loaded result. Branches and jumps are predicted as
not-taken, with up to 3 instructions squashed when there is a misprediction. This example
is comparable to the DLX example first verified by Burch and Dill [1994].

2 � DLX-CA. has a complete first pipeline, capable of executing the six instruction types,
and a second pipeline capable of executing arithmetic instructions. Between 0 and 2 new
instructions are issued on each cycle, depending on their types and source registers, as
well as the types and destination registers of the preceding instructions. This example is
comparable to one verified by Burch [1996].

2 � DLX-CC. has two complete pipelines, i.e., each can execute any of the six instruction
types. There are four load interlocks—between a load in Execute in either pipeline and an
instruction in Decode in either pipeline. On each cycle, between 0 and 2 instructions can
be issued.

In all of these examples, the domain variables . � , with �#�/�A� � , in ��1ver encode register
identifiers. As described in [Bryant et al. 1999; Bryant and Velev 2001], we can encode
the symbolic terms representing program data and addresses as distinct values, avoiding
the need to have equations among these variables. Equations arise in modeling the read
and write operations of the register file, the bypass logic implementing data forwarding,
the load interlocks, and the pipeline issue logic.

Our original processor benchmarks can be verified without enforcing any transitivity
constraints. The unconstrained formula � sat is unsatisfiable in every case. We are nonethe-
less motivated to study the problem of constrained satisfiability for two reasons. First,
other processor designs might rely on transitivity, e.g., due to more sophisticated issue
logic. Second, to aid designers in debugging their pipelines, it is essential that we generate
counterexamples that satisfy all transitivity constraints. Otherwise the designer will be un-
able to determine whether the counterexample represents a true bug or a weakness of our
verifier.

To create more challenging benchmarks, we generated variants of the circuits that re-
quire enforcing transitivity in the verification. For example, the normal forwarding logic
in the Execute stage of 1 � DLX-C must determine whether to forward the result from the
Memory stage instruction as either one or both operand(s) for the Execute stage instruction.
It does this by comparing the two source registers ESrc1 and ESrc2 of the instruction
in the Execute stage to the destination register MDest of the instruction in the memory
stage. In the modified circuit, we changed the bypass condition ESrc1 3 MDest to be
ESrc1 3 MDest � £ ESrc1 3 ESrc2 � ESrc2 3 MDest ¦ . Given transitivity, these two
expressions are equivalent. For each pipeline, we introduced four such modifications to the
forwarding logic, with different combinations of source and destination registers. These
modified circuits are named 1 � DLX-C-t, 2 � DLX-CA-t, and 2 � DLX-CC-t.

To study the problem of counterexample generation for buggy circuits, we generated
105 variants of 2 � DLX-CC, each containing a small modification to the control logic. Of
these, 5 were found to be functionally correct, e.g., because the modification caused the
processor to stall unnecessarily, yielding a total of 100 benchmark circuits for counterex-
ample generation.

Table I gives some statistics for the benchmarks. The number of domain variables �
ranges between 13 and 25, while the number of equations ranges between 27 and 143.
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Boolean Satisfiability with Transitivity Constraints � 5

The verification condition formulas ��1ver also contain between 42 and 77 propositional
variables expressing the operation of the control logic. These variables plus the relational
variables comprise the set of variables � in the propositional formula � sat. The circuits
with modifications that require enforcing transitivity yield formulas containing up to 19
additional equations. The final three lines summarize the complexity of the 100 buggy
variants of 2 � DLX-CC. We apply a number of simplifications during the generation of
formula � sat, and hence small changes in the circuit can yield significant variations in the
formula complexity.

3. GRAPH FORMULATION

Our definition of �����-�� £&��¦ (Equation 1) places no restrictions on the length or form of
the transitivity constraints, and hence there can be an infinite number. We show that we
can construct a graph representation of the relational variables and identify a reduced set
of transitivity constraints that, when satisfied, guarantees that all possible transitivity con-
straints are satisfied. By introducing more relational variables, we can alter this graph
structure, further reducing the number of transitivity constraints that must be considered.

For variable set � , define the undirected graph ��£Y�b¦ as containing a vertex � for �6�/���
� , and an edge £Y��+� V¦ for each variable �'�Y� � ª � . For an assignment " of Boolean values to
the relational variables, define the labeled graph ��£Y� +�"b¦ to be the graph ��£Y��¦ with each
edge £&�C+9 V¦ labeled as a 1-edge when "�£�� �&� � ¦ 3B� , and as a 0-edge when "w£&� �&� � ¦ 3 ) .

A path is a sequence of vertices � ����+"����+������
+"� A�	 having edges between successive ele-
ments. That is, each element ��
 of the sequence ( �e�
�`� F ) denotes a vertex: �6�/��
?�/� ,
while each successive pair of elements ��
 and ��
 G � ( �H���f� F ) forms an edge £Y��
	+"��
 G �>¦ .
We consider each edge £&� 
 +E� 
 G � ¦ for ������� F to also be part of the path. A cycle is a
path of the form � � � +E� � +������ +E��A>+"� � 	 .

PROPOSITION 3.1. An assignment " to the variables in � violates transitivity if and
only if some cycle in ��£Y� + "b¦ contains exactly one 0-edge.

PROOF. If. Suppose there is such a cycle. Letting ��� be the vertex at one end of the
0-edge, we can trace around the cycle, giving a sequence of vertices � ���*+"���-+�������+"� A�	 , where
� A is the vertex at the other end of the 0-edge. The assignment has "w£&� � ���>� �����>��� ¦23 � for
�6�x |�5F , and "�£&� � ���$� ����� 3&)g¦ , and hence it violates Equation 1.

Only If. Suppose the assignment violates a transitivity constraint given by Equation 1.
Then, we construct a cycle � ����+"���-+������
+"� A +"��� 	 of vertices such that only edge £Y� A +"���>¦ is a
0-edge.

A path � ��� +E���-+������
+"� A�	 is said to be acyclic when ��
 ©3 ��� for all �6���`���~� F . A cycle
� ����+"���-+������ +"� A +E��� 	 is said to be simple when its prefix � ����+"���-+�������+"� A�	 is acyclic.

PROPOSITION 3.2. An assignment " to the variables in � violates transitivity if and
only if some simple cycle in ��£Y� + "b¦ contains exactly one 0-edge.

PROOF. The “if” portion of this proof is covered by Proposition 3.1. For the “only if”
portion, suppose the construction shown in the proof of Proposition 3.1 yields a cycle �
containing exactly one 0-edge. If � is not simple, then it can be partitioned into a set of
simple cycles ����+�� �B+�������+��"! . One of these cycles must contain the 0-edge of � .

Define a chord of a simple cycle to be an edge that connects two vertices that are not
adjacent in the cycle. More precisely, for a simple cycle � � � +E� � +������
+"��A +"� � 	 , a chord is an

ACM Transactions on Computational Logic, Vol. V, No. N, August 2001.



6 � R. E. Bryant and M. N. Velev

i1

0-Edge 1-Edge

ip

iq

ik

i1
ip

iq

ik

Fig. 1. Case Analysis for Proposition 3.3. 0-Edges are shown as dashed lines. When a cycle representing a
transitivity violation contains a chord, we can find a smaller cycle that also represents a transitivity violation.

edge £Y� 
 +E� � ¦ in ��£&��¦ such that �#�
�`� �?�5F , with � � �#��� , and either � ©3B� or � ©3 F .
A cycle is said to be chord-free if it is simple and has no chords.

PROPOSITION 3.3. An assignment " to the variables in � violates transitivity if and
only if some chord-free cycle in ��£Y� +�"b¦ contains exactly one 0-edge.

PROOF. The “if” portion of this proof is covered by Proposition 3.1.
The “only if” portion is proved by induction on the number of variables in the transitivity

constraint, i.e., the value of F in Equation 1. The induction hypothesis is: if a transitivity
constraint with F variables is violated, then there must be a chord-free cycle in ��£&� + "G¦
containing exactly one 0-edge. Clearly this holds when F}�¡¨ , since nontrivial transitivity
constraints must have at least 3 variables.

Now assume our hypothesis holds as long for all constraints containing fewer than F
variables and suppose assignment " violates Equation 1. If there are no values of � and �
such that there is a variable � � ���4� ����� ª � with � � �#� � and either � ©3B� or � ©3 F , then the
cycle denoted by this constraint is chord-free. If such values of � and � exist, then consider
the two cases illustrated in Figure 1, where 0-edges are shown as dashed lines, 1-edges are
shown as solid lines, and the wavy lines represent sequences of 1-edges. Case 1: Edge
£Y� 
 +"� � ¦ is a 0-edge (shown on the left). Then the transitivity constraint:

� � � � � � ���>� � �?�
���
� � � � � � � � � � ��� � � � � � � � �
is violated and has fewer than F variables. Case 2: Edge £&� 
 +"� � ¦ is a 1-edge (shown on the
right). Then the transitivity constraint:

� � ���$� �����>���
���
� � � ��� � �$� �����>� � � ���
� ��� � � � � ���>� �����>� �>���
���
� � � ����� � � ���C��� � � ����� �����
is violated and has fewer than F variables. In either case our induction hypothesis ap-
plies, and hence there must be some chord-free cycle in ��£Y� + "b¦ containing exactly one
0-edge.

Each length F cycle � � � +"� � +������
+"��A +"� � 	 yields F constraints, given by the following clauses.
Each clause is derived by expressing Equation 1 as a disjunction.

;G� � ����� � ��� � ���
� � ;G� � ����� � � ����� �}� � ���;� ��� �
;G� � � ��� � 
�� � ���
� � ;G� � ����� � � ����� � ;G� � ���
� ��� � �}� � ���$� �����
�����

;G� � ���4� ��� � � ;G� � ����� ��� � � ����� � ;G� � ����� � � ����� � � �}� � ����� � � �����
(2)

ACM Transactions on Computational Logic, Vol. V, No. N, August 2001.



Boolean Satisfiability with Transitivity Constraints � 7

i1

ip iq

ik

i1 ik

Paths with Chords Chord-Free, Terminal 

Chord-Free, Extensible 

ip iq

ip iq

i1 ik

i1 ik

i1 ik

Fig. 2. Different Types of Paths. Those on the left contain chords (shown as dashed arcs), while those on the right
are chord-free. A chord-free path with an edge between its endpoints is terminal, and otherwise it is extensible.

For a set of relational variables � , we define � trans £&��¦ to be the conjunction of all transi-
tivity constraints for all chord-free cycles in the graph ��£Y�b¦ .

THEOREM 3.4. An assignment to the relational variables � will satisfy all of the tran-
sitivity constraints given by Equation 1 if and only if it satisfies � trans £Y��¦ .

This theorem follows directly from Proposition 3.3 and the encoding given by Equation
2.

3.1 Enumerating Chord-Free Cycles

To enumerate the chord-free cycles of a graph, we exploit the following properties. An
acyclic path � � � +"� � +������ +"��A 	 is said to have a chord when there is an edge £Y� 
 +"� � ¦ in ��£Y��¦
such that ��� � � ��� F with � � ��� � , and either � ©3�� or � ©3 F . The left hand side
of Figure 2 illustrates several types of paths with chords. We classify a chord-free path as
terminal when £Y��A	+"� � ¦ is in ��£Y�b¦ , and as extensible otherwise. These are shown on the
right hand side of Figure 2. Observe that a terminal, chord-free path consists of all but one
edge of a chord-free cycle.

PROPOSITION 3.5. A path � � � +E� � +������ +E��A 	 is chord-free and terminal if and only if the
cycle � � � +"� � +�������+E��A +E� � 	 is chord-free.

This follows by noting that the conditions imposed on a chord-free path are identical to
those for a chord-free cycle, except that the latter includes a closing edge £Y� A +"���>¦ .

A proper prefix of path � ��� +E���B+������ +E� A 	 is a path � ����+"���-+�������+"� � 	 such that �#�  |�5F .

PROPOSITION 3.6. Every proper prefix of a chord-free path is chord-free and extensi-
ble.

PROOF. Clearly, any prefix of a chord-free path is also chord-free. Let � ����+"���-+�������+"� � 	 be
a prefix of a chord-free path � ����+"���-+�������+"� � +������
+"� A�	 with  |�5F . If this prefix were terminal,
then the edge £Y� � +"���>¦ would form a chord of � ��� +E���B+������ +E� � +������ +"� A�	 .

Given these properties, we can enumerate the set of all chord-free paths by breadth first
expansion. As we enumerate these paths, we also generate � , the set of all chord-free
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Fig. 3. Possible Actions Taken after Extending
Path with an Additional Edge. The resulting path� _�p����������&_��	��_���
 p
�

, may have a chord. Otherwise, if
it is terminal then we have found a chord-free cycle,
while if it is extensible, it is retained for further exten-
sion.

ip

Contains Chord; Discard 

i1

ik

ik+1

Terminal; Add cycle to C 
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ik

ik+1
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Fig. 4. Class of Graphs with Many Chord-Free Cycles. For a graph with � diamond-shaped faces, there are� ��� � chord-free cycles.

cycles. Define � A to be the set of all extensible, chord-free paths having F vertices, for
�6� F���� . Initially we have � �E3 ' � � 	 /{�e� �����0, , � A 3�� for F �¢� , and � 3�� .

Given set � A , we generate set � A G � and add some cycles of length F � � to � . For each
path � 3 � ����+"����+������
+"� A�	 ª � A , we consider the path �! E3 � ��� +E���B+������ +E� A +"� A G � 	 for each
edge £&� A +E� A G �>¦ in ��£Y��¦ , such that � A G � ©3 � A#" � . We are guaranteed that � A G � ©3 � 
 for
any �`� ��� F , or else � would not have been chord-free and extensible. The possible
actions taken with path �  are illustrated in Figure 3. If there is an edge £Y� A G ��+E� 
T¦ in ��£Y��¦
for some �}� �/� F , then we can discard �! , since it has a chord. Otherwise, if there is
an edge £Y� A G � +"� � ¦ in ��£Y��¦ , we add the cycle � � � +E� � +�������+E��A +"��A G � +"� � 	 to � . If both of these
conditions fail, then we can add �! to �DA G � .

After generating all of these paths, we can use the set � to generate the set of all chord-
free cycles. For each terminal, chord-free cycle having F vertices, there will be ¨BF members
of � —each of the F edges of the cycle can serve as the closing edge, and a cycle can tra-
verse the closing edge in either direction. To generate the set of clauses given by Equation
2, we simply need to choose one element of � for each closing edge, e.g., by considering
only cycles � � � +�������+E��A +"� � 	 for which � � � ��A .

As Figure 4 indicates, there can be an exponential number of chord-free cycles in a
graph. In particular, this figure illustrates a family of graphs with $&% � � vertices. Con-
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Table II. Cycles in Original and Augmented Benchmark Graphs. Results are given for the three different
methods of encoding transitivity constraints.

Circuit Direct Dense Sparse

Edg
es

Cyc
les

Clau
se

s

Edg
es

Cyc
les

Clau
se

s

Edg
es

Cyc
les

Clau
se

s

1 � DLX-C 27 90 360 78 286 858 33 40 120
1 � DLX-C-t 37 95 348 78 286 858 42 68 204
2 � DLX-CA 118 2,393 9,572 300 2,300 6,900 172 697 2,091
2 � DLX-CA-t 137 1,974 7,944 300 2,300 6,900 178 695 2,085
2 � DLX-CC 124 2,567 10,268 300 2,300 6,900 182 746 2,238
2 � DLX-CC-t 143 2,136 8,364 300 2,300 6,900 193 858 2,574
100 Buggy min. 89 1,446 6,360 231 1,540 4,620 132 430 1,290
2 � DLX-CC avg. 124 2,562 10,270 300 2,300 6,900 182 750 2,244

max. 132 3,216 12,864 299 2,292 6,877 196 885 2,655���
24 24 192 120 560 1,680 42 44 132���
40 229 3,056 300 2,300 6,900 77 98 294���
60 3,436 61,528 630 7,140 21,420 131 208 624���
84 65,772 1,472,184 1,176 18,424 55,272 206 408 1,224��	

112 1,743,247 48,559,844 2,016 41,664 124,992 294 662 1,986

sider the cycles passing through the % diamond-shaped faces as well as the edge along
the bottom. For each diamond-shaped face ��� , a cycle can pass through either the upper
vertex or the lower vertex. Thus there are ¨ 
 such cycles. In addition, the edges forming
the perimeter of each face �G� create a chord-free cycle, giving a total of ¨ 
 � % chord-free
cycles.

The columns labeled “Direct” in Table II show results for enumerating the chord-free
cycles for our benchmarks. For each correct microprocessor, we have two graphs: one for
which transitivity constraints played no role in the verification, and one (indicated with a
“t” at the end of the name) modified to require enforcing transitivity constraints. We sum-
marize the results for the transitivity constraints in our 100 buggy variants of 2 � DLX-CC
in terms of the minimum, the average, and the maximum of each measurement. We also
show results for five synthetic benchmarks consisting of % � % planar meshes

� 
 , with
% ranging from 4 to 8, where the mesh for % 3
� is illustrated in Figure 5. For all of
the circuit benchmarks, the number of cycles, although large, appears to be manageable.
Moreover, the cycles have at most 4 edges. The synthetic benchmarks, on the other hand,
demonstrate the exponential growth predicted as worst case behavior. The number of cy-
cles grows quickly as the meshes grow larger. Furthermore, the cycles can be much longer,
causing the number of clauses to grow even more rapidly.

3.2 Adding More Relational Variables

Enumerating the transitivity constraints based on the set of relational variables � appearing
in formula � sat runs the risk of generating a Boolean formula of exponential size.

We can guarantee polynomial growth by considering a larger set of relational variables.
In general, let �  be some set of relational variables such that � � �  n� ';� �&� � /��#� �A�x |�
�0, , and let � trans £Y�  ¦ be the transitivity constraint formula generated by enumerating the
chord-free cycles in the graph ��£Y�  *¦ .

THEOREM 3.7. If � is the set of relational variables in � sat and � � �  , then the
formula � sat � � trans £&��¦ is satisfiable if and only if � sat � � trans £Y�! *¦ is satisfiable.

We introduce a series of lemmas to prove this theorem. For a propositional formula �
over a set of variables � and an assignment " #�� % '*)!+��-, , define the valuation of � under
" , denoted � � 	�� , to be the result of evaluating formula � according to assignment " . We
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first prove that we can extend any assignment over a set of relational variables to one over
a superset of these variables yielding identical valuations for both transistivity constraint
formulas.

LEMMA 3.8. For any sets of relational variables � � and � � such that � � � � � , and
for any assignment " � #E� � % '*)!+��-, , such that � � trans £&� � ¦ 	 � � 3�� , there is an assignment
" � #"� � % ' )�+��B, such that � � trans £&� � ¦ 	�� � 3�� .

PROOF. We consider the case where � � 3 � � � ';� �&� � , . The general statement of the
proposition then holds by induction on / � � /4¥ / � �B/ .

Define assignment " � to be:

" � £��4¦ 3
�� � " � £��
¦ +,� ©3��
�Y� �
� + Graph ��£Y� � +�"b¦ has a path of 1-edges from node � to node   .
)!+ otherwise

We consider two cases:

(1) If " � £&�
�&� �;¦ 3 ) , then any cycle in ��£&� � + " � ¦ through �
�&� � must contain a 0-edge
other than �4�Y� � . Hence adding this edge does not introduce any transitivity violations.

(2) If " � £&�
�Y� �;¦ 3 � , then there must be some path � � of 1-edges between nodes � and  
in ��£Y� � +�" � ¦ . In order for the introduction of 1-edge �4�&� � to create a transitivity violation,
there must also be some path � � between nodes � and   in ��£Y� � + " � ¦ containing exactly
one 0-edge. But then we could concatenate paths � � and � � to form a cycle in ��£Y� � + " � ¦
containing exactly one 0-edge, implying that � � trans £&� � ¦ 	�� � 3 ) . We conclude therefore
that adding 1-edge �4�Y� � does not introduce any transitivity violations.

LEMMA 3.9. For � � ��� � and assignment " #E� � % ' )�+��B, , such that � � trans £Y� � ¦ 	 � 3� , we also have � � trans £Y� � ¦ 	 � 3�� .
PROOF. We note that any cycle in ��£&� � +�"b¦ must be present in ��£Y� �B+�"b¦ and have the

same edge labeling. Thus, if ��£Y� � + "G¦ has no cycle with a single 0-edge, then neither does
��£Y� �-+ "G¦ .

We now return to the proof of Theorem 3.7.

PROOF. Suppose that � sat � � trans £&��¦ is satisfiable, i.e., there is some assignment
" such that � � sat 	�� 3 � and � � trans £&��¦ 	 � 3 � . Then by Lemma 3.8 we can find an
assignment "  such that � � trans £&�  ¦ 	 ��� 3 � . Furthermore, since the construction of "  
by Lemma 3.8 preserves the values assigned to all variables in � , and these are the only
relational variables occurring in � sat, we can conclude that � � sat 	 � � 3�� . Therefore � sat �� trans £Y�! *¦ is satisfiable.

Suppose on the other hand that � sat � � trans £&�  ¦ is satisfiable, i.e., there is some as-
signment "  such that � � sat 	 � � 3 � � trans £Y�! *¦ 	�� �E3 � . Then by Lemma 3.9 we also have
� � trans £&��¦ 	 � �43�� , and hence � sat � � trans £Y��¦ is satisfiable.

Our goal then is to add as few relational variables as possible in order to reduce the
size of the transitivity formula. We will continue to use our path enumeration algorithm to
generate the transitivity formula.
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3.3 Dense Enumeration

For the dense enumeration method, let ��� denote the set of variables �4�Y� � for all values of
� and   such that �~�¢�,�� `��� . Graph ��£Y���6¦ is a complete, undirected graph. In this
graph, any cycle of length greater than three must have a chord. Hence our algorithm will
enumerate transitivity constraints of the form � � �&� ���	� � � �E� AC�H� � � �&� AC� , for all distinct values
of � ,   , and F . The graph has �¤£&� ¥¢�;¦E§T¨ edges and ��£&� ¥ �
¦>£�� ¥�¨T¦$§ � chord-free
cycles, yielding a total of �¤£�� ¥/�
¦>£&� ¥ ¨T¦$§'¨ 3 � £�����¦ transitivity constraints.

The columns labeled “Dense” in Table II show the complexity of this method for the
benchmark circuits. For the smaller graphs 1 � DLX-C, 1 � DLX-C-t,

���
and

�	�
, this

method yields more clauses than direct enumeration of the cycles in the original graph. For
the larger graphs, however, it yields fewer clauses. The advantage of the dense method is
most evident for the mesh graphs, where the cubic complexity is far superior to exponential.

3.4 Sparse Enumeration

We can improve on both of these methods by exploiting the sparse structure of ��£Y��¦ . We
want to introduce additional relational variables, giving a set of variables � G , such that the
resulting graph ��£&� G�¦ becomes chordal [Rose 1970]. That is, the graph has the property
that every cycle of length greater than three has a chord. We can then generate a sufficient
set of transitivity constraints by enumerating the triangles in ��£Y� G ¦ . Our hope is that the
number of constraints will be much smaller than is generated by the dense enumeration
method.

Chordal graphs have been studied extensively in the context of sparse Gaussian elimina-
tion. In fact, the problem of finding a minimum set of variables to add to our set is identical
to the problem of finding an elimination ordering for Gaussian elimination that minimizes
the amount of fill-in. Although this problem is NP-complete [Yannakakis 1981], there are
good heuristic solutions. In particular, our implementation proceeds as a series of elimina-
tion steps, starting with graph ��
 3 ��£Y��¦ . On elimination step � , we create a graph ��� that
is identical to �H� " � , except that some vertex �`� and its incident edges are removed and
new edges are possibly added. In particular, for every pair of distinct, vertices   and F such
that �6��" � contains edges £
�`��+� V¦ and £���� +�F�¦ , we add an edge £7  +CF�¦ to �H� if it does not al-
ready exist. This process continues until we reach empty graph ��� . Now let � be a graph
identical to ��£Y��¦ , plus all of the edges that were added during the elimination process. �
has an edge set

� ����
 � ���,� , where �K� is the set of edges in graph ��� . It can be shown that �
is a chordal graph [Rose 1970]. To choose which vertex to eliminate on a given step, our
implementation uses the simple heuristic of choosing the vertex with minimum degree. If
more than one vertex has minimum degree, we choose one that minimizes the number of
new edges added. Thus, we can let � G consist of the variables in � plus a variable � � �E� AC�
for each edge £7  +CFj¦ that was added at some step in the elimination process.

The columns in Table II labeled “Sparse” show the effect of making the benchmark
graphs chordal by this method. Observe that this method gives superior results to either of
the other two methods. In our implementation we have therefore used the sparse method
to generate all of the transitivity constraint formulas.

4. SAT-BASED DECISION PROCEDURES

Most Boolean satisfiability (SAT) checkers take as input a formula expressed in clausal
form. Each clause is a set of literals, where a literal is either a variable or its complement.
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Table III. Performance of FGRASP on Benchmark Circuits. Results are given both without
and with transitivity constraints.

Circuit � sat � trans � � sat Ratio
Satisfiable? Secs. Satisfiable? Secs.

1 � DLX-C No 3 No 4 1.4
1 � DLX-C-t Yes 1 No 9 N.A.
2 � DLX-CA No 176 No 1,275 7.2
2 � DLX-CA-t Yes 3 No 896 N.A.
2 � DLX-CC No 5,035 No 9,932 2.0
2 � DLX-CC-t Yes 4 No 15,003 N.A.
100 Buggy min. Yes 1 Yes 1 0.2
2 � DLX-CC avg. Yes 125 Yes 1,517 2.3

max. Yes 2,186 Yes 43,817 69.4

A clause denotes the disjunction of its literals. The task of the checker is to either find
an assignment to the variables that satisfies all of the clauses or to determine that no such
assignment exists. We can solve the constrained satisfiability problem using a conventional
SAT checker by generating a set of clauses � trans representing � trans £Y� G ¦ and a set of
clauses � sat representing the formula � sat. We then run the checker on the combined
clause set � sat

� � trans to find satisfying solutions to � sat � � trans £&� G ¦ .
In experimenting with a number of Boolean satisfiability checkers, we have found that

FGRASP [Marques-Silva and Sakallah 1999] has the best overall performance. The most
recent version can be directed to periodically restart the search using a randomly-generated
variable assignment [Marques-Silva 1999]. This is the first SAT checker we have tested
that can complete all of our benchmarks. All of our experiments were conducted on a 336
MHz Sun UltraSPARC II with 1.2GB of primary memory. We show only the times required
for the satisfiability program, but all other processing steps required only a negligible (well
under 1.0 second) amount of time.

As indicated by Table III, we ran FGRASP on clause sets � sat and � trans
� � sat, i.e., both

without and with transitivity constraints. For benchmarks 1 � DLX-C, 2 � DLX-CA, and
2 � DLX-CC, the formula � sat is unsatisfiable. As can be seen, including transitivity con-
straints increases the run time significantly. For benchmarks 1 � DLX-C-t, 2 � DLX-CA-t,
and 2 � DLX-CC-t, the formula � sat is satisfiable, but only because transitivity is not en-
forced. When we add the clauses for � trans, the formula becomes unsatisfiable. For the
buggy circuits, the run times for � sat range from under one second to over 36 minutes.
The run times for � trans

� � sat range from less than one second to over 12 hours. In some
cases, adding transitivity constraints actually decreased the CPU time (by as much as a
factor of 5), but in most cases the CPU time increased (by as much as a factor of 69). On
average (using the geometric mean) adding transitivity constraints increased the CPU time
by a factor of 2.3. We therefore conclude that satisfiability checking with transitivity con-
straints is more difficult than conventional satisfiability checking, but the added complexity
is not overwhelming.

5. OBDD-BASED DECISION PROCEDURES

A simple-minded approach to solving satisfiability with transitivity constraints using OB-
DDs would be to generate separate OBDD representations of � trans and � sat. We could
then use the APPLY operation [Bryant 1986] to generate an OBDD for � trans � � sat, and
then either find a satisfying assignment or determine that the function is unsatisfiable. We
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�� p X p �� p X q �� p X s �� p X � �� p X � �� p X �
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Fig. 5. Mesh Graph
� �

.

show that for some sets of relational variables � , the OBDD representation of � trans £Y��¦
can be too large to represent and manipulate.

5.1 Lower Bound on the OBDD Representation of � trans £Y�b¦
We prove that for some sets � , the OBDD representation of � trans £Y�b¦ may be of expo-
nential size for all possible variable orderings. As mentioned earlier, the NP-completeness
result proved by Goel et al. [1998] has implications for the complexity of representing
� trans £Y��¦ as an OBDD. They showed that given an OBDD � sat representing formula
� sat, the task of finding a satisfying assignment of � sat that also satisfies the transitivity
constraints in �	���-�� T£&��¦ is NP-complete in the size of � sat. By this, assuming

� ©3�� � ,
we can infer that the OBDD representation of � trans £Y��¦ may be of exponential size when
using the same variable ordering as is used in � sat. Our result extends this lower bound to
arbitrary variable orderings and is independent of the

�
vs. � � problem.

Let
� 
 denote a planar mesh consisting of a square array of % � % vertices. For example,

Figure 5 shows the graph for % 3 � . Being a planar graph, the edges partition the plane
into faces. As shown in Figure 5 we label these � �&� � for �#�/��+9 �� %�¥ � . There are a total
of £ %`¥ �;¦ � such faces. One can see that the set of edges forming the border of each face
forms a chord-free cycle. As shown in Table II, many other cycles are also chord-free, e.g.,
the perimeter of any rectangular region having height and width greater than one face, but
we will consider only the cycles corresponding to single faces.

Define � 
 � 
 to be a set of relational variables corresponding to the edges in
� 
 .

� trans £Y� 
 � 
 ¦ is then an encoding of the transitivity constraints for these variables.

THEOREM 5.1. Any OBDD representation of � trans £&� 
 � 
 ¦ must have �#£�¨ 

	�� ¦ ver-
tices.

To prove this theorem, consider any ordering of the variables representing the edges in� 
 . Let 
 denote those in the first half of the ordering, and � denote those in the second
half. Our proof follows the general scheme outlined in [Bryant 1991]. We will show that
there are F�� £ %�¥ $ ¦E§�� variable pairs of the form £������ +$�����&¦ with ���V� ª 
 and ���>� ª � , as
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Fig. 6. Partitioning Edges into Sets � (solid) and � (dashed). Each face can then be classified as type A (all
solid), B (all dashed), or C (mixed).

well as an assignment of values to the other variables in 
 and � , such that � trans £&� 
 � 
 ¦
will evaluate to 1 if and only if the variables in each pair £&����� +E������¦ are assigned identical
values. Each variable pair £����3� +$���>��¦ will be two edges of a face of

� 
 . The OBDD
representation of the function must have at least ¨ A nodes to encode the values assigned
to the variables ���3� in 
 , for all values of � , in order to correctly determine whether their
counterparts ����� in � are assigned identical values. By proving a lower bound on the
number of these pairs for any partitioning of the variables, we prove an exponential lower
bound for any OBDD representation.

We can classify each face of
� 
 according to the four edges forming its border:

A: All are in 
 .

B: All are in � .

C: Some are in 
 , while others are in � . These are called “split” faces.

Observe that we cannot have a type A face adjacent to a type B face, since their shared
edge cannot be in both 
 and � . Therefore there must be split faces separating any region
of type A faces from any region of type B faces.

For example, Figure 6 shows three possible partitionings of the edges of
���

and the
resulting classification of the faces. If we let � , � , and � denote the number of faces of each
respective type, we see that we always have � ���?3 %x¥ � . In particular, a minimum
value for � is achieved when the partitioning of the edges corresponds to a partitioning of
the graph into a region of type A faces and a region of type B faces, each having nearly
equal size, with the split faces forming the boundary between the two regions.

LEMMA 5.2. For any partitioning of the edges of mesh graph
� 
 into equally-sized

sets 
 and � , there must be at least £�%�¥ $g¦E§T¨ split faces.

Note that this lower bound is somewhat weak—it seems clear that we must have � �
%f¥�� . However, this weaker bound will suffice to prove an exponential lower bound on
the OBDD size.

PROOF. Our proof is an adaptation of a proof by Leighton [1992, Theorem 1.21] that� 
 has a bisection bandwidth of at least % . That is, one would have to remove at least %
edges to split the graph into two parts of equal size.

Observe that
� 
 has % � vertices and ¨	%�£ % ¥¢�;¦ edges. These edges are split so that

%�£�%}¥ �;¦ are in 
 and %�£ %�¥/�
¦ are in � .
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Let
���
 denote the planar dual of

� 
 . That is, it contains a vertex �i�Y� � for each face
�b�Y� � of

� 
 , and edges between pairs of vertices for which the corresponding faces in
� 


have a common edge. In fact, one can readily see that this graph is isomorphic to
� 
 " � .

Partition the vertices of
���
 into sets

���
,
���

, and
���

according to the types of their
corresponding faces. Let � , � , and � denote the number of elements in each of these sets.
Our objective is to prove that � � £�%x¥ $g¦E§'¨ . Our strategy will be to embed a bipartite
graph � in

���
 with each edge of the � being a path in
���
 , and with each such path

containing at least one vertex in
�	�

. By showing a lower bound on the number of edges in
� and an upper bound on the number of paths cut when a single vertex from

� �
is removed,

we prove a lower bound on the size of
� �

.
First, we can obtain upper bounds on � and � as follows. Each face of

� 
 has four
bordering edges, and each edge is the border of at most two faces. Thus, as an upper bound
on � , we must have 
 ��� ¨	%�£ % ¥��
¦ , giving � � %�£ % ¥ �
¦E§'¨ , and similarly for � . In
addition, since a face of type A cannot be adjacent in

� 
 to one of type B, no vertex in
� �

can be adjacent in
���
 to one in

���
.

Consider the complete, directed, bipartite graph having as vertices the set
��� � ���

, and
as edges the set £ ��� �

��� ¦ � £ ��� �
��� ¦ . There is a total of ¨
� � edges. Given the bounds:

� � � 3 £�% ¥ �
¦ � ¥ � , ��� %�£ % ¥ �
¦E§'¨ , and ��� %�£ %x¥¢�;¦$§'¨ , the minimum value of
¨�� � is achieved when either � 3 %�£ % ¥¢�
¦E§T¨ and � 3 £�% ¥��;¦ � ¥B£ %x¥��
¦ %�§'¨~¥ � 3
£�%�¥ �;¦�£�%}¥ ¨ ¦E§'¨:¥ � , or vice-versa, giving a lower bound:

¨
� � � ¨ � %�£�%}¥/�
¦E§T¨ 	 � �[£�%�¥ �;¦�£�%}¥ ¨ ¦E§'¨:¥ � 	
3 %�£�%�¥ �;¦ � £�%}¥ ¨ ¦E§T¨¡¥ � %�£�%}¥/�
¦

We can embed this bipartite graph in
�
�
 by forming a path from vertex � �&� � to vertex

��� � � � � , where either ���&� � ª ��� and ��� � � � � ª ��� , or vice-versa. By convention, we will use
the path that first follows vertical edges to �i� � � � and then follows horizontal edges to �i� � � � � .
We must have at least one vertex in

�	�
along each such path, and therefore removing the

vertices in
���

would cut all ¨�� � paths.
For each vertex ���&� � ª ���

, we can bound the total number of paths passing through
it by separately considering paths that enter from the bottom, the top, the left, and the
right. For those entering from the bottom, there are at most %�¥ �G¥�� source vertices and
��£�% ¥��;¦ destination vertices, giving at most ��£ % ¥¤��¥¡�
¦>£�%f¥¡�;¦ paths. This quantity is
maximized for � 3 £ %`¥��;¦E§T¨ , giving an upper bound of £�%`¥ �;¦ �;§�
 . A similar argument
shows that there are at most £�%�¥��;¦ �;§�
 paths entering from the top of any vertex. For the
paths entering from the left, there are at most £[ �¥ �
¦>£ %`¥ �
¦ source vertices and £ %`¥f g¦
destinations, giving at most £7 ^¥ �;¦�£�%�¥� V¦>£�%?¥f�
¦ paths. This quantity is maximized when
 �3 £�%#¥��;¦$§'¨ , giving an upper bound of £�%#¥��;¦ �4§�
 . This bound also holds for those paths
entering from the right. Thus, removing a single vertex would cut at most £�%}¥/�
¦ � paths.

Combining the lower bound on the number of paths ¨
� � , the upper bound on the number
of paths cut by removing a single vertex, and the fact that we are removing � vertices, we
have:

�'£�%�¥ �;¦ � � ¨�� � � %�£�%}¥/�
¦ � £ %�¥ ¨ ¦E§'¨:¥ � %�£�%�¥ �;¦ �
From this we can derive

�'£�%�¥ �;¦ � � %�£ %�¥/�
¦ � £ %�¥ ¨T¦$§'¨e¥ � %�£�%}¥ �;¦
�T£�%}¥/�
¦ � � � % � %�£ %�¥/�
¦>£�%}¥ ¨T¦E§T¨
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Fig. 7. Split Face
8�W

in Proof of Theorem 5.1. The variable for edge
U��;W

is from
set � , while that for edge

U���W
is from set � .

eai

ebi

Fi

�'£�% � ¥ % � �
¦ � %�£ %�¥/�
¦>£�%}¥ ¨T¦E§T¨
We can rewrite %�£�%`¥��
¦>£�%�¥¤¨T¦ as £ % � ¥ % � �
¦>£ %}¥ $g¦ � % � ¥¤¨	% � $ . Observing that
% � ¥ ¨	% � $ �5) for all values of % , and that % � ¥ % � � � ) , we have:

�'£ % � ¥ % � �;¦ � £�% � ¥ % � �
¦>£ %�¥ $ ¦$§'¨ � £�% � ¥ ¨	% � $g¦E§'¨
�'£ % � ¥ % � �;¦ � £�% � ¥ % � �
¦>£ %�¥ $ ¦$§'¨

� � £�%�¥ $ ¦$§'¨

Define a set of faces as independent if no two of them share a vertex.

LEMMA 5.3. For any partitioning of the edges of mesh graph
� 
 into equal-sized sets


 and � , there must be an independent set of split faces containing at least £�% ¥ $ ¦$§��
elements.

PROOF. Partition the set of split faces into four sets: � � , ��� , � � , and ��� , where
face � �&� � is assigned to a set according to the values of � and   :

� � : Both � and   are even.

��� : � is even and   is odd.
� � : � is odd and   is even.
��� : Both � and   are odd.

Each of these sets is independent. At least one of the sets must contain at least �4§�
 of the
elements. Since there are at least £�%~¥ $g¦E§T¨ split faces, one of the sets must contain at least
£�%�¥ $ ¦$§�� vertex-independent split faces.

We can now complete the proof of Theorem 5.1.

PROOF. Suppose there is an independent set � �3 '
� ��+�������+$� A , of split faces. As
illustrated in Figure 7, for each face � � , we can choose a face edge ��� � from 
 , and a face
edge ��� � from � . Although not necessary for the proof here, we can assume that ��� � and
����� are adjacent.

Let �	 +
�� ª '*)!+��-, A denote two Boolean vectors of length F . We define assignment��
� # 
 % '*)�+ �-, as follows:

(1) If � 3¡��� � for some � � ª � , then ��
� £&�4¦ 3 	 � .
(2) If � ª 
 is some other edge in some face � � ª � , then ��
� £&�4¦ 3B� .
(3) Otherwise ��
� £&�4¦ 3&) .

Similarly, we define assignment � 
� # � % ' )�+��B, as follows:

(1) If � 3¡���>� for some �b� ª � , then � 
� £��4¦ 3 � � .
ACM Transactions on Computational Logic, Vol. V, No. N, August 2001.
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eai

ebi

eai

ebi

xi = yi = 0xi = yi = 1

Fig. 8. Possible Edge Types for Face
8�W

when � W����>W
.

1-edges are shown as solid lines, while 0-edges are shown
as dashed lines. In either case, there are no transitivity vio-
lations.

eai

ebi

cpi

vi

cqi

Fi

Fig. 9. Split Face
8�W

in Proof of Corollary 5.4. The graph may also contain
diagonal edges across the face. These are labeled ��� W and �	� W .

(2) If � ª � is some other edge in some face �G� ª � , then � 
� £&�4¦ 3�� .
(3) Otherwise � 
� £��
¦$3 ) .

The combined assignment � 
� � � 
� assigns values to all variables in � 
 � 
 . We claim that
� trans £Y� 
 � 
 ¦ evaluates to 1 under this assignment if and only if �	 3 �� . We argue this by
examining the possible cycles in the graph ��£Y� 
 � 
 + ��
� � � 
� ¦ .

First consider the case where �	 3 �� . The two possible cases for face ��� are illustrated
in Figure 8. The cycle forming the face’s perimeter will have no 0-edges when 	 �D3 � �D3
� and two 0-edges when 	 � 3 � ��3 ) . Any other cycle in the graph must contain at
least two edges that are not part of any face in � , and these two will be 0-edges. Hence,
� trans £Y� 
 � 
 ¦ evaluates to 1 under this assignment.

Suppose, on the other hand, that 	 �H3�� and � � 3 ) for some � . Then the edges forming
the perimeter of face � � will have exactly one 0-edge, causing the function to evaluate to
0. A similar result holds when 	 � 3 ) and � � 3B� .

Thus, the set of assignments ' � 
� / �	 ª '*)!+��B, A , forms an OBDD fooling set, as defined
in [Bryant 1991]. That is, for each distinct pair of assignments � 
� and ��
� � , there is an
assignment � (namely � 
� ), such that the combined assignment � 
� � � causes the function to
evaluate to 1, while the assignment � 
� � � � causes the function to evaluate to 0. As is shown
in [Bryant 1991], this implies that the OBDD must have at least ¨ A � ¨ 
 
 " � � 	�� 3 �#£�¨ 

	�� ¦
vertices.

We have seen that adding relational variables can reduce the number of cycles and there-
fore simplify the transitivity constraint formula. This raises the question of how adding
relational variables affects the BDD representation of the transitivity constraints. Unfortu-
nately, the exponential lower bound still holds.

COROLLARY 5.4. For any set of relational variables � such that � 
 � 
 � � , any
OBDD representation of � trans £Y��¦ must contain �#£�¨ 

	�� ¦ vertices.

PROOF. The proof is similar to that for Theorem 5.1. The extra edges in � introduce
complications, because they form chords across faces and create cycles containing edges
from different faces.

Consider any ordering of the variables. We partition these into two sets 
 and � such
that the variables in 
 come before those in � , and such that the number of variables that
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Fig. 10. Possible Edge Types for Face
8�W

when � W � �>W
.

1-edges are shown as solid lines, while 0-edges are shown
as dashed lines. In either case, there are no transitivity vio-
lations, even in the presence of diagonal edges.

eai

ebi

cpi

vi

cqi

eai

ebi

cpi

vi

cqi

xi = yi = 0xi = yi = 1

are in � 
 � 
 are equally split between 
 and � . Let � �3 '
� � +������ +E�DA>, be an independent
set of split faces. For each such face �G� , we can select edges ���3� ª 
 , and ���>� ª � , such
that they are adjacent, i.e., they share a common vertex .g� , as illustrated in Figure 9. The
graph can potentially contain edges that form diagonals across the face. We label these ��� �
(not incident on . � ) and ��� � (incident on . � ).

For Boolean vector �	 ª ' )�+��B, A we define assignment ��
� to the variables in 
 as fol-
lows:

(1) If � 3¡��� � for some � � ª � , then ��
� £&�4¦ 3 	 � .
(2) If � ª 
 is some other edge in some face �G� ª � , then � 
� £&�4¦ 3B� .

(3) If � is some other edge in � 
 � 
 , then ��
� £��
¦$3 ) .

(4) If � 3 ����� for some face �b� ª � , then � 
� £��4¦ 3 	 � .
(5) If � 3 ���m� for some face �b� ª � , then ��
� £��
¦$3�� .

(6) For any other edge � , � 
� £��
¦ 3 ) .

For Boolean vector �� ª '*)�+ �-, A , we define assignment � 
� to the variables in � as
follows:

(1) If � 3¡���>� for some �b� ª � , then � 
� £��4¦ 3 � � .
(2) If � ª 
 is some other edge in some face �G� ª � , then � 
� £&�4¦ 3�� .
(3) If � is some other edge in � 
 � 
 , then � 
� £&�4¦ 3 ) .

(4) If � 3 ����� for some face �b� ª � , then � 
� £&�4¦ 3 � � .
(5) If � 3 ��� � for some face � � ª � , then � 
� £&�4¦ 3�� .

(6) For any other edge � , � 
� £&�4¦ 3&) .

We claim that for the combined assignment � 
� � � 
� , � trans £Y� 
 � 
 ¦ evaluates to 1 if and
only if �	 3 �� . We argue this by examining the possible cycles in the graph ��£Y� + � 
� � � 
� ¦ .

First, consider the case where �	 3 �� . Figure 10 illustrates the possible cases for face
� � . For this face, we must consider its perimeter, plus possibly cycles including one of the
diagonal edges. As before, the perimeter will contain either no 0-edges ( 	 � 3 � ), or two
0-edges ( 	 � 3 ) ). If edge ��� � is present, then there will be two triangles: one containing
��� � , ��� � and ��� � , which will have either zero or two 0-edges, and one containing ��� � and the
other edges of the face, which will have no 0-edges. If edge � � � is present, then there will
be two triangles: one containing � � � , ��� � , and some other face edge, and one containing
� � � , ����� , and some other face edge. Each of these triangles will contain either no 0-edges
( 	 �@3 � ), or two 0-edges ( 	 �D3 ) ). Any other cycle in the graph must contain at least two
edges that are neither part of any face in � , nor diagonal edges of some face in � . These
two edges must be 0-edges. Thus, � trans £&� 
 � 
 ¦ evaluates to 1.

For the case where �	 ©3 �� , the same argument as used in the proof of Theorem 5.1 shows
that � trans £Y� 
 � 
 ¦ evaluates to 0.
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Table IV. Graphs for Reduced Transitivity Constraints. Results are given for the three different
methods of encoding transitivity constraints based on the variables in the true support of

8
sat.

Circuit Verts. Direct Dense Sparse

Edg
es

Cyc
les

Clau
se

s

Edg
es

Cyc
les

Clau
se

s

Edg
es

Cyc
les

Clau
se

s

1 � DLX-C-t 9 18 14 45 36 84 252 20 19 57
2 � DLX-CA-t 17 44 101 395 136 680 2,040 49 57 171
2 � DLX-CC-t 17 46 108 417 136 680 2,040 52 66 198
100 Buggy min. 3 2 0 0 3 1 3 2 0 0
2 � DLX-CC avg. 12 17 19 75 73 303 910 21 14 42

max. 19 52 378 1,512 171 969 2,907 68 140 420

Thus, the set of assignments ' � 
� / �� ª '*)!+��-, A , forms an OBDD fooling set, implying
that the OBDD must have at least ¨ A ��¨ 
 
 " � � 	�� 3 �#£�¨ 
 	 � ¦ vertices.

Our lower bounds are fairly weak, and there is no reason to believe that the graphs en-
countered in real-life examples will resemble rectangular meshes. Still, these theoretical
results show the inherent intractability of applying OBDDs to transitivity constraints. We
have found in practice that the OBDDs do indeed perform poorly for representing large sets
of transitivity constraints. The OBDDs representing the transitivity constraints from our
benchmarks tend to be large relative to those generated during the evaluation of � sat. For
example, although the OBDD representation of � trans £&�4GA¦ for benchmark 1 � DLX-C-t is
just 2,692 nodes (a function over 42 variables), we could not construct the OBDD repre-
sentations of this function for either 2 � DLX-CA-t (178 variables) or 2 � DLX-CC-t (193
variables) despite running for over 24 hours.

5.2 Enumerating and Eliminating Violations

Goel et al. [1998] proposed a method that generates implicants (cubes) of the function � sat
from its OBDD representation. Each implicant is examined and discarded if it violates
a transitivity constraint. In our experiments, we have found this approach works well
for the normal, correctly-designed pipelines (i.e., circuits 1 � DLX-C, 2 � DLX-CA, and
2 � DLX-CC) since the formula � sat is unsatisfiable and hence has no implicants. For all
100 of our buggy circuits, the first implicant generated contained no transitivity violation
and hence was a valid counterexample.

For circuits that do require enforcing transitivity constraints, we have found this ap-
proach impractical. For example, in verifying 1 � DLX-C-t by this means, we generated
253,216 implicants, requiring a total of 35 seconds of CPU time (vs. 0.2 seconds for
1 � DLX-C). For benchmarks 2 � DLX-CA-t and 2 � DLX-CC-t, our program ran for over
24 hours without having generated all of the implicants. By contrast, circuits 2 � DLX-CA
and 2 � DLX-CC can be verified in 11 and 29 seconds, respectively. Our implementation
could be improved by making sure that we generate only implicants that are irredundant
and prime. In general, however, we believe that a verifier that generates individual impli-
cants will not be very robust. The complex control logic for a pipeline can lead to formulas
� sat containing very large numbers of implicants, even when transitivity plays only a mi-
nor role in the correctness of the design.

5.3 Enforcing a Reduced Set of Transitivity Constraints

One advantage of OBDDs over other representations of Boolean functions is that we can
readily determine the true support of the function, i.e., the set of variables on which the
function depends. This leads to a strategy of computing an OBDD representation of � sat
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Table V. OBDD-based Verification. Transitivity constraints were generated for a reduced set
of variables

�2
.
Circuit OBDD Nodes CPU8

sat
8

trans
o �2 
 u 8

sat
r 8

trans
o �2 
 u

Secs.
1 � DLX-C 1 1 1 0.2
1 � DLX-C-t 530 344 1 2
2 � DLX-CA 1 1 1 11
2 � DLX-CA-t 22,491 10,656 1 109
2 � DLX-CC 1 1 1 29
2 � DLX-CC-t 17,079 7,168 1 441
100 Buggy min. 20 1 20 7
2 � DLX-CC avg. 3,173 1,483 25,057 107

max. 15,784 93,937 438,870 2,466

and intersecting its support with � to give a set
�� of relational variables that could po-

tentially lead to transitivity violations. We then augment these variables to make the
graph chordal, yielding a set of variables

�� G and generate an OBDD representation of
� trans £

�� G ¦ . We compute � sat � � trans £
�� G ¦ and, if it is satisfiable, generate a counterex-

ample.
Table IV shows the complexity of the graphs generated by this method for our bench-

mark circuits. Comparing these with the full graphs shown in Table II, we see that we
typically reduce the number of relational vertices (i.e., edges) by a factor of 3 for the
benchmarks modified to require transitivity and by an even greater factor for the buggy cir-
cuit benchmarks. The resulting graphs are also very sparse. For example, we can see that
both the direct and sparse methods of encoding transitivity constraints greatly outperform
the dense method.

Table V shows the complexity of applying the OBDD-based method to all of our bench-
marks. In our experiments, we use the CUDD OBDD package [Somenzi 2001] with dy-
namic variable reordering by sifting. Our measured times include all steps of the deci-
sion procedure, although everything except BDD processing required a negligible amount
of time. The original circuits 1 � DLX-C, 2 � DLX-CA, and 2 � DLX-CC yielded for-
mulas � sat that were unsatisfiable, and hence no transitivity constraints were required.
The 3 modified circuits 1 � DLX-C-t, 2 � DLX-CA-t, and 2 � DLX-CC-t are more interest-
ing. The reduction in the number of relational variables makes it feasible to generate an
OBDD representation of the transitivity constraints. Compared to benchmarks 1 � DLX-C,
2 � DLX-CA, and 2 � DLX-CC, we see there is a significant, although tolerable, increase in
the computational requirement to verify the modified circuits.

For the 100 buggy variants of 2 � DLX-CC, � sat depends on up to 52 relational variables,
with an average of 17. This yielded OBDDs for � trans £

�� G ¦ ranging up to 93,937 nodes,
with an average of 1,483. The OBDDs for � sat � � trans £

��4G�¦ ranged up to 438,870 nodes
(average 25,057), showing that adding transitivity constraints does significantly increase
the complexity of the OBDD representation. However, this is just one OBDD at the end
of a sequence of OBDD operations. In the worst case, imposing transitivity constraints
increased the total CPU time by a factor of 2, but the average increase was only 2%. The
memory required to generate � sat ranged from 9.8 to 50.9 MB (average 15.5), but even in
the worst case the total memory requirement increased by only 2%.
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6. CONCLUSION

By formulating a graphical interpretation of the relational variables, we have shown that
we can generate a set of clauses expressing the transitivity constraints that exploits the
sparse structure of the relation. Adding relational variables to make the graph chordal
eliminates the theoretical possibility of there being an exponential number of clauses and
also works well in practice. A conventional SAT checker can then solve constrained satis-
fiability problems, although the run times increase significantly compared to unconstrained
satisfiability. Our best results were obtained using OBDDs. By considering only the re-
lational variables in the true support of � sat, we can enforce transitivity constraints with
only a small increase in CPU time.

In more recent work [Velev and Bryant 2001], we have found that the SAT solver CHAFF

[Moskewicz et al. 2001] is particularly effective at dealing with the additional clauses
expressing transitivity constraints. This program uses techniques that avoid the repeated
scanning of the entire clause database as done by other SAT solvers. In conjunction with
the sparse enumeration technique described here, CHAFF has allowed our verifier to operate
on much more complex processor designs than either we or anyone else could handle
before.

We have also conducted some preliminary studies of some superscalar execution units
employing out-of-order issue [Hennessy and Patterson 1996]. We have found that transi-
tivity constraints must be enforced to verify these designs, because the logic used to avoid
write-after-write hazards relies on this property. In addition, we have found that the OB-
DDs representing the reduced set of transivity constraints can be too large to generate.
Overall, we have found that verifying out-of-order issue processors is much more demand-
ing computationally than is the case for in-order processors.
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