Computer-aided verification
Theorem proving and model checking are powerful tools that can
verify the logical correctness of today’s ICs or find their hidden bugs

lHE BUG IN THE FLOATING-POINT DIVISION circuitry of

Intel Corp.s Pentium chip brought notoriety to the huge

cost that may be incurred when a logical-bug is commit-

ted to silicon. (For the Pentium, some have put it at US $500

million.) But behind every such bug that makes the news, an

uncounted number of logical errors go undetected throughout

the design, implementation, and marketing phases of many

products. Either these errors. will finally be detected and cor-

rected in hardware, software, and subsequent releases—or they
will simply remain as bugs, known to a few, experienced users.

The debugging of most hardware circuits and many highly
complex software systems is done by an elaborate testing pro-
cess involving extensive runs of computer models of the target
implementations. When a circuit or program is synthesized from
a simulation model of this nature, any errors in the model may
appear in the resulting lmplementatlon Finding and correcting
such errors before synthesis can reduce correction costs by an
order of magnitude.

Reliance on running simulation models alone becomes a weak-
ness in designing and developing large-scale, highly complex sys-
tems. An example is the control system for asynchronous envi-
ronments, with its many coordinating components, such as
communication protocols and telephone switches, ‘as well as cir-
cuits that execute many instructions in parallel: In'systems of this
kind, the set of possible behaviors so
greatly outstrips the set that can be
simulated that even billions of tests,
run continuously for a year or more,
can never examine most combina-
tions of behaviors. Among those un-
examined behaviors may lurk critical
untested combinations or, worse
yet, unknown system failure modes.

Thus, random testing, once con-
sidered an important tool for uncov-
ering faults in unanticipated behav-
iors, .is now viewed widely as
inadequate. On the other hand, tests
designed for specific scenarios leave
unexplored possible combinations
of behavior that fall outside the an-
ticipated patterns.

Such difficulties have spurred re-
search into methods that attempt to
prove a system correct, in the same
sense that a mathematical theorem is
proved correct. The ideal algorithm

IEEE SPECTRUM JUNE 1996

The verification process begins with a program (or a descrip-
tion of a circuit design) and a list of properties to be checked.
The verification tool determines if the properties are true, or
if not, provides a counterexample.

0018-9235/96/$5.00©1996 IEEE

- EDMUND M. CLARKE
Carnegie Mellon University

would automatically analyze a sys-
tem model and either conclude it

was cotrect or reveal a bug within &
a reasonable number of steps. ROBERT P. KURSHAN
From a mathematical perspective, Bell Laboratories

though, only very simple systems

are suited to such decision procedures.” Although such automated
theorem provers had some successes, they were generally unable to
pinpoint errors in incorrect designs and were difficult for a non-
expert to operate effectively.

One common observation of hardware and software -designs
holds that in the life cycle of a development project, the design
mostly is incorrect and approaches correctness only (hopefully!)
at the end of the design and testing process, when the “last” errors
have been detected and eliminated. Thus, a formal method that
sometimes can prove a design correct, but not easily locate flaws'
when the design is incorrect, is more useful at the very end of the
design and test process. Furthermore, exigencies of the market-
place demand that design verification fit unobtrusively within the
development ‘process and, at any rate, not delay that process any
more than the current practice of snmulahon testing.

For these reasons researchers sought design verification meth-
odologies that were more limited in scope than the theorem-
provers. They also wanted techniques that could be highly auto-
mated and could locate bugs in
faulty designs as readily as they
could prove error-free designs cor-
rect. Attention at first focused on
finite-state . models, which can
assume only a finite number of dis-
tinct configurations during any
arbitrarily long or even endless exe-
cution. Although limited in a-math-
ematical sense, finite-state models .
necessarily encompass every digital
circuit and every software system
implemented on a digital computer.
Their computational feasibility for
systems with a finite but staggering-
ly large number of statcs however,
is a key concern.

Today, the first computer-aided
verification tools are becoming
commercially available. They are.
based on methods that in many
cases can reduce the complexity of
verification (without sacrificing

61

guaranteed correctness) to such a
degree that it becomes computa-
tionally feasible. Among the most
powerful of these methods are sym-
bolic model-checking and homo-
morphic reduction, both of which
represent a complex system in
terms of a compact and computa-
tionally more tractable structure.
Moreover, the two can be used
together with a multiplicative re-
duction cffect, since they work in-
dependently of one another. Of
special importance is the fact that
they each can be implemented
automatically, so the task of reduc-
tion is programmed into the com-
puter rather than presenting a bur-
den to the design engineer.

As early as 1976, Amir Pnueli, a re-
searcher at the Weizmann Institute,
Rehovot, Israel, and other computer sci-
entists began proposing deductive sys-
tems, notably temporal logics, that could
verify finite models. These logics support
a syntax in which it is simple to express
such notions as “If a process requests a
bus, then eventually it gets to access it."
This approach suffered several practical
drawbacks, however. Since temporal log-
ics are most useful for describing require-
ments placed on simple causal relation-

ships, designers really could not be ex-
pected to define an entire system model in
temporal logic. (Even logicians sometimes
are unsure of the effective meaning of
complex temporal formulas.) Moreover,
although the decision procedures were
guaranteed to give an answer, the compu-
tational complexity of the required checks
grew exponentially with the size of the
formulas. For these reasons, interest in this
approach was largely academic.

The first practical breakthrough came
independently in 1980 from Edmund
Clarke and his student Allen Emerson at

Harvard University and from Joseph
Sifakis and his student Jean-Pierre Queille
in Grenoble, France. Each team modeled
a system as a computer program that
could be checked automatically. The
check determined whether the program
satisfied particular specifications (proper-
ties) defined by the programmer and
expressed in temporal logic.

Dubbed model-checking by the Har-
vard pair, the approach had the great
advantage of producing counterexamples
through which programmers could locate
errors. Computationally, model-checking
appeared promising, especially since under
reasonable restrictions its complexity grows
linearly with model and formula size. This
promise was at best elusive, though, since
model size itself generally grows exponen-
tially with the number of variables that
define the system, a phenomenon often
termed state-space explosion.

Since the problem of state-spacc explo-
sion is intractable in the worst case, re-
search on model-checking has focused on
heuristics or methods that circumvent the
complexity barrier in special cases. Some
heuristics have simply formalized tech-
niques already used in simulation: ab-
stracting inessential parts of the model
and exploiting the models hierarchical
structure and symmetries.

Veriﬁ:atlon at A‘I‘&T

S began work ona ftmte~state ven~

“tool ¢ span. s function was to check the

vior: (znput/ﬁutput sequences) of one program 1o see

i they were contained in the behaviors of another program or,
ai:te atively, if they were consistent with a given property. This
parad«gm supports a tapdown ‘development methodology
: o ement.: the user starts with an ab-
stract deagn. debugs and verifies that design, and then refines

bstract design by adding more detail;
d design: campnses the second refmement level.

au propemestme of the ev:ous !evei of abstraction are inher-, '

efmement.

> eis generated lora combination
) ‘automatlcauy tmpiemen’tmg the low !evel design :

Iy, the tool can be
,asin Formalcheck, atool

developed by Bell Labs Design Automation that uses Cospan as.
its verification engine. The tool embeds Cospan in-a graphical
nat facilitates its use and links it to the VHDL

user4

‘and Ver nguages. so , t, users need not Ieam Cospan‘s

Cbspan runs homomarphu: reductmn algomhms. both sym- :

62

bolically {using binary decision diagrams) and explicitly, to cope
with the enormous computational complexity in" typical
designs. Although FormalCheck’s core contains the algorithms
necessary for stepwise refinement, this tool does not currently
support them. Likewise, Cospan contains other more ‘experi-
mental algorithms not supported in- FormalCheck, including
timing verification and software bridges to theorem-provers,
as well as to two other finite-state verification systems: the
Symbolic Model Vetifier (SMV) and SPIN. ~ = :
“The SPIN software verification system, developed by Gerard
J. Holzmann at Bell Labs in 1989, is based upon an interleaving

~model of concui’rem in-wihich, unlike with ‘hardware, -only

one component of the system state is allowed to.change at a
time. This restriction; which -is poputar. for software models,

. makes the verification run faster than synchronous models (the
kind used with Cospan or SMV), where any number of compo-

nents can change at a time. it runs faster because each state

‘update i isa mmpler operamon, bemg restricted to one oompo—

nentonly.

Moreover, the mterleavmg semantxcs supports a ‘reduction
algorithm, developed by Doron Peled at Bell Labs, that exploits
symmetries in the order of execution (partial order reduction),

- “which is not feasible in tools like Cospar or SMV. SPIN also incot-

porates the “Supertrace” algorithm that facilitates a very mem-

‘ory-efficient partial search of 3 state space.

Although FormalCheck is proprietary to Bell Labs, the Cospan
and SPIN tools are available at no charge. Cospanmay be licensed

by universit ,,for noncommercial research and educational use
“and SPIN i is available by anonymous ftp (inquire of k@research.

bell-!abs om and gerard@research.bell-labs.com, respectively).

SMV is available through anonymous ftp from: Carnegne Mellon

Unwemty (anwre of Edmund. Clarke@cs.cmu edu). —RK.

IEEE SPECTRUM JUNL 1996

In 1987, one of us (Kurshan) unified
and formalized these techniques into a
single paradigm called homomorphic
reduction. (It was named for a mathemat-
ical structure-reducing homomorphism—
“shape-" preserving function—on the
Boolean algebra of formulas in program

tions among system events that need not
be distinguished for a particular verifica-
tion task. For example, to verify some
property, it may be unnecessary to distin-
guish the non-zero values of some vari-
able V. So the homomorphism may
replace V with a new variable, the values

The verification program, possibly
with initial aid from the user, makes a
guess about system values that need not
be distinguished. The verification algo-
rithm then checks that this guess (or one
of its own) is correct. If so, the abstracted
version is used for model-checking; if not,

variables.) The paradigm defines associa-

'debug some commercial products. The company’s
8% W W internal modef»checkmg tool, Verdict {produced by
'Bemard Plessier and the author), is based upon the Symbolic

Model Verifier tool—thus using computation tree logic (CT by : :,

‘and the Venlog hardware description language.

~ In one modelchecking success, a byte data fink contro!ter[f L Th
~(BDLC}——a serialiparallel bus interface module. that connects an
‘automotive serial bus to a microprocessor—was designed m}‘
;Verﬂng and veﬂﬁedwrth Verdict [see figure]. implemented in 6000
as first
;s:muiatedmafewtestcasesteebmmateobwouserrers Thepre— sroperty
iminaty simulation is important because nmdel-check ,g des'gns[:g

“or so transistors, induding some 150 latches, the BDL!

errors tends to be time-consuming.

of which are zero and non-zero.

this "localization reduction” algorithm

odel'checkmg is used at Momroia Inc odesign and 7 atl
], module, cali it CF of a commamat mccroprmr to ndel- :
5 checkmg after the design was camplete The CF unit consnsteﬂ of :

machine. The term means that there are nine speciim ﬂ:
each of Whlch represents one of the mne states The CF

reset state has exat:ﬂy one af the mne ﬂep-ﬂops assart ‘

~ One umt 'wzthm the BDLC is the symbol .

ich monitors the serial bus |
and, fram the duration of signal (at htgh or |
Jow veitage) it receives and from its own
state deudgs what symhal (such as log;c 0

om' the symbnl modu!e are,ff;
h yte }submodulfe wh»ch,f: :

Byte
““““““““ Tt N
{’y E { P Shifter
Interrupt E ! interface | |
i unit R Cycle redundancy
{ i check (CRC)
MWWM S, VAR

|
|
i

P
i Digital
L filter
,\c P R 48

S

Symbol

o &guntm

i i Decoder

“‘%».-.:m.,,Mj

- ingandresettebility.

CLARKE & KURSHAN - COMPUTER-AIDED VERIFICATION

63

automatically adjusts the reduced model
and verification is tried again.

Replacing the given verification prob-
lem with a simpler one in such a correct-

Debugging a commumcations clnp

MASAHIRO FU}FI’A

uring field tests, yeyngmeer:' at Fujttsu Ltd. in)'apan":,?
observed that a complex: communications chip slated

for commercial appiicatms behaved abnormaﬂy sever-

al ‘seconds after power-up: some data was duplicated while
other data disappeared entirely. The IC was designed for hsgh- ,
speed switching operations at 156 MHz and had 111 000 or 50
gates (32 000 for random logic. ‘and 79 000 for RAMY). Initially,

validate the circuit.

‘extensive simulation had been used

Because the abnormal behavior in the tests occurred ontyr
hundreds of millions of sim-
ulation cycles would be. necessary to reproduce Consequenﬂw 7
simulation was impractical as a debugging techmque. Evenifit
were possible 10 generate so many test cycles (by emulators, for
example), it would almost certainly be impossible to analyze the
enormots.amount of mformatmn pmduced in annugh deta:l to

after several seconds of operatton,

fmd the error. : : :
. Since obtaining an erro free vers;on cf the IC had high p
onty the author, along with Ben Chen, a Fujitsu computer-aid:
ed design engineer familiar with formal verification, and thei
colleagues turned to the Symboli Mod lVQnﬁer MV) mod
el-checker to debug the design.

Information about the chip des:gn was ava:labte oniy m',

gate-level circuit descriptions. Since the circuit had more than
100 000 gates, SMV

He: started W’(th
beheved to be the,mc:st hke ,

ness-preserving fashion was shown to be
formally equivalent to finding a Boolean
algebra homomorphism that preserves
some—but not all, or there would be no

reduction—of the structure of the corre-
sponding program. Such homomor-
phisms include mapping complex data
structures and control sequences into sim-

were not confident of the behavior of specially designed cache

- ‘registers used’in the FIFO to speed-up the operation of the

chip. After checking many properties with SMV, Chen was
unable to find any errors in the FIFO. He concluded that the
error must be in some other part of the circuit.

Eventually, Chen determined that all the major components

of the circuit were correct, ‘meaning that the error must be
‘caused by the way in whtch they were connected. ‘He built a
:‘condse model for the chip in the SMV language. Thie model did
‘not describe the hardware in the chip that was clearly unrelat-
' ed to the cause of the error; and the width of the data path

was reduced as much as possible to cut the number of states.
‘Chen's specifications were written in temporal logic that
descnbed the abnormal behavior. Running on a workstation,

the SMV model-checker took less than half an hour to deter-

mine that the error arose froma condmon in-which the same
address appeared twice in the FIFO. This candition=the result

: of incorrect resetting -of address recycling circuits—caused the
- data to be sent twice, the second time overwriting the first,

Ieadmg to duplication or disappeararnice of the data, depend-

Jng upon the instant that the data was read.

_The abnormal execution trace found by they fﬁodel-checker

- ‘was more than 59 clock cycles long This:meant that, starting in
‘the mmal state, it took at least 50 clock cycles for the error to
‘occur. Since the width of the data path in the actual chipwas

larger and the input data tended to be more random; the efror

id not be directly applsed 10 the gate-

level circuit ‘description. Chen decided to exploit the modular -

structure of the circuit to reduce the state explosion problem..
firstin, fir -out buffer {FIFO) that was
aurce of the error‘ mesngnersi

occurred only after a cons*derable penod of ttme, which

,expiamed why it was 50 hard m fmd

Mmmm Fuma is direttor of camputer«atded des:gn ‘of very Iarge—

~ scale ICs for Fujitsu Laboratories of America, Santa Clara, Calif. His
graup ls engaged in ﬂ&D af these des:gn tools fer logic.

Input
highway
| S€T18N/PaTallel

Write
control

RAF, WAF = readfwrite first-in, first-out buffer

Cell buffer

Output
highway
| Parallel/serial j

Empty-reset
generator

64

[FEE SPECTRUM TUNE 1996

pler ones, which retain enough informa-
tion for the verification task at hand.

This mapping subsumes data abstrac-
tion and symmetry reduction. Through
data abstraction, a notion introduced by
Pierre Wolper at the University of Liege,
Belgium, data can be reduced to just a few
distinct values. Through symmetry reduc-
tion, a model can be replaced by a “quo-
tient” model that factors out symmetric dis-
tinctions. In many cases, homomorphic
reduction gives designers a chance to veri-
fy arbitrarily large models.

Around the same time, in the late '80s,
several other groups independently discov-
ered an alternative—and in fact comple-
mentary—form of reduction. Called sym-
bolic model-checking, this approach
analyzes sets- of states, represented by
Boolean formulas, as opposed to individual
states. For example, if x is a variable of the
system, then the expression “x equals 0" can
be understood as the Boolean formula that
defines the set of all vectors of values of all
the system variables in which x equals 0—
avery large set of vectors. This potential for
succinct expression of a large set of system
values can be exploited computationally
during model-checking. :

The formulas are stored in a compressed
form of binary decision tree called a binary

“decision diagram (BDD). To understand
how those diagrams impact model-check-
ing, it is necessary. to see how model-check-
ing itself works. Suppose in using a program
or a hardware description, a property
required of the program is expressed as a
temporal logic formula. For example, the
formula may express the property: “If the
program ever sets a variable V to 1, then
eventually it sets V back to 0." The role of
verification (or in this case model-checking)
is to determine-whether the formula is true
for the given program or, in logical terms,
whether the executions of the program form
a model of the formula. When the program
uses only a finite amount of memory, it may
be viewed as a finite state machine. In this

case, the logical model is the set of all its

input/state/output sequences.

The model is constructed by a search
that begins with the initial state of the pro-
gram. From there, every possible succession
of state transitions of the program is gener-
ated, starting with all possible single transi-
tions. Many transitions are possible from a
given state, since each immediately follow-
ing state depends upon external inputs to
the program. Moreover, if the program
incorporates parallel processing or asyn-
chrony, several “immediately following”
events may be scheduled from a given state,
and each of these must be explored.

Every immediately following state that
is possible but which has not been previ-
ously generated, is placed in a pool of
states to be expanded in the same fashion.

The step is repeated until no new states
are found, defining a breadth-first search
of the model state space. Eventually, the
search must terminate since the state
space is assumed to be finite, and when
the pool of states becomes empty, the
model is complete. ‘

Every possible execution of the pro-
gram thus is represented in the model by
a sequence -of consecutive states. Model-

checking then .consists of determining -

whether every such sequence satisfies the
given property, and if not, of finding a
counterexample sequence [see figure].
This, sequence, too, is accomplished
using techniques. of search.

Consider the example of resetting the
variable V to 0 in the model just de-
scribed. To check this, all the states where

V is 0 must first be marked. Then, looking -

backward, all states that must reach a
marked state in one step must also be
marked. This procedure is repeated until
it reaches a “fixed point,” from which no
new states can be marked. Now all the
states from which V must eventually set to
0 are known. If any state where V is 1 is
not marked, then the formula is false.

The symbolic solution -

The catch is that even very small pro-

grams can have a huge number of states. For
example, a program that can store a mere
250 bits of data has at least 2250 states—
more states than there are particles in the
universe! When the expanded model be-
comes too large to store in available memo-
ry, the model-checking technique can no
Jonger be applied directly. This is whete
symbolic techniques enter the picture.

A symbolic model-checker représents
the model indirectly, using a Boolean func-
tion as above, to determine when a transi-
tion is possible from one state to another.
A Boolean function takes on the values 0

- and 1 and thus may be used to encode the

values of all the system variables in terms
of the system inputs. This function is put
into a' unique form (usually the binary
decision diagram form) to make it easier to
manipulate during analysis.

When' carrying out a breadth-first
search, the set of marked states is also rep-
resented symbolically through a Boolean
function. The ability to perform the oper-
ations of Boolean algebra on these expres-
sions allows the search to be. carried out

‘entirely using the symbolic forms. As a

result, checking formulas depends not on
the number of states of the model, but on
the compactness of the symbolic forms.
Symbolic techniques are not the ulti-
mate solution to the state explosion prob-
lem, since there is no guarantee that the
symbolic representation will be any small-

er than the explicitly constructed model.

Nonetheless, a representation can be cho-

CLARKE & KURSHAN — COMPUTER-AIDED VERIFICATION

sen to exploit the structure inherent in the
state space of the program. As a result, we
can verify a model many orders of magni-
tude larger than any it is possible to con-
struct explicitly. Just how to do this has
been the subject of much recent research.

Hurdling the complexity barrier
Currently, the most powerful finite-

‘state verification techniques integrate

symbolic model-checking and homomor-
phic reduction. But computational com-
plexity remains a barrier for some cases.
One tactic would focus verification efforts
upon any models that are susceptible to

-the known heuristics. The challenge then

becomes how to determine in advance
which models have this property.

There have been some successes in this
direction. Modular programming tech- -
niques, which limit the amount of infor-
mation allowed past module boundaries,
have played an important role in advanc-
ing symbolic model-checking and homo-
morphic reduction. Even apart from verifi-
cation, modular techniques have already
been identified as useful in managing large
programs. So there is reason to hope that
the best current programming practice
and verifiability of programs may' con-
verge to a common ground.

Another tactic to promote verifiability,
perhaps of more immediate use in an
industrial setting, lets the model and avail-
able resources guide the verification effort.
This technique rests upon an increasingly
common view that verification is more
valuable in proving a model incorrect (and
providing a counterexample to assist in
debugging) than in proving it correct.

After all, systems can fail in many ways,
some entirely beyond the reach of verifica-
tion. All verification efforts proceed from
assumptions about the environment of the
model to be verified. If these assumptions
are incorrect, then a faulty system model
may be "verified." Moreover, if the synthe-
sis procedure is not itself verified, then a
correct design may yield a faulty imple-
mentation, Intel explained that the floating-
point division bug occurred because de-
signers used a faulty script to implement the
Pentium’s division table. While the table's
design was probably correct, the script pro-
duced a hardware version that omitted a
few essential values. If a verification proce-
dure failed to examine this script or its
result, then even if the table and all associ-
ated parts of the algorithm for floating-
point division were correct, the result still
would have been faulty silicon:

Assuming that verification will never
embrace all the ways in which a system
can fail, perhaps verification should be so
applied to a project as to extend the most
benefit possible for the given resources of
time and staff. This is especially true in a

nd sy amzatmn between the mcu:ﬁmg data iate

he 1 ema mtesscr rate. and buffers data, wh

r'c'ed,'p‘énnitﬁng‘t' ternal Fl
of the CD;C model thfs ana

the mmptemty

;zt ulti

Duta

commercial setting. All known reduction
algorithms may be applied to a given
model in an automated fashion until
either a bug is found, or the model is ver-
ified, or the space or time allocated runs
out. Bell Laboratories uses this approach
with its verification tool FormalCheck
As confidence in and reliance upon
finite-state verification grow, designers
will slowly learn to use the process in
more focused and advantageous ways.

66

Sometimes the fear is that merely learning
how to integrate formal verification tech-
niques into the design process may slow
development unacceptably, or that the
process itself may result in less efficient
circuits. In fact, verification may detect
errors earlier in the design cycle, thereby
actually speeding up the overall project. In
many modes of use, formal verification has
no effect upon the form and efficiency of
the ultimate design. But even when formal

verification leads to design compromises,
some performance degradation may be
worth the price, especially in view of ever
faster circuitry, sincc a more reliable
design is being brought faster to market.
Still, some data-intensive algorithms
such as arithmetic and logic units may
remain beyond the scope of purely auto-
matic finite-state methods. Although
automated theorem-provers may not face
the same limitations, their enormous user-

IEEE SPECTRUM TUNT 1990

Verifying cache
coherence protocols
KEN MCMILLAN :
he: shared-memory multiprocessor architecture is be-
' coming prevalent in high-end servers designed to han-
dle many users or large parallel computations. In such a
machine; several parallet processors share a common store. To
avoid communications bottlenecks, each processor has its own
local cache memory that stores recently accessed data from the
shared memory. One of the machine’s most complex parts is its
cache coherence protocol, a system of messages implemented
in hardware, by which the processors ensure that their local
caches are consistent. Simulation of such systems is particularly
unreliable because of their highly asynchronous nature: the
exact time at which a given processor will access a given mem-
ory location and the exact time delay of messages are unpre-
dictable. As a result, many “race conditions” must be consid-
ered in the design and test of the protocol.

For example, suppose processors A and B are both trying to
modify the contents: of memory location V. Typically, both
would send a message to the “home" location of V, asking for
an “exclusive” copy of V. If the message from A arrives first, the
“home" will dispatch an exclusive copy of V to processor A.
When the request from B arrives, it might simply be forwarded
to A. The exclusive copy of V and the request from B are now in
a “race” toward processor A, and the designer must consider
what would happen if their order of arrival was reversed, so
that A receives a request for V before V actually arrives.

Such "races” can be extremely complex in a real system,
sometimes involving 10 or 20 messages. So it is difficult for the
protocol designer to-anticipate and correctly handle them. Even
in the best-designed simulations, the more complex races occur
rarely, so a simulation methodology cannot guarantee that all
have been tested. But since the protocols are finite-state, they

are natural candidates for computer-aided verification.

The first company to use computer-aided verification on a
cache coherence protocol was Encore Computer Corp., Fort
Lauderdale, Fla. in collaboration with researchers at Carnegie
Mellon University, Encore used this tool for its Gigamax sys-
tem—a shared-memory machine with a hierarchically struc-
tured cache protocol. To create an abstract model of the pro-
tocol, the Symbolic Model Verifier (SMV) system was used.

' Although many details of communication in the machine were

left out, the protocol itself {the system of rules for sending mes-
sages) was modeled in its entirety.

After an appropriate set of specifications in computation
tree logic was formulated, the use of binary decision diagrams
in SMV as an indirect representation of the state space allowed
these properties to be checked in a few minutes, despite the
large number of states the model could reach. One particular-
ly important error found by model-checking was a deadlocked
state resulting from an unanticipated race condition. in all, 13
messages participated in the shortest scenario producing ‘this
deadlock, making it extremely unlikely that the condition
would occur in a simulation run. The short turnaround time of
the model-checking process allowed the fix for this error to be
quickly checked for its impact on correctness.

More recently, model-checking combined with abstraction
found an error in the cache coherence protocol for the pro-
posed Futurebus+ standard. These achievements demonstrate
the value of using exhaustive verification of abstract models to
prevent high-level errors from propagating into detailed
designs where they are much more costly to find and correct:

Kenneth McMillan is the creator of the Symbolic Model Verifier. He is
a research scientist at Cadence Berkeley Laboratories, Berkeley,
Calif, and works on efficient computational methods for formal
verification and computer system design for verifiability.

overhead probably would make them
impractical on a Pentium-sized project.
But a ray of hope is emerging on the
research front: recent hybrid methods of
verification integrate finite-state model-
checking with automated theorem-prov-
ing. Using the two approaches in concert,
engineers currently are working on tech-
niques that they hope will one day be used
to develop an entire complex microproces-
sor in considerably less time and more reli-
ably than currently possible. At the same
time, new forms of binary decision dia-
grams have evolved that can make the
symbolic manipulation of arithmetic
expressions computationally feasible.
Applications of finite-state computer-
aided verification are many and varied.
AT&T, Bell Laboratories, Cadence, IBM,
Intel, and Motorola all have burgeoning
internal verification programs. [For some
specific examples, see p. 62, p. 63, p. 64, p.
66, and p. 67]. At Bell Labs, the first com-
mercial product developed using verifica-
tion was some software for a specialized
network data protocol, verified by Gerard
J. Holzmann in 1984. Currently, at least
four commercial tools for finite-state verifi-
cation of hardware have been released or
announced: FormalCheck from Bell Lab-

oratories (of Lucent Technologies) and
Viewlogic's CheckOff, under license from
Abstract Hardware Ltd., are general-pur-
pose model-checkers. Chrysalis' Design
VERIFYer and Compass Technology's
VFormal are equivalence checkers, which
verify that a perturbed model is logically
equivalent to an original model that is
believed to be error-free. L 4

To probe further
Edmund M. Clarke, Allan Emerson, and Prasad
Sistla, described their first working model-
checker in: “Automatic Verification of Fin-
ite-State Concurrent Systems Using Tem-
poral Logic Specifications” (TOPLAS, Vol. 8,
no. 2, pp. 244-263). It contains basic defini-
tions and a simple example. Robert P.
Kurshan's Computer-Aided Verification of
Coordinating Processes (Princeton University
Press, 1994) explains the semantic model
and the reduction methodology of Cospan.
Gerard J. Holzmann's Design and Validation of
Computer Protocols (Prentice Hall, 1991)
describes the software verification system,
SPIN. Kenneth L. McMillan‘s Symbolic Model
Checking (Kluwer, 1993) contains a good
description of the Symbolic Model Verifier
model-checking system. The standard refer-
ence on symbolic model-checking is the

CLARKE & KURSHAN — COMPUTER-AIDED VERIFICATION

1994 paper by Jerry Burch, Edmund M.
Clarke, David Long, Kenneth L. McMillan,
and David L. Dill titled “Symbolic Model
Checking for Sequential Circuit Verification”
(IEEE Transactions on Computer Aided De-
sign, Vol. 13, no. 4, pp. 401-24).

For a description of current technical activity in
formal verification, see the Web site of the
DIMACS Special Year on Logic and Algorithms:
http:/dimacs.rutgers.edu/Special Years/1995
_1996/index.html.

About the authors

Edmund M. Clarke is professor of computer sci-
ence at Carnegie Mellon University in Pitts-
burgh. In 1995 he became the first recipient
of the FORE Systems Professorship, an
endowed chair in the School of Computer
Science. He is editor-in-chief of Formal
Methods in Systems Design and is on the
steering committees of two international
conferences.

Robert P. Kurshan is a distinguished member of
the technical staff at Bell Laboratories, Mur-
ray Hill, N.J. He and his colleagues designed
and built the Cospan verification system,
which is used in the commercial verification
tool, FormalCheck.

Spectrum editor: Linda Geppert

67

