
Cryptographically Sound Security Proofs for
Basic and Public-Key Kerberos�

M. Backes1, I. Cervesato2, A.D. Jaggard3, A. Scedrov4, and J.-K. Tsay4

1 Saarland University
backes@cs.uni-sb.de
2 Deductive Solutions

iliano@deductivesolutions.com
3 Tulane University

adj@math.tulane.edu
4 University of Pennsylvania

{scedrov, jetsay}@math.upenn.edu

Abstract. We present a computational analysis of basic Kerberos and
Kerberos with public-key authentication (PKINIT) in which we con-
sider authentication and key secrecy properties. Our proofs rely on the
Dolev-Yao style model of Backes, Pfitzmann and Waidner, which allows
for mapping results obtained symbolically within this model to cryp-
tographically sound proofs if certain assumptions are met. This is the
most complex fragment of an industrial protocol that has yet been ver-
ified at the computational level. Considering a recently fixed version of
PKINIT, we extend symbolic correctness results we previously attained
in the Dolev-Yao model to cryptographically sound results in the com-
putational model.

1 Introduction

Cryptographic protocols have traditionally been verified in one of two ways: the
first, known as the Dolev-Yao or symbolic approach, abstracts cryptographic
concepts into an algebra of symbolic messages [25]; the second, known as the
computational or cryptographic approach, retains the concrete view of messages
as bitstrings and cryptographic operations as algorithmic mappings between
bitstrings, while drawing security definitions from complexity theory [16,26,27].

� Backes was partially supported by the German Research Foundation (DFG) under
grant 3194/1-1. Cervesato was partially supported by ONR under Grant N00014-
01-1-0795. Jaggard was partially supported by NSF Grants DMS-0239996 and CNS-
0429689, and by ONR Grant N00014-05-1-0818. Scedrov was partially supported by
OSD/ONR CIP/SW URI “Software Quality and Infrastructure Protection for Dif-
fuse Computing” through ONR Grant N00014-01-1-0795 and OSD/ONR CIP/SW
URI “Trustworthy Infrastructure, Mechanisms, and Experimentation for Diffuse
Computing” through ONR Grant N00014-04-1-0725. Additional support from NSF
Grants CNS-0429689 and CNS-0524059. Tsay was partially supported by ONR
Grant N00014-01-1-0795 and NSF grant CNS-0429689.

D. Gollmann, J. Meier, and A. Sabelfeld (Eds.): ESORICS 2006, LNCS 4189, pp. 362–383, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Cryptographically Sound Security Proofs for Basic and Public-Key Kerberos 363

While proofs in the computational approach (with its much more comprehensive
adversary model) entail stronger security guarantees, verification methods based
on the Dolev-Yao abstraction have become efficient and robust enough to tackle
large commercial protocols, often even automatically [1,15,18,34].

Kerberos, a widely deployed protocol that allows a user to authenticate her-
self to multiple end servers based on a single login, constitutes one of the most
important examples that have been formally analyzed so far within the Dolev-
Yao approach. Kerberos 4, which was then the prevalent version, was verified
using the Isabelle theorem prover [15]. The currently predominant version, Ker-
beros 5 [39], has been extensively analyzed using the Dolev-Yao approach.This
analysis of Kerberos 5 showed that: a detailed specification of the core proto-
col enjoys the expected authentication and secrecy properties except for some
relatively innocuous anomalies [18]; “cross-realm” authentication in Kerberos
is correct when compared against its specification but has weaknesses in prac-
tice [21]; and discovered a serious attack against the then-current specification of
the public-key extension (PKINIT) of Kerberos [20]. The discovery of the attack
on PKINIT led to an immediate correction of the specification and a security
bulletin and patch for Microsoft Windows [36].

The proofs for both Kerberos 5 as well as the fixes to PKINIT are restricted
to the Dolev-Yao approach, and currently there does not exist a theorem which
allows for carrying the results of existing proofs of Kerberos over to the crypto-
graphic domain with its much more comprehensive adversary. Thus, despite the
extensive research dedicated to the Kerberos protocol, and despite its tremen-
dous importance in practice, it is still an open question whether an actual im-
plementation of Kerberos based on provably secure cryptographic primitives is
secure under cryptographic security definitions. We close this gap (at least par-
tially) by providing the first security proof of the core aspects of the Kerberos
protocol in the computational approach. More precisely, we show that core parts
of Kerberos 5 are secure against arbitrary active attacks if the Dolev-Yao-based
abstraction of the employed cryptography is implemented with actual crypto-
graphic primitives that satisfy the commonly accepted security notions under
active attacks, e.g., IND-CCA2 for public-key encryption.

Obviously, establishing a proof in the computational approach presupposes
dealing with cryptographic details such as computational restrictions and er-
ror probabilities, hence one naturally assumes that our proof heavily relies on
complexity theory and is far out of scope of current proof tools. However, our
proof is not performed from scratch in the cryptographic setting, but based on
the Dolev-Yao style model of Backes, Pfitzmann, and Waidner [8,12,13] (called
the BPW model henceforth), which provides cryptographically faithful symbolic
abstractions of cryptographic primitives, i.e., the abstractions can be securely
implemented using actual cryptography. Thus our proof itself is symbolic in
nature, but refers to primitives from the BPW model. Kerberos is the largest
and most complex protocol whose cryptographic security has so far been in-
ferred from a proof in this Dolev-Yao style approach. Earlier proofs in this

364 M. Backes et al.

approach were mainly for small examples of primarily academic interest, e.g., the
Needham-Schroeder-Lowe, the Otway-Rees, and the Yahalom protocols [4,7,11];
some similar work has been done on industrial protocols, e.g., [29], although none
that are as complex as Kerberos. We furthermore analyze the recently fixed ver-
sion of PKINIT and derive computational guarantees for it from a symbolic
proof based on the BPW model. Finally we also draw some lessons learned in
the process, which highlight areas where to focus research in order to simplify
the verification of large commercial protocols with computational security guar-
antees. In particular it would be desirable to devise suitable proof techniques
based on the BPW model for splitting large protocols into smaller pieces which
can then be analyzed modularly while still retaining the strong link between the
Dolev-Yao and the computational approach.

1.1 Related Work

Early work on linking Dolev-Yao models and cryptography [2,3,28] only con-
sidered passive attacks, and therefore cannot make general statements about
protocols. A cryptographic justification for a Dolev-Yao model in the sense of
simulatibility [40], i.e., under active attacks and within arbitrary surrounding
interactive protocols, was first given in [12] with extensions in [8,13]. Based on
that Dolev-Yao model, the well-known Needham-Schroeder-Lowe, Otway-Rees,
and Yahalom protocols were proved secure in [4,7,11]. All these protocols are
considerably simpler than Kerberos, which we analyze in this paper, and ar-
guably of much more limited practical interest. Some work has been done on
industrial protocols, such as 802.11i [29], although Kerberos is still a much more
complex protocol.

Laud [33] has presented a cryptographic underpinning for a Dolev-Yao model
of symmetric encryption under active attacks. His work is directly connected
with a formal proof tool, but it is specific to certain confidentiality properties
and protocol classes. Herzog et al. [30] and Micciancio and Warinschi [35] have
also given a cryptographic underpinning under active attacks. Their results are
narrower than those in [12] since they are specific for public-key encryption
and certain protocol classes, but consider slightly simpler real implementations.
Cortier and Warinschi [22] have shown that symbolically secret nonces are also
computationally secret, i.e., indistinguishable from a fresh random value given
the view of a cryptographic adversary. Backes and Pfitzmann [9] and Canetti
and Herzog [19] have established new symbolic criteria for proving a key crypto-
graphically secret. We stress that none of this work is comprehensive enough to
infer computational security guarantees of Kerberos based on an existing sym-
bolic proof; either they are missing suitable cryptographic primitives or rely on
slightly changed symbolic abstractions, e.g., as in [12].

Finally, there is also work on formulating syntactic calculi for dealing with
probability and polynomial-time considerations and encoding them into proof
tools, in particular [17,23,32,37]. This is orthogonal to the work of justifying
Dolev-Yao models.

Cryptographically Sound Security Proofs for Basic and Public-Key Kerberos 365

1.2 Structure of the Paper

We start in Sect. 2 with a review of Kerberos and its public-key extension
PKINIT. In Sect. 3, we recall the Dolev-Yao style model of Backes, Pfitzmann,
and Waidner (e.g., [6,8,13,14]), and apply it to the specification of Kerberos 5
and Public-key Kerberos (i.e., Kerberos with PKINIT). Section 4 proves secu-
rity results for these protocols and lift them to the computational level. Finally,
Sect. 5 summarizes this effort and outlines areas of future work.

2 Kerberos 5 and Its Public-Key Extension

The Kerberos protocol [38,39] allows a legitimate user to log on to her terminal
once a day (typically) and then transparently access all the networked resources
she needs for the rest of that day. Each time she wants to, e.g., retrieve a file from a
remote server, aKerberos client running onher behalf securely handles the required
authentication. The client acts behind the scenes, without any user intervention.

Kerberos comprises three subprotocols: the initial round of authentication,
in which the client obtains a credential that might be good for a full day; the
second round of authentication, in which she presents her first credential in
order to obtain a short-term credential (five-minute lifetime) to use a particular
network service; and the client’s interaction with the network service, in which
she presents her short-term credential in order to negotiate access to the service.

In the core specification of Kerberos 5 [39], all three subprotocols use sym-
metric (shared-key) cryptography. Since the initial specification of Kerberos 5,
the protocol has been extended by the definition of an alternate first round
which uses asymmetric (public-key) cryptography. This new subprotocol, called
PKINIT [31], may be used in two modes: “public-key encryption mode” and
“Diffie-Hellman (DH) mode.” In recent work [20], we showed that there was
an attack against the then-current draft specification of PKINIT when public-
key encryption mode was used and then symbolically proved the security of the
specification as it was revised in response to our attack. Here we study both
basic Kerberos (without PKINIT) and the public-key mode of PKINIT as it was
revised to prevent our attack.

Kerberos Basics. The client process—usually acting for a human user—inter-
acts with three other types of principals when using Kerberos 5 (with or without
PKINIT). The client’s goal is to be able to authenticate herself to various ap-
plication servers (e.g., email, file, and print servers). This is done by obtaining a
“ticket-granting ticket” (TGT) from a “Kerberos Authentication Server” (KAS)
and then presenting this to a “Ticket-Granting Server” (TGS) in order to obtain
a “service ticket” (ST), the credential that the client uses to authenticate herself
to the application server. A TGT might be valid for a day, and may be used to
obtain several STs for many different application servers from the TGS, while a
single ST is valid for a few minutes (although it may be used repeatedly) and is
used for a single application server. The KAS and the TGS are together known
as the “Key Distribution Center” (KDC).

366 M. Backes et al.

C KAS

• •�C, T, n1
n1

•
�
AK, tK

• � C,TGT , {AK, n1, tK , T}kC

Fig. 1. Message Flow in the Traditional AS Exchange, where TGT = {AK, C, tK}kT

The client’s interactions with the KAS, TGS, and application servers are called
the Authentication Service (AS), Ticket-Granting (TG), and Client-Server (CS)
exchanges, respectively. We will describe the AS exchange separately for basic
Kerberos and PKINIT; as PKINIT does not modify the other subprotocols, we
only need to describe them once.

The Traditional AS Exchange. The abstract structure of the AS exchange is
given in Fig. 1. A client C generates a fresh nonce n1 and sends it, together with
her own name and the name T of the TGS for whom she desires a TGT, to the
KAS K. This message is called the AS REQ message [39]. The KAS responds
by generating a fresh authentication key AK for use between the client and the
TGS and sending an AS REP message to the client. Within this message, AK is
sent back to the client in the encrypted message component {AK, n1, tK , T }kC ;
this also contains the nonce from the AS REQ, the KAS’s local time tK , and the
name of the TGS for whom the TGT was generated. (The AK and tK to the
right of the figure illustrate that these values are new between the two messages.)
This component is encrypted under a long-term key kC shared between C and
the KAS; this key is usually derived from the user’s password. This is the only
time that this key is used in a standard Kerberos run because later exchanges
use freshly generated keys. AK is also included in the ticket-granting ticket sent
alongside the message encrypted for the client. The TGT consists of AK, C, tK ,
where tK is K’s local time, encrypted under a long-term key kT shared between
the KAS and the TGS named in the request. The computational model we use
here does not support timestamps, so we will treat these as nonces; this does
not compromise our analysis as the timestamps that we include here are used
like nonces. Once the client has received this reply, she may undertake the
Ticket-Granting exchange.

It should be noted that the actual AS exchange, as well as the other exchanges
in Kerberos, is more complex than the abstract view given here. We refer the
reader to [39] for the complete specification of Kerberos 5, [31] for the specifi-
cation of PKINIT, and [18] for a formalization of Kerberos at an intermediate
level of detail.

The AS Exchange in PKINIT. PKINIT [31] is an extension to Kerberos 5
that uses public key cryptography to avoid shared secrets between a client and
KAS; it modifies the AS exchange but not other parts of the basic Kerberos 5

Cryptographically Sound Security Proofs for Basic and Public-Key Kerberos 367

C KAS

• •�
CertC , [tC , n2]skC

, C, T, n1n1,
n2, tC

•
�

k, AK
tK

• �
{{CertK , [k, ck]skK

}}pkC , C,TGT , {AK, n1, tK , T}k

Fig. 2. Message flow in the fixed version of PKINIT, where TGT = {AK, C, tK}kT

protocol. The long-term shared key (kC) in the traditional AS exchange is typ-
ically derived from a password, which limits the strength of the authentication
to the user’s ability to choose and remember good passwords; PKINIT does not
use kC and thus avoids this problem. Furthermore, if a public key infrastruc-
ture (PKI) is already in place, PKINIT allows network administrators to use it
rather than expending additional effort to manage users’ long-term keys as in
traditional Kerberos.

In PKINIT, the client C and the KAS possess independent public/secret key
pairs, (pkC , skC) and (pkK , skK), respectively. Certificate sets CertC and CertK

issued by a PKI independent from Kerberos are used to testify of the binding be-
tween each principal and her purported public key. This simplifies administration
as authentication decisions can now be made based on the trust the KDC holds
in just a few known certification authorities within the PKI, rather than keys
individually shared with each client (local policies can, however, still be installed
for user-by-user authentication). Dictionary attacks are defeated as user-chosen
passwords are replaced with automatically generated asymmetric keys.

PKINIT resembles the basic AS exchange in that the KAS generates a fresh
key AK for the client and TGS to use, and then the KAS transmits AK and
the TGT to the client. In public-key encryption mode, attacked and fixed in [20]
and now analyzed here, the key pairs are used for both signature and encryption.
The latter is designed to (indirectly) protect the confidentiality of AK, while the
former ensures its integrity.

Figure 2 illustrates the AS exchange when the fixed version (which defends
against the attack of [20]) of PKINIT is used. Here we use [m]sk for the digital
signature of message m with secret key sk, {{m}}pk for the encryption of m with
the public key pk, and {m}k for the encryption of m with the symmetric key k.

The first line of Fig. 2 shows our formalization of the AS REQ message that a
client C sends to a KAS K when using PKINIT. The last part of the message—
C, T, n1—is exactly as in the traditional AS REQ. The new data added by
PKINIT are the client’s certificates CertC and her signature (with her secret
key skC) over a timestamp tC and another nonce n2.

The second line in Fig. 2 shows our formalization of K’s response, which is
more complex than in basic Kerberos. The last part of the message—C, TGT,
{AK, n1, tK , T }k—is very similar to K’s reply in basic Kerberos; the difference
is that the symmetric key k protecting AK is now freshly generated by K and
is not a long-term shared key. Because k is freshly generated for the reply, it

368 M. Backes et al.

C TGS

• •�TGT , {C, tC}AK , S, n3
n3

•
�
SK, tT

• � C,ST , {SK, n3, tT , S}AK

Fig. 3. Message flow in the TGS exchange, where TGT = {AK, C, tK}kT and ST =
{SK, C, tT }kS

must be communicated to C before she can learn AK. PKINIT does this by
adding the message {{CertK , [k, ck]skK

}}pkC . This contains K’s certificates and
his signature, using his secret key skK , over k and a keyed hash ck (‘checksum’
in the language of [39]) taken over the entire request from C using the key k;
all of this is encrypted under C’s public key pkC . The keyed hash ck binds this
response to the client’s request and was added in response to the attack we
discovered and reported in [20].

The Later Exchanges. After the client C has obtained the key AK and
the TGT, either through the basic AS exchange or the PKINIT AS exchange,
she then initiates the TGS exchange, shown in Fig. 3. The first line shows our
formalization of the client’s request, called a TGS REQ message; it contains the
TGT (which is opaque to the client), an authenticator {C, tC}AK , the name of
the server S for which C desires a service ticket, and C’s local time. Once the
TGS receives this message, he decrypts the TGT to learn AK and uses this
to decrypt the authenticator. Assuming his local policies for granting a service
ticket are satisfied (while we do not model these here, they might include whether
the request is sufficiently fresh), the TGS produces a fresh key SK for C and
S to share and sends this back to the client in a TGS REP message. The form
of this message is essentially the same as the AS REP message from the KAS
to C: it contains a ticket (now the service ticket, or ST, {SK, C, tT }kS instead
of the TGT) encrypted for the next server (now S instead of T) and encrypted
data for C (now encrypted under AK instead of kC).

Finally, after using the AS exchange to obtain the key SK and the ST, the
client may use the CS exchange to authenticate herself to the end server. Fig-
ure 4 shows this exchange, including the optional reply from the server that
authenticates this server to the client. The client C starts by sending a mes-
sage (AP REQ) that is similar to the TGS REQ message of the previous round:
in contains the (service) ticket and an authenticator ({C, t′C}SK) that is en-
crypted under the key contained in the ST. The server S simply responds with
an AP REP message {t′C}SK containing the timestamp from the authenticator
encrypted under the key from the ST.

Attack on PKINIT. The attack that we found against the then-current spec-
ification of PKINIT was reported in [20]. This attack was possible because, at

Cryptographically Sound Security Proofs for Basic and Public-Key Kerberos 369

C S

• •�ST , {C, t′
C}SK

•
�

• � {t′
C}SK

Fig. 4. Message flow in the CS exchange, where ST = {SK, C, tT }kS

the time, the reply from the KAS to the client contained [k, n2]skK
in place of

[k, ck]skK
. In particular, the KAS did not sign any data that depended upon the

client’s name. This allowed an attacker to copy a message from C to the KAS,
use this data in her own request to the KAS, read the reply from the KAS, and
then send this reply to C as though it was generated by the KAS for C (instead
of for the attacker). The effect of this attack was that the attacker could im-
personate the later servers (TGS and application servers) to the client, or she
could let the client continue the authentication process while the attacker gains
knowledge of all new keys shared by the client and various servers. In the latter
variation, the client would be authenticated as the attacker and not as C.

Security Properties. We now summarize the security properties that we prove
here at the symbolic level for both basic Kerberos and Kerberos with PKINIT;
the implications on the computational level are discussed in the subsequent sec-
tions. We have proved similar properties in symbolic terms using a formaliza-
tion in MSR for basic Kerberos [18] and for the AS exchange when PKINIT is
used [20]. The first property we prove here concerns the secrecy of keys, a notion
that is captured formally as Def. 1 in Sect. 4. This property may be summarized
as follows.

Property 1 (Key secrecy). For any honest client C and honest server S, if the
TGS T generates a symmetric key SK for C and S to use (in the CS-exchange),
then the intruder does not learn the key SK.

The second property we study here concerns entity authentication, formalized
as Def. 2 in Sect. 4. This property may be summarized as follows.

Property 2 (Authentication properties).

i. If a server S completes a run of Kerberos, apparently with C, then earlier:
C started the protocol with some KAS to get a ticket-granting ticket and
then requested a service ticket from some TGS.

ii. If a client C completes a run of Kerberos, apparently with server S, then S
sent a valid AP REP message to C.

Theorem 1 below shows that these properties hold for our symbolic formal-
izations of basic and public-key Kerberos in the BPW model. Theorem 2 shows

370 M. Backes et al.

that the authentication property holds as well for cryptographic implementations
of these protocols if provably secure primitives are used; the standard crypto-
graphic definition of key secrecy however turns out not to hold for cryptographic
implementations of Kerberos, which we further investigate below. Because au-
thentication can be shown to hold for Kerberos with PKINIT, it follows that
at the level of cryptographic implementation, the fixed specification of PKINIT
does indeed defend against the attack reported in [20].

3 The BPW Model

3.1 Review of the BPW Model

The BPW model introduced in [14] offers a deterministic Dolev-Yao style formal-
ism of cryptographic protocols with commands for a vast range of cryptographic
operations such as public-key, symmetric encryption/decryption, generation and
verification of digital signatures as well as message authentication codes, and
nonce generation. Every protocol participant is assigned a machine (an I/O au-
tomaton), which is connected to the machines of other protocol participants
and which executes the protocol for its user by interacting with the other ma-
chines (see Fig. 5). In this reactive scenario, semantics is based on state, i.e., of
who already knows which terms. The state is here represented by an abstract
“database” and handles to its entries: Each entry (denoted D[j]) of the database
has a type (e.g., “signature”) and pointers to its arguments (e.g., “private key”
and “message”). This corresponds to the way Dolev-Yao terms are represented.
Furthermore, each entry in the abstract database also comes with handles to
participants who have access to that entry. These handles determine the state.
The BPW model does not allow cheating: only if a participant has a handle
to the entry D[j] itself or to the right entries that could produce a handle to
D[j] can the participant learn the term stored in D[j]. For instance, if the BPW
model receives a command, e.g., from a user machine, to encrypt a message
m with key k, then it makes a new abstract database entry for the ciphertext
with a handle to the participant that sent the command and pointers to the
message and the key as arguments; only if a participant has handles to the ci-
phertext and also to the key can the participant ask for decryption. Furthermore,
if the BPW model receives the same encryption command a second time then
it will generate a new (different) entry for the ciphertext. This meets the fact
that secure encryption schemes are necessarily probabilistic. Entries are made
known to other participants by a send command, which adds handles to the
entry.

The BPW model is based on a detailed model of asynchronous reactive sys-
tems introduced in [40] and is represented as a deterministic machine THH (also
an I/O automaton), called trusted host, where H ⊂ {1, . . . , n} denotes the set of
honest participants out of all m participants. This machine executes the com-
mands from the user machines, in particular including the commands for crypto-
graphic operations. A system consists of several possible structures. A structure
consists of a set M̂ of connected correct user machines and a subset S of the free

Cryptographically Sound Security Proofs for Basic and Public-Key Kerberos 371

H

A

TH

M
UU

M
S

M
K

M
T

H

KA_out ?
u KA_in !

u
KA_out ?

S
KA_in !

S

Out ?
u

In !
u

KA_out !
S

KA_in ?
u

KA_in ?
SKA_out !

u

Out !
S

Out ?
S In !

S

In ?
S Out !

K

Out ?
K

In ?
K

In !
K

Out ?
T

Out !
T

In ?
T

In !
T

Out
a

In
a

Out !
u

In ?
u

S
H

Fig. 5. Overview of the Kerberos symbolic system

ports, i.e., S is the user interface of honest users. In order to analyze the security
of a structure (M̂, S), an arbitrary probabilistic polynomial-time user machine
H is connected to the user interface S and a polynomial-time adversary machine
A is connected to all the other ports and H. This completes a structure into
a configuration of the system (see Fig. 5). The machine H represents all users.
A configuration is a runnable system, i.e., for each security parameter k, which
determines the input lengths (including the key length), one gets a well-defined
probability space of runs. To guarantee that the system is polynomially bounded
in the security parameter, the BPW model maintains length functions on the
entries of the abstract database. The view of H in a run is the restriction to
all inputs and outputs that H sees at the ports it connects to, together with its
internal states. Formally one defines the view viewconf (H) of H for a configura-
tion conf to be a family of random variables Xk where k denotes the security
parameter. For a given security parameter k, Xk maps runs of the configuration
to a view of H.

Corresponding to the BPW model, there exists a cryptographic implementa-
tion of the BPW model and a computational system, in which honest partici-
pants also operate via handles on cryptographic objects. However, the objects
are now bitstrings representing real cryptographic keys, ciphertexts, etc., acted
upon by interactive polynomial-time Turing machines (instead of the symbolic
machines and the trusted host). The implementation of the commands now uses
provably secure cryptographic primitives according to standard cryptographic
definitions (with small additions like type tagging and additional randomiza-
tion). In [8,12,13,14] it was established that the cryptographic implementation
of the BPW model is at least as secure as the BPW model, meaning that what-
ever an active adversary can do in the implementation can also be achieved by
another adversary in the BPW model, or the underlying cryptography can be
broken. More formally, a system Sys1 being at least as secure as another sys-
tem Sys2 means that for all probabilistic polynomial-time user H, for all prob-
abilistic polynomial-time adversary A1 and for every computational structure
(M̂1, S) ∈ Sys1, there exists a polynomial-time adversary A2 on a corresponding
symbolic structure (M̂2, S) ∈ Sys2 such that the view of H is computationally

372 M. Backes et al.

indistinguishable in both configurations. This captures the cryptographic notion
of reactive simulatability.

3.2 Public-Key Kerberos in the BPW Model

We now model the Kerberos protocol in the framework of [14] using the BPW
model. We write “:=” for deterministic assignment, “=” for testing for equality
and “←” for probabilistic assignment.

The descriptions of the symbolic systems of Kerberos 5 and PKINIT are very
similar, with the difference that the user machines follow different algorithms
for the two protocols. We denote Kerberos with PKINIT by “PK,” and basic
Kerberos by “K5.” If we let Kerb∈{PK, K5} then, as described in Sect. 3.1, for
each user u ∈ {1, . . . , n} there is a protocol machine MKerb

u which executes the
protocol for u. There are also protocol machines for the KAS K and the TGT
T , denoted by MKerb

K and MKerb
T . Furthermore, if S1, . . . , Sl are the servers in

T ’s ‘realm1’, then there are server machines MKerb
S for S ∈ {S1, . . . , Sl}. Each

user machine is connected to the user via ports: A port for outputs to the user
and a port for inputs from the user, labeled KA outu! and KA inu?, respectively
(“KA” for“Key sharing and Authentication”). The ports for the server machines
are labeled similarly (see Fig. 5).

The behavior of the protocol machines is described in detail in [5]. In the
following, we comment on two algorithms of PKINIT (Fig. 6 and Fig. 7) . If, for
instance, a protocol machine MPK

u receives a message (new prot, PK, K, T) at
KA inu? then it will execute Algorithm 1A (Fig. 6) to start a protocol run. We
give a description below. The state of the protocol machine MKerb

u consists of
the bitstring u and the sets Nonceu, Nonce2u, TGT icket, and Session KeysSu,
in which MKerb

u stores nonces, ticket-granting tickets, and the session keys for
server S, respectively. This is the information a client needs to remember during
a protocol run.

Only the machines of honest users u ∈ {1, . . . , n} and honest servers S ∈
{S1, . . . , Sl} will be present in the protocol run, in addition to the machines for
K and T . The others are subsumed in the adversary. We denote by H ⊂ {1, . . . , n,
K, T, S1, . . . , Sl} the honest participants, i.e., for v ∈ H the machine MKerb

v is
guaranteed to run correctly. And we assume that KAS K and TGS T are always
honest, i.e., K, T ∈ H.

Furthermore, given a set H of honest participants, with {K, T } ⊂ H ⊂
{1, . . . , n, K, T, S1, . . . , Sl} the user interface of public-key Kerberos will be
the set SH := {KA outu!, KA inu? | u ∈ H \ {K, T }}. The symbolic system is
the set SysKerb, symb := {(M̂H, SH)}. Note that, since we are working in an asyn-
chronous system, we are replacing protocol timestamps by arbitrary messages
that we assume are known to the participants generating the timestamps (e.g.
nonces). All algorithms should immediately abort if a command to the BPW
model yields an error, e.g., if a decryption request fails.

1 I.e., administrative domain; we do not consider cross-realm authentication here,
although it has been analyzed symbolically in [21].

Cryptographically Sound Security Proofs for Basic and Public-Key Kerberos 373

Notation. The entries of the database D are all of the form (ind, type, arg,
hndu1 ,. . . ,hndum ,hnda, len), where H = {u1, . . . , um}. We denote by ↓ an error
element available to all ranges and domains of all functions and algorithms. So,
e.g., hnda =↓ means the adversary does not have a handle to the entry. For
entries x ∈ D, the index x.ind ∈ INDS consecutively numbers all entries in D.
The set INDS is isomorphic to N and is used to distinguish index arguments. We
write D[i] for the selection D[ind = i], i.e., it is used as a primary key attribute
of the database. The entry x.type ∈ typeset = {auth, cert, enc, nonce, list, pke,
pkse, sig, ske, skse,} identifies the type of x. Here ske/pke is a private/public
key pair and skse is a symmetric key which comes with a ‘public’ key pkse. This
“public key identifier” pkse cannot be used for any cryptographic operation but
works as a pointer to skse instead (see [7] for a more detailed explanation) . The
entry x.arg = (a1, . . . , aj) is a possibly empty list of arguments. Many values ai

are in INDS . x.hndu ∈ HNDS ∪ {↓} for u ∈ H ∪ {a} are handles by which
u knows this entry. We always use a superscript “hnd” for handles. x.len ∈ N0
denotes the “length” of the entry; it is computed by applying length functions
(mentioned in Sect. 3.1).

Initially, D is empty. THH has a counter size ∈ INDS for the current size of
D. For the handle attributes, it has counters currhndu initially 0. First we need
to add the symmetric keys shared exclusively by K and T , S and T . Public-key
Kerberos uses certificates; therefore, in this case all users need to know the public
key for certificate authorities and have their own public-key certificates signed
by a certificate authority. For simplicity we use only one certificate authority
CA. Therefore, we add to D an entry for the public key of CA with handles
to all users (i.e., to all user machines). For every user we add an entry for the
certificate of that user signed by the certificate authority with a handle to the
user (machine). In the case of Kerberos 5, we are adding entries for the key ku

shared exclusively by K and u, for all users u.

Example of Algorithms. Due to space constraints we are only going to ex-
amine PKINIT (Fig. 2) and explain the steps of its Algorithms 1A and 2 (Fig. 6
and Fig. 7) which are more complex than the algorithms in Kerberos 5. For
details on the definition of the used commands see [8,13,14]. For readability of
the figures, we noted on the right (in curly brackets) to which terms in the more
commonly used Dolev-Yao notation the terms in the algorithms correspond (≈).

Protocol start of PKINIT. In order to start a new PKINIT protocol, user u
inputs (new prot, PK, K, T) at port KA inu?. Upon such an input, MPK

u runs
Algorithm 1A (Fig. 6) which prepares and sends the AS REQ to K using the
BPW model. MPK

u generates symbolic nonces in steps 1A.1 and 1A.2 by sending
the command gen nonce(). In step 1A.3 the command list(,) concatenates tu
and nu,2 into a new list that is signed in step 1A.4 with u’s private key. Since we
are working in an asynchronous system, the timestamp tu is approximated by
some arbitrary message (e.g., by a nonce). The command store() in step 1A.5–6
makes entries in the database for the names of u and T . Handles for the names
u and T are returned, which are added to a list in the next step. MPK

u stores

374 M. Backes et al.

A) Input:(new prot, PK, K, T) at KA inu? .

1. nu,1t
hnd
u ← gen nonce()

2. nhnd
u,2 ← gen nonce()

3. lhnd ← list(thnd
u , nhnd

u,2) {l ≈ (tC , n2)}
4. shnd ← sign(skehnd

u , lhnd) {s ≈ [tC , n2]skC
}

5. uhnd ← store(u)
6. T hnd ← store(T)
7. mhnd

1 ← list(certhnd
u , shnd, uhnd, T hnd, nhnd

u,1) {m1 ≈ CertC , [tC , n2]skC
, C, T, n1}

8. Nonceu := Nonceu ∪ {(nhnd
u,1 , mhnd

1 , K)}
9. send i(K, mhnd

1)

B) Input:(continue prot, PK, T, S, AKhnd) at KS inu? for S ∈ {S1, ..., Sl}

1. if (� (TGT hnd, AKhnd, T) ∈ TGTicketu) then
2. Abort
3. end if
4. zhnd ← list(uhnd, thnd

u) {z ≈ C, tC}
5. authhnd ← sym encrypt(AKhnd, zhnd) {auth ≈ {C, tC}AK}
6. nhnd

u,3 ← gen nonce()
7. Nonce2u := Nonce2u ∪ {nhnd

u,3 , T, S)}
8. mhnd

2 ← list(TGT hnd, authhnd, Shnd, nhnd
u,3) {m2 ≈ TGT , {C, tC}AK , S, n3}

9. send i(T, mhnd
2)

Fig. 6. Algorithm 1 of Public-key Kerberos: Evaluation of inputs from the user (starting
the AS and TG exchanges)

information in the set Nonceu, which it will need later in the protocol to verify
the message authentication code sent by K. In step 1A.8 Nonceu is updated.
Finally, in step 1A.9 the AS REQ is sent over an insecure (“i” for insecure)
channel.

Behavior of the KAS K in PKINIT. Upon input (v, K, i, mhnd) at port outK?
with v ∈ {1, .., n}, the machine MPK

K runs Algorithm 2 (Fig. 7) which first
checks if the message m is a valid AS REQ and then prepares and sends the
corresponding AS REP. In order to verify that the input is a possible AS REQ,
the types of the input message m’s components are checked in steps 2.1–2.5. The
command retrieve(xhnd

i) in step 2.3 returns the bitstring of the entry D[hndu =
xhnd

i]. Next the machine verifies the received certificate x1 of v by checking
the signature of the certificate authority CA (steps 2.6–2.10). Then the machine
extracts the public key pkev out of v’s certificate with the command pk of cert()
and uses this public key to verify the signature x2 received in the AS REQ (steps
2.11–2.16). In steps 2.17–2.21 the types of the message components of the signed
message y1 are checked, as well as the freshness of the nonce y12 by comparison
to nonces stored in Nonce3K . If the nonce is fresh then it will be stored in the
set Nonce3K in step 2.23 for freshness checks in future protocol runs. Finally,
in steps 2.24–2.36 MPK

K generates two symmetric keys k and AK, composes the
AS REP, and sends it to v over an insecure channel.

Cryptographically Sound Security Proofs for Basic and Public-Key Kerberos 375

Input:(v, K, i, mhnd) at outK? with v ∈ {1, ..., n}.

1. xhnd
i ← list proj(mhnd, i) for i = 1, ..., 5

2. typei ← get type(xhnd
i) for i = 1, 2, 5 {x1 ≈ CertC , x2 ≈ [tC , n2]skC , x5 ≈ n1}

3. xi ← retrieve(xhnd
i) for i = 3, 4 {x3 ≈ C, x4 ≈ T}

4. if (type1 �= cert) ∨ (type2 �= sig) ∨ (type5 �= Nonce) ∨ (x3 �= v)∨ (x4 �= T) then
5. Abort
6. end if
7. vhnd ← store(v)
8. b ← verify cert(pkehnd

CA , xhnd
1 , vhnd)

9. if b = false then
10. Abort
11. end if
12. pkehnd

v ← pk of cert(pkehnd
CA , xhnd

1)
13. type6 ← get type(pkehnd

v)
14. if (type6 �= pke) then
15. Abort
16. end if
17. yhnd

1 ← msg of sig(xhnd
2) {y1 ≈ tC , n2}

18. b ← verify(xhnd
2 , pkehnd

v , yhnd
1) {x2 ≈ [tC , n2]skC }

19. if b = false then
20. Abort
21. end if
22. yhnd

1i ← list proj(yhnd
1 , i) for i = 1, 2 {y11 ≈ tC , y12 ≈ n2}

23. type12 ← get type(yhnd
12)

24. if (type12 �= nonce) ∨ ((yhnd
12 , .) ∈ Nonce3K) then

25. Abort
26. end if
27. Nonce3K := Nonce3K ∪ {(yhnd

12 , v)}
28. khnd ← gen symenc key()
29. AKhnd ← gen symenc key()
30. authhnd ← auth(khnd, mhnd) {auth ≈ ck}
31. zhnd

1 ← list(khnd, authhnd) {z1 ≈ k, ck}
32. shnd

2 ← sign(skehnd
K , zhnd

1) {s2 ≈ [k, ck]skK }
33. zhnd

2 ← list(certhnd
K , shnd

2) {z2 ≈ CertK , [k, ck]skK }
34. m21 ← encrypt(pkehnd

K , zhnd
2) {m21 ≈ {{CertK , [k, ck]skK }}pkC }

35. zhnd
3 ← list(AKhnd, xhnd

3 , thnd
K) {z3 ≈ AK,C, tK , T}

36. TGT hnd ← sym encrypt(sksehnd
K,x4 , zhnd

3) {TGT ≈ {AK, C, tK}kT }
37. zhnd

4 ← list(AKhnd, xhnd
5 , thnd

K , xhnd
4) {z4 ≈ AK, n1, tK , T}

38. m24 ← sym encrypt(khnd, zhnd
4) m24 ≈ {Ak, n1, tK , T}k}

39. mhnd
2 ← list(mhnd

21 , xhnd
3 , TGT hnd, mhnd

24)
{m2 ≈ {{CertK , [k, ck]skK }}pkC , C, TGT, {Ak, n1, tK , T}k}

40. send i(v, mhnd
2)

Fig. 7. Algorithm 2 of Public-key Kerberos: Behavior of the KAS

376 M. Backes et al.

4 Formal Results

4.1 Security in the Symbolic Setting

In order to use the BPW model to prove the computational security of Kerberos,
we first formalize the respective security properties and verify them in the BPW
model. We first prove that Kerberos keeps the symmetric key, which the TGS
T generated for use between user u and server S, symbolically secret from the
adversary. In order to prove this, we show that Kerberos also keeps the keys
generated by KAS K for the use between u and the TGS T secret. Furthermore,
we prove entity authentication of the user u to a server S (and subsequently
entity authentication of S to u). This form of authentication is weaker than the
authentication Kerberos offers, since we do not consider the purpose of times-
tamps in Kerberos. (Recall that timestamps are currently not included in the
BPW model.)

Secrecy and Authentication Requirements. We now define the notion of
key secrecy, which was informally captured already in Property 1 of Sect. 2, as
the following formal requirement in the language of the BPW model.

Definition 1 (Key secrecy requirement). For Kerb ∈{PK, K5} the secrecy
requirement ReqSec

Kerbis:
For all u ∈ H ∩ {1, . . . , n}, and S ∈ H ∩ {S1, . . . , Sl}, and t1, t2, t3 ∈ N:

(t1 : KA outS ! (ok, Kerb, u, SKhnd)
∨ t2 : KA outu! (ok, Kerb, S, SKhnd)

⇒ t3 : D[hndu = SKhnd].hnda =↓

where t : D denotes the contents of database D at time t. Similarly t : p?m and
t : p!m denotes that message m occurs at input (respectively output) port p at
time t. As above PK refers to Public-key Kerberos and K5 to Kerberos 5. In the
next section Thm. 1 will show that the symbolic Kerberos systems specified in
Sect. 3.2 satisfy this notion of secrecy, and therefore Kerberos enjoys Property 1.

Next we define the notion of authentication in Property 2 in the language of
the BPW model.

Definition 2 (Authentication requirements). For Kerb ∈ {PK, K5}:
i. The authentication requirement ReqAuth1

Kerb is: For all v ∈ H ∩ {1, . . . , n}, for
all S ∈ H ∩ {S1, . . . , Sl}, and K, T :

∃ t3 ∈ N. t3 : KA outS ! (ok, Kerb, v, SKhnd)
⇒ ∃ t1, t2 ∈ N with t1 < t2 < t3. t2 : KA inv! (continue prot, Kerb, T, S, ·)

∧ t1 : KA inv! (new prot, Kerb, K, T)

ii. The authentication requirement ReqAuth2
Kerb is: For all u ∈ H ∩ {1, . . . , n}, for

all S ∈ H ∩ {S1, . . . , Sl}, and K, T :

∃ t2 ∈ N. t2 : KA outu! (ok, Kerb, S, SKhnd)
⇒ ∃ t1 ∈ N with t1 < t2. t1 : KA inS ! (ok, Kerb, u, SKhnd)

Cryptographically Sound Security Proofs for Basic and Public-Key Kerberos 377

iii. The overall authentication ReqAuth
Kerb for protocol Kerb is:

ReqAuth
Kerb := ReqAuth1

Kerb ∧ ReqAuth2
Kerb

Theorem 1 will show that this notion of authentication is satisfied by the sym-
bolic Kerberos system. Therefore Kerberos has Property 2.

When proving that Kerberos has these properties, we will use the notion of a
system Sys perfectly fulfilling a requirement Req, Sys |=perf Req. This means the
property Req holds with probability one over the probability space of runs for
a fixed security parameter (as defined in Sect. 3.1). Later we will also need the
notion of a system Sys computationally fulfilling a requirement Req, Sys |=poly

Req, i.e., the property holds with negligible error probability for all polynomially
bounded users and adversaries (again, over the probability space of all runs for a
fixed security parameter). In particular, perfect fulfillment implies computational
fulfillment.

In order to prove Thm. 1, we first need to prove a number of auxiliary prop-
erties (previously called invariants in, e.g., [4,11]). Although these properties
are nearly identical for Kerberos 5 and Public-key Kerberos, their proofs had
to be carried out separately. We consider it interesting future work to augment
the BPW model with proof techniques that allow for conveniently analyzing
security protocols in a more modular manner. In fact, a higher degree of modu-
larity would simplify the proofs for each individual protocol as it could exploit
the highly modular structure of Kerberos; moreover, it would also simplify the
treatment of the numerous optional behaviors of this protocol.

Some of the key properties needed in the proof of Thm. 1, which formalizes
Properties 1 and 2, make authentication and confidentiality statements for the
first two rounds of Kerberos. These properties are described in English below;
they are formalized and proved in [5].

i) Authentication of KAS to client and Secrecy of AK: If a user u re-
ceives a valid AS REP message then this message was indeed generated
by K for u and an adversary cannot learn the symmetric keys contained in
this message.

ii) TGS Authentication of the TGT: If a TGS T receives a TGT and an
authenticator {v, tv}AK where the key AK and the username v are contained
in the TGT, then the TGT was generated by K and the authenticator was
created by v.

iii) Authentication of TGS to client and Secrecy of SK: If a user u re-
ceives a valid TGS REP then it was generated by T for u and S and no
adversary can learn the session key SK contained in this message.

iv) Server Authentication of the ST: If a server S receives an ST and an
authenticator {v, tv}SK where the key SK and the name v are contained in
the ST, then the ST was generated by T and the authenticator was created
by v.

We can now capture the security of Kerberos in the BPW model in the follow-
ing theorem, which says that Properties 1 and 2 hold symbolically for Kerberos.

378 M. Backes et al.

We show a proof excerpt in the case of Public-key Kerberos (the outline is anal-
ogous for Kerberos 5).

Theorem 1. (Security of the Kerberos Protocol based on the BPW Model)

– Let SysK5, symb be the symbolic Kerberos 5 system defined in Sect. 3.2, and
let ReqSec

K5and ReqAuth
K5 be the secrecy and authentication requirements defined

above. Then SysK5, symb |=perf ReqSec
K5 ∧ ReqAuth

K5 .
– Let SysPK, symb be the symbolic Public-key Kerberos system, and let ReqSec

PK

and ReqAuth
PK be the secrecy and authentication requirements defined above.

Then SysPK, symb |=perf ReqSec
PK∧ ReqAuth

PK .

Proof (sketch). We assume that all parties are honest. If user u successfully ter-
minates a session run with a server S, i.e., there was an output (ok, PK, S, khnd)
at KA outu!, then the key k was stored in the set Session KeysSu. This implies
that the key was generated by T and sent to u in a valid TGS REP. By auxiliary
property iv), an adversary cannot learn k. The case that S successfully termi-
nates a session run is analogous. This shows the key secrecy property ReqSec

PK .
As for the authentication property ReqAuth1

PK , if server S successfully terminates
a session with u, i.e., there was an output (ok, PK, u, khnd) at KA outS !, then
S must have received a ticket generated by T (for S and u) and also a matching
authenticator generated by user u (by auxiliary property iv)). But the ticket
will only be generated if u sends the appropriate request to T , i.e., there was an
input (continue prot,PK, T , S, AKhnd) at KA inu?. The request, on the other
hand, contains a TGT that was generated by K for u (by auxiliary property
ii)), therefore u must have sent an request to K. In particular, there had been
an input (new prot, PK, K, T) at KA inu?. As for the authentication property
ReqAuth2

PK , if the user u successfully terminates a session with server S, i.e., there
was an output (ok, PK, S, khnd) at KA outu!, then it must have received a mes-
sage encrypted under k that does not contain u’s name. The key k was contained
in a valid TGS REP and was therefore generated by T , by auxiliary property
iii). Only T , u, or S could know the key k, but only S uses this key to encrypt
and send a message that u received. On the other hand, S follows sending such
a message immediately by an output (ok, PK, u, khnd) at KA outS !. �

This proof shares similarities with the Dolev-Yao style proofs of analogous prop-
erties for Kerberos 5 and PKINIT using the MSR framework [18,20]. The two
approaches are similar in the sense that both reconstruct a necessary trace back-
ward from an end state, and in that they rely on some form of induction (based
on rank/co-rank functions in MSR). In future work, we plan to draw a formal
comparison between these two Dolev-Yao encodings of a protocol, and the proof
techniques they support.

4.2 Security in the Cryptographic Setting

The results of [14] allow us to take the authentication results in Thm. 1 and
derive a corresponding authentication results for a cryptographic implementation

Cryptographically Sound Security Proofs for Basic and Public-Key Kerberos 379

of Kerberos. Just as Property 2 holds symbolically for Kerberos, this shows
that it holds in a cryptographic implementation as well. In particular, entity
authentication between a user and a server in Kerberos holds with overwhelming
probability (over the probability space of runs). However, symbolic results on key
secrecy can only be carried over to cryptographic implementations if the protocol
satisfies certain additional conditions. Kerberos unfortunately does not fulfill
these definitions, and it can easily be shown that cryptographic implementations
of Kerberos do not fulfill the standard notion of cryptographic key secrecy, see
below. This yields the following theorem.

Theorem 2. (Computational security of the Kerberos protocol)

– Let SysK5, comp denote the computational Kerberos 5 system implemented
with provable secure cryptographic primitives. Then SysK5, comp |=poly

ReqAuth
K5 .

– Let SysPK, comp denote the computational Public-key Kerberos system im-
plemented with provable secure cryptographic primitives. Then SysPK, comp

|=poly ReqAuth
PK .

Proof (Sketch for public-key Kerberos). By Thm. 1, we know that SysPK, id

|=perf ReqAuth
PK . And, as we mentioned earlier, the cryptographic implementation

of the BPW model (using provably secure cryptographic primitives) is at least
as secure as the BPW model, Syscry, comp ≥poly

sec Syscry, id. After checking that
the “Commitment Problem” does not occur in the protocol, we can use the
Preservation of Integrity Properties Theorem from [6] to automatically obtain
Thm. 2.

The Commitment Problem occurs when keys that have been used for cryp-
tographic work are revealed later in the protocol. If the simulator in [14] (with
which one can simulate a computational adversary attack on the symbolic sys-
tem) learns in some abstract way that e.g. a ciphertext was sent, the simulator
generates a distinguishable ciphertext without knowing the symmetric key nor
the plaintext. If the symmetric key is revealed later in the protocol then the
trouble for the simulator will be to generate a suitable symmetric key that de-
crypts the ciphertext into the correct plaintext. This is typically an impossible
task. In order for the simulation with the BPW model to work, one thus needs
to check that the Commitment Problem does not occur in the protocol. �

As far as key secrecy is concerned, it can be proven that the adversary attack-
ing the cryptographic implementation does not learn the secret key string as a
whole. However, it does not necessarily rule out that an adversary will be able to
distinguish the key from other fresh random keys, as required by the definition
of cryptographic key secrecy. This definition of secrecy says that an adversary
cannot learn any partial information about such a key and is hence considerably
stronger than requiring that an adversary cannot obtain the whole key. For Ker-
beros we can show that the key SK does not satisfy cryptographic key secrecy
after the last round of Kerberos, i.e., SK is distinguishable from other fresh
random keys. It should also be noted that this key SK is still indistinguishable

380 M. Backes et al.

from random after the second round but before the start of the third round of
Kerberos. We have the following proposition.

Proposition 1. a) Kerberos does not offer cryptographic key secrecy for the key
SK generated by the TGS T for the use between client C and server S after the
start of the last round of Kerberos.

b) After the TGS exchange and before the start of the CS exchange the key
SK generated by the TGS T is still cryptographically secret.

Proof. a) To see that Kerberos does not offer cryptographic key secrecy for
SK after the start of the third round, note that the key SK is used in the
protocol for symmetric encryption. As symmetric encryption always provides
partial information to an adversary if the adversary also knows the message
that was encrypted. An adversary can exploit this to distinguish the key SK as
follows: the adversary first completes a regular Kerberos execution between C
and S learning the message {C, t′}SK encrypted under the unknown key SK.
The adversary will also learn a bounded time period TP (of a few seconds) in
which the timestamp t′ was generated. Next a bit b is flipped and the adversary
receives a key k, where k = SK for b = 0 and k is a fresh random key for b = 1.
The adversary now attempts to decrypt {C, t′}SK with k yielding a message m.
If m �= C, t for a timestamp t then the adversary guesses b = 1. If m = C, t
for a timestamp t then the adversary checks whether t ∈ TP or not. If t /∈ TP
then the adversary guesses b = 1 otherwise the adversary guesses b = 0. The
probability of the adversary guessing correctly is then 1 − ε, where ε is the
probability that for random keys k, SK the ciphertext {C, t′}SK decrypted with
k is C, t with t ∈ TP . Clearly, ε is negligible (since the length of the time period
TP does not depend on the security parameter). Hence, SK is distinguishable
and cryptographic key secrecy does not hold.

b) However, before the third round has been started the key SK is not only
unknown to the adversary but, in particular, SK has not been used for symmet-
ric encryption yet. We can therefore invoke the key secrecy preservation theorem
of [9], which states that a key that is symbolically secret and symbolically un-
used is also cryptographically secret. This allows us to conclude that SK is
cryptographically secret from the adversary.

For similar reasons, we also have the following proposition

Proposition 2. a) Kerberos does not offer cryptographic key secrecy for the key
AK generated by the KAS K for the use between client C and TGS T after the
start of the second round of Kerberos.

b) After the AS exchange and before the start of the TGS exchange the key
AK generated by the KAS K is still cryptographically secret.

Finally, we note the following

Remark 1. Kerberos allows the client or the server to generate a sub-session
key [39]. This optional key, which can then be used for the encryption of further
communication between the two parties, is cryptographically secret as it can

Cryptographically Sound Security Proofs for Basic and Public-Key Kerberos 381

be proven symbolically secret and symbolically unused. This proof can easily be
conducted symbolically similar to Thm. 1, and then the key secrecy preservation
theorem of [10] can be used to automatically obtain a proof of cryptographic key
secrecy for the optional sub-key. Note that this preservation theorem could not
be used for proving cryptographic key secrecy for the main key as this key is
already used within the key exchange protocol.

5 Conclusions and Future Work

In this paper, we have exploited the Dolev-Yao style model of Backes, Pfitzmann,
and Waidner [8,12,13] to obtain the first computational proof of authentication
for the core exchanges of the Kerberos protocol and its extension to public
keys (PKINIT). Although the proofs sketched here are conducted symbolically,
grounding the analysis on the BPW model automatically lifts the results to
the computational level, assuming that all cryptography is implemented using
provably secure primitives. Cryptographic key secrecy in the sense of indistin-
guishability of the exchanged key from a random key could only be established
for the optional sub-key exchanged in Kerberos while for the actually exchanged
key, cryptographic key secrecy could be proven not to hold.

Potentially promising future work includes the augmentation of the BPW
model with specialized proof techniques that allow for conveniently performing
modular proofs. Such techniques would provide a simple and elegant way to
integrate the numerous optional behaviors supported by Kerberos and nearly all
commercial protocols; for example, this would facilitate the analysis of DH mode
in PKINIT which is part of our ongoing work. We intend to tackle the invention
of such proof techniques that are specifically tailored towards the BPW model
in the near future, e.g., by exploiting recent ideas from [24]. Another potential
improvement we plan to pursue in the near future is to augment the BPW model
with timestamps; this would in particular allow us to establish authentication
properties that go beyond entity authentication [18,20,21]. A further item on
our research agenda is to fully understand the relation between the symbolic
correctness proof for Kerberos 5 presented here and the corresponding results
achieved in the MSR framework [18,20].

References

1. The AVISPA Tool for the Automated Validation of Internet Security Protocols
and Applications. In Proc. of Computer-aided Verification (CAV). Springer, 2005.
URL: www.avispa-project.org.

2. M. Abadi and J. Jürjens. Formal eavesdropping and its computational interpreta-
tion. In Proc. TACS, pages 82–94, 2001.

3. M. Abadi and P. Rogaway. Reconciling two views of cryptography: The computa-
tional soundness of formal encryption. In Proc. 1st IFIP International Conference
on Theoretical Computer Science, pages 3–22. Springer LNCS 1872, 2000.

4. M. Backes. A cryptographically sound Dolev-Yao style security proof of the Otway-
Rees protocol. In Proc. ESORICS, pages 89–108. Springer LNCS 3193, 2004.

www.avispa-project.org

382 M. Backes et al.

5. M. Backes, I. Cervesato, A. D. Jaggard, A. Scedrov, and J.-K. Tsay. Cryptograph-
ically sound security proofs for basic and public-key Kerberos. IACR Cryptology
ePrint Archive, Report 2006/219, http://eprint.iacr.org/, June 2006.

6. M. Backes and C. Jacobi. Cryptographically sound and machine-assisted verifica-
tion of security protocols. In Proc. 20th STACS, pages 675–686. Springer LNCS
2607, 2003.

7. M. Backes and B. Pfitzmann. A cryptographically sound security proof of the
Needham-Schroeder-Lowe public-key protocol. Journal on Selected Areas in Com-
munications, 22(10):2075–2086, 2004.

8. M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao
style cryptographic library. In Proc. CSFW’04, pages 204–218, June 2004.

9. M. Backes and B. Pfitzmann. Relating symbolic and cryptographic secrecy. IEEE
Trans. Dependable Secure Comp., 2(2):109–123, April–June 2005.

10. M. Backes and B. Pfitzmann. Relating symbolic and cryptographic secrecy. In
Proc. 26th IEEE Symposium on Security & Privacy, pages 171–182, 2005. Extended
version in IACR Cryptology ePrint Archive 2004/300.

11. M. Backes and B. Pfitzmann. On the cryptographic key secrecy of the stregthened
Yahalom protocol. In Proceedings of 21st IFIP SEC’06, To appear.

12. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library
with nested operations (extended abstract). In Proc. CCS’03, pages 220–230, 2003.

13. M. Backes, B. Pfitzmann, and M. Waidner. Symmetric authentication within a
simulatable cryptographic library. In Proc. ESORICS’03, pages 271–290. Springer
LNCS 2808, 2003.

14. M. Backes, B. Pfitzmann, and M. Waidner. A universally composable cryptographic
library. IACR Cryptology ePrint Archive, Report 2003/015, http://eprint.iacr.
org/, January 2003.

15. G. Bella and L. C. Paulson. Kerberos Version IV: Inductive Analysis of the Secrecy
Goals. In Proc. ESORICS’98, pages 361–375. Springer LNCS 1485, 1998.

16. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Proc.
CRYPTO ’93, pages 232–249. Springer LNCS 773, 1994.

17. B. Blanchet. A computationally sound mechanized prover for security protocols.
In Proc. 27th IEEE Symposium on Security & Privacy, 2006.

18. F. Butler, I. Cervesato, A. D. Jaggard, and A. Scedrov. An Analysis of Some
Properties of Kerberos 5 Using MSR. In Proc. CSFW’02, 2002.

19. R. Canetti and J. Herzog. Universally composable symbolic analysis of crypto-
graphic protocols (the case of encryption-based mutual authentication and key
exchange). In Proc. 3rd Theory of Cryptography Conference (TCC), 2006.

20. I. Cervesato, A. D. Jaggard, A. Scedrov, J.-K. Tsay, and C. Walstad. Breaking
and fixing public-key Kerberos. In Proc. WITS’06, 2006.

21. I. Cervesato, A. D. Jaggard, A. Scedrov, and C. Walstad. Specifying Kerberos 5
Cross-Realm Authentication. In Proc. WITS’05, pages 12–26, 2005.

22. V. Cortier and B. Warinschi. Computationally sound, automated proofs for security
protocols. In Proc. ESOP-14, pages 157–171, 2005.

23. A. Datta, A. Derek, J. Mitchell, V. Shmatikov, and M. Turuani. Probabilistic
polynomial-time semantics for a protocol security logic. In Proc. ICALP, pages
16–29. Springer LNCS 3580, 2005.

24. A. Datta, A. Derek, J. Mitchell, and B. Warinschi. Key exchange protocols: Secu-
rity definition, proof method, and applications. In 19th IEEE Computer Security
Foundations Workshop (CSFW 19), Venice, Italy, 2006. IEEE Press.

25. D. Dolev and A. Yao. On the security of public-key protocols. IEEE Trans. Info.
Theory, 2(29):198–208, 1983.

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Cryptographically Sound Security Proofs for Basic and Public-Key Kerberos 383

26. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game – or –
a completeness theorem for protocols with honest majority. In Proc. STOC, pages
218–229, 1987.

27. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28:270–299, 1984.

28. J. D. Guttman, F. J. Thayer Fabrega, and L. Zuck. The faithfulness of abstract
protocol analysis: Message authentication. In Proc. CCS-8, pages 186–195, 2001.

29. C. He and J. C. Mitchell. Security Analysis and Improvements for IEEE 802.11i.
In Proc. NDSS’05, 2005.

30. J. Herzog, M. Liskov, and S. Micali. Plaintext awareness via key registration. In
Proc. CRYPTO, pages 548–564. Springer LNCS 2729, 2003.

31. IETF. Public Key Cryptography for Initial Authentication in Kerberos, 1996–
2006. Sequence of Internet drafts available from http://tools.ietf.org/wg/
krb-wg/draft-ietf-cat-kerberos-pk-init/.

32. R. Impagliazzo and B. M. Kapron. Logics for reasoning about cryptographic con-
structions. In Proc. FOCS, pages 372–381, 2003.

33. P. Laud. Symmetric encryption in automatic analyses for confidentiality against
active adversaries. In Proc. Symp. Security and Privacy, pages 71–85, 2004.

34. C. Meadows. Analysis of the internet key exchange protocol using the NRL Pro-
tocol Analyzer. In Proc. IEEE Symp. Security and Privacy, pages 216–231, 1999.

35. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence
of active adversaries. In Proc. TCC, pages 133–151. Springer LNCS 2951, 2004.

36. Microsoft. Security Bulletin MS05-042. http://www.microsoft.com/technet/
security/bulletin/MS05-042.mspx, Aug. 2005.

37. J. Mitchell, M. Mitchell, A. Scedrov, and V. Teague. A probabilistic polynominal-
time process calculus for analysis of cryptographic protocols (preliminary report).
Electronic Notes in Theoretical Computer Science, 47:1–31, 2001.

38. C. Neuman and T. Ts’o. Kerberos: An Authentication Service for Computer Net-
works. IEEE Communications, 32(9):33–38, Sept. 1994.

39. C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The Kerberos Network Authen-
tication Service (V5), July 2005. http://www.ietf.org/rfc/rfc4120.txt.

40. B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its
application to secure message transmission. In Proc. S&P, pages 184–200, 2001.

http://tools.ietf.org/wg/krb-wg/draft-ietf-cat-kerberos-pk-init/
http://tools.ietf.org/wg/krb-wg/draft-ietf-cat-kerberos-pk-init/
http://www.microsoft.com/technet/security/bulletin/MS05-042.mspx
http://www.microsoft.com/technet/security/bulletin/MS05-042.mspx
http://www.ietf.org/rfc/rfc4120.txt

	Introduction
	Related Work
	Structure of the Paper

	Kerberos 5 and Its Public-Key Extension
	The BPW Model
	Review of the BPW Model
	Public-Key Kerberos in the BPW Model

	Formal Results
	Security in the Symbolic Setting
	Security in the Cryptographic Setting

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

