
Data Mining at CALD-CMU: Tools, Experiences andResearch DirectionsC. Faloutsos, G. Gibson, T. Mitchell, A. Moore, S. Thrun�Center for Automated Learning and Discovery (CALD)Carnegie Mellon UniversityAbstractWe describe the data mining problems and solutions that we have encounteredin the Center for Automated Learning and Discovery (CALD) at CMU. Speci�cally,we describe these settings and their operational characteristics, describe our proposedsolutions, list the performance results, and �nally outline future research directions.1 IntroductionThe Center for Automated Learning and Discovery (CALD) is a cross-disciplinary centerat CMU, focusing on the research question \How can historical data be best used to im-prove future decisions?" Participants in CALD are drawn from diverse backgrounds, suchas Computer Science (and speci�cally, Arti�cial Intelligence, Databases, Theory), Robotics,Statistics, Neurology, Philosophy, Engineering (Electrical, Civil, and Mechanical), Infor-mation Retrieval, and Language Processing. The Center involves industrial partners withchallenging data-mining problems.In this paper we describe some of these settings, recent research progress in our center,and �nally list future research directions.2 Some Real ApplicationsNext we describe two settings that we have encountered so far, and which seem typical indata mining environments:� The AUTON project (www.cs.cmu.edu/�AUTON) is concerned with applying a combi-nation of statistical machine learning techniques with optimal control theory to pro-duce very autonomous controllers for complex manufacturing processes. This software�In alphabetical order. E-addresses: fchristos,mitchell+,garth,awm,thrun+g@cs.cmu.edu1



system (using algorithms described in [2, 3]) has been deployed in a number of pro-cesses in a food manufacturing industry (bagging, packaging, cooling and cooking)with substantial economic savings. Current work is extending AUTON to give thelearning controller an active learning capability in which it autonomously designs itsown conservative experiments.� AT&T sales dataset: the need is to store a multi Giga-byte matrix on-line, with cus-tomers for rows, days for columns, and amount spent in each cell of the matrix. Inmore detail, the speci�cations are as follows: The number of rows is very large: � 105;the number of columns is much smaller (� 103 columns); random access to each cellis essential. On the other hand, approximate answers are acceptable; Thus, what wewant is a lossy compression method, carefully designed to allow fast (and as accurateas possible) reconstruction of any cell or cells. In the next section we describe our so-lution, based on a powerful technique from statistics and matrix algebra, the SingularValue Decomposition (SVD).3 Recent Research Advances in CALDThis section describes several recent research developments within CALD. Speci�cally, theAD-tree method for fast manipulation of contingency tables; a probabilistic reasoning ap-proach and its performance on a robotics setting; and a lossy compression method for largedata matrices, which supports random access to arbitrary cells, with small error and highcompression ratio. Each topic is discussed in detail below.3.1 AD-treeProblem Many data mining and machine learning algorithms need to do vast numbers ofcounting queries (e.g. "How many records have Color=Blue, Nationality=British, Smoker=False,Status=Married, Nose=Big?"). Similarly, many algorithms need to build and test huge num-bers of contingency tables. A contingency table (also known as a \DataCube" [18] in theDatabase community) is de�ned by a set of attributes. A contingency table has one row foreach possible set of values that the set of attributes may take. If an attribute called \Color"could take values f Red , Green , Blue g and if an attribute called \Smoker" could takevalues f Yes , No g then the contingency table for attribute-set f Color , Smoker g would be2



Color Smoker Number Records MatchingRed No n1Red Yes n2Green No n3Green Yes n4Blue No n5Blue Yes n6where Pi ni = the total number of records.Why do we wish to compute counts and contingency tables quickly? There are manyapplications in data mining. A database user may wish to bring up counts or contingencytables on-line while analyzing the dataset [10]. Interactive visualization tools similarly needto compute these statistics quickly. More importantly, many machine learning, statisticsand data mining algorithms (e.g. Bayes Net builders, Feature Selectors, Rule Learners,Inductive Logic Program Learners, Decision Tree Learners) spend most of their e�ort oncounting computations.Proposed solution - Results The ADtree approach empirically gives us a two to fourorder of magnitude speedup (40 to 2000-fold) in doing counting. Analytically, we can showthat, subject to certain assumptions, the costs become independent of the number of recordsand loglinear in the number of non-zero entries in the contingency table. The ADTree (all-dimensions tree) caches su�cient information to reconstruct any counting query. Tractably-sized data structures can be produced for large real-world datasets by (a) using a sparsetree structure that never allocates memory for counts of zero, (b) never allocating memoryfor counts that can be deduced from other counts, and (c) not bothering to expand the treefully near its leaves.In work so far we have shown how the ADTree can be used to accelerate Bayes netstructure �nding algorithms, rule learning algorithms, and feature selection algorithms on anumber of large real-world datasets. For example, for arbitrary counting queries involvingeight attribute-value pair on a medical database with 10,000 records and 100 attributes theaverage speed-up over direct counting was approximately 1000-fold. When building a BayesNet (and learning rules) for a Census Dataset involving 17 very non-sparse attributes, thespeedup was 50-fold.Further results are given in [14], which also compares AD-trees with alternative represen-tations such as kd-trees [5, 13], R-trees [9] and frequent sets [12]. In current work (fundedby NSF and 3M corporation) we are using AD-trees to permit tractable feature-generationalgorithms (which invent new attributes useful for prediction as complex functions of theoriginal attributes). We are also actively seeking collaborations with people with large �-nance, medicine or manufacturing datasets to which we may attempt to apply ADtree-based3



learning. Further AD-tree information may be found (shortly) at www.cs.cmu.edu/�AUTON.3.2 Probabilistic ReasoningProblem Another CALD project focuses on state estimation and decision making insensor-actuator systems. Systems equipped with sensors (such as robots) are inherently un-certain as to what is the case in the world. This uncertainty usually arises from perceptuallimitations of sensors and from the dynamics of the world. Our research seeks fundamentalways to deal with this uncertainty and to make optimal decisions under uncertainty.Proposed solution We recently have developed a family of probabilistic approaches forperception and decision making, which has been applied to a variety of di�cult roboticsproblems. The key idea of these methods is that the system reasons probabilistically: Insteadof just considering a single interpretation of what might be the case in the world, thesemethods consider an entire collection of interpretations, annotated by a numerical plausibilityfactor (a conditional probability As a result, these methods can represent uncertainty, andthey provide robust and mathematically elegant ways for dealing with ambiguities, sensornoise, and dynamics.Results These algorithms were applied to problems such as mobile robot localization,landmark detection and recognition, mapping of large-scale environments, and others [15]. Insome of these domains, the probabilistic approach led to completely new insights, that madepossible solutions for previously unsolved robotics problems. For example, our probabilisticalgorithms has been demonstrated to enable robots to build maps of unprecedentedly largeenvironments [17, 16]. Other algorithms were essential for a recent installation of a mobilerobot in the "Deutsches Museum Bonn". Here, a mobile robot gave interactive tours topeople in a densely populated museum. The robot navigated almost 
awlessly at a totaldistance of 18.6km and at an average speed of 36cm/sec, entertaining more than 3,000 visitors(real visitors and Web users) [4]. The probabilistic algorithms were critical for positiontracking and model acquisition.3.3 Lossy Compression for Data MiningProblem Ad hoc querying is di�cult on very large datasets, since it is usually not possibleto have the entire dataset on disk. While compression can be used to decrease the size ofthe dataset, compressed data is notoriously di�cult to index or access.We consider a very large dataset comprising multiple distinct time sequences. Our drivingapplication was the AT&T sales dataset, described earlier. Each point in the sequence is a4



numerical value. Our goal is to compress such a dataset into a format that supports ad hocquerying, provided that a small error can be tolerated when the data is uncompressed.Proposed method The idea behind our method [11] is to use the so-called SingularValue Decomposition (SVD) to approximate the data matrix; we went further to reducethe approximation error, by explicitly storing those data points that were 'outliers'. Theresulting method, called `SVDD' (for \SVD with Deltas") achieves all the speci�ed goals.Results Experiments on large, real world datasets (AT&T customer calling patterns) showthat the proposed method achieves an average of less than 5% error in any data value aftercompressing to a mere 2.5% of the original space (i.e., a 40:1 compression ratio), with thesenumbers not very sensitive to dataset size. Experiments on aggregate queries achieved a0.5% reconstruction error with under 2% space requirement.4 Future DirectionsThe primary goal of CALD research is to extend the state of the art in using historical datato improve future decisions. Our role is to invent new approaches that will become the basisfor future commercial software. We will develop these new approaches by studying problemsand data contributed by our industrial and government partners, and will make our resultsimmediately available to CALD corporate members and partners. Thus, our partners willhave access to new methods long before they become commercially available.CALD research can be viewed either in terms of basic scienti�c issues to be addressed,or in terms of applications, as illustrated in Figure 1. The exact list of applications isbeing determined by the needs of our industrial and government partners. The list of basicresearch topics will be determined primarily by the needs of these application problems, andby faculty research interests and expertise.The thesis underlying the CALD matrix research organization in Figure 1 is that themost important scienti�c issues will have signi�cant impact across many di�erent applicationareas. This allows CALD to spread the cost of this basic research over multiple problemdomains and multiple funding sources. Examples of such basic scienti�c issues include:� Learning from mixed media data. In many application domains, historical data willinclude a variety of types of media. For example, when learning to predict medicaloutcomes based on historical data, patient records often include a combination ofsymbolic data (e.g., gender), numerical data (e.g., temperature), images (e.g., x-raysand CAT scans), other sensor data (e.g., EKG), text (e.g., notes on the patient chart),and audio (dictations of physicians as they make hospital rounds). Unfortunately,current learning methods can make use of only a fraction of this patient record, because5
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predictionsFigure 1: CALD research emphasizes fundamental scienti�c issues (left) with signi�cantpotential payo� across multiple application areas (right).they are typically speci�c to a single type of media (e.g., decision tree learning methodsfor symbolic/numeric data, neural networks for image analysis, Bayesian methods fortext classi�cation). We need new learning methods capable of learning from the fullrange of data available in the historical record. If successful, this line of research willproduce more accurate learning methods useful in a variety of applications, due totheir ability to utilize the entire multiple-media historical record.� Active experimentation. Most current data mining systems passively accept a prede-termined data set. We need new computer methods that actively generate optimalexperiments to obtain the additional needed information. For example, in modeling amanufacturing process it is relatively easy to capture data while the process runs undernormal conditions. However, this data may lack information about how the processwill perform under non-standard conditions. We require algorithms that will proposeoptimal experiments to collect the most informative data, taking into account precisemodels of the expected costs and bene�ts of the experiment.� Optimizing decisions rather than predictions. The goal here is to use historical data toimprove the choice of actions in addition to the more usual goal of predicting outcomes.For example, consider the problem of customer retention. Given historical data oncustomer purchases over time, one common data mining problem is to predict whichcustomers are likely to remain loyal, and which are not. While this is useful, an evenmore useful task is to learn which actions can increase the probability of retaining these6



customers. The point here is that we seek new algorithms that go beyond predictingthe outcome of some time series, and instead learn which actions achieve the desiredoutcome. This problem raises di�cult basic issues such as learning from biased datasamples, and how to incorporate conjectures by human experts about the e�ectivenessof various intervention actions. If successful, this research will allow applying historicaldata much more directly to the decision-making problem at hand.� Inventing new features to improve prediction accuracy. In many cases, the accuracy ofpredictions can be improved by inventing a more appropriate set of features to describethe available data. For example, consider the problem of detecting the imminentfailure of a piece of equipment based on the time series of sensor data collected fromthe equipment. It is easy to generate millions of features that describe this timeseries by taking di�erences, sums, ratios, averages, etc of primitive sensor readingsand previously de�ned features. Our conjecture is that given a su�ciently large andlong-duration data set it should be feasible to automatically explore this large space ofpossible de�ned features in order to identify the small fraction of these features mostuseful for future learning. If successful, this work would lead to increased accuracy inmany prediction problems, such as predicting equipment failure, customer attrition,credit repayment, medical outcomes, etc.� Storage issues - RAID, striping, and beyond. Several data mining algorithms are verysuitable for intelligent storage devices, such as those advocated by CMU's NetworkAttached Secure Disks (NASD) project [6, 7, 8]. A NASD device can do some com-putationally simple, but data-intensive processing, reducing the amount of data tobe sent to the CPUs - this is appropriate for mining association rules [1] as well asfor the training of neural networks. Speci�cally, there are two principle bene�ts fromexecution in intelligent storage devices:{ Bandwidth reduction: Disk drives sustain 15 MB/s now and this data rate isgrowing at 40% per year. Network interfaces and client machines cannot cost-e�ectively move and consume multiple drives' bandwidth and have processingresources left over to �lter that data, where simple �lters reduce transfered datasize by a factor of ten or more. Thus, device-embedded processing enables faster,more scalable data mining.{ Inner loop computational parallelism: For computationally simple, data-intensiveinner loops (where general purpose processors gain little from caches), executionin the drive provides computational parallelism in proportion to data capacity -i.e., 100 drives with 100 MHz processor optimized for data streaming is likely tobe better for simple inner loops than 4 CPUs at 500 MHz.CALD faculty research interests include many additional topics as well, such as problems inautomatic data capture, visualization of large data sets, learning across multiple databases,7
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