Proceedings of the 1996 IEEE
International Conference on Robotics and Automation
Minneapolis, Minnesota - Aprii 1996

Deadlock Prevention in Flexible Manufacturing Systems Using
Symbolic Model Checking'

V. Hartonas-Garmhausen

Engineering & Public Policy Department
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

This paper illustrates the use of symbolic model
checking in the design of deadlock-free flexible
manufacturing systems. Our verification methodology
consists of the following stages. First, we extract a state
machine model of the system. Second, we write the
system specifications using a propositional temporal
logic. Finally we use the model checker to check the
state machine model of the system against its
requirements. When a deadlock is identified, a
counterexample is automatically generated with a
scenario that leads to the deadlock. The counterexample
is used to design the proper operational policy that will
prevent the corresponding deadlock. This verification
approach allows an exhaustive search of all possible
behaviors and scenarios. We designed a flexible
manufacturing system capable of producing 3 types of
parts with 4 machines and 3 robots. It took 8 seconds to
find possible deadlocks assuming machine processing
capacity of one part at a time and about 36 seconds
when we increased the machine processing capacity to
two parts at a time. The size of the state space was in the
order of 10' states.

1 Introduction

This paper introduces a new approach for the design
of flexible manufacturing systems using a temporal logic
model checking verification system [2, 5, 6]. The
significance of this approach is that it enables us to

E. M. Clarke, Sergio Campos

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

analyze industrial systems of realistic complexity. Model
checking determines whether a state transition graph
model of the system being verified satisfies system
specifications expressed as formulas of a propositional
temporal logic. In those cases where the specification is
false, the model checker produces a counterexample
execution path that shows why it is false. The
counterexample is very useful in locating and correcting
errors in the system.

Symbolic model checking is an industrial-strength
formal specification and verification technique. It
employs very efficient algorithms that allow an implicit
representation of the transition relation using binary
decision diagrams. Eliminating redundancy from the
model and the need for an explicit enumeration of the
states makes it possible to handle industrial applications.
Industrial systems with up to 10° states have been
verified within minutes.

Flexible Manufacturing Systems (FMSs) employ
multiple reprogrammable computer numerically
controlled (CNC) machining centers, turning centers,
and robots. A well-designed FMS combines high
flexibility, maximum machine utilization, minimum in-
process inventory, and maximum throughput. The
design and analysis of FMSs is difficult because what
makes these systems flexible also makes them complex.
For example deadlocks, which are a common problem in
FMSs, are often difficult to predict because they usually
occur after a complex sequence of operations and inputs
to the system. It is critical to avoid deadlocks since they
lead to degraded performance bringing the entire system
to a halt. Clearing deadlocks often requires human
intervention which leads to higher labor costs.

! This research is sponsored in part by the National Science Foundation under grant no. CCR-8722633, by the Semiconductor Research Corporation under
contract 92-DJ-294, by the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel Command, USAF, and the Advanced Research Projects

Agency (ARPA) under Grant F33615-93-1-1330.

0-7803-2988-4/96 $4.00 © 1996 IEEE

Common approaches to deadlock detection include
Petri nets [3, 4, 9], scheduling techniques [8], and a
graph-theoretic procedure [10]. Deadlock prevention of
FMSs using Petri nets involves an exhaustive path
analysis of the reachability graph of the Petri net model
of the system. Viswanadham et al. [4] concluded that
deadlock prevention using Petri nets can only be
implemented effectively for small systems. In real-world
systems, the reachability graph may contain tens of
thousands of states and arcs which makes the analysis of
these graphs infeasibie. By using ordered binary decision
diagrams we are able to overcome this difficulty in most
cases.

Model checking is a technique that can assist in
identifying and eliminating deadlocks in large FMSs.
Designing an FMS with the aid of model checking
combines the two tasks of design and validation. Model
checking can identify deadlocks and design errors very
carly in the design phase. By identifying errors in the
early phase, it is possible to correct them at a
significantly lower cost.

To demonstrate how are tools work, we verified a
production cell consisting of 4 machines, 3 robots, and an
L/U station that can produce 3 different part types.
Using symbolic model checking we were able to identify
several deadlocks and ways to prevent them.

The paper is organized as follows. Section 2 presents
the formal logic and the model checking verification
methodology. Section 3 demonstrates the use of symbolic
model checking in the deadlock prevention of a flexible
manufacturing system. Section 4 contains a number of
conclusions.

2 Temporal Logic Model Checking

We model the FMS as a labeled state transition
graph with each path corresponding to an execution trace
of the actual system. This is possible because FMSs
belong to the domain of Discrete Event Dynamic
Systems (DEDS) in which the evolution of the system in
time depends on the complex interactions of the timing
of various discrete events, such as arrival of a part,
departure of a finished part, or failure of a machine. The
desired system specifications such as safety, reliability,
operability, and performance are compiled from
industrial quality standard checklists, field test checklists,
process design specifications, hazard analysis, and other
sources. The objective of temporal model checking is
essentially to check whether a state transition system
corresponding to a system description satisfies a desired
specification expressed in temporal logic.

Temporal logic is a logic for expressing the ordering
of events in time without introducing time explicitly. It

528

contains operators for specifying properties such as
“condition p will eventually hold” and “conditions p and
q will never hold simultaneously.” The particular
temporal logic that we use is called CTL (Computation
Tree Logic) [2]. Formulas in CTL are built from three
components: atomic propositions, boolean connectives,
and temporal operators. Atomic propositions refer to the
values of the variables used to model the system. The
boolean connectives are the standard ones, such as AND,
OR, XOR, and NOT. Each temporal operator consists of
two parts: a path quantifier (A or E) and a temporal
modality (F, G, or X). All of the operators are
interpreted relative to an implicit “current state.” There
are in general many execution paths (sequences of state
transitions) of the model starting at this current state.
The path quantifier indicates whether the modality
denotes a property that should be true of all of those
possible paths (the universal path quantifier A) or
whether the property need only hold on some path (the
existential path quantifier E). The modalities describe
the ordering of events in time along an execution path
and have the following intuitive meanings:
1. F ¢ (¢ “holds sometime in the future”) is true of a
path if there exists a state on the path for which a

formula ¢ is true.

2. G ¢ (¢ “holds globally”) means that ¢ is true at every
state in the path.

3. X ¢ (¢ “holds in the next state”) means that ¢ is

true in the state following the current state.
Figure 1 displays graphically some basic CTL
expressions. A black circle indicates that a specification
¢ is TRUE in the corresponding state. A white circle
indicates the reverse.

3 &b AN

45 &0 AN

Figure 1 CTL Formulas

We represent states and transition relations using
Ordered Binary Decision Diagrams (OBDDs) [1].
OBDDs generate very compact representations of
formulas by ecliminating redundancy and allowing

computations on sets of states rather than on individual
states. One way to understand OBDD:s is to use the more
familiar binary decision trees as reference. A binary
decision tree is a rooted, directed tree that consists of
terminal and nonterminal vertices. Each nonterminal
vertex is labeled by a variable v and has two successors:
lowtv) if v is assigned 0 and highv) if v is assigned /.
Each terminal vertex is labeled by the value of v which is
either 0 or /. Binary decision trees grow in size
exponentially with the number of inputs and so they are
only suitable for small state systems. OBDDs, which are
also canonical forms for boolean equations, are similar to
binary decision trees except that their directed acyclic
graph structure allows nodes and substructures to be
shared. We reduce binary decision trees into OBDDs by
eliminating duplicate nodes and redundant tests. Figure
2 shows a simple binary decision tree and the
corresponding more compact OBDD. Our model
checking tool builds the OBDDs directly from the
boolean equations automatically.

Figure 2 Constructing a Binary Decision Diagram for
Binary Function ahc+ac.

As in the case of the binary decision tree, we traverse the
OBDD starting at the top. At every nonterminal vertex,
we follow the left or the right edge depending on the
assignment (0 or 1) of the corresponding variable. The
value encountered at the terminal vertex determines
whether the corresponding truth assignment satisfies the
formula.

The transition relation for the state transition graph
is represented by an OBDD. The OBDD variables
consist of two copies of the state variables, one for the
current state and the other for the next state. To see if

529

there is a transition from s to s’, we simply assign the
values of the state variables in state s to v and similarly
for s’ to v’ If the path in the OBDD for this assignment
ends in the node labeled 1, then there is a transition from
s to s, otherwise there is no transition.

A state consists of a valuation for the variables, plus
a valuation for the inputs. Each formula of the logic is
either true or false in a given state. An atomic
proposition corresponding to a variable x is true in a state
if x has the value 1 in that state and false if it has the
value 0. A formula is built from atomic propositions
using boolean connectives. Often it is more intuitive to
think in terms of sets of states instead of formulas. When
we consider a formula we are interested in the set of
states that satisfy it. We can find these states easily
representing the formula by an OBDD. A state satisfies
the conjunction of two formulas if and only if it is in the
intersection of the sets identified by the formulas. The
same principle applies to disjunction, union,
complement, and negation.

The size of an OBDD depends critically on the
variable ordering, i.e. the order of the variables as they
are encountered in the traversal of the OBDD from root
to nodes. Several heuristics have been developed for
finding a good variable ordering while finding the
optimal ordering is in general NP-complete. The
intuition of these heuristics comes from the observation
that OBDDs tend to be small when related variables are
close together in the ordering. When no obvious
ordering heuristics apply, we use a technique called
dynamic reordering which reorders the variables
periodically to reduce the number of vertices in use.

3 Flexible Manufacturing System

We use the following production cell to illustrate our
method. There are 4 numerically controlled machines
M1, M2, M3, and M4, Each machine can process two
parts at a time. This FMS processes parts of three types
P1, P2, and P3. The processing route of a part depends
on its type. There may be several alternative routes a
workpiece of a given type can traverse which adds
flexibility to the system. There are three robots R1, R2,
and R3 with the capacity to transport and shuttle parts to
the appropriate machines, wait for machines to become
available, and finally unload finished parts to the L/U
station. Each robot has its own action area. R1 loads
parts of type P1, serves machines M1, M2, and M4, and
unloads finished parts of type P2. R2 loads raw parts of
type P2, serves machines M1, M2, M3, and M4, and
unloads finished parts of type P3. Finally, R3 loads raw
parts of type P3, serves machines M3 and M4 and
unloads finished parts of type P1. The main controller

guides the operation of the system given the availability
of robots, machines, and raw parts at the Load/Unload
(L/U) station. Its role is to manage the system by
scheduling, dispatching, monitoring the system
resources, and reacting to machine breakdowns, broken
tools, and deadlocks.

We use symbolic model checking to design the FMS
and determine the necessary operational policies such
that deadlocks never occur. Using this method we can
also determine early in the design phase the impact
different policies have on the performance of the system.
We can compare alternative routes within the system or
different policies for when to introduce a part type into
the system. For a more detailed analysis of the system
performance subsequent models will also include detailed
processing and transport times, rework of parts, and
machine failures.

We start by describing the behavior of the system
with boolean equations. We can describe synchronous or
asynchronous systems, detailed deterministic or abstract
nondeterministic models. The SMV language supports
finite data types (booleans, scalars, and fixed arrays) and
uses expressions in the propositional calculus to describe
the transition relation of the finite state machine. Figure
3 lists a part of the FMS model.

MODULE Machine 1
VAR
cmd : {process Pl, process P3, release P,
release P3, rest};
state : {Machine_available, Machine_processes PI,
Machine_processes _P3,
Machine waits_for R2 with Pl,
Machine waits for R2 with P3};
ASSIGN
init(state) = Machine_available;
next(state) =
case
cmd=process Pl : Machine processes P,
cmd=process P3 : Machine processes P3,
cmd=release Pl :
Machine waits_for R2 with P,
cmd=release P3 :
Machine waits_for R2 with P3,
cmd=rest . Machine available,

1 : state;
esac,
Figure 3 Machine Module
A MODULE is an encapsulated group of

declarations. Modules can be reused and can also be
parameterized so that each instance of a module can use
different data values. The VAR declaration creates an
instance of a module and variables. A module can
contain instances of other modules and thus we can

530

model the structural hierarchy of a system architecture.
In the main FMS controller module we built the
processing slots of Machines M1 and M2 by instantiating
the Machine I four times.

The state of the model is defined by a set of state
variables that may be of boolean or scalar type. The
variable cmd in MODULE Machine I is declared to be
a scalar that can take on the symbolic values process P1,
process _P3, release Pl, release P3, and rest. The
value of a scalar variable is encoded by the interpreter
using boolean variables so that the transition relation
may be represented by an OBDD.

The keyword ASSIGN introduces the parallel
assignments that determine the initial states and the
transition relation. In the Machine I module, the initial
value of the variable stafe is Machine_available and the
next value of the machine’s state is determined by the
current state of the system and the assigned value of the
case expression. The variable is assigned the value on
the right hand side when the corresponding expression
on the left hand side is true. A variable can also be
assigned a set of values in which case the result is a non-
deterministic choice among the elements of the set. Non-
deterministic assignments are useful for modeling
abstract models of complex systems and for modeling
systems that are not yet fully implemented. Figure 4
shows that the controller may choose to deliver to either
machine M1 or machine M2 when robot carries a part of
type P1 and both machines M1 and M2 are available.

next(R1.ecmd) := case
next(R1.state) = Robot_carries Pl &
next(M1_available) &
next(M2 available):
{deliver to M1, deliver to M2},

Figure 4 Non-deterministic variable assignment

The model checker constructs the OBDDs
corresponding to the boolean equations. By default, all
of the assignments are executed simultaneously. There
are also techniques available for defining parallel
processes that are interleaved in the program execution,
which is useful in modeling systems where actions are
not synchronized.

Next we check properties of the system. For
deadlock prevention we need to identify the necessary
conditions that lead to deadlocks and then design
operational policies such that deadlocks will never occur.

We check whether any of the following conditions arises:
e A resource that is used by two or more processes
simultaneously.

e A resource that is released before the process using it
is complete.

e A process that is holding at least one resource and is
waiting to acquire additional resources that are
currently being held by other processes.

e A set of waiting processes {pi,... Pns such that p; is
waiting for a resource held by process pi for i=1,
m-1 and p,, is waiting for a resource held by process

by pl.

We express the above conditions as CTL formulas.
For example, the specification AG !(R2.state= waits_for M3
with_rawP2 & M3.state= waits_forR2_with_finishedP2) states
that it is never the case that robot R2 will wait for
machine M3 to shuttle a new raw part P2 while M3 waits
for R2 to unload a finished part P2. This is a circular
wait condition.

The model checker found several possible deadlocks
and generated traces to demonstrate how the system
reaches a deadlock in each case. These scenarios helped
us debug the FMS controller and design resource
allocation policies that ensure deadlock prevention.
Figure 5 describes one of the deadlocks that we
identified. We have included those variables that are
most relevant to the deadlock.

--specification AG R1.cmd=unload P2 is false
--as demonstrated by the following execution sequence

state 1.1

Rl.cmd = load raw Pl

R2.cmd = load raw P2

R3.cmd = load raw P3

M1 a.state = Machine_available
M2 a.state = Machine available
M3 _a.state = Machine_available
M4 _a.state = Machine_available

state 1.2

Rl.cmd = deliver Pl to Ml a
R2.cmd = deliver P2 to M3 a
R3.cmd = deliver P3 to M4 a

state 1.3

Rl.cmd = load raw_Pl

R2.cmd = load raw_P2

R3.cmd = load raw_P3

M1 _a.state = Machine processes Pl
M3 _a.state = Machine_processes P2
M4 a.state = Machine_processes P3

state 1.4

Rli.cmd = deliver Pl to M2 a
R2.cmd = deliver P2 to M3 b
R3.cmd = deliver P3 to M4 b

531

M]1_a.state = Machine_waits_for R2 with Pl
M3 _a.state = Machine_waits_for R2
M4_a.state = Machine waits_for R1_with P3

state 1.5

Rl.cmd = load P3 from M4 a
R2.emd = load Pl _from Ml a

M2 _a.state = Machine _processes Pl
M3 b.state = Machine_processes P2
M4_b.state = Machine_processes P3

state 1.6

Rl.cmd = deliver P3 to Ml a

R2.cmd = wait_for M3

R3.cmd = load raw P3

M2_a.state = Machine_waits_for R2 with Pl
M3 _b .state= Machine waits for R2
M4_b.state = Machine_waits_for R1 with P3

state 1.7

Ri.cmd = load P3 from M4 b
R3.cmd = deliver P3 to M4 a

M1 _a.state = Machine_processes_P3

state 1.8

Rl.cmd = deliver P3 to MI b

R3.cmd = load raw_P3

MI_a.state = Machine_waits_for R2 with P3
M4_a.state = Machine_processes P3

Figure 5 A deadlock

Machine M1 waits for robot R2 to unload the
workpieces (types P1 and P3) it finished processing.
Robot R2 is waiting for machine M3 to become available
so that it can deliver to M3 a workpiece of type Pl
However, M3 requires R2 to release the parts it finished
processing. The FMS is deadlocked because M1, R2,
and M3 can not release their resources and will wait
indefinitely for each other to become available.

To prevent this deadlock we added the following
policies to the control of robot R2.

1. When machines M3 and M1 (or M2) wait for robot
R2 simultaneously, R2 will first be dispatched to
serve machine M3.

2. While M3 is busy, R2 will not unload machines M1
and M2 of workpieces of type P1.

This type of analysis helps us understand better the
behavior of the system. Understanding how a deadlock
comes about helps us make the right design changes to
prevent it.

4 Conclusions

Symbolic model checking is a powerful formal
specification and verification method that has been
applied successfully in the verification of several
industrial designs [7, 8]. This paper describes how this
method can be used to design and formally verify flexible
manufacturing systems.

The state explosion problem which arises from the
complexity of flexible manufacturing systems makes the
analysis of these systems a difficult task. By representing
them implicitly using ordered binary decision diagrams,
symbolic model checking can handle in many cases the
state explosion problem.

The model discussed above consisting of an L/U
station, 4 machines, and 3 robots took about 8 seconds to
be verified assuming that each machine can process one
part at a time. Changing the model to increase the
machine processing capacity to two parts at a time lead
to a more complex model with a state space in the order
of 10'® states. After finding a good variable ordering,
which critically reduces the size of the OBDD, the model
checker identified a deadlock within 36 seconds. Several
deadlocks were detected. The counterexamples that were
generated helped us design the appropriate policies to
avoid these deadlocks.

Symbolic model checking has several advantages.

It allows an exhaustive search of all possible behaviors of
the system in an automatic fashion. It provides quick
feedback in the evaluation of design alternatives. It can
find design errors that may be missed by simulation
techniques if they occur after a complex sequence of
input changes. The symbolic model checking algorithms
allow the verification of realistic complex applications in
an efficient manner which makes them a great tool in the
design and verification of flexible manufacturing
systems.

References

1. E.Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Trans. Comp. C35(8),
1986.

2. E. M. Clarke, E. A. Emerson, and A. P. Sistla.
Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM
Transactions on Programming Languages and
Systems, 8(2):244-263, 1986.

3. N. Viswanadham, Y. Narahari, T. L. Johnson.
Deadlock Prevention and Deadlock Avoidance in
Flexible Manufacturing Systems Using Petri Net
Models. IEEE Transactions on Robotics and
Automation, Vol. 6, No. 6, pg. 713-723, Dec. 1990.

532

10.

11.

N. Viswanadham, Y. Narahari. Performance
Modeling of Automated Manufacturing Systems.
PRENTICE HALL, 1992.

K. L. McMillan. Symbolic Model Checking: An
Approach to the State Explosion Problem. Ph.D.
Thesis, Carnegie Mellon University, 1992.

E. M. Clarke, O. Grumberg, D. Long. Verification

Tools for Finite-State Concurrent Systems.
Proceedings of A Decade of Concurrency:
Reflections and Perspectives REX School/

Symposium, Noordwijkerhout, The Netherlands, 1-4
June 1993.

E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D.
E. Long, K. L. McMillan, and L. A. Ness.
Verification of the Futurebus+ cache coherence
protocol. In Proceedings of the 11th CHDL, 1993.
V. Hartonas-Garmhausen, T. Kurfess, E. M. Clarke,
D. Long. Automatic Verification of Industrial
Designs. In Proceedings of the Workshop on
Industrial Strength Formal Specification Techniques,
pg. 88-96, April 1995.

S. Ramaswamy, S.B. Joshi. Deadlock Avoidance in
Automated Manufacturing Workstations - A
Scheduling Approach. Proceedings of 1994 IEEE

International Conference on Robotics and
Automation, pg. 1992-1997, 1994.
J. Espeleta, JM. Colom, J. Martinez. A Petri Net

Based Deadlock Prevention Policy for Fiexible
Manufacturing Systems. IEEE Transactions on
Robotics and Automation, Vol. 11, No. 2, pg. 173-
184, April 1995.

H. Cho, T. K. Kumaran, R. Wysk. Graph Theoretic
Deadlock Detection and Resolution for Flexible
Manufacturing Systems. IEEE Transactions on
Robotics and Automation, Vol. 11, No. 3, pg. 413-
421, June 1995.

