
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-85-127

Debugging Ada
Bemd Bruegge

Department of Computer Science

Carnegie Mellon University

Pittsburgh, Pa. 15213

3 May 1985

Abstract

The complexity of the Ada language poses several problems for the builder of a debugger. We identify
the Ada language constructs that cause these problems and propose solutions that can be
incorporated in a debugger based on Pascal. Several of the solutions involve changes in the symbol
table of the Ada compiler, others are based on the argument that having to obey the language rules is
an obstacle when debugging programs.

This research was sponsored in part by Siemens Corporate Research & Support, Research &
Technology Laboratories, Princeton, New Jersey and in part by the Defense Advanced Research
Projects Agency (DOD), ARPA Order No. 3597, monitored by the Air Force Avionics Laboratory Under
Contract F33615-81-K-1539.

The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of Siemens Corporate
Research and Support, the Defense Advanced Research Projects Agency or the US Government.

Table of Contents
1. Introduction
2. Symbol Table Definit ions
3. Symbol Table Extensions

3.1 . Initialization
3.2. Inline Expansion
3.3. Generics

4. Dynamic Abstract ions
4 .1 . Why Dynamic Abstractions?
4.2. Visibility List
4.3. Search Modes
4.4. Separate Compilat ion

4.4.1. Multiple Symbol Tables
4.4.2. Manipulation of the Visibility List

4.5. Overloaded Identifiers
5. Tasking

5.1. General Commands
5.2. Calling Subprograms in the Runtime System

-6. Exceptions
7. Implementation
8. Conclusion
9. Acknowledgements
10. Bibl iography

1

1. Introduct ion
After the Ada language definit ion was introduced, it was tempting to "upgrade" existing Pascal

compilers and convert them into Ada compilers. This approach seemed feasible because - except for

syntactic differences - Pascal could be seen as a subset of Ada. Several compiler builders fol lowed

this approach and built compilers which ended up as subset Ada compilers, providing an Ada

language with one or more of the fol lowing features missing: Generics, overloading and tasking.

When building an Ada debugger, it is tempting to follow the same idea: Start from a (line number

oriented) debugger for Pascal, for example PasDDT [Hisgen, 1981] or K R A U T [Bruegge, 1983b], or

some Algol-like language and modify it for Ada. Again, this approach is not likely to succeed. The

implementers will encounter diff iculties, because none of the existing Pascal debuggers was

designed to be language portable. Furthermore, a straightforward implementation of an Ada

debugger based on a traditional debugger for block structured languages. is not possible. The

problems again are rooted in the complexity of the Ada language. The language features which make

Ada a difficult language from the point of view of a compiler builder are the same for the debugger

builder. Features such as initialization at declaration t ime or type properties that are only

determinable at runtime make it necessary to keep more complex information in the symbol table.

Other features such overloading or separate compilat ion introduce large name spaces, often only

partially created or known by the user himself, leading to problems of proper name management at

debug t ime.

However, the task of writ ing a debugger is not the same as that of writ ing a compiler. Specifically,

the debugger does not have to implement the full language. In fact, we will argue that violation of

some language rules (type checking, scope rules, etc) is actually desired during the debugging

process. Under this assumption, it is possible to start with a Pascal debugger and upgrade it to an

Ada debugger.

In this paper we discuss the problems involved in writ ing such a debugger. As we will see, this

includes problems that were traditionally associated with debugging of optimized code. We will deal

with the problem of debugging optimized code only as far as it is required by the reference manual.

Thus the following discussion assumes that the programs are translated by a nonoptimizing Ada

compiler support ing the full Ada reference m a n u a l 1 .

1 T h e full treatment of the problems of debugg ing optimized code is still an open research area [Hennessy, 1982],[Zel lweger,
1983].

2

The paper is organized as fol lows. In section 2 we define what one could call the " t rad i t ional "

symbol table format for Pascal debuggers. This definit ion serves as the base of our discussion to

cope with Ada's "non Pascal" features. Section 3 deals with language features for which we propose

the extension of the traditional symbol table format. These are initialization at declaration t ime

(section 3.1), inline expansion (section 3.2) and generics (section 3.3). In section 4 we argue that

several of Ada's new features can be dealt with in a better way by mechanisms that allow to violate the

language rules. We introduce the notion of a dynamic abstraction which is an abstraction maintained

during debug time involving names from several names spaces that are not necessarily visible at the

same time in the Ada program. Dynamic abstractions are manipulated by a visibility list (section 4.2)

and by search modes (section 4.3). Language features that can be dealt with by dynamic

abstractions include separate compilat ion (section 4.4) and overloading (section 4.5). Finally we

discuss the problem of debugging tasks and exceptions and propose the use of PATHRULES [Bruegge,

1985] for these language constructs (section 5 and 6).

The paper discusses the issues of extending a Pascal debugger to an Ada debugger on the design

level. We are currently modifying a debugger for a Pascal dialect to debug Ada programs accord ing

to the proposals of this paper. Section 7 describes the implementation status of this e f fo r t

2. Symbol Table Definit ions
To allow symbolic debugging of Pascal programs, a compiler has to generate two tables for the

debugger: The Data table performs the mapping of program names to target locations and the Code

table maps program instructions such as statements, etc. to target locations. Each of these tables is

usually searched in both direct ions and we dist inguish the fol lowing mappings:

Data table

• Address: VirtualAddress => IdentifierList

• Name: Identifier x Scope x Scoperule = > DescriptorList

Code table

• Target: TargetAddress = > SourceCodeLocat ion

e Source: SourceCodeLocat ion = > TargetAddress

Given a virtual address in the target process, the A d d r e s s mapping returns the names of the objects

containing a field that is al located at that address. Given a str ing, a scope and a scope rule (dynamic

or static search), the Name mapping returns a list of descriptors, where a descriptor contains the

3

virtual address, the type, etc. of the identifier. Given an address in the code of the target process, the

T a r g e t mapping returns the corresponding location in the source program. Given the location of a

statement in the source program, the S o u r c e mapping returns the corresponding virtual address in

the target process.

The Name mapping is useful mainly for inquiries about variables, to determine their value or to

make changes to them. It is by far more used then the A d d r e s s mapping. The A d d r e s s mapping is

useful for watching addresses being unintentionally touched to determine the name of the

corresponding variable.

" The T a r g e t mapping is used when the program counter of the target process has to be interpreted

in terms of the source program. For example when printing the call stack, the debugger examines the

return addresses of routines on the runtime stack and uses the Target mapping to f ind the

corresponding source statements. The Source mapping is useful for any debugging command that

takes a source location as argument, for example setting a breakpoint. The notation for

S o u r c e C o d e L o c a t i o n depends on the representation of the source program. In the following we

assume the source program is represented in tradit ional ASCII form as a file of source lines. The

source lines can contain one or more statements and a statement index is needed to differentiate

between the statements on one line. Thus a source line oriented Sou rce mapping looks as follows:

Source: Line x FileName x Statementlndex -> TargetAddress

We will use the term symbol table informally to denote all the above mappings and other tables

introduced later in this paper.

3. Symbol Table Extensions
This section deals with language features for which we propose the extension of the tradit ional

symbol table format. These are initialization at declaration time (section 3.1), iniine expansion

(section 3.2) and generics (section 3.3).

3 . 1 . Init ial ization

For Pascal debugger implementations, the mappings Source and Target are actually functions.

Their domain can be ordered monotonic increasing such that the range is also monotic increasing.

Thus for Pascal, the creation of the Code table is very simple: The compiler can represent Source

and Target by the same data structure - for example, a linear ordered array of record entries - and

emit the table on the fly during the code generation. Furthermore, because S o u r c e as well as Target

4

are monotonous increasing, the debugger can use fast search algorithms - such as binary search - for

both mappings.

Ada allows objects to be initialized in the declarat ion part. This complicates the code generation

and the creation of the Code table. The problem arises from the possibil ity to nest subprogram

declarations between the initialization code of the locals and the body of a another subprogram. The

following program fragment illustrates the problem. Inside procedure X three objects are declared:

Variable A initialized to 5, Variable B initialized to 10 and Procedure Y :

1 Procedure X 1s
2 A : Integer 6;
3 B: integer :• 10;
4
6 Procedure Y 1s
6 begin
7 A :- 6;
8 end Y;
9

10 begin
11 B :- A * B;
12 end X;

There are several ways how a compiler could generate code for this fragment. The constraint is that

the variables A and B have to be initialized every time X is cal led. Thus the code generated for A and

B has to be executed before the body of X is executed. The code for procedure Y cannot be nested

between the code initializing A and B and the body of X - except if gotcs would be inserted after the

expressions. If we assume, the compiler generates code for a virtual stack mach ine 3 as in f igure

3-1 then the compiler cannot maintain a monotonic increasing ordering of l ine numbers which at the

same time is also monotonic increasing for code locations. Two options are available for the compiler

builder. Either the two mappings are represented by two different data structures. This offers fast

access for both mappings but requires more space. Or the two mappings are stifl represented by on

data structure, but only one mapping is sorted. This solut ion is preferable if one of the mappings is

used more often than the other one and space is a limited resource. From measurements we have

conducted with K R A U T we determined that the Ta rge t mapping is requested about 5 t imes more often

than the S o u r c e mapping [Bruegge, 1985]. Thus a Code table sorted by source locations seems to

be advisable in a disk space limited environment. Such a Code table is shown in f igure 3-2.

Because it is possible to initialize objects at declarat ion t ime, we propose to set break points in the

declaration part. Thus in addit ion to be able to break before or after subprograms and sourcelines, an

Ada debugger should provide a break command that permits the user to break before or after any

T h e program examples in this paper are not legal Ada programs: Each source line is pref ixed by a line number.

*For simplicity reasons we assume an inst ruct ion format where each instruct ion is two bytes long .

5

X:
Target Address Instruction

2
4
6
8
10
12
14
16

LOAD 6
STORE A
LOAD 10
STORE B
LOAD A
LOAD B
MULT
STORE B
RETURN

Y:
Target Address Instruction

18 LOAD 6
20 STORE A
22 RETURN

Figu re 3 - 1 : Target Code for Subprograms X and Y

Source Location -> Target Location
2 0
3 4
7 18
8 22

11 8
12 16

Figu re 3 - 2 : Code Table for X and Y (sorted by source location)

initialization code.

3 . 2 . In l i ne E x p a n s i o n

The In l i ne Pragma takes one or more names of subprograms or generic subprograms as

arguments. It specifies that the subprogram bodies should be expanded inline at each call whenever

possible. There are several problems with inline expansion on the compiler and on the debugger

side.

The reference manual states that an implementation is free to follow or ignore the recommendation

expressed by the In l ine pragma. Sometimes it is not even possible to follow it, for example in

recursive subprogram definit ions. Usually subunits of a unit can be (re)compiled without affecting the

unit itself. However, this is not the case if the subunits contains subprograms declared In l ine and if

they are called in the unit or other units import ing those subprograms. If an In l ine pragma is applied

to a subprogram declaration given in a package speci f icat ion, inline inclusion will only be achieved if

the the package body is compi led before units call ing the subprogram. In such a case, inline inclusion

creates a dependence of the call ing unit on the package body, and the compiler must recognize this

dependency when deciding the need for recompi lat ion. If a calling unit is compiled before the

package body, the pragma may be ignored by the compiler for such calls. Similar considerations

apply to a separately compiled subprogram for which an In l ine pragma was specif ied. For example,

if unit A in the program fragment in figure 3-3 is compi led before unit B, the In l ine pragma will be

6

ignored. If B is compiled before A, each call to T r a n s f o r m or Co l l ec t is inline expanded by the

compiler.

Because the language does not necessarily guarantee inline expansion, the user never can be

certain whether a subprogram is inline expanded or not. Thus we recommend that an Ada debugger

should indicate whether a subprogram is inline expanded if this information is requested by the user.

If the subprograms in f igure 3-3 are inline expanded, the generated target code for our ideal stack

machine is shown in figure 3-4. For simplicity reasons we assume that the formal parameters of the

expanded subprogram are replaced by their actual parameter expressions for the given call.

'Furthermore we assume that the code is not peephole optimized.

Unit A
SA.l procedure Top 1s
SA.2 R : real;
SA.3 U : real;
SA.4 procedure Transform(U: 1n out Real) 1s separate;
SA.6 procedure Collect(U: 1n out Real) 1s separate;
SA.6 begin
SA.7 Collect(R);
SA.8 Transform(R);
SA.9 Collect(S);

SA.10 Transform(S);
SA.ll end Top;

— Unit B
SB.l separate (Top)
SB.2 pragma InL1ne(Transform, Collect);
SB.3
SB.4 function Mult(X,Y: Integer) return Integer 1s
SB.6 var I : Integer;
SB.6 begin
SB.7 I X • Y;
SB.8 return I;
SB.9 end Mult;
SB.10
SB.11 procedure Transformer 1n out Real);
SB.12 begin
SB.13 U :- Mult(U,2);
SB.14 U :- U + 2;
S3.15 end Transform;
SB. 16
SB.17 procedure Collect(U: 1n out Real);
SB.18 begin
SB.19 U :- 2.0;
SB.20 end Collect;

Figu re 3 - 3 : Program fragment using inline expansion

Inline expansion also complicates the debugger side. In addition to the mappings Source and

Ta rget , a third mapping called In l i ne table [Zellweger, 1983] is needed. The In l ine table records call

information whenever the compiler expands a subprogram call inline. The information contains a

4 If Top is a package, where Transform and Col lect are expor ted, the pragma is ignored if it is only in the body.

7

Target code for A:

TA.O ENTRY TOP

TA.2 LOAD 2
TA.4 STORE R

TA.6 LOAD R
TA.8 LOAD 2
TA.10 CALL MULT
TA.12 STORE R
TA.14 LOAD R
TA.16 LOAD 2
TA.18 ADD
TA.20 STORE R

TA.22 LOAD 2
TA.24 STORE S

TA.26 LOAD S
TA.28 LOAD 2
TA.30 CALL MULT
TA.32 STORE S
TA.34 LOAD S .
TA.36 LOAD 2
TA.38 ADD
TA.40 STORE S

TA.42 EXIT Top

Target code for B:

TB.O ENTRY MULT
TB.2 MULT
TB.4 STORE I
TB.6 LOAD I
TB.8 EXIT MULT

Figure 3 - 4 : Target code for Unit A and B (with inline expansion)

pointer to the source location of the call and a pointer to the symbol table entry of the subprogram.

The S o u r c e mapping is now a one-to-many mapping. Each source location of the subprogram has

to be mapped onto all the target locations of the inline expanded target code. For example, the

source location SB .13 of f igure 3-3 has to be mapped to the target locations T A . 6 and T A . 2 6 of

f igure 3-4.

T a r g e t is modified in the fol lowing way: If a target location belongs to an inline expanded

subprogram, the corresponding source location is the pointer to the source text location plus a

pointer to the entry in the In l ine table describing the subprogram call. Part of the symbol table for the

fragment in f igure 3-3 is shown in f igure 3-5.

A problem with the In l i ne table is that it can deal only with inline expanded subprograms that do not

8

Source mapping for unit B

Source Location ••>
SB. 6
SB. 7
SB. 8
SB.9
SB.12
SB. 13
SB.14
SB.16
SB.18
SB .19
SB .20

Target mapping for unit A

•>

Target Location
TB.O
TB.2
TB.6
TB.8
TA.6 , TA.26
TA.6 . TA.26
TA.14, TA.34
TA.22, TA.42
TA.2, TA.22
TA.2, TA.22
TA.6, TA.26

Target Location
TA.2

Source Location,
SB.19

Inlinelndex
1

TA.4 SB.19 1
TA.8 SB .13

CM

TA.8 SB.13

CM

TA.10 SB.13 2
TA.12 SB.13 2
TA.14 SB.14 2
TA.16 SB. 14 2
TA.18 SB.14

CM

TA.20 SB.14

CM

TA.22 SB .19 3
TA.24 SB.19 3
TA.26 SB.13
TA.28 SB.13
TA.30 SB.13
TA.32 SB.13
TA.34 SB.14
TA.36 SB.14
TA.38 SB.14
TA.40 SB.14

InLine Table:

Inllnelndex
1
2
3
4

Calling Location,
SA.7
SA.8
SA.9
SA.10

InLineName
Collect
Transform
Collect
Transform

Figu re 3 - b : Symboi tabie for inline expansion

contain calls to other inline expanded subprograms. However, nested inline expanded subprograms

will probably not be unusual in Ada programs. One such example is when an arithmetic operator is

defined as an inline subprogram and then used in other inline expanded subprograms.

In the fol lowing we show how to deal with the problem of nested inline expansion. The basic idea is

that when any target location of a nested inl ine expanded subprogram is reached, the debugger has

to simulate the set of activation records that would be on the runtime stack if subprograms would not

be inline expanded. In the following we call this stack i7?e virtual runtime stack.

9

The debugger can build the virtual runtime stack if the In l ine Index in the T a r g e t mapping is

replaced by a Virtual Frame List. The Virtual Frame List is an ordered list of indices into the V i r t u a l

F rame T a b l e (called In l i ne T a b l e above). The first element of the Virtual Frame List points to the

" t o p " of that part of the virtual runtime stack that simulates the target location. The tail last element

points to its "bo t tom" . Virtual Frame Lists can completely be determined at compile t ime, because

the compiler knows how deep inline expanded subprograms are nested at any time. Given a target

location, the debugger consults the T a r g e t mapping to determine the Virtual Frame List and then

looks up the corresponding subprogram names in the V i r t u a l F rame T a b l e . For example, let us

assume we are given the fragment of a Ta rget mapping

Target Location »> Source Location, Virtual Frame List
T.O B.6 4,2tl

T.4 B.6 1

T.20 B.6 4,3

and the V i r t u a l F rame Tab le

Index Calling Location, Name
1 A.6 Procl
2 A.10 Proc2
3 A.100 Proc3
4 A.20 Proc4

If there are currently three frames on the real runtime stack with the following program counters

(return addresses)

T.O [TopOfStack]
T.4
T.20 [BottomOfStack]

then the debugger would build the fol lowing virtual runtime stack

Proc4 [TopOfStack]
Proc2
Procl
Procl
Proc4
Proc3 [BottomOfStack]

which then can be used to display the runtime stack as expected by the user.

To give another example of the use of the Virtual Frame List, we take up the program example in

f igure 3-3 again, and assume the pragma is replaced by

pragma InLlne (Transform, Collect, Mult)

that is, the subprogram Mu l t has to be inline expanded as well. In this case, no code would be

generated for unit B at all and the code for unit A would be as shown in f igure 3-6.

10

Target code for A:

TA.O ENTRY TOP

TA.2 LOAD 2
TA.4 STORE R «

TA.6 LOAD R
TA.8 LOAD 2
TA.10 MULT
TA.12 STORE Temp
TA.14 LOAD Temp
TA.16 STORE R
TA.18 LOAD R
TA.20 LOAD 2
TA.22 ADD
TA.24 STORE R
TA.26 LOAD 2
TA.28 STORE S

TA.30 LOAD S
TA.32 LOAD 2
TA.34 MULT
TA.36 STORE Temp
TA.38 LOAD Temp
TA.40 STORE S
TA.42 LOAD S
TA.44 LOAD 2
TA.46 ADD
TA.48 STORE S
TA.60 EXIT Top

Figure 3 - 6 : Target Code for Unit A (nested inline example)

The symbol table in this case is shown in f igure 3-7. As we can see from the Target mapping, the

Virtual Frame List entry for location T A . 1 0 - which contains the MULT op code - consists of two

virtual frames, namely the frames for subprograms Mult and T ransform, respectively.

3 .3 . Gener ics

In this section we show that generics can be treated in the same way as inline expansion from the

debugger 's point of view. For each call of a generic subprogram, a unique index is created, and the

source location of the call and the name of the generic instance are entered into the Virtual Frame

Table at that index. Again, as with Iniine expansion, the Source mapping is no longer a one to one

mapping but each source location must contain pointers to the target locations of each of the

instances. This could be done by generalizing the domain of Source to include the names of generic

instances: In the case of a line number oriented source mapping we would have

Source: Line x File x Statementlndex x InstanceName •> TargetAddress

where I n s t a n c e N a m e is the range of str ings denoting instances of generics defined in the source

program.

11

Source mapping for unit B:

Source Location --> Target Location
SB.6 TA.6. TA.30
SB.7 TA.6. TA.30
SB.8 TA.14, TA.38
SB.9 TA.16, TA.40
SB.12 TA.6 , TA.30
SB.13 TA.6 t TA.30
SB.14 TA.18, TA.42
SB.16 TA.26 .TA.60
SB.18 TA.2 , TA.26
SB.19 TA.2 , TA.26
SB.20 TA.6 t TA.30

T a r g e t mapping for unit A:

t Location •-> Source Location, Virtual Fr
TA.2 SB.19 1
TA.4 SB.19 1
TA.6 SB. 13 2
TA.8 SB.13 2
TA.10 SB.7 6,2
TA.12 SB.8 6,2
TA.14 SB.8 6.2
TA.16 SB. 13 2
TA.18 SB .14 2
TA.20 SB.14 2
TA.22 SB.14 2
TA.24 SA.14 2

TA.26 SB.19 3
TA.28 SB.19 3
TA.30 SB .13 4
TA.32 SB .13 4
TA.34 SB.7 6,4
TA.36 SB.8 5,4
TA.38 SB .8 6,4
TA.40 SB. 13 4
TA.42 SB.14 4
TA.44 SB.14 4
TA.46 SB.14 4
TA.48 SA.14 4

Virtual Frame Table:

Index Calling Location, Name
1 SA.7 Collect
2 SA.8 Transform
3 SA.9 Collect
4 SA.10 Transform
6 SB.13 Mult

Figure 3 -7 : Symbol table for nested inline expansion example

The Target mapping has to be modif ied too, but only if generics are not expanded but shared. For

example, an Ada compiler might generate shared code for generics instantiated inside a recursive

subprogram or for a generic with a formal type parameter that is instantiated with two different

subtypes. If both types have the same machine representation or require the same machine length for

12

the representation of the type and have the same underlying machine operations that operate on

them, the compiler could use the same code for both instances. In this case, a breakpoint

implementation based on code patching would not be sufficient to distinguish between breakpoints

defined for any of these instances. At any t ime, the runtime system has to maintain the name of the

current instance of the generic. The current instance name can then be used by the debugger to

disambiguate any uncaught exception or breakpoint in generic instances independent of underlying

optimizations. For example, if the code is shared between two instances Foo and Baj of the generic

FooBar and the user has set a breakpoint in instance Foo, for every breakpoint the debugger can

compare the current instance name with the name Foo and break only if there is a match.

We therefore introduce a variable C u r r e n t G e n e r i c that always contains the V i r t u a l F rame T a b l e

index of the current generic instance. C u r r e n t G e n e r i c has to be updated at runtime every t ime a

generic subprogram is called, and it has to-be saved if another generic subprogram is called inside

the current generic subprogram. The index can be passed as a hidden parameter in the generic

subprogram call . A possible data structure for C u r r e n t G e n e r i c is a stack: Every time, a generic

subprogram is called inside another generic subprogram, the new index is pushed onto the stack.

And everytime a generic subprogram is exited, the stack is popped. The top of the stack always

contains C u r r e n t G e n e r i c .

The following example illustrates the previous discussion.

Give the fol lowing Ada fragment:

--Specification:
5.1 Generic
5.2 type Element 1s private;
5.3 procedure Exchange(u\V: 1n out Element);

--Body:
B.l procedure Exchange(U,V: 1n out Element);
B.2 T: Element;
B.3
B.4 begin
B.6 T:- U;
B.6 U :• V;
B.7 V :• T;
B.8 end Exchange;

— User program:
U.l ...
U.2 procedure INTSWAP 1s new Exchango(Integer);
U.3 procedure CHARSWAP 1s new Exchange^Character);
U.4 procedure ARRAYSWAP 1s new Exchange(Array(l..2) of Integer);
U.5 ...
U.10 IntSwap(I.O);
U.ll CharSwap(A.B);
U.12 ArraySwap(M.N);
U.13 ...

1 3

The compiler might generate the fol lowing code for INTSWAP and CHARSWAP

T.O LOAD U
T.2 STORE T
T.4 LOAD V
T.6 STORE U
T.8 LOAD T

T.10 STORE V
T.12 RETURN

For ARRAYSWAP the compiler might generate the code:

T.14 LOAD Ul
T.16 LOAD U2
T.18 STORE Tl
T.20 STORE T2
T.22 LOAD VI
T.24 LOAD V2
T.26 STORE Ul
T.28 STORE U2
T.30 LOAD Tl
T.32 LOAD T2
T.34 STORE VI
T.36 STORE V2
T.38 RETURN

The S o u r c e mapping for EXCHANGE would look as fol lows:

Source Location Target Location
B.6 T.O, T.14
B.6 T.4, T.22
B.7 T.8, T.30
B.8 T.12, T.38

And the T a r g e t mapping for INTSWAP and CHARSWAP would be

Target Location Source Location, Virtual
T.O B.6 1 | 2
T.4 B.6 1 | 2
T.8 B.7 1 | 2
T.12 B.8 1 | 2

T a r g e t mapping of ARRAYSWAP we get:

Target Location Source Location, Virtual
T.14 8.6 3
T.22 B.6 3
T.30 B.7 3
T.38 B.8 3

The V i r t u a l F rame T a b l e for procedure EXCHANGE is

Frame Call1ngLocat1on, Name
1 U.10 INTSWAP
2 U.ll CHARSWAP
3 U.12 ARRAYSWAP

In our example, code is shared between the generic instances INTSWAP and CHARSWAP, thus the

V i r t ua l F rame List entries of the T a r g e t mapping contain elements of the form 1 | 2 . If in such case,

14

C u r r e n t G e n e r i c contains 1 , then the debugger chooses subprogram INTSWAP, if C u r r e n t G e n e r i c

contains 2, the debugger chooses CHARSWAP.

In addition to the changes in the symbol table generation sketched above, debugger commands

must also be changed to cope with generics. They have to be generalized and new display formats

are necessary. For example, the user should be able to ask for the actual parameters or variables of a

generic instance. This can be made possible by generalizing commands that allow to look at the

parameters and locals of a routine to apply to generics as well:
P a r a m e t e r s R

Return the actual parameters of generic instance or subprogram R.

Loca l s R

Return the local variable of generic instance or subprogram GS.

The notation for a source location must also be generalized because any source location might

denote one or more instances of a generic.

We solve this by prefixing a source location with the name of a generic instance. For example the

command
Break INTSWAP.B.6

sets a breakpoint at source line 5 of the generic instance INTSWAP.

If a source location is not qualified by the instance name, but points to the source code of a generic,

then all current and future instances are denoted. For example,
Break 5

sets a breakpoint at source line B.5 at all • current as well as future - instantiations of EXCHANGE.

This means that the debugger, after consult ing the S o u r c e mapping, sets breakpoints at target

locations T.O and T. 14 . If a breakpoint occurs at one of the target locations, say T.O, the debugger

consults the T a r g e t mapping and determines source location B.5. Then it compares the V i r t u a l

F rame T a b l e index with C u r r e n t G e n e r i c to determine whether the breakpoint occurred in

procedure INTSWAP or in CHARSWAP.

4. Dynamic Abst ract ions
In this section we introduce the notion of a dynamic abstraction to manipulate names from several

names spaces that are not necessarily visible at the same t ime in the Ada program. Dynamic

abstractions are manipulated by a visibility list (section 4.2) and by search modes (section 4.3). We

demonstrate how dynamic abstractions can be used for dealing with separate compilation (section

4.4) and overloading (section 4.5).

15

4 . 1 . W h y D y n a m i c A b s t r a c t i o n s ?

The meaning of the occurrence of an identifier at a given place in the text is defined by Ada's

visibility and overloading rules. From user studies we have conducted with KRAUT, a debugger for a

Pascal dialect running on the Accent operating system [Bruegge, 1983b], it seems to be clear that

users have a different notion of visibility when debugging. Instead of static scope rules they often

apply dynamic scope rules. Users often refer to locals of routines that are currently not visible with

respect to the scope rules of the programming language. This hypothesis is supported by

experiments described in [Bruegge, 1985]: Violation of scope rules are used if they are provided by

the debugger.

There is another aspect where the violation of the visibility rules at debug time is important, namely

abstract data types. This has not been so problematic in languages like Pascal, which do not support

abstract data types but it becomes a problem in Ada. Ada's package concept encourages users to

write programs as a set of hierarchical levels or as a set of abstract data types each of them

implementing a certain abstraction and hiding its implementation details from the rest of the system.

However, the levels of "abstraction composed at design or implementation time are usually not helpful

when debugging a faulty computat ion. While debugging, the programmer is simultaneously the

implementer as well as the user of an abstract ion. Even if he is using an abstract ion, he would like to

have a look inside it if he has to make sure the body is a correct realization of the specif icat ion. Thus

we argue that a view across the abstractions boundaries maintained by the Ada program is often

needed dur ing debugging. We call such a view a dynamic abstraction. Dynamic abstractions are

useful to check a certain hypothesis where one might simultaneously have to refer to variables

defined in several package bodies.

In addition to superimposing user def ined abstractions, dynamic abstractions also permit the

violation of predefined language abstractions such as types and the operations defined on them. To

determine whether an abstraction is correct ly implemented or used, a view of a type in terms of its

underlying representation is often very useful.

One might argue, that a high level source language debugger should not provide any possibility at

all to violate the rules imposed by the language. For example, it should not be possible to assign an

integer to a boolean, write an integer as a set, etc. We take a different attitude. The structure of the

program is a design time property, typing and scope rules of a programming language are compile

time properties and none of these are debug time properties. In fact, we maintain that when a

program is faulty obeying structural rules or rules of the programming language obstructs the user

from finding the bug. The debugger must provide for greater flexibility and relaxation of the language

16

rules. Design abstractions and language abstractions should be seen as one possible set of dynamic

abstractions at debug time. Other dynamic abstractions can be specif ied by the user .

4 . 2 . V i s i b i l i t y L is t *

A consequence of dynamic abstractions is the relaxation of the compile time rules, In part icularly

the visibility rules for identifiers. In Ada programs the user will generally encounter a large name

space, especially when debugging programs that contain context clauses, that is, they import l ibrary

packages. Searching the symbol table in such a case might actually be confusing, because it contains

packages that are imported without the explicit knowledge of the user. Furthermore, the user often

has some idea in which package the variable is located, and a search through the whole name space

might not only be confusing but also very time consuming. Thus it would be preferable if the user

could give the debugger some direct ions for the search to make it more manageable and more

efficient.

In more concrete terms, the situation we want to model is where a programmer would like to inspect

a big program listing but has only a limited desk space available. The complete l isting does not fit on

the desk and the programmer must use a technique to make only those aspects of the program visible

that are of concern to the current debugging problem. In practice this is generally done by putt ing the

irrelevant pages aside and keeping only the important pages on the desk. Abstract ions maintained by

the program are usually of no concern in such a situation. Of course, dur ing the debugging session

the view of what constitutes an irrelevant page changes very often and the programmer has to leaf

through many pages, changing their visibility status depending on his current needs.

To model this scenario with a debugger we introduce the not ion of a visibility list and operations for

its manipulat ion. From the user's point of view the visibility list is the set of compi lat ion units that are

of concern to him for the current debugging situation. From the implementer 's point of view the

visibility list is an ordered list of symbol tables where each symbol table is the result of the compi lat ion

of a compilat ion unit.

The visibility list is searched in sequential order, starting at the head of the list. In the fol lowing we

introduce debugger commands that manipulate the contents of the visibility list and thus permit the

user to manipulate the search order. In this section we discuss the visibility list and operat ions

defined on it. The search can be further modif ied by so-called search modes introduced in sect ion

4.3.

The main intended use for visibility lists is to manage the name space of large complex Ada

1 7

programs being debugged by experienced programmers. For small programs, visibility lists are

probably not very helpful, especially if the cost of making the whole name space available is

neglectable. Furthermore, because the visibility list permits the programmer to violate so many rules

of the Ada language, the name space made visible by the visibility list might be quite confusing,

especially to the naive user. Thus the Ada debugger must contain commands for managing simple

name spaces and simple debug situations as well as complex name spaces and complicated debug

situations.

One name space that is often needed during debugging is the set of names that are statically visible

as seen from the current program counter and as expected by the user. The statically visible name

space can be opened by the command

O p e n S t a t i c V i e w Enter all symbol tables of compi lat ion units currently visible from the current point
of execution applying Ada's scope rules.

A situation which is also needed very often is to open all the symbol tables for routines currently on

the runtime stack. This can be done by the O p e n S t a c k command.

O p e n S t a c k

Append all symbol tables containing symbolic information for one of the
subprograms currently on the runtime stack to the end of the visibility list. Do not
move symbol tables that are aiready in the visibility list.

To make the use of these commands as simple as possible, they can be made part of a default

profile that is automatically executed whenever the debugger is fired up.

More complex views of the name space can be obtained by applying one of the commands

descr ibed below. Each of these commands take a name N denot ing a compilation unit and an

optional qualif ier SPECS or BODY, which permits the debugger to dist inguish between the users view

and the implementers view of the name space of N. SPECS denotes the specif ication parts of all

packages of N, BODY specifies the body parts of all packages of N. If the qualif ier is omitted the whole

name space of N is denoted.

O p e n [SPECS|BODY] N

If N is already in the visibility list move it to the top. Otherwise insert the symbol
table for N at the head of the visibility list. If N = ' * ' , then add all symbol tables to
the visibility list and make the specif ications, body parts or both visible. For
example, O p e n SPECS * m a k e s all the specif ications of the program visible.

C lose [SPECS|BODY] N

If N is not in the visibility list do nothing. Otherwise, if SPECS or BODY is
specif ied, make the specif icat ion or the body of compilat ion unit N invisible,

1 8

respectively. If no qualifier is specif ied, remove compilat ion unit N f rom the
visibility list. C lose SPECS * removes all speci f icat ions from the visibility list.
C lose BODY * makes the name space of all bodies of the program invisible. The
command C lose * empties the visibility list.

Symbol tables of compilat ion units are not added to the visibility list if the user has not issued an

O p e n , O p e n S t a c k or O p e n S t a t i c V i e w command. In particular, if a compilat ion unit N contains

some use clauses the corresponding package declarations are not automatically made visible when N

is opened. The underlying assumption is that packages from a library are generally well debugged

and don' t have to be present in the visibility list. If they are needed, however, they can be dealt with by

the O p e n R e c u r s i v e and C l o s e R e c u r s i v e commands. .

O p e n R e c u r s i v e [SPECS|BODY] N
Execute O p e n [SPECS|BOD Y] N. Then for each package mentioned in a context
clause (use or w i t h) in N open the corresponding compilat ion unit. This is done
recursively until there are no more new clauses. If N = ' * ' , then the command is
the same as O p e n * .

CLOSERECURSIVE [SPECS|BODY] N
Execute C lose [SPECS|BODY] N. Then for each context clause in N , close the
compilat ion unit contain ing the package mentioned in the clause. This is done
recursively until there are no more new context clauses. C l o s e R e a u rs i ve * is the
same as C l o s e * .

The visibility list commands have to be supported by adequate symbolic information generated by

the Ada compiler. In particular, the debugger must be able to dist inguish between specif ications and

bodies of a compi lat ion unit as easily as possible. This can be achieved by adding this information to

the Da ta table.

4 . 3 . S e a r c h M o d e s

In Ada, a potentially visible declarat ion is any declarat ion that occurs immediately within the visible

part of a package. They can be made visible by a use clause. However, the Ada Reference Manual

states that potentially visible declarat ions are not visible in the fol lowing cases:

• If the place considered is within the immediate scope of a homograph of the declarat ion.

• Conflicting names: Two potentially visible declarat ions with the same identifier are not
visible unless one of them is either an enumerat ion l i teralor a subprogram declarat ion.

For example, let us assume we are debugging the program fragment in f igure 4 - 1 . Then the name V is

illegal inside the body of procedure Q according to Ada's visibility rules. D.V or E.V must be used

instead. However, it would be legal if we " m o v e " into package D. Again, we regard these rules as

compi le t ime rules that are not well suited for debugging. From the analysis of the user protocols we

19

package D 1s
T tU,V: Boolean;

end D;

procedure P 1s
package E 1s

B.W.V : Integer;
end E;

procedure Q 1s
T,X: Real;
Use D,E;

begin
Body of procedure Q

end Q;

begin

end P;

F igu re 4 - 1 : Ada's Visibility Rules

know that users are moving the point of inspection - which is different from the program counter

- frequently around in the program [Bruegge, 1985]. Furthermore they avoid prefixing and rather

move to the inspection point where they can use short names. Thus an Ada debugger should not

fol low these rules and we introduce the not ion of a search mode instead. The user can specify one of

three search modes:

S e a r c h O n e

The visibility list is searched from top to bottom and when the first name is found it
is printed.

Sea r c h C o m p i l a t i o n Un i t

The visibility list is searched from top to bottom. When the first match is found, the
compilat ion unit is searched completely and all matches found in this compi lat ion
unit are printed.

SearchAI I

The whole visibility list is searched and the set of found identifiers is printed.

We il lustrate these search modes with an example. Let us assume we have written the fol lowing

Ada program fragment in a compilat ion unit CU:
procedure R i s
package TRAFFIC i s
type COLOR 1s (RED, AMBER, GREEN);

end TRAFFIC;

package WATERCOLORS 1s
type COLOR 1s (WHITE, RED, YELLOW, GREEN,

BLUE, BROWN, BLACK);

end WATERCOLORS;

If we look for the name COLOR we could have the fol lowing situations:

20

1. If CU is not on the visibility list, COLOR will not be visible to the debugger.

2. If we set the search mode to S e a r c h O n e and CU is on the visibility list, then the
debugger returns the definit ion of COLOR in the TRAFFIC package.

3. If we set the search mode to S e a r c h A I I and CU is on the visibility list, then the debugger
returns both definit ions of COLOR.

4 . 4 . S e p a r a t e C o m p i l a t i o n

Ada's separate compilation feature introduces two problems. One problem is that if a program

consists of several compilat ion units the whole symbolic information of the program is no longer

generated at the same time. Symbol tables must be generated separately for each compilation unit

and thus an Ada debugger has to cope with the problem of multiple symbol tables. We discuss this

problem in section 4.4.1. The other problem is that separate compilat ion units introduce a large name

space which is only partially created by the user, especially if packages are imported by context

clauses. When debugging the user is not necessarily interested in having this large name space

available. However, he might be interested in names which cannot be made visible simultaneously as

far as the language rules are concerned. In section 4.4.2 we show how this can be done by means of

the visibility list.

4 . 4 . 1 . M u l t i p l e S y m b o l T a b l e s

With the symbolic information being generated at different times in several symbol tables the

physical relation between symbol tables and target process becomes a problem. Existing Pascal

debuggers are generally based on integrated symbol tables, that is the symbol table is part of the

runfile of the target. PasDDT [Hisgen, 1981], for example, expects the compiler to load symbol

information together wi th the runfile if the program is compi led with debug switch. The advantage of

an integrated symbol table is fast response time because direct memory access to the symbolic

information can be used. There is also no need to use the file system for accessing the symbol table,

which means that the debugger does not have to rely on the file system.

Integrated symbol tables have also several disadvantages. Depending on the programming style

and other factors, runfiles containing symbolic information can be signif icantly larger than the virgin

runfile [Barbacci , 1985b]. This results in the commonly practiced style of dist inguishing between the

debugging version (debugging information such as NOOP's included) and the production version (all

debugging information str ipped off) of a p rog ram 5 which we do not advocate. Another disadvantage

5 H o a r e has compared this pract ice with swimmers who try to learn swimming on the beach wear ing life vests

their life vests off as soon as they go into the water.

21

of integrated symbol tables is that they can influence the paging behaviour of the system. For

example, t iming errors in the target process might have a smaller chance of being detected when

frequent symbol table access causes the enlarged runfile to be p*ged in a different manner than the

virgin runfile. And worse, s o m e * » m M enlarged runfile might be just too large to fit into the

availablp fti* o/otem space.

Separate symbol tables have several advantages and these show up especially in the context of a

Ada debugger. The separate compilat ion feature encourages the compiler to keep the abstract

syntax tree of the specif ications of compiled programs beyond the compilation time. This is of

advantage, for example, when a package that has not been changed after its last compilat ion is

imported by another program. In this case the compiler can use the syntax tree instead of scanning

the source text again, speeding up the compilat ion. If we allow the debugger to have read access

rights to the abstract syntax tree, no extraneous symbol table has to be produced (as was usually

done for Pascal debuggers). This has several advantages. First, avoiding the generation of the

(extraneous) symbol table reduces the compilat ion t ime. Furthermore the size of the runfile of the

target process is the same no matter whether the user is debugging or not. Third, if the symbol table

is not part of the address space of the target program, it can be kept on a remote file system. This is

of advantage in disk space limited environment such as personal workstat ions 6 . Fourth, it allows the

protection of symbolic information on the file system level making unauthorized access to the

symbolic information impossible. Copyrighted or otherwise protected programs can be released into

"host i le" environments and still symbolically debugged if necessary.

One could argue that with the introduction of separate symbol tables the number of file accesses

has to increase and the response t ime of an interactive debugger slows down. However

measurements done during debugging sessions of programs written in a Pascal dialect support ing

separate compilat ion revealed that generally less than 0.5% of all symbol tables were accessed during

debugging sessions [Bruegge, 1985]. Furthermore symbolic accesses seem to follow a locality

principle: Once a name is accessed in a certain compilation unit, the number of accesses to names

defined in the same compilation unit is signif icantly higher than the number of requests for names in

different compilat ion units.

d e b u g g e r ^ t r a n S P a r 6 n t f M e S y S t e m a c c e s s c o u l d b e u s e d t o a d d t h e r e n l o t e directory to the local fi le search list of the

22

4 . 4 . 2 . M a n i p u l a t i o n of t h e V i s i b i l i t y L is t

In fnc following we show how the notion of a visibility list can be applied with advantage to a set of

separately compiled units. To " . .Ae the discussion more concrete, ' f igure 4-2 contains an Ada

program consisting of 3 compilation units callec! A, B and

COMPILAT ION UNIT A:

1 procedure TOP 1s
2
3 type REAL 1s digits 10;
4 R,S : REAL :• 1.0;
6
6 package FACILITY 1s
7 PI: constant:- 3.14169;
8 function F(X: REAL) return REAL;
9 procedure G(Y,Z: REAL);

10 end FACILITY;
11
12 package body FACILITY is separate.;
13
14 begin — TOP
16 FACILITY.G(R,S);
16 end TOP;

COMPILAT ION UNIT B :

1 separate (TOP)
2 package body FACILITY is
3 function F(X: REAL) return REAL 1s
4 begin
6 F :-. X»2;
6 return F;
7 end F;
8
9 procedure G(Y,Z: REAL) 1s separate;
10 end FACILITY;

COMPILAT ION UNIT C:

1 with TEXTIO;
2 separate (TOP.FACILITY)
3 procedure G(Y,Z: REAL) 1s
4 begin
6 R :- Y +Z;
6 end G;

Figu re 4 - 2 : Example program: Separate Compilat ion

Let us assume we are debugging this program and the visibility list is initially empty. If we execute the
command OPEN A, the visibility list contains

A (Specs, Body) [Head-Tall]

Thus all the names declared in compilation unit A such as R, S, PI, etc, are visible for the debugger.

If we execute the command CLOSE * , the visibility list is empty again. The command

23

O P E N R E C U R S I V E A fills the visibility list with
A (Specs. Body) [Head]
B (Specs. Body)
C (Specs. Body) [Tall]

which makes all the symbols of all symbol tables visible. CLOSE SPECS A changes the visibility list

into
A (Body) [Head]
B (Specs, Body)
C (Specs, Body) [Tall]

which makes all the symbols defined in the specif ication of package Fac i l i t y invisible.- Thus the

variable PI as well as the specif ication of functions F and G are not accessible. However, F and G are

still known, because their bodies are accessible in the compilat ion units B and C, respectively. F can

be made invisible by the command CLOSE BODY B:
A (Body) [Head]
B (Specs)
C (Specs, Body) [Tall]

Note that the variables R and S in compilat ion unit A can only be made invisible if the whole

compilat ion unit A is removed from the visibility list.

4 . 5 . O v e r l o a d e d I d e n t i f i e r s

Ada's overloading rules are complex and a full implementation puts quite a burden on the

implementer of the debugger. However, the overloading rules might not always be that useful at

debug time. As we have already argued above, the user of a debugger usually does not apply the

notion of a scope as strictly as the compiler. We hypothesize that this is also true for overloaded

identifiers. Of course, when writ ing expressions containing overloaded operators the user most

probably expects the operators to be resolved exactly in the way they were resolved at compile time.

However, the user is also often interested in all instances of a certain name, not just the instances that

are visible according to the current scope and overloading rules. Thus we regard the overloading

rules as compile time rules that can be overridden at debug time by means of the visibility list

described in section 4.2. If a name is overloaded the search modes can be used to return a list of

symbols describing one or all instances of the name and ask the user for more precise information to

determine the meaning. This can be done by pointing or by some other naming mechanism.

Our approach results in a requirement for the compiler builder. To return the list of all overloaded

instances of a certain identifier as fast as possible, the Data table should allow fast access to all

overloaded identifiers. This can be done by representing the name spaces as ternary trees where all

overloaded names descend form the same node, a representation employed by the Spice Ada

compiler [Barbacci, 1985a].

24

5. Tasking
Helmbold and Luckham [Helmbold 85] propose a debugging facility for the detection of deadlocks

and blocking errors of Ada programs containing tasks. The facility is built on the notion of the tasking

state of an Ada program. A tasking state of a program is the set of tasks that have been activated by

the program, their statuses and associated information. A tasking state is described without access to

the name space of the target program, that is it is independent of the application.

Unfortunately the facility is not adequate for many debugging situations. It does not provide the

ability to specify the execution behaviour in terms of the abstractions employed in the application. A

command like "Run the program until 1000 tasking statements have been executed" does not

describe a specific debugging situation as good as a command "Run the program until an entry call

P r o d u c e is fol lowed by an entry call C o n s u m e " . The facility does also not provide a way to filter the

output produced during the execut ion. However, when debugging multiple processes the output

produced can be overwhelming. Finally the facility does not provide for any corrective action to be

taken once a certain situation is recognized.

We propose to use PATHRULES ([Bruegge, 1983a], [Bruegge, 1985]) as a debugging facility for

debugging Ada tasks, PATHRULES is a ianguage based on the production system paradigm. A path

rule consists of two parts: An event recognit ion and an action part. The ianguage for the event

recognit ion part is based on predicate path expressions [Andler, 1979] and permits the descript ion of

the state, operational and communicat ional aspects of single as well as multiple process systems in a

small and concise way. The action part specifies the actions to be performed when the execution of

the target process matches the execut ion specified by.the event recognit ion part.

The fol lowing example shows how to set a distributed breakpoint in an Ada fragment employing

tasks. The fragment defines a buffering task B for a producer task P and a consumer task C and is

shown in f igure 5 -1 .

To set a break point after P has called the entry routine W r i t e with C = ' B ' and when B is about to

accept it, we write the following path rule:

PATHRULE DistBreak
6PE: PrB.WritelR^har-'B'}; B: B.Wr1telA{C-,B,>
MATCH: Suspend P.B

END DIsBreak

This definit ion defines a path rule with the name D i s t B r e a k . The event recognit ion part - prefixed

by the word GPE - contains a generalized path expression that specif ies the occurrence of a

composite event consisting of two events. The first event is described by

" P : B . W r i t e ! R { C h a r = ' B ' } " . it matches the execution when the entry routine W r i t e of task B is

25

— Producing task P:
loop

B.Write(char);

end loop

--Consuming task C:

loop

B.Read(char);

end loop

--Buffering task B:

loop
select
when count < PoolSIze •>

accept Wr1te(C: in Character) do

or
when count > 0 •>

accept Read(C: out Character) do

or
terminate

end loop
Figure 5 - 1 : Ada Tasking Example

requested 7 by task P and the variable Cha r has the value ' B \ The second event is described by

" B : B . W r i t e ! A { C = ' B ' } " . It matches the execution when the entry routine W r i t e in task B is about to

be activated with the actual parameter C = 'B\ The sequential operator " ; " specifies that the

composite event described in the path rule is only matched by the execution if the two events occur in

sequential order, that is P requests the execution of Wr i te before B enters the execution of Wr i te .

No other execution path would be matched.

The action part of the path rule specifies that the tasks P and B are suspended as soon as the

execution matches the event specified in the rule. The S u s p e n d command is described in section

5.1. Note that Ada's semantics for rendezvous ensure that the call ing task P is suspended until the

corresponding accept statement in B is executed.

Naturally, this example does not describe all the possibilities of using PATHRULES for debugging Ada

tasks, PATHRULES are an adequate language to describe many other aspects cf Ada tasks • in fact of

7 l n PATHRULES the occur rence of a path func t ion can be moni tored at three different occasions, namely when the path
funct ion execut ion is requested, activated or terminated. This is indicated by postf ix ing the name of the path funct ion with an
event qualifier !R, !A or !T, respectively.

26

parallel processes in general - such as the specif ication of deadlocks or the illegal use of crit ical

regions. A full descript ion of PATHRULES is beyond the scope of this paper and is contained in

[Bruegge, 1985].
*

In the remainder of this section we rather concentrate on the introduct ion of a set of AO& specif ic

commands that can be used in the action part of a path rule to debug and manipulate Ada programs

containing tasks. First, in section 5.1, we describe a set of general commands that we consider useful

in the context of debugging Ada tasks. Because nobody knows yet how to debug tasks, it is highly

probable that this set of commands does not cover all possible debugging situations. We argue that

this problem can be alleviated by the ability to call routines of the target program. In general, this is

already possible in PATHRULES. However, many task specific manipulation routines will be defined in

the runtime system of the language implementation. Thus in section 5.2 we propose to extend

PATHRULES to call routines defined in the runtime system as well as in the target program itself.

5 . 1 . G e n e r a l C o m m a n d s

Ada's semantics of tasks poses several problems when debugging Ada programs. In the fol lowing

we describe these problems and show how to circumvent them.

Ada's task objects are constants. At debug time, however, it might be necessary to replace a task by

another one. For example, tasks can proceed in parallel and make the execution of the target

process nondeterministic. To be able to make a debugging session deterministic, it might be

desirable to replace a nondeterministic task by a deterministic one (such as a test driver). Another

example where task replacement might be necessary is when a task is hung and a correct ly

funct ioning one is available. The command we propose is

Rep lace [A L L] T1 T2
Rep lace replaces the task T1 by the task T2. If ALL is specif ied, all tasks
dependent on T1 are deleted. T2 starts its execution as if it has been called by the
program.

Ada provides queues associated with entry routines that fol low a certain server discipl ine. These

queues are not directly visible to the user. At debug t ime, however, we might want to change the

queueing discipl ine or the contents of the queues. Thus the debugger should provide commands that

permit the manipulation of entry queues. The commands we propose are

A d d Q u e u e S T N
Add task T behind N'th entry of the queue associated with subprogram S.

C l e a r Q u e u e S

27

Clear the queue associated with subprogram S.

Ada's definit ion of the termination of a task is also not very useful when debugging. For example, a

task might be hung up because of another task. The user would like to get rid off the second task so

that the first one is able to continue its execut ion. If the second task has dependent tasks, the user

might want to kill these too or he might not. To manipulate the order of execut ion and termination of

tasks we propose the following commands:

S t a r t T

Start the set of tasks T = T1 , . . . ,Tn . If a task Ti is already running, ignore the
command for that task. S t a r t * starts all currently defined tasks.

S u s p e n d T1 , . . . ,Tn

Suspend the set of tasks T1 , . . . ,Tn . If a task Ti is already suspended by a previous
S u s p e n d command, ignore the command for T i . S u s p e n d * suspends all
currently active tasks. Note that S u s p e n d means suspension of the task on the
operating system level, not on the language level. In Ada a task T is suspended if
it is wait ing for a rendezvous but the other task is not yet ready for the rendezvous.
Such a task would normally resume the execution if the condit ions for the
rendezvous are fulf i l led. However, if the user has issued a S u s p e n d T command,
the task would not resume the execution even if the rendezvous can take place.

R e s u m e T

Resume the set of tasks T = T1 ,Tn that were suspended by a previous
S u s p e n d command. If a task Ti is already running, ignore the command for T i .
R e s u m e * resumes all tasks that were suspended by a previous S u s p e n d
command.

K i l l [ALL] T1 , . . . ,Tn

Terminate each of the tasks T1,...,Tn, if they are not yet terminated. If ALL is
specif ied, all tasks depending on T1,...,Tn are also terminated, otherwise they are
not. K i l l * terminates all tasks and depending tasks.

Priorities of tasks can be set in Ada with the PRIORITY pragma and are fixed at runtime. The

selection of the priorities, however, does not always support all possible executions desired dur ing

debugging. To change the priority of a task we propose the command

S e t P r i o r i t y N T 1 T n

Change the priority of the set of tasks T1 ,...,Tn to N.

5 . 2 . Ca l l i ng S u b p r o g r a m s in t he R u n t i m e S y s t e m

As mentioned before, there is not much experience in debugging Ada tasks, and thus it is not clear

whether the functionality just described in connect ion with the PATHRULE language is sufficient.

Because of this reason we propose that subprograms in the Ada runtime system that modify

28

impending tasks can also be called in the action part of a path rule. By providing routines that can be

called instead of built in commands, the debugger can be customized to the specific application

being debugged. We think,-that this approach is viable as long as.nobody-knows what-a.good set of

commands for debugging tasks is. In fact, because of its flexibility and customizabil i ty it might be

even useful after such a basic set has been determined.

The runtime subprograms can be routines used by the runtime system to implement the Ada

language as well as routines that modify tasks but are never called directly, that is, routines that are

not necessary for the implementation of the Ada language. In fact, several of the commands

described above might be available as routines implemented in the runtime system.

The ability to call subprograms creates several problems for the builder of the debugger. Symbolic

information of the runtime system routines must be made visible for the debugger to set breakpoints,

intercept calls or execute the runtime routines. In particular, the call ing convent ion for the routines in

the runtime system should be the same as the one for the subprograms of the Ada program. This

causes problems if the runtime system is written in a different language. In this case an Ada interface

and the associated symbolic information must be provided for all the runtime system routines and

must be made visible to the user and the debugger, respectively.

Another problem is that the environment of the call might not be the same as dur ing normal

execution. In particular, if the subprogram is nested, the enclosing subprogram might not be on the

runtime stack and the subprogram might refer to nonexisting objects. For this reason we disallow the

call of any nested subprogram at debug time. Even if we disallow nested subprogram calls,

subprograms might refer to global variables which are not yet initialized because the subprogram is

called out of order. If the subprogram is defined in the Ada program, we can assume that the user is

able to deduce any precondit ions for the call . However, this might be impossible for the subprograms

of the runtime system. For this reason the implementer of the runtime system must specify all the

precondit ions for all the exported subprograms of the runtime system as a help for the user.

Even with the restrictions mentioned above, call ing a subprogram might result in an unexpected

error which the user would like to undo. Thus we propose that the debugger provides a command that

neutralizes the effect of any subprogram call issued during a debugging session:

A b o r t R Restore the state of the program to the state it had before the subprogram R was
executed.

To support such a command, the debugger must be able to memorize the debug state before the

29

subprogram is executed. This could be done by saving the state of the target process in a core dump

before executing the subprogram. If this is too costly, an additional parameter to A b o r t could

indicate whether to restore the state only partially. For example, a command A b o r t S t a c k A n d H e a p

R might restore the state to the old run time stack and heap before R was cal led, but it expects the

user to " repai r " the global state by himself 8 .

6. Exceptions
The Ada language defines a set of exceptions such as C o n s t r a i n t - Er ro r , P r o g r a m - Er ro r , etc.

Each of these language defined exceptions has a corresponding handler in the runtime system. If the

language defined exception occurs, this handler is cal led, prints out some predefined error message

and aborts the execution of the program. User defined exceptions define their own handler.

Handling exceptions in the language defined manner is not necessarily useful at debug time,

especially if except ions' indicate program errors. If a debugger is present, the user should have the

choice as to whether the actions defined by the exception handler are executed or whether a

debugger is invoked instead.

The Ada language does not define what happens when the execution of an Ada program is

terminated because of an unhandled except ion. Again, if a debugger is present, the debugger should

be calied for any unhandled exception that is, the debugger should be regarded as the final exception

handler for any exception not handled by the target process or the runtime system. For example a

division by zero does not necessarily mean that the user wants to abort the current execution. At

debug time the user might want to explore what happens if he patches the result of the division with a

defined value and continues the execut ion. Of course, when proceeding from an uncaught exception

the state of the target process is undef ined. But in many cases the user is able to patch the state into

a def ined state before proceeding.

Cohen&Cohen propose a debugging facility for dealing with exceptions [Cohen, 1985]. Their

proposal introduces exception-related breakpoints, facilities for allowing ihe user to raise and dismiss

exceptions and clean-up operations. We intend to provide the functionality described in their paper.

For example, the Ada debugger provides commands such that the user can raise or dismiss an

except ion:

Ra ise E Raise exception E.

g

nf ,hf c
UK W i n d C o m m , a " d i n K R A U T ' , o r e x a m P | e ' removes only the act ivat ion records f rom the run time stack that are a result

l n t,h? h
r° 9 r a m Tt 1

 " 0 t r 6 S t 0 r e a C ' i V a , i 0 n r 6 C 0 r d S ° f ° , h e r C u r r e n t l * S U £ P e n d e d subprograms Ne . h e r o e s
restore the heap or global vanables. However, even with this l imited capabil i ty the command seems to be quite use u.

30

Dismiss E Dismiss exception E.

We extend Cohen's proposal and suggest to use the PATHRULES ianguage for debugging

exceptions. We propose to make use of the environment variable % F a i l u r e R e a s o n to describe the

reason for the except ion 9 and three new path funct ions for describing events that deal specifically

with exceptions:

- R a i s e d E x c e p t i o n

This path function is executed when an exception is raised.

- P r o p a g a t e d E x c e p t i o n

This path funct ion is executed when an exception is propagated outside of a
subprogram.

- U n h a n d l e d E x c e p t i o n

This path funct ion is executed when there is no handler associated wi th the raised

except ion.

Event qualif iers can again be used to filter out unimportant occurrences of exception related events.

For example, the event - R a i s e d E x c e p t i o n l R denotes the situation when an except ion is about to

be raised. Thus to implement a breakpoint at the raise sites of all exceptions we write the path rule

PATHRULE BreakAtRaise
GPE: RaisedExceptionlR
ACTION: Halt

END

To break only at the occurrence of exceptions of type Constraint - Error we qualify the. path

function - R a i s e d E x c e p t i o n l R with the predicate { % E x c e p t i o n R e a s o n = 'Constraint - Error '} :

PATHRULE BreakAtRaise
GPE: RaisedExceptionlR {%ExceptionReason * 'ConstraintError*}
ACTION: Halt

END

The path function - P r o p a g a t e d E x c e p t i o n is useful when an exception is propagated into or out

of a specified subprogram and the user might want to dismiss the exception or raise a different

exception. For example, if we would like to dismiss an exception U n k n o w n C h a r a c t e r raised by a

subprogram W r i t e , but only if W r i t e is called from the subprogram D isp iay , we could write the

9 l n PATHRULES. environment variables are pref ixed by a percent s ign (%) to dist inguish them f rom names f rom the client name

space.

31

fol lowing path rule:

PATHRULE Dismiss
GPE: Display!A;Write!A;PropagatedExceptionIR {%Except1onReason-•UnknownCharacter•>
ACTION: Dismiss %ExceptionReason s ason

END

This path rule fires when the exception U n k n o w n C h a r a c t e r is raised in W r i t e and D isp lay is

active. Because the action part of the rule dismisses the except ion, the subprogram W r i t e will not be

aborted.

To catch all unhandled exceptions of an Ada program we could write the path rule

PATHRULE CatchAll
GPE: UnhandledExceptlon
Action: Halt

END

To support debugging of exceptions as outl ined above, the compiler must maintain a symbol table

that contains the names of all exceptions defined in the program and all exceptions defined in the Ada

language manual. Furthermore, the runtime system must initialize the environment variable

% E x c e p t i o n R e a s o n with the reason for the exception every t ime an exception is raised.

7. Implementat ion
We are currently implementing the proposals of this paper by extending K R A U T to debug Ada

programs compiled by the Spice Ada compiler [Barbacci , 1985a]. K R A U T is a remote, source level

symbolic debugger for a Pascal dialect called Perq Pascal [PQS, 1984]. It is running on a personal

workstat ion support ing multiple windows and a network environment with network transparent file

system access. The current status of our effort is as fol lows: K R A U T can deal with initialized

declarations as proposed in this paper. Visibility lists and the ability to call user defined subprograms

are also implemented. First experiences with the visibility list support our argument that users do not

always follow the language rules at debug time. Especially users of programs with large name spaces

make frequent use of visibility lists, PATHRULES have been implemented to deal with unhandled

exceptions, but are not yet usable for Ada tasks.

K R A U T cannot deal with generics, I n l i ne p r a g m a s 1 0 and overloaded identifiers. These features are

currently being implemented.

1U-r, , ,.
The In l i ne pragma is also not suppor ted by the Spice Ada compi ler.

32

8 . Conclusion
In this paper we have shown how a debugger based on Pascal can be converted into an Ada

debugger and discussed the problems encountered in the process. Several Ada features can be

dealt with by making a clear distinction between compi le time and debug time. Pascal did not provide

any abstractions beyond the procedure level. With Ada a new programming style emerges that

promotes the use of abstractions. We have argued that abstract ions that are useful at design or

compile t ime are not necessarily useful at debug time. We proposed the introduction of the visibility

list to manage the visibility of the name space of an Ada program and showed how it can be used for

separately compiled programs. Many other language rules are not necessarily useful at debug time,

for example the rule for resolution of overloaded identifiers or Ada's exception handling. The

introduct ion of the visibility list has two advantages. First, it al lows the user to make the name space

of large complex programs manageable because the size can be kept as small or as large as desired.

Second, a small visibility list yields faster search times, which in turn leads to better debugger

response times.

Other Ada features required addit ions to the symbol table produced by the compiler for the

debugger. These included initialization at declarat ion t ime, the In l i ne pragma and G e n e r i c s .

For debugging tasks and exceptions we proposed the use of PATHRULES. Furthermore we

advocated the ability to call runtime system routines from within the debugger. The main advantage

of call ing subprograms is its flexibility compared with built in commands.

9. Acknowledgements
I would like to thank Peter Feiler from Siemens RTL and Mario Barbacci from Carnegie-Mellon

University for their helpful comments on earlier versions of this paper.

10. Bibl iography
[Andler, 1979] S . Andler, "Predicate Path Expressions: A High-Level Synchronizat ion

Mechanism", Ph.D. Thesis, Department of Computer Science, Carnegie Mellon
University, 1979.

[Ball, 1982] J.E. Ball, M.R. Barbacci, S .E. Fahlman, S .P . Harbison, P.G. Hibbard, R.R. Rashid,
G.R. Robertson, and G.L. Steele: "The S P I C E Project" , Computer Science
Research Review 1980-1981, Department of Computer Science, Carnegie-Mellon
University, pp: 5-36.

[Barbacci , 1985a] M.R. Barbacci , T.D. Newton, R.G. Stockton: "The A d a + Front End and Code
Generator" , Proceedings of the 7985 International Ada Conference: Ada In Use,

33

Paris, France, May 1985.

[Barbacci , 1985b] M.R. Barbacci , personal communicat ion.

[Bruegge, 1983a] B. Bruegge, P. Hibbard "Generalized Path Expressions- A High Level Debugging
Mechan ism" , Journal of Systems and Software, Vol.3, 265-276, 1983.

[Bruegge, 1983b] B. Bruegge, "User Manual for K R A U T - The Interim S P I C E Debugger" , Technical
Report RTL-83TR-008, Siemens RTL, Princeton, November 1983.

[Bruegge, 1985] B. Bruegge, "Adaptabil i ty and Portability of Symbolic Debuggers" , Ph.D. Thesis,
Department of Computer Science, Carnegie Mellon University, expected in August
1985.

[Cohen, 1985] E. Cohen, J.Cohen, "Except ional Debugging in Ada" , Technical Report, Siemens
RTL Princeton, 1985. In progress.

[Helmbold, 1985] D. Helmbold, D. Luckham, "Debugging Ada Tasking Programs" , Computer, IEEE,
47-57, March 1985.

[Hennessy, 1982] J. Hennessy, "Symbol ic Debugging of Optimized Code" , ACM Transactions on
Programming Languages and Systems, Vol.4, No. 4, 323-344, July 1982.

[Hisgen, 1981] A. Hisgen, "Pascal on the DEC System 10 at C M U " , Chapter 3: PasDDT, June
1981.

[PQS, 1984] Perq Systems Corporat ion, "Perq Pascal User Manua l " , Pittsburgh', 1984.

[Zellweger, 1983] P. T. Zellweger, "An Interactive High-Level Debugger for Control-Flow Optimized
Programs" , Technical Report CSL-83-1, XEROX Corporat ion, Palo Alto Research
Center, January 1983.

