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Abstract 

Type hierarchies abound in Artificial Intelligence, Data Bases 
and Programming Languages. Although their size, use and 
complexity differs, all share a central inference mechanism: 
Inheritance of information, their raison d'etre. This paper 
discusses various types of type hierarchies and inheritance 
mechanisms, concluding with a proposed generalized 
inheritance mapping approach to resolve issues of lateral and 
upward inheritance (to augment the traditional downward 
approach), as well as default reasoning and limited non- 
monotonic inference. 

1. The Ubiquity of Type Hierarchies 
Artificial Intelligence, Programming Languages and Data Bases 
share a common theme in their need and use of type 
hierarchies. For instance, artificial Intelligence combines type 
hierarchies with other declarative information and calls the 
result a semantic network. Programming languages and data 
bases tend to keep their hierarchies separate from other 
information. Type hierarchies always reflect both the nature of 
the data they classify and the operations performed upon it. The 
data-base world has by far the largest volume of data to classify; 
however, their data exhibits large-scale regularities and a high 
degree of homogeneity. At the opposite extreme, AI systems 
have encoded knowledge bases whose volume is orders of 
magnitude smaller than real-world data bases, but whose 
internal complexity, heterogeneity, and variety of operations 
performed upon the data are vastly greater. 

This paper discusses various types of inheritance mechanisms 
in type hierarchies, followed by an attempt to unify these into a 
coherent, inheritance inference method. The discussion will be 
biased towards fulfilling present AI needs, but the concepts and 
mechanisms outlined here ought to be of general use, as 
programming languages and data bases increase the 
complexity and demands placed upon their type hierarchies. 
The discussion below is the summary of a synthesis derived 
from general AI folklore on Semantic Networks, including 
Quillian's original formulation [9], the SCHOLAR system [2], and 
more recently Hendrix [7], Fahlman [5], the KL-ONE system [1], 
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Fox [6], and my own recent work on inheritance mappings (and 
also non-standard hierarchies [3]), and several enlightening 
discussions at the Data Abstraction Workshop. 

2. Types of Type Hierarchies 
There are various types of type hierarchies, depending upon 
whether strict inclusion is mandatory, whether a entry can have 
multiple types, whether type inclusion is necessarily transitive, 
exactly how the inclusion operation is defined, whether types 
partition a space (as opposed to arbitrary overlap), and whether 
default reasoning is permissible and/or monotonic in the 
inheritance mechanisms. Let me define some of the basic types 
of type hierarchies, which are closely coupled with the 
inheritance mechanisms discussed in the following section: 

• Sing~e-Type inclusion with strict Partitioning (STP). 
This is the simplest hierarchy, conceptually 
speaking. Every node has a single type. All types at 
each level are mutually-exclusive. The relation 
between a node and its type is the simple member-  
of relation. For example, most present-day type 
hierarchies in programing languages (without 
abstract or user-defined data types) fall into this 
category. If '4' is of type interger, it cannot also be 
of type floating-point. If interger is of type number, 
then by inheritance '4' is necessarily of type number 
and, by inheritance any legal operation defined for 
type number is a legal operation for type interger 
and for '4'. 

e Single-Type inclusion with No strict partitioning 
(STN). This is essentially an STP, but there is no 
mutual exclusion enforced among the type 
categorizations. Data structure D can be of type 
queue, but that doesn't preclude it from being type 
buffer (same FILO properties) unless the builder of 
the hierarchy takes pains to enforce more precise 
definitions with the objective of producing an STP 
hierarchy. 

• Multiple-Type inclusion with No strict partitioning 
(MTN). An MTN is like an STN except that each 
node can belong to more than one type. Therefore 
the induced hierarchy is a directed-acyclic graph 
(DAG) instead of a simple tree. For instance the 
node 'John' in an AI semantic network can belong 
to the types male, US-citizen and Computer 
Programmer. Each type, however is usually 
constrained to include only information that does 
not contradict entries in complementary type 
nodes. 
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MTN with defaul t  reasoning.  In any of the above 
hierarchies, including MTN, one can allow 
potentially contradictory information to be inherited 
from different types. The implications of relaxing the 
consistency constraint are discussed in the 
following section. 

Arbi t rary-L ink Networks.  Heretofore, I assumed 
inheritance could proceed only from more abstract 
to more specific types, and there was a universal 
link type (i.e., ISA or SET-INCLUSION) through 
which all inheritance occurs. This need not be the 
case, as we see in the following section. Permitting 
generalized inheritance, however, yields a general 
graph (with cycles and potentially high connectivity) 
rather than a strict hierarchy. 

3. Types of Inher i tance Mechanisms 
"Inheritance" means that assertions made of a type ought to be 
transmitted to all instances of that type. In general, inheritance 
is a transitive operation. Thus, if John is a man, men are land- 
animals, and land animals breath air, we can conclude, by 
inheritance, that John breathes air. However, this simple 
intuitive notion of inheritance is insufficient to represent a 
substantial fraction of all the information we would like to 
represent. For instance, consider a few classical problems, 
exempli f i~l  by the task of representing the following information 
in a type hierarchy: 

1. Birds fly, penguins are birds, penguins do not 
fly. 

2. The climate of Panama is hot and humid, 
Colon is a c i ty  in Panama.  Is it ca!d in Colon? 
(How can we infer a negative answer?) 

3. Louis XlV tables have four ornate wooden 
legs and a heavy decorated wooden top. Each 
leg is a t t ached  w i th  8 wooden pegs. Tables 
consist of legs attached to a flat top. What 
are Louis XIV tables made out of? How many 
pegs do they have? (The answers to both 
questions must be inferred.) 

4. A f l ivv i t  is jus t  l ike a smal l  car, except it has 
only  th ree  whee ls  a r ranged l ike a tricycle. 

5. Jo l~nis  a g radua te  s tudent .  John is an hei r  to 
the Heinz fo r tune .  Graduate students are not 
r ich. Heirs to fortunes have a lot of money. 
Graduate students w o r k  hard .  Heirs to 
fortunes do not work hard. Is John hard- 
working or rich or both or neither? 

The first case exemplifies the simplest form on non-monotonic 
inference in the inheritance process. Clearly, it is useful to store 
typical information with the type and note the few exceptions on 
the instances. Most birds fly, and if we did not know that 
penguins specifically do not fly, we would have concluded 
otherwise. Non-monotonicity means that the addition of new 
information can invalidate previously valid inferences. Here, the 
inheritance algorithm chooses the information stored lowest in 
the type hierarchy when conflicting information is found. (See 
Collins's LOK inference [4] and Reiter [10], for more discussion 
of non-monotonic default inference.) 

The second and third examples suggest a need to inherit 
information along dimensions other than the traditional ISA or 
SET-INCLUSION found in practically all type hierarchies. More 

specifically, a part can inherit a homogeneous property of the 
whole (such as climate or language spoken in a country), but 
not other properties such as GNP - we cannot tell anything 
concrete about the economy of Boston soley from the U.S. GNP. 
In programming languages, for instance, it would be very useful 
to infer that an array (or any other homogeneous data structure) 
inherits properties from the type of it entries - if an element of an 
array is complex, the array is a complex array. Similarly, the 
inheritance mechanism ought to function from the whole to its 
parts. 

The fourth example illustrates la teral  inher i tance,  i.e., defining a 
type by means of modifying an existing type. Recall one of my 
types of type hierarchies definition "An MTN is like an STN 
except t h a t . . . "  The explicit representation of conceptual 
similarly (by stating only key differences) ought to augment the 
expressive ease and facilitate the extension of existing type 
hierarchies - especially in the data base and AI worlds, where 
large volumes of information may already be stored under 
existing type definitions. In general, lateral Inheritance can 
compose information from more more than one existing type 
(e.g., car and tricycle) to construct a new type (e.g., fl iwit). 

The last example illustrates a problem that has only recently 
arisen in AI. The entry for "John" wants to inherit information 
from more than one type entry - but this information may be in 
conflict. My proposed solution to this dilemma is to separate 
definitional from default inheritance - by explicitly stating which 
form of inheritance is applicable to which attributes in the 
inheritance mapping indexed by the type. Hence, "rich heir" 
states in its inheritance mapping that possessing a large amount 
of money is a definitional attribute, while supposed laziness is 
only a default attr ibute The inference mechanism applies 
definitional inheritance first - which should never yield a 
contradiction - and default inheritance on a second pass only if 
it does not contradict 1 information concluded by the 
definitional inheritance pass. In cases where two different 
default inheritances contradict each other, I have a salience 
metric to determine which wins out - but I am on the market for a 
better resolution criterion but one that does not open the door 
to the full complexity of non-monotonic logic [8] 

4. Concluding with General Inheritance 
Mappings 

To summarize my brief discussion, I reiterate the key ideas and 
suggest where future research may lead. The simplest types of 
inheritance hierarchies afford the easiest type-checking and 
inheritance mechanisms - both from a conceptual-design 
criterion and efficiency of implementation. However, such 
hierarchies arc much too limited for present day AI purposes 
and future developments in data bases and programming 
languages. The addition of default reasoning, tangled 
hierarchies, lateral inheritance and other mechanisms need not 
complicate the system excessively, especially if the bulk of the 
system's operations involve only simple definitional inheri tance. 
My proposal, motivated in part by the recent work of Fox [6], is 
as follows: 

• Inheritance can proceed d o w n w a r d  in the 
traditional fashion - u p w a r d  - where the whole 
inherits from its parts, or a type is defined by 
enumerating its instances - or la teraly - where one 
type is defined as a modification or a composition of 
existing types. The directionality of the inheritance 
is an integral component of the inheritance 
mapping. 

• Inheritance can be defaul t ,  or def in i t ional ,  or the 
attributes of a type can be divided into two sets 
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according to which type of inheritance (if either) 
applies. This too is part of the inheritance mapping. 

Inheritance can proceed on different conceptual 
hierarchies, in addition to the traditional ISA 
hierarchy - for instance the part-subpart or 
Iocational inclusion hierarchies. Each dimension 
defines which properties are transferred by the 
inheritance mapping. (Even our old friend ISA does 
not inherit all properties: Kareem Jabbar, ISA man, 
man's average height is 5'10", but clearly Kareem 
Abdul Jabbar does not have an "average height" of 
5'10".) 

Each type definition in the network has a pointer to 
the appropriate inheritance mappings - which 
essentially act as complex filters of information - to 
be used in inheritance operations through links to 
other concepts in the network. 

To make matters simpler (since I am an incorrigible 
believer in default reasoning), each and every 
component of the inheritance mapping may default 
to the preferences of the system's designer. My 
preferences are: inheritance proceeds downward, 
everything is default, and the traditional ISA 
hierarchy is chosen as the inheritance conduit - 
unless explicitly specified otherwise in an 
inheritance mapping. 

In fact, the types of inheritance mappings can themselves be 
organized into a type hierarchy - with large savings in explicit 
storage of information. After all, that is the primary purpose of 
inheritance - to make common sense inference an automatic 
reflexive act without burdening the person (or mechanism) who 
must otherwise input large volumes of repetitious explicit 
knowledge. Furthermore, inheritance is very different from a 
general logic resolution theorem-proving method, in that it only 
makes one kind of inference - that which is most needed o and 
therefore does not suffer the unfavorable combinatorial 
properties of general logical inference. 

Sophisticated inheritance mechanisms have proven to be useful 
tools in AI - in building real systems as well as in more 
theoretical work. While much work needs to be done, I 
sincerely hope that some useful interaction between AI and 
other disciplines starting to exploit more complex type 
hierarchies can develop. In particular, type inheritance 
mechanisms for rule-based systems, process descriptions, 
abstract data types, etc. appear to be indispensable as more 
human knowledge is encoded into these information structures. 
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