
Default Reasoning and Inheritance Mechanisms
on Type Hierarchies

Jaime G. Carbonell
Computer Science Department

Carnegie-Mellon University
Pittsburgh, PA 15213

Abstract

Type hierarchies abound in Artificial Intelligence, Data Bases
and Programming Languages. Although their size, use and
complexity differs, all share a central inference mechanism:
Inheritance of information, their raison d'etre. This paper
discusses various types of type hierarchies and inheritance
mechanisms, concluding with a proposed generalized
inheritance mapping approach to resolve issues of lateral and
upward inheritance (to augment the traditional downward
approach), as well as default reasoning and limited non-
monotonic inference.

1. The Ubiquity of Type Hierarchies
Artificial Intelligence, Programming Languages and Data Bases
share a common theme in their need and use of type
hierarchies. For instance, artificial Intelligence combines type
hierarchies with other declarative information and calls the
result a semantic network. Programming languages and data
bases tend to keep their hierarchies separate from other
information. Type hierarchies always reflect both the nature of
the data they classify and the operations performed upon it. The
data-base world has by far the largest volume of data to classify;
however, their data exhibits large-scale regularities and a high
degree of homogeneity. At the opposite extreme, AI systems
have encoded knowledge bases whose volume is orders of
magnitude smaller than real-world data bases, but whose
internal complexity, heterogeneity, and variety of operations
performed upon the data are vastly greater.

This paper discusses various types of inheritance mechanisms
in type hierarchies, followed by an attempt to unify these into a
coherent, inheritance inference method. The discussion will be
biased towards fulfilling present AI needs, but the concepts and
mechanisms outlined here ought to be of general use, as
programming languages and data bases increase the
complexity and demands placed upon their type hierarchies.
The discussion below is the summary of a synthesis derived
from general AI folklore on Semantic Networks, including
Quillian's original formulation [9], the SCHOLAR system [2], and
more recently Hendrix [7], Fahlman [5], the KL-ONE system [1],

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1980 AC~4 0-89791-031-1/80/0600-0107 $00.75

Fox [6], and my own recent work on inheritance mappings (and
also non-standard hierarchies [3]), and several enlightening
discussions at the Data Abstraction Workshop.

2. Types of Type Hierarchies
There are various types of type hierarchies, depending upon
whether strict inclusion is mandatory, whether a entry can have
multiple types, whether type inclusion is necessarily transitive,
exactly how the inclusion operation is defined, whether types
partition a space (as opposed to arbitrary overlap), and whether
default reasoning is permissible and/or monotonic in the
inheritance mechanisms. Let me define some of the basic types
of type hierarchies, which are closely coupled with the
inheritance mechanisms discussed in the following section:

• Sing~e-Type inclusion with strict Partitioning (STP).
This is the simplest hierarchy, conceptually
speaking. Every node has a single type. All types at
each level are mutually-exclusive. The relation
between a node and its type is the simple member-
of relation. For example, most present-day type
hierarchies in programing languages (without
abstract or user-defined data types) fall into this
category. If '4' is of type interger, it cannot also be
of type floating-point. If interger is of type number,
then by inheritance '4' is necessarily of type number
and, by inheritance any legal operation defined for
type number is a legal operation for type interger
and for '4'.

e Single-Type inclusion with No strict partitioning
(STN). This is essentially an STP, but there is no
mutual exclusion enforced among the type
categorizations. Data structure D can be of type
queue, but that doesn't preclude it from being type
buffer (same FILO properties) unless the builder of
the hierarchy takes pains to enforce more precise
definitions with the objective of producing an STP
hierarchy.

• Multiple-Type inclusion with No strict partitioning
(MTN). An MTN is like an STN except that each
node can belong to more than one type. Therefore
the induced hierarchy is a directed-acyclic graph
(DAG) instead of a simple tree. For instance the
node 'John' in an AI semantic network can belong
to the types male, US-citizen and Computer
Programmer. Each type, however is usually
constrained to include only information that does
not contradict entries in complementary type
nodes.

107

MTN with defaul t reasoning. In any of the above
hierarchies, including MTN, one can allow
potentially contradictory information to be inherited
from different types. The implications of relaxing the
consistency constraint are discussed in the
following section.

Arbi t rary-L ink Networks. Heretofore, I assumed
inheritance could proceed only from more abstract
to more specific types, and there was a universal
link type (i.e., ISA or SET-INCLUSION) through
which all inheritance occurs. This need not be the
case, as we see in the following section. Permitting
generalized inheritance, however, yields a general
graph (with cycles and potentially high connectivity)
rather than a strict hierarchy.

3. Types of Inher i tance Mechanisms
"Inheritance" means that assertions made of a type ought to be
transmitted to all instances of that type. In general, inheritance
is a transitive operation. Thus, if John is a man, men are land-
animals, and land animals breath air, we can conclude, by
inheritance, that John breathes air. However, this simple
intuitive notion of inheritance is insufficient to represent a
substantial fraction of all the information we would like to
represent. For instance, consider a few classical problems,
exempli f i~l by the task of representing the following information
in a type hierarchy:

1. Birds fly, penguins are birds, penguins do not
fly.

2. The climate of Panama is hot and humid,
Colon is a c i ty in Panama. Is it ca!d in Colon?
(How can we infer a negative answer?)

3. Louis XlV tables have four ornate wooden
legs and a heavy decorated wooden top. Each
leg is a t t ached w i th 8 wooden pegs. Tables
consist of legs attached to a flat top. What
are Louis XIV tables made out of? How many
pegs do they have? (The answers to both
questions must be inferred.)

4. A f l ivv i t is jus t l ike a smal l car, except it has
only th ree whee ls a r ranged l ike a tricycle.

5. Jo l~nis a g radua te s tudent . John is an hei r to
the Heinz fo r tune . Graduate students are not
r ich. Heirs to fortunes have a lot of money.
Graduate students w o r k hard . Heirs to
fortunes do not work hard. Is John hard-
working or rich or both or neither?

The first case exemplifies the simplest form on non-monotonic
inference in the inheritance process. Clearly, it is useful to store
typical information with the type and note the few exceptions on
the instances. Most birds fly, and if we did not know that
penguins specifically do not fly, we would have concluded
otherwise. Non-monotonicity means that the addition of new
information can invalidate previously valid inferences. Here, the
inheritance algorithm chooses the information stored lowest in
the type hierarchy when conflicting information is found. (See
Collins's LOK inference [4] and Reiter [10], for more discussion
of non-monotonic default inference.)

The second and third examples suggest a need to inherit
information along dimensions other than the traditional ISA or
SET-INCLUSION found in practically all type hierarchies. More

specifically, a part can inherit a homogeneous property of the
whole (such as climate or language spoken in a country), but
not other properties such as GNP - we cannot tell anything
concrete about the economy of Boston soley from the U.S. GNP.
In programming languages, for instance, it would be very useful
to infer that an array (or any other homogeneous data structure)
inherits properties from the type of it entries - if an element of an
array is complex, the array is a complex array. Similarly, the
inheritance mechanism ought to function from the whole to its
parts.

The fourth example illustrates la teral inher i tance, i.e., defining a
type by means of modifying an existing type. Recall one of my
types of type hierarchies definition "An MTN is like an STN
except t h a t . . . " The explicit representation of conceptual
similarly (by stating only key differences) ought to augment the
expressive ease and facilitate the extension of existing type
hierarchies - especially in the data base and AI worlds, where
large volumes of information may already be stored under
existing type definitions. In general, lateral Inheritance can
compose information from more more than one existing type
(e.g., car and tricycle) to construct a new type (e.g., fl iwit).

The last example illustrates a problem that has only recently
arisen in AI. The entry for "John" wants to inherit information
from more than one type entry - but this information may be in
conflict. My proposed solution to this dilemma is to separate
definitional from default inheritance - by explicitly stating which
form of inheritance is applicable to which attributes in the
inheritance mapping indexed by the type. Hence, "rich heir"
states in its inheritance mapping that possessing a large amount
of money is a definitional attribute, while supposed laziness is
only a default attr ibute The inference mechanism applies
definitional inheritance first - which should never yield a
contradiction - and default inheritance on a second pass only if
it does not contradict 1 information concluded by the
definitional inheritance pass. In cases where two different
default inheritances contradict each other, I have a salience
metric to determine which wins out - but I am on the market for a
better resolution criterion but one that does not open the door
to the full complexity of non-monotonic logic [8]

4. Concluding with General Inheritance
Mappings

To summarize my brief discussion, I reiterate the key ideas and
suggest where future research may lead. The simplest types of
inheritance hierarchies afford the easiest type-checking and
inheritance mechanisms - both from a conceptual-design
criterion and efficiency of implementation. However, such
hierarchies arc much too limited for present day AI purposes
and future developments in data bases and programming
languages. The addition of default reasoning, tangled
hierarchies, lateral inheritance and other mechanisms need not
complicate the system excessively, especially if the bulk of the
system's operations involve only simple definitional inheri tance.
My proposal, motivated in part by the recent work of Fox [6], is
as follows:

• Inheritance can proceed d o w n w a r d in the
traditional fashion - u p w a r d - where the whole
inherits from its parts, or a type is defined by
enumerating its instances - or la teraly - where one
type is defined as a modification or a composition of
existing types. The directionality of the inheritance
is an integral component of the inheritance
mapping.

• Inheritance can be defaul t , or def in i t ional , or the
attributes of a type can be divided into two sets

108

according to which type of inheritance (if either)
applies. This too is part of the inheritance mapping.

Inheritance can proceed on different conceptual
hierarchies, in addition to the traditional ISA
hierarchy - for instance the part-subpart or
Iocational inclusion hierarchies. Each dimension
defines which properties are transferred by the
inheritance mapping. (Even our old friend ISA does
not inherit all properties: Kareem Jabbar, ISA man,
man's average height is 5'10", but clearly Kareem
Abdul Jabbar does not have an "average height" of
5'10".)

Each type definition in the network has a pointer to
the appropriate inheritance mappings - which
essentially act as complex filters of information - to
be used in inheritance operations through links to
other concepts in the network.

To make matters simpler (since I am an incorrigible
believer in default reasoning), each and every
component of the inheritance mapping may default
to the preferences of the system's designer. My
preferences are: inheritance proceeds downward,
everything is default, and the traditional ISA
hierarchy is chosen as the inheritance conduit -
unless explicitly specified otherwise in an
inheritance mapping.

In fact, the types of inheritance mappings can themselves be
organized into a type hierarchy - with large savings in explicit
storage of information. After all, that is the primary purpose of
inheritance - to make common sense inference an automatic
reflexive act without burdening the person (or mechanism) who
must otherwise input large volumes of repetitious explicit
knowledge. Furthermore, inheritance is very different from a
general logic resolution theorem-proving method, in that it only
makes one kind of inference - that which is most needed o and
therefore does not suffer the unfavorable combinatorial
properties of general logical inference.

Sophisticated inheritance mechanisms have proven to be useful
tools in AI - in building real systems as well as in more
theoretical work. While much work needs to be done, I
sincerely hope that some useful interaction between AI and
other disciplines starting to exploit more complex type
hierarchies can develop. In particular, type inheritance
mechanisms for rule-based systems, process descriptions,
abstract data types, etc. appear to be indispensable as more
human knowledge is encoded into these information structures.

3.

4.

6.

10.

Carbonell, J. G., "Towards a Process Model of Human
Personality Traits," Artificial Intelligence, Vol. (in press),
1980.

Collins, A., Warnock, E.H., Aiello, N. and Miller, M.L.,
"Reasoning from Incomplete Knowledge," in
Representation and Understanding, Bobrow, D.G. and
Collins, A., ed., New York: Academic Press Inc, 1975, pp.
383-415.

Fahlman, S, E., NETL: A System for Representing and
Using Real World Knowledge, MIT Press, 1979.

Fox, M.S., "On Inheritance in Knowledge
Representation," Proceedings of the Sixth International
Joint Conference on Artificial Intelligence, 1979 , pp.
282-284.

Hendrix, G., "Expanding The Utility of Semantic
Networks Through Partitioning," Proceedings of the
Fourth International Joint Conference on Artificial
Intelligence, 1975.

McDermott, D.V. and Doyle J., "Non-Monotonic Logic
I," Artificial Intelligence, Vol. 13, 1980, pp. 41-72.

Quillian, M R., "Semantic Memory," in Semantic
Information Processing, Minsky, M., ed., MIT Press,
1968.

Reiter, R., "A Logic For Default Reasoning," Artificial
Intelligence, Vol. 13, 1980, pp. 81-132.

5. Re fe rences

1. Brachman, R.J., Bobrow, R.J., Cohen, P. R., Klovstad,
J.W., Webber, B.L. and Woods, W.A., "Research in
Natural Language Understanding," Tech. report4274,
Bolt Beranek and Newman, 1979.

2. Carbonell, J.R., "AI in CAI: An Artificial Intelligence
Approach to Computer-Aided Instruction," IEEE Trans.
on Man-Machine Systems, VoI. 11, 1970, pp. 190-202.

1Contradiction here is simply defined to mean different values for the same
attribute, AI techniques for parhal matching are being developed to determine
degrees of contradictiol~/compatibility/corroboration, but these only serve to
enhance the utility of defau;t inheritance reasoning.

109
I

