
AVACS – Automatic Verification and Analysis of

Complex Systems

REPORTS
of SFB/TR 14 AVACS

Editors: Board of SFB/TR 14 AVACS

Differential Dynamic Logic for

Verifying Parametric Hybrid Systems

by

André Platzer

AVACS Technical Report No. 15
May 2007

ISSN: 1860-9821

Publisher: Sonderforschungsbereich/Transregio 14 AVACS
(Automatic Verification and Analysis of Complex Systems)

Editors: Bernd Becker, Werner Damm, Martin Fränzle, Ernst-Rüdiger Olderog,
Andreas Podelski, Reinhard Wilhelm

ATRs (AVACS Technical Reports) are freely downloadable from www.avacs.org

Copyright c© May 2007 by the author(s)

Author(s) contact: André Platzer (andre.platzer@informatik.uni-oldenburg.de).

Differential Dynamic Logic for

Verifying Parametric Hybrid Systems⋆

André Platzer

University of Oldenburg, Department of Computing Science, Germany
Carnegie Mellon University, Computer Science Department, Pittsburgh, PA

platzer@informatik.uni-oldenburg.de

Abstract. We introduce a first-order dynamic logic for reasoning about
systems with discrete and continuous state transitions, and we present
a sequent calculus for this logic. As a uniform model, our logic supports
hybrid programs with discrete and differential actions. For handling real
arithmetic during proofs, we lift quantifier elimination to dynamic logic.
To obtain a modular combination, we use side deductions for verifying
interacting dynamics. With this, our logic supports deductive verifica-
tion of hybrid systems with symbolic parameters and first-order defin-
able flows. Using our calculus, we prove a parametric inductive safety
constraint for speed supervision in a train control system.

Keywords: dynamic logic, sequent calculus, verification of parametric
hybrid systems, quantifier elimination

1 Introduction

Frequently, correctness of a real-time or hybrid system [16] depends on the choice
of parameters [9, 12, 25]. Such parameters naturally arise from the degrees of
freedom of how a part of the system can be instantiated or how a controller
can respond to input. They include both external system parameters like the
braking force of a train, and control parameters of internal choice like when to
start braking before approaching an open gate or a preceding train [9].

Symbolic parameters occurring in system dynamics raise a couple of chal-
lenges. Even simple parametric flows and guards are non-linear : With parame-
ter b, the flow constraint 2x + by ≥ 0 is an algebraic inequality but not linear.
For this reason, we cannot use approaches with linear arithmetic like the model
checkers HyTech [1], or PHAVer [14]. More generally, Davoren and Nerode [11]
argue that, unlike deductive methods, model checking [1,7,14,16] does not sup-
port free parameters. Furthermore, correctness of parametric systems typically
depends on a constraint on the free parameters, which is not always known a

⋆ This research was supported by a fellowship of the German Academic Exchange
Service (DAAD) and by the German Research Council (DFG) as part of the Tran-
sregional Collaborative Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS, see www.avacs.org). A shorter version [21]
of this report appeared at Tableaux 2007.

priori but needs to be identified during the analysis. It is, however, quite compli-
cated to synthesise such general symbolic constraints from the concrete values
of a counterexample trace produced by a model checker. Even without param-
eters, there are limitations of non-symbolic techniques for handling continuous
flows [25].

To overcome these issues, we propose a fully symbolic technique following
a deductive approach. We introduce a logic for verifying hybrid systems with
parameters. As a basis we use first-order logic, which has widely proven its
power and flexibility in handling symbolic parameters as logical variables. For
reasoning about state transitions, our logic further extends dynamic logic.

First-order dynamic logic (DL) [15] is a successful approach for reasoning
about (discrete) state changes [3, 4, 15, 18]. Like model checking, first-order DL
can analyse the behaviour of operational system models [22,23]. Yet, DL calculi
accept parameters: they verify systems by deductive proof rather than a more
enumerative and graph-theoretic analysis of the (abstract) state space as in
model checking [7]. In addition, operational models are internalised, and DL is
closed under logical operators. Thus, DL can analyse the relationship between
multiple systems [22, 24], which is useful for compositional verification.

Since hybrid systems are subject to both continuous evolution and discrete
state change, we add continuous state changes to discrete DL. As a uniform
model for hybrid systems, our logic introduces hybrid programs with discrete
assignments and differential actions. The resulting first-order dynamic logic is
called differential dynamic logic (dL). It has been motivated and proposed (with-
out a formal introduction) in our preliminary work [22].

In [23, 24], we have introduced logics that extend the basic ideas of [22]
into different directions. In [24], we have presented a logic with nominals to
investigate compositionality. In [23], we have introduced a temporal logic and a
calculus that reduces temporal statements to non-temporal formulas. The calculi
of [23,24] reduce their respective extensions to dL. In this paper, we give a proof
system for dL itself, which can be combined with the extensions in [23, 24].

We show how interacting discrete and continuous dynamics can be verified
constructively by integrating quantifier elimination into our calculus to handle
the resulting arithmetic. Moreover, this combination is modular in the sense
that we directly combine quantifier elimination and dynamic logic side by side.
Using side deductions, we achieve such a modular combination even though both
quantifiers and dynamic modalities interact by affecting the values of variables.

As an important modelling characteristic of hybrid systems, we generalise
differential actions to differential equations that can be restricted to first-order
invariant regions. Moreover, we show how induction can be integrated.

The first contribution of this paper is a formal introduction of our logic dL.
The main contribution is a full calculus for verifying interacting discrete and
continuous dynamics including the resulting arithmetic. For this, we present a
modular combination of quantifier elimination with a sequent calculus. Using
our calculus, we prove safety of speed supervision in train control [9, 12] and
synthesise the required parametric induction invariant.

Hybrid Systems. The behaviour of safety-critical systems typically depends
on both the state of a discrete controller and continuous physical quantities.
Hybrid systems are mathematical models for dynamic systems with interacting
discrete and continuous behaviour [11,16]. Their behaviour combines continuous
evolution (called flow) characterised by differential equations and discrete jumps.

Dynamic Logic. The principle of dynamic logic is to combine system opera-
tions and correctness statements about system states within a single specification
language (see [15] for a general introduction for discrete systems). By permit-
ting system operations α as actions of a labelled multi-modal logic, dynamic
logic provides formulas of the form [α]φ and 〈α〉φ, where [α]φ expresses that
all (terminating) runs of system α lead to states in which condition φ holds.
Likewise, 〈α〉φ expresses that there is at least one (terminating) run of α af-
ter which φ holds. In dL, hybrid programs play the role of α. In particular, dL
extends discrete dynamic logic [15] such that α can display continuous evolution.

Related Work. Several approaches [2, 13, 19, 20] use quantifier elimination [8]
in first-order real arithmetic for model checking hybrid automata. Thus, we use
the same decision procedure as a basis for handling arithmetic of non-linear
flows. We generalise these results to a deductive calculus for improved handling
of free parameters. As a more uniform model that is amenable to compositional
symbolic processing by calculi, we use hybrid programs rather than automata.

Zhou et al. [28] extended duration calculus with mathematical expressions in
derivatives of state variables. They use a multitude of rules and an oracle that
requires external mathematical reasoning about derivatives and continuity.

Rönkkö et al. [26] presented a guarded command language with differential
relations and gave a semantics in higher-order logic with built-in derivatives.
Without providing a means for verification of this higher-order logic, the ap-
proach is still limited to providing a notational variant of classical mathematics.

Rounds [27] defined a semantics in set theory of a “spatial” logic for a hybrid
π-calculus. Without giving a calculus for that logic, this approach is not suitable
for verification yet. Further, the automatic proving potential is limited by the
large number of very expressive operators in this formalism.

Boulton et al. [6] introduced a Hoare calculus for gain and phase shift prop-
erties of a special case of block diagrams. It requires manual reasoning about
complicated expressions with square roots, rational and trigonometric functions.
The authors do not give a soundness result or formal semantics.

Davoren and Nerode [10, 11] extended the propositional modal µ-calculus
with a semantics in hybrid systems and examine topological aspects. They pro-
vided Hilbert-style calculi to prove formulas that are valid for all hybrid sys-
tems simultaneously. Thus, only limited information can be obtained about a
particular system: In propositional modal logics, system behaviour needs to be
axiomatised in terms of abstract actions a, b, c of unknown effect, see, e.g. [22].

The strength of our logic primarily is that it is a first-order dynamic logic:
It handles actual operational models of hybrid systems like x := x+ y; ẋ = 2y

rather than abstract propositional actions of unknown effect. Further, we provide
a calculus for actually verifying hybrid programs with free parameters and first-
order definable flows, i.e., flows that are definable in first-order arithmetic. For
verifying the coordination level of train dynamics, which we use as an example,
first-order definable flows are sufficient [9]. First-order approximations of more
general flows can be used according to [2, 25].

Structure of this Paper. After introducing syntax and semantics of the differ-
ential logic dL in Section 2, we introduce a sequent calculus in Section 3, which
can be used for verifying parametric hybrid systems in dL, and prove soundness.
In Section 4, we prove an inductive safety property in train control using the dL
calculus. Finally, we draw conclusions and discuss future work in Section 5.

2 Syntax and Semantics of Differential Logic

As a uniform model for hybrid systems, our logic introduces hybrid programs,
which generalise real-time programs [17] to hybrid change. They are more ame-
nable to step-wise symbolic processing by calculus rules than graph structures of
automata. Since hybrid automata [1] can be embedded (see appendix B), there
is no loss of expressivity. Hybrid programs have a simple compositional seman-
tics. With this basis, we can construct a compositional calculus that reduces
verification of system properties to proving properties of its parts.

The differential logic dL is a dynamic logic for reasoning about programs
with three basic characteristics to meet the requirements of hybrid systems:

Discrete jumps. Projections in state space are represented as instantaneous as-
signments of values to state variables. With this, mode switches like mode := 4
or signal := 1 can be expressed with discrete jumps, as well as resets z := 0 or
adjustments of control variables like z := z − 2.

Continuous evolution. Continuous variation in system dynamics is represented
with differential equations as evolution constraints. For example, the evolution
of a train with constant braking can be expressed with a system action for the
differential equation z̈ = −b with second time-derivative z̈ of z. Similarly, the
effect of z̈ = −b& z ≥ 5 is an evolution that is restricted to always remain within
the region z ≥ 5, i.e., to stop braking at the latest when z < 5. Such an evolution
can stop at any time within z ≥ 5, it can even continue with transient grazing
along the border z = 5, but it is not allowed to proceed when it enters z < 5.

Regular combinations. Discrete and continuous transitions can be combined to
form hybrid programs using regular expression operators (∪, ∗, ;) as structured
behaviour of hybrid systems. For example, mode := 4 ∪ z̈ = −b describes a train
controller that can either choose to switch its state to an alert mode (4) or initi-
ate braking by the differential equation z̈ = −b, by a nondeterministic choice (∪).
In conjunction with other regular combinations, control constraints can be ex-
pressed using conditions like ?z ≥ 9 as guards for the system state.

2.1 Syntax of dL

Terms and Formulas. The formulas of dL are built over a finite set V of real-
valued variables and a fixed signature Σ of function and predicate symbols. For
simplicity, the signature Σ is assumed to contain exclusively the usual function
and predicate symbols for real arithmetic, such as 0, 1,+, ·,=,≤, <,≥, >.

The set Trm(V) of terms is defined as in classical first-order logic yielding
polynomial expressions. The set Fml(V) of formulas of dL is defined as common
in first-order dynamic logic [15]. That is, they are built using propositional con-
nectives ∧,∨,→,↔,¬ and quantifiers ∀, ∃ (first-order part). In addition, if φ is
a dL formula and α a hybrid program, then [α]φ, 〈α〉φ are formulas (dynamic
part). Refer to Appendix A for a detailed formal definition of the syntax of dL.

Hybrid Programs. In dL, elementary discrete jumps and continuous evolutions
interact using regular control structure to form hybrid programs.

Definition 2.1 (Hybrid programs). The set HP(V) of hybrid programs is
inductively defined as the smallest set such that:

– If x ∈ V and θ ∈ Trm(V), then (x := θ) ∈ HP(V).
– If x ∈ V , θ ∈ Trm(V), and χ ∈ Fml(V) further is a quantifier-free first-order

formula, then (ẋ = θ&χ) ∈ HP(V).
– If χ ∈ Fml(V) is a quantifier-free first-order formula, then (?χ) ∈ HP(V).
– If α, γ ∈ HP(V) then (α; γ) ∈ HP(V).
– If α, γ ∈ HP(V) then (α ∪ γ) ∈ HP(V).
– If α ∈ HP(V) then (α∗) ∈ HP(V).

The effect of x := θ is an instantaneous discrete jump in state space. That
of ẋ = θ&χ is an ongoing continuous evolution controlled by the differential
equation ẋ = θ while remaining within the region described by χ. The evolution
is allowed to stop at any point in χ. It is, however, obliged to stop before it
leaves χ. For unrestricted evolution, we abbreviate ẋ = θ& true by ẋ = θ. The
dL semantics allows differential equations with arbitrary terms θ and arbitrary
occurrences of x or other variables in θ. As, e.g., in [13,20], however, our calculus
assumes that ẋ = θ has a first-order definable flow or approximation. See [2,25]
for flow approximation techniques. Extensions of dL and its calculus to systems
of differential equations and higher-order derivatives are accordingly.

The ?φ action is used to define conditions. Its semantics is that of a no-op if φ
is true in the current state, and that of a failure divergence blocking all further
evolution, otherwise. The non-deterministic choice α∪γ, sequential composition
α; γ and non-deterministic repetition α∗ of hybrid programs are as usual. They
can be combined with ?φ to form more complicated control structures, see [15].

In dL, there is no need to distinguish between discrete and continuous vari-
ables or between system parameters and state variables, as they share the same
uniform semantics. For instance, ∃z [ż = −z]z ≤ 5 expresses that there is a choice
of the initial value for z (which could be a parameter) such that after all evolu-
tions of z along ż = −z, the outcome of the state variable z will be at most 5.
For pragmatic reasons, an informal distinction can improve readability. Formal
distinctions of quantified variables and state variables [4] carry over to dL.

2.2 Semantics

Hybrid systems evolve along a piecewise continuous trajectory in n-dimensional
space as time passes (see Fig. 1 for a possible evolution with one system variable x
over time t). The discontinuities are caused by discrete jumps in the state space
while the segments of continuous evolution are governed by differential equations.
Concerning semantics of hybrid system models, there is a variety of slightly
different formalisations. Since the interplay of discrete change with continuous
evolution raises peculiar subtleties, we start with a motivation that highlights
the advantages of our choice of semantics for dL.

t

x

ẋ=−2x

0.2

1
ẋ=f(x)

1

2

g

ẋ=h(x)

0.6

Fig. 1. Discontinuous hybrid trajectory

Motivation. Consider the scenario in
Fig. 1. The semantics has to restrict
the behaviour of the hybrid system
during the continuous evolution phase,
e.g., on the interval [1, 2], to respect
the differential equation ẋ = f(x).
Yet, the discrete jump at time 2 will
necessarily lead to a discontinuity in
the overall system trajectory. Now, an
overall system trajectory function g

(where g(t) records the value of x at
time t) can only assume a single value at time 2, say g(2) = 0.6. Hence, the evo-
lution of g will only be continuous on the inner interval (1, 2). Still, the evolution
along ẋ = f(x) has to be constrained to possess a left -continuous continuation at
time 2 towards a projected value of 1, although this value will never be assumed
by g. This complicates the well-posed definition of semantics on the basis of an
overall system trajectory. Note that leaving out this condition of left-continuity
would lead to a total transition relation with all states being reachable, which,
of course, would not reflect the proper system behaviour either.

In contrast to this, the dL semantics inflates points in time with instantaneous
discrete progression by associating an individual trajectory for each continu-
ous evolution or instant jump phase. Hence, the trajectories remain continuous
within each differential evolution phase, with discontinuities isolated purely in
discrete jump transitions. Thereby, the dL semantics directly traces the succes-
sion of values assumed during the hybrid evolution, even if they belong to states
which occur without model time passing in between. In addition to the fact
that those so-called super-dense time effects naturally occur at mode switches
between differential evolutions, they are necessary for joint mode switches of
several system variables at once, like in x := 3; y := 5. We argue that the dL
semantics is much simpler to define than for approaches with a global overall
system trajectory as, for example, in [9].

Formal Semantics. The interpretations of dL consist of states (worlds) that
are first-order structures over the reals, with state variables progressing along a

sequence of states. A potential behaviour of a hybrid system corresponds to a
sequence of states that contain the observable values of system variables during
its hybrid evolution. More precisely, the semantics of a single (compound or
elementary) system action is captured by the state transitions that are possible
using this action. For discrete jumps α this transition relation ρ(α) holds for
pairs of states that satisfy the jump constraint. In case of continuous evolutions,
the transition relation holds for pairs of states that can be interconnected by
a continuous system flow that respects the differential equation, thereby hiding
the intermediate flow details from the logic. To retain a manageable logic and
calculus, it is important to hide as much as possible of the branching factor of
continuous evolution from the logic. Since function and predicate symbols are
interpreted as usual for real arithmetic, we omit first-order structures from the
notation and focus on states, i.e, assignments of variables with real values.

Definition 2.2 (State). A state is a map ν :V → R; the set of all states is
denoted by Sta(V). An interpretation is a non-empty set of states that is closed
under hybrid program operations (see Def. 2.4).

Further, we use ν[x 7→ d] to denote the semantic modification of a state ν that is
identical to ν except for the interpretation of the symbol x, which is d ∈ R. With
the exception of continuous evolution, the semantics, ρ(α), of hybrid program α

as a state transition structure in dL is as customary in dynamic logic (Def. 2.4).

Definition 2.3 (Valuation of terms and formulas). For terms and formu-
las, the valuation val(ν, ·) with respect to state ν is defined as usual for first-
order modal logic (e.g. [15]), i.e., using the following definitions for modal oper-
ators(see Appendix A for a detailed formal definition):

1. val(ν, [α]φ) = true :⇐⇒ val(ω, φ) = true for all ω with (ν, ω) ∈ ρ(α)
2. val(ν, 〈α〉φ) = true :⇐⇒ val(ω, φ) = true for some ωwith (ν, ω) ∈ ρ(α)

Definition 2.4 (Semantics of hybrid programs). The valuation, ρ(α), of a
hybrid program α, is a transition relation on states. It specifies which state ω is
reachable from a state ν by operations of the hybrid system α and is defined as:

1. (ν, ω) ∈ ρ(x := θ) :⇐⇒ ω = ν[x 7→ val(ν, θ)]
2. (ν, ω) ∈ ρ(ẋ = θ&χ) :⇐⇒ there is a function f : [0, r] → Sta(V) with r ≥ 0

such that f(0) = ν, f(r) = ω, and val(f(ζ), x) is continuous in ζ on [0, r]
and has a derivative of value val(f(ζ), θ) at each time ζ ∈ (0, r). For y 6= x

and ζ ∈ [0, r], val(f(ζ), y) = val(ν, y). Further, val(f(ζ), χ) = true for each
ζ ∈ (0, r). Systems of differential equations are defined accordingly.

3. ρ(?χ) = {(ν, ν) : val(ν, χ) = true}
4. ρ(α; γ) = ρ(α)◦ρ(γ) = {(ν, ω) : (ν, z) ∈ ρ(α), (z, ω) ∈ ρ(γ) for some state z}
5. ρ(α ∪ γ) = ρ(α) ∪ ρ(γ)
6. (ν, ω) ∈ ρ(α∗) iff there are n ∈ N and ν=ν0, . . . , νn=ω with (νi, νi+1) ∈ ρ(α)

for 0 ≤ i < n.

For the semantics of differential equations, derivatives are well-defined on (0, r)
as Sta(V) is isomorphic to a finite dimensional real space when V is finite.

∪

?m−z<s

?m−z≥s

a :=−b

a :=
0

τ := 0 z̈ = a

τ̇ = 1
& τ≤ε

Fig. 2. Transition structure of speed supervision.

2.3 Speed Supervision in Train Control

In the European Train Control System (ETCS) [9, 12], trains are only allowed
to move within their current movement authority block (MA). When their MA
is not extended before reaching its end, trains always have to stop within the
MA because there can be open gates or other trains beyond. Here, we identify a
single component which is most responsible for the hybrid characteristics of safe
driving: speed supervision locally controls the movement of a train such that
it always remains within its MA. Depending on the current driving situation,
the speed supervision determines a safety envelope s around the train, within
which driving is safe, and adjusts its acceleration a in accordance with s (called
correction in [9]). In the course of this paper, we derive a constraint on s that
guarantees safe driving. To simplify the presentation, we assume, as in [9], that
the train controller only chooses between braking and keeping speed. Constraints
for positive acceleration can be derived accordingly.

Of course, a safe operation of ETCS also depends on other aspects like a dis-
joint partitioning of the track into MA, appropriate computation of the safe rear
end of trains, or proper functioning of gates [9]. But these more static properties
are much easier to show when the most important hybrid train dynamics have
been captured in a reliable operation of the speed supervision.

We assume that an MA has been granted up to track position m and the
train is located at position z, heading with initial speed v towards m. In this
situation, dL can analyse the following safety property of speed supervision:

ψ → [(corr ; drive)∗] z ≤ m (1)

where corr ≡ (?m− z < s; a := −b) ∪ (?m− z ≥ s; a := 0)

drive ≡ τ := 0; (ż = v, v̇ = a, τ̇ = 1 & v ≥ 0 ∧ τ ≤ ε) .

It expresses that a train will always remain within its MA m, assuming a con-
straint ψ for the parameters. In corr , the train corrects its acceleration or brakes
with force b (as a failsafe recovery manoeuvre [9]) on the basis of the remaining
distance (m−z). Then, the train continues moving according to drive. There, the
position z of the train evolves according to the system ż = v, v̇ = a (i.e., z̈ = a).
The evolution stops when the speed v drops below zero (or earlier). Simulta-
neously, clock τ measures the duration of the current drive phase before the
controllers react to situation changes (we model this to bridge the gap of con-
tinuous-time models and discrete-time control design). Clock τ is reset to zero

when entering drive, constantly evolves along τ̇ = 1, and is bound by the invari-
ant region τ ≤ ε. The effect is that a drive phase is interrupted for reassessing
the driving situation after at most ε seconds, and the corr; drive loop repeats.
The corresponding transition structure ρ((corr; drive)

∗
) is depicted in Fig. 2.

Instead of manually choosing specific values for the free parameters as in [9,
12], we will use our calculus to synthesise constraints on the relationship of
parameters that are required for a safe operation of train control.

3 A Verification Calculus for Differential Logic

In this section, we introduce a sequent calculus for verifying hybrid systems in dL.
With the basic idea being to perform a symbolic evaluation, hybrid programs
are successively transformed into logical formulas describing their effects.

For propositional logic, standard rules P1–P9 are listed in Fig. 3. The other
rules transform hybrid programs into simpler logical formulas, thereby relating
the meaning of programs and formulas. Rules D1–D7 are as in discrete dy-
namic logic [4, 15]. D8 uses generalised substitutions [4] for handling discrete
change. Unlike in uninterpreted first-order logic [15], quantifiers are dealt with
using quantifier elimination [8] over the reals (D9–D12) in a way that is com-
patible with dynamic modalities. D13–D14 handle continuous evolutions given
a first-order definable flow yx for ẋ = θ. In combination with D9–D12, they fully
encapsulate the handling of differential equations within hybrid systems. D15 is
an induction schema with inductive invariant p.

3.1 Rules of the Calculus

A sequent is of the form Γ ⊢ ∆, where Γ and ∆ are finite sets of formulas. Its
semantics is that of the formula

∧

φ∈Γ φ →
∨

ψ∈∆ ψ. Sequents will be treated
as an abbreviation. In the following, an update U simply is a list of discrete
assignments of the form x := θ (see [4] for techniques dealing with a single parallel
update rather than a list, which can be combined with our calculus). Rules are
applicable anywhere in the sequent, within any context Γ,∆ and update 〈U〉:

Definition 3.1 (Provability, derivability). A formula ψ is provable from a
set Φ of formulas, denoted by Φ ⊢dL ψ iff there is a finite set Φ0 ⊆ Φ for which
the sequent Φ0 ⊢ ψ is derivable. In turn, a sequent of the form Γ, 〈U〉Φ ⊢ 〈U〉Ψ,∆
(for some update U , including the empty update, and finite sets Γ,∆ of context
formulas) is derivable iff there is an instance

Φ1 ⊢ Ψ1 . . . Φn ⊢ Ψn

Φ ⊢ Ψ

of a rule schema of the dL calculus in Fig. 3 such that for each 1 ≤ i ≤ n

Γ, 〈U〉Φi ⊢ 〈U〉Ψi, ∆

(P1)
⊢ φ

¬φ ⊢

(P2)
φ ⊢

⊢ ¬φ

(P3)
φ ⊢ ψ

⊢ φ→ ψ

(P4)
φ, ψ ⊢

φ ∧ ψ ⊢

(P5)
⊢ φ ⊢ ψ

⊢ φ ∧ ψ

(P6)
⊢ φ ψ ⊢

φ→ ψ ⊢

(P7)
φ ⊢ ψ ⊢

φ ∨ ψ ⊢

(P8)
⊢ φ, ψ

⊢ φ ∨ ψ

(P9)
φ ⊢ φ

(D1)
φ ∧ ψ

〈?φ〉ψ

(D2)
φ→ ψ

[?φ]ψ

(D3)
〈α〉φ ∨ 〈γ〉φ

〈α ∪ γ〉φ

(D4)
[α]φ ∧ [γ]φ

[α ∪ γ]φ

(D5)
φ ∨ 〈α;α∗〉φ

〈α∗〉φ

(D6)
φ ∧ [α;α∗]φ

[α∗]φ

(D7)
〈[α]〉〈[γ]〉φ

〈[α; γ]〉φ

(D8)
φθ

x

〈[x := θ]〉φ

(D9)
qelim(∃x

V

i
(Γi ⊢ ∆i))

Γ ⊢ ∆,∃xφ

(D10)
qelim(∀x

V

i
(Γi ⊢ ∆i))

Γ,∃xφ ⊢ ∆

(D11)
qelim(∀x

V

i
(Γi ⊢ ∆i))

Γ ⊢ ∆,∀xφ

(D12)
qelim(∃x

V

i
(Γi ⊢ ∆i))

Γ,∀xφ ⊢ ∆

(D13)
∃t≥0 (χ̄ ∧ 〈x := yx(t)〉φ)

〈ẋ = θ&χ〉φ
(D14)

∀t≥0 (χ̄→ [x := yx(t)]φ)

[ẋ = θ&χ]φ

(D15)
⊢ p ⊢ [α∗](p→ [α]p)

⊢ [α∗]p

Rule D8 is only applicable if the substitution of x by θ in φθ

x introduces no new bindings.
In D13–D14, t and t̃ are fresh variables, and yv is the solution of the initial value
problem (ẋ = θ, x(0) = v). Additionally, χ̄ is an abbreviation for ∀0<t̃<t 〈x := yx(t̃)〉χ;
it simplifies to true if χ equals true . In D9–D12, x does not occur in Γ,∆. Further,
the Γi ⊢ ∆i are obtained from the resulting sub-goals of a side deduction, see (⋆) in
Fig. 4. The side deduction is started from the goal Γ ⊢ ∆,φ at the bottom (or Γ, φ ⊢ ∆

for D10 and D12). In the resulting sub-goals Γi ⊢ ∆i, variable x is assumed to occur
in first-order formulas only, as quantifier elimination (qelim) is then applicable.

Fig. 3. Rule schemata of the dL verification calculus.

D9

qelim(∃x
V

i
(Γi ⊢ ∆i))

Γ ⊢ ∆,∃xφ

8

<

:

Γ1 ⊢ ∆1

. . . ⊢

Γn ⊢ ∆n

. . . ⊢ . . .

Γ ⊢ ∆,φ

9

=

;

(⋆)

start side

qelim

Fig. 4. Side deduction for quantifier elimination rules.

is derivable. Moreover, the symmetric schemata D1–D14 can be applied on either
side of the sequent (again in context Γ,∆ and update 〈U〉). In D7 and D8, the
schematic modality 〈[·]〉 can further be instantiated with both [·] and 〈·〉. The same
modality instance has to be chosen within a single schema instantiation, though.

As usual in sequent calculus—although the direction of entailment is from pre-
misses (above rule bar) to conclusion (below)—the order of reasoning is goal-
directed : Rules are applied in tableau-style, that is, starting from the desired
conclusion at the bottom (goal) to the premisses (sub-goals). In the sequel we
illustrate the new dL rules.

Discrete jumps. For handling discrete change, rule D8 uses generalised substi-
tutions [4]. The result of applying to φ the substitution that replaces x by θ

is defined as usual [15]; it is denoted by φθx. Rule D8 is not applicable when
the substitution introduces new bindings. For this, the definition of a “bound
occurrence of a variable y” is amended to include the scope of y := θ and ẏ = θ,
because both change the value of y.

Continuous evolution. D13–D14 require solving a symbolic initial value problem.
We assume that the differential equations have first-order definable unique flows.
See [2, 25] for first-order approximation techniques of more general flows.

Real arithmetic. Rules D9–D12 constitute a purely modular interface to math-
ematical reasoning. They can use any theory that admits quantifier elimination
and has a decidable ground theory (e.g., [8]):

Definition 3.2 (Quantifier elimination). A first-order theory admits quan-
tifier elimination if to each formula φ, a quantifier-free formula qelim(φ) can be
effectively associated that is equivalent (i.e., φ ↔ qelim(φ) is valid) and has no
other free variables. The operation qelim is further assumed to evaluate ground
formulas (i.e., without variables), yielding a decision procedure for this theory.

Integrating quantifier elimination to deal with statements about real quantities
is quite challenging in the presence of modalities that influence the value of
variables and terms. Even more so, the effect of a modality depends on the
solutions of the differential equations contained therein. For instance, it is hard
to know in advance, which first-order constraints need to be solved by qelim in
∃x [ẍ = −b;x := 2x]x ≥ 5. To find out, the way how x evolves from ∃x to x ≥ 5
along the system dynamics needs to be taken into account. Hence, our calculus
first unveils the first-order constraints on x before applying qelim. To achieve
this in a concise way, we use side deductions.

The effect of a side deduction is as follows. First, the dL calculus discovers all
relevant first-order constraints from modal formulas using a side deduction in dL.
Secondly, these constraints are equivalently reduced using qelim and the main
proof continues. For instance, an application of D9 to a sequent Γ ⊢ ∆, ∃xφ
starts a side deduction (marked (⋆) in Fig. 4) with the goal Γ ⊢ ∆,φ at the
bottom. This side deduction is carried out in the dL calculus until x no longer

v > 0, z < m ⊢ v2 ≥ 2b(m− z)
D9 v > 0, z < m ⊢ ∃t≥0 〈z := − b

2
t2 + vt+ z〉z ≥ m

D13v > 0, z < m ⊢ 〈ż = v, v̇ = −b〉z ≥ m
P3 ⊢ v > 0 ∧ z < m→ 〈ż = v, v̇ = −b〉 z ≥ m

v > 0, z < m ⊢ t≥0
v > 0, z < m ⊢ − b

2
t2 + vt+ z ≥ m

D8v > 0, z < m ⊢ 〈z := − b

2
t2 + vt+ z〉z ≥ m

P5 v > 0, z < m ⊢ t ≥ 0 ∧ 〈z := − b

2
t2 + vt+ z〉z ≥ m

start
side

qelim

Fig. 5. Analyse MA-violation in braking mode using side deductions.

occurs within modal formulas of the remaining open branches Γi ⊢ ∆i of (⋆).
Once all occurrences of x are in first-order formulas, the resulting sub-goals
Γi ⊢ ∆i of (⋆) are copied back to the main proof and qelim is applied (which
determines the resulting sub-goal of rule D9 on the upper left side of Fig. 4).
The remaining modal formulas not containing x can be considered as atoms for
this purpose as they do not impose constraints on x.

For implementations in a theorem prover, a careful analysis shows that side
deductions can also be performed within the original proof, but the correspond-
ing calculus rules, which keep track of the (lost) quantifier nesting, are quite
technical and side deductions lead to a cleaner proof structure. Observe that
reintegrating the open branches Γi ⊢ ∆i into the main proof corresponds to
discharging multiple sub-goals simultaneously. Modifying tableau procedures to
remove multiple open branches at once is not difficult. It works similarly to si-
multaneous closing substitutions in all branches of free variable tableaux, except
that quantifier elimination can produce more than one instantiation.

3.2 Modular Combination by Side Deduction

To illustrate how our calculus combines arithmetic with dynamic reasoning using
side deductions, we give an example. Because we will need a similar result when
verifying speed supervision, we consider braking of trains. The deduction in
Fig. 5 can be used to analyse whether a train could violate its MA although it
brakes. As the prover will discover, the answer depends on the initial velocity v.

Rules D9 and D13 are implemented using Mathematica. Applying D9 in the
main proof triggers a side deduction. The conjunction of the open proof goals in
the side deduction can be handled by quantifier elimination and simplification
in Mathematica, yielding the resulting premiss for D9 in the main proof:

qelim(∃t
(

(v > 0 ∧ z < m→ t ≥ 0) ∧ (v > 0 ∧ z < m→ −
b

2
t2+vt+z ≥ m)

)

)

≡ v > 0 ∧ z < m → v2 ≥ 2b(m− z) .

The open branch of the main proof reveals the speed limit and can be used to
synthesise a corresponding parametric constraint. When v2 ≥ 2b(m− z) holds

initially, then the MA will be violated despite braking. Similarly, v2 ≤ 2b(m− z)
guarantees that the MA can be respected by appropriate braking.

3.3 Soundness and Incompleteness

In this section we prove that verification with the dL calculus always produces
correct results about system safety, i.e., the dL calculus is sound.

Theorem 3.1 (Soundness). The dL calculus is sound, i.e., derivable formulas
are valid (true in all states of all interpretations).

This theorem is a direct consequence of an even stronger result of soundness
localised with respect to a single state (instead of requiring the premiss to be true
in all states). The primary challenges within this proof are continuous evolutions
and the interaction of quantifier elimination with sequent calculus.

Proposition 3.1 (Local soundness). All dL rules in Fig. 3 are locally sound:
for all states ν, the conclusion is true in ν when all premisses are true in ν.

Proof. Most rules can be proven as in [4]. The special cases for dL are:

– Rule D9 is locally sound: Let ν be a state in which the premiss is true, i.e.,

ν |= qelim(∃x
∧

i

(Γi ⊢ ∆i)) .

We have to show that the conclusion is true in this state. Using that quantifier
elimination yields an equivalence, we see that ν also satisfies ∃x

∧

i(Γi ⊢ ∆i)
prior to the quantifier elimination. Hence, for some d ∈ R we obtain:

ν[x 7→ d] |=
∧

i

(Γi ⊢ ∆i) .

As (⋆) in Fig. 4 is inductively shown to be locally sound, we can conclude that
ν[x 7→ d] |= (Γ ⊢ ∆,φ). Therefore, ν |= ∃x (Γ ⊢ ∆,φ). Now the conjecture
can be obtained using standard reasoning with quantifiers and the absence
of x in Γ,∆ by rewriting the conclusion with local equivalences:

∃x (Γ ⊢ ∆,φ) ≡ ∃x (¬Γ ∨∆ ∨ φ) ≡ ¬Γ ∨∆ ∨ ∃xφ ≡ Γ ⊢ ∆, ∃xφ
(2)

The soundness proof for D11 is similar since (2) holds for any quantifier. The
proofs of D10 and D12 can be derived using duality of quantifiers.

– Rule D13 is locally sound: Assuming the premiss is true in some state ν, we
have to show that there is a state ω with ω |= φ such that (ν, ω) ∈ ρ(ẋ = θ).
By premise, there is a real value e ≥ 0 such that when we abbreviate ν[t 7→ e]
by ν̃, we have ν̃ |= 〈x := yx(t)〉φ. Let ωe be such that (ν̃, ωe) ∈ ρ(x := yx(t)),
thus ωe |= φ. Then, it only remains to show (ν̃, ωe) ∈ ρ(ẋ = θ). This, in
turn, is shown using the function e 7→ ωe, which yields continuity and a
solution of the initial value problem by the corresponding properties of yx.
Since ρ(ẋ = θ) and φ do not depend on the fresh variable t, the same rea-
soning holds for ν in place of ν̃. The invariant χ can be shown accordingly.

(G1)
φ ⊢ ψ

〈[α]〉φ ⊢ 〈[α]〉ψ
(G2)

Γ ⊢ 〈[U]〉p,∆ p ⊢ [α]p p ⊢ φ

Γ ⊢ 〈[U]〉[α∗]φ,∆

Fig. 6. Global and derived dL rules.

Now we show that unlike first-order real arithmetic, dL is undecidable. We show
that both unbounded repetition in the discrete fragment and unbounded evolu-
tion in the continuous fragment cause incompleteness and undecidability.

Theorem 3.2 (Incompleteness). Both the discrete fragment and the contin-
uous fragment of dL are inherently incomplete, i.e., there is no sound and com-
plete effective calculus. Hence, valid dL formulas are not always provable.

Proof. We prove that natural numbers are definable amongst the real numbers
of dL interpretations in both fragments. Then these fragments extend first-order
integer arithmetic such that the incompleteness theorem of Gödel applies. Nat-
ural numbers are definable in the discrete fragment without continuous evolu-
tions ẋ = θ using repetitive additions as usual:

nat(n) ↔ 〈x := 0; (x := x+ 1)
∗
〉 x = n .

In the continuous fragment without {∗, :=}, natural numbers are definable as:

nat(n) ↔ ∃s ∃c (s = 0 ∧ c = 1 ∧ 〈ṡ = c, ċ = −s, τ̇ = 1〉(s = 0 ∧ τ = n)) .

These ODEs have sin and cos as unique solutions for s and c, respectively. Their
zeros, detected by τ , characterise an isomorphic copy of natural numbers, scaled
by π. The initial values for s and c prevent the trivial solution identical to 0.

4 Verifying Speed Supervision in Train Control

Finding Inductive Candidates. We want to prove the safety statement (1) of
Section 2.3. Using parametric extraction techniques, we identify both the re-
quirement ψ for safe driving and the induction hypothesis p that is required for
the proof. An unwinding of the loop in (1) by D6 can be used to extract a candi-
date for a parametric inductive hypothesis (similar to the proof in Section 3.2).
It expresses that there is sufficient braking distance (m− z) at current speed v:

p ≡ v2 ≤ 2b(m− z) ∧ b > 0 ∧ ε > 0 .

Inductive Verification. The generalisation rule G1 in Fig. 6 can be used to derive
the variant G2 of the induction rule D15: With G1, G2 can be derived from D15
by discharging [α∗] in the premiss of D15 and strengthening φ to p.

Applying G2 to (1), the premiss p ⊢ z ≤ m holds as 0 ≤ v2 ≤ 2b(m− z)
and b > 0. The induction start ψ ⊢ p of G2 will be examined after the full proof
has been given, since we want to identify the prerequisite ψ for safe driving

by proof analysis. For proving the induction step p ⊢ [corr ; drive]p, we remove
condition m− z < s from corr , because it is not used in the proof (as braking
remains safe with respect to z ≤ m). Here, we abbreviate the side deductions of
D11 as they do not branch but only apply P3,D8. The induction step of G2 can
be proven in dL (D11 and D14 are implemented in Mathematica):

. . .

p ⊢ [a :=−b][drive]p

. . .

p,m−z≥s ⊢ [a := 0][drive]p
D2,P3 p ⊢ [?m−z≥s; a := 0][drive]p

D4,P5 p ⊢ [corr][drive]p
D7 p ⊢ [corr ; drive]p

Here, the invariant evolution conditions are convex, hence χ̄ can be simplified to
〈x := yx(t)〉χ to save space. Further, we leave out conditions which are unneces-
sary for closing the proof: In the left branch, the constrained evolution of τ is
irrelevant and will be left out. The left branch closes as follows (marked as ∗):

∗
D11,P3,D8p ⊢ ∀t≥0 ([v :=−bt+ v]v ≥ 0 → [z :=− b

2
t2 + vt+ z; v :=−bt+ v]p)

D14 p ⊢ [ż = v, v̇ = −b& v ≥ 0]p
D8 p ⊢ [a :=−b][drive]p

The right branch does not need condition v ≥ 0, because v does not decrease:

. . .

p,m−z≥s ⊢ v2 ≤ 2b(m− εv − z)
D11,P3,D8p,m−z≥s ⊢ ∀t≥0 ([τ := t]τ ≤ ε→ [z := vt+ z]p)

D8 p,m−z≥s ⊢ [τ := 0]∀t≥0 ([τ := t+ τ]τ ≤ ε→ [z := vt+ z]p)
D14 p,m−z≥s ⊢ [τ := 0][ż = v, v̇ = 0, τ̇ = 1 & τ ≤ ε]p
D8 p,m−z≥s ⊢ [a := 0][τ := 0][ż = v, v̇ = a, τ̇ = 1 & τ ≤ ε]p
D7 p,m−z≥s ⊢ [a := 0][drive]p

Augmenting Inductive Candidates. The right branch only closes when p guar-
antees the succedent v2 ≤ 2b(m− εv − z), i.e., that there will still be sufficient
braking distance even after keeping the speed for up to ε seconds. As m− z ≥ s,
this succedent is implied by v2 ≤ 2b(s− εv), which can be discovered automat-
ically by quantifier elimination. In fact, using p ∧ v2 ≤ 2b(s− εv) in place of p
makes the argument inductive, and the whole proof of the safety statement (1)
closes when the same formula is chosen for ψ. Here, no conjunct of ψ can be
removed without leaving the proof open due to a counterexample.

t

z

v

Fig. 7. Correcting.

From v2 ≤ 2b(s− εv), we can also derive s ≥ εv + v2

2b

as an equivalent yet constructive constraint. From the
above proof, we can further conclude that speed super-
vision remains safe even when s is chosen adaptively in
accordance with this constraint at the beginning of corr
in response to speed changes. This permits safe behaviour

as complex as that in Fig. 7. Similar correctness constraints can be derived when
the train is allowed to increase its speed if m− z ≥ s.

In this example, we can see the effect of the dL calculus. It takes a specifi-
cation of a hybrid system and successively identifies the arithmetic constraints
which need to be investigated for proving correctness. These constraints can then
be handled in a purely modular way by D9-D12 and side deductions.

5 Conclusions and Future Work

We have introduced a first-order dynamic logic with interacting discrete jumps
and continuous evolutions along differential equations. For this differential logic,
dL, we have presented a calculus for verifying parametric hybrid systems.

Our sequent calculus for dL is based on a classical calculus for discrete dy-
namic logic [15]. In order to handle continuous evolution, we combine quantifier
elimination with the calculus in a modular and constructive way. Our calculus
handles first-order definable flows for differential equations. It combines non-
invasively with deductive verification systems for dynamic logic. Further, it has
a modular interface to combine arithmetic with dynamic reasoning in the pres-
ence of state change. We demonstrate that our calculus can verify safety in
a parametric train control scenario. Meanwhile, this case study has also been
verified in an interactive theorem prover based on the KeY system [3].

We currently extend our partial implementation of the dL calculus. Moreover,
dynamic logic supports reasoning about dynamic reconfiguration of system struc-
ture [4], which we want to extend to hybrid systems. Finally, our future ambition
is to analyse the quotient of reasoning about hybrid systems modulo differential
equation solving and inductive first-order system invariants.

Acknowledgements. I would like to thank the anonymous referees for their in-
sightful comments and Ernst-Rüdiger Olderog and his group for their remarks.

References

1. R. Alur, T. A. Henzinger, and P.-H. Ho. Automatic symbolic verification of em-
bedded systems. IEEE Trans. Software Eng., 22(3):181–201, 1996.

2. H. Anai and V. Weispfenning. Reach set computations using real quantifier elimi-
nation. In M. D. D. Benedetto and A. L. Sangiovanni-Vincentelli, editors, HSCC,
volume 2034 of LNCS, pages 63–76. Springer, 2001.

3. B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented

Software: The KeY Approach, volume 4334 of LNCS. Springer-Verlag, 2007.

4. B. Beckert and A. Platzer. Dynamic logic with non-rigid functions: A basis for
object-oriented program verification. In U. Furbach and N. Shankar, editors, IJ-

CAR, volume 4130 of LNCS, pages 266–280. Springer, 2006.

5. A. Bemporad, A. Bicchi, and G. Buttazzo, editors. Hybrid Systems: Computation

and Control, 10th International Conference, HSCC 2007, Pisa, Italy, Proceedings,
volume 4416 of LNCS. Springer, 2007.

6. R. J. Boulton, R. Hardy, and U. Martin. A Hoare logic for single-input single-
output continuous-time control systems. In O. Maler and A. Pnueli, editors, HSCC,
volume 2623 of LNCS, pages 113–125. Springer, 2003.

7. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
8. G. E. Collins and H. Hong. Partial cylindrical algebraic decomposition for quan-

tifier elimination. J. Symb. Comput., 12(3):299–328, 1991.
9. W. Damm, H. Hungar, and E.-R. Olderog. On the verification of cooperating

traffic agents. In F. S. de Boer, M. M. Bonsangue, S. Graf, and W. P. de Roever,
editors, FMCO, volume 3188 of LNCS, pages 77–110. Springer, 2003.

10. J. M. Davoren. On hybrid systems and the modal µ-calculus. In P. J. Antsaklis,
W. Kohn, M. D. Lemmon, A. Nerode, and S. Sastry, editors, Hybrid Systems,
volume 1567 of LNCS, pages 38–69. Springer, 1997.

11. J. M. Davoren and A. Nerode. Logics for hybrid systems. Proceedings of the IEEE,
88(7):985–1010, July 2000.

12. J. Faber and R. Meyer. Model checking data-dependent real-time properties of
the European Train Control System. In FMCAD, pages 76–77. IEEE Computer
Society, 2006.

13. M. Fränzle. Analysis of hybrid systems. In J. Flum and M. Rodŕıguez-Artalejo,
editors, CSL, volume 1683 of LNCS, pages 126–140. Springer, 1999.

14. G. Frehse. PHAVer: Algorithmic verification of hybrid systems past HyTech. In
M. Morari and L. Thiele, editors, HSCC, volume 3414 of LNCS, pages 258–273.
Springer, 2005.

15. D. Harel, D. Kozen, and J. Tiuryn. Dynamic logic. MIT Press, 2000.
16. T. A. Henzinger. The theory of hybrid automata. In LICS, pages 278–292. IEEE

Computer Society, 1996.
17. T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking

for real-time systems. In LICS, pages 394–406. IEEE Computer Society, 1992.
18. D. Hutter, B. Langenstein, C. Sengler, J. H. Siekmann, W. Stephan, and

A. Wolpers. Deduction in the verification support environment (VSE). In M.-
C. Gaudel and J. Woodcock, editors, FME, volume 1051 of LNCS. Springer, 1996.

19. G. Lafferriere, G. J. Pappas, and S. Yovine. A new class of decidable hybrid
systems. In F. W. Vaandrager and J. H. van Schuppen, editors, HSCC, volume
1569 of LNCS, pages 137–151. Springer, 1999.

20. C. Piazza, M. Antoniotti, V. Mysore, A. Policriti, F. Winkler, and B. Mishra.
Algorithmic algebraic model checking I. In K. Etessami and S. K. Rajamani,
editors, CAV, volume 3576 of LNCS, pages 5–19. Springer, 2005.

21. A. Platzer. Differential dynamic logic for verifying parametric hybrid systems. In
N. Olivetti, editor, TABLEAUX, LNCS. Springer, 2007.

22. A. Platzer. Differential logic for reasoning about hybrid systems. In Bemporad
et al. [5], pages 746–749.

23. A. Platzer. A temporal dynamic logic for verifying hybrid system invariants. In
S. Artemov and A. Nerode, editors, Logical Foundations of Computer Science,

International Symposium, LFCS 2007, New York, USA, Proceedings, volume 4514
of LNCS, pages 457–471. Springer, 2007.

24. A. Platzer. Towards a hybrid dynamic logic for hybrid dynamic systems. In
P. Blackburn, T. Bolander, T. Braüner, V. de Paiva, and J. Villadsen, editors,
Proc., LICS International Workshop on Hybrid Logic, 2006, Seattle, ENTCS, 2007.

25. A. Platzer and E. M. Clarke. The image computation problem in hybrid systems
model checking. In Bemporad et al. [5], pages 473–486.

26. M. Rönkkö, A. P. Ravn, and K. Sere. Hybrid action systems. Theor. Comput.

Sci., 290(1):937–973, 2003.

27. W. C. Rounds. A spatial logic for the hybrid π-calculus. In R. Alur and G. J.
Pappas, editors, HSCC, volume 2993 of LNCS, pages 508–522. Springer, 2004.

28. C. Zhou, A. P. Ravn, and M. R. Hansen. An extended duration calculus for hybrid
real-time systems. In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel,
editors, Hybrid Systems, volume 736 of LNCS, pages 36–59. Springer, 1992.

A Formal Syntax and Semantics of dL

A.1 Syntax

The sets Trm(V) of terms, Fml(V) of formulas, and HP(V) of hybrid programs
are simultaneously inductively defined in Definitions A.1, A.2 and 2.1, respec-
tively.

Definition A.1 (Terms). Trm(V) is the set of all terms, which is the smallest
set such that:

– If x ∈ V is a variable, then x ∈ Trm(V).
– If f ∈ Σ is a function symbol and, for 1 ≤ i ≤ n, θi ∈ Trm(V), then
f(θ1, . . . , θn) ∈ Trm(V).

Definition A.2 (Formulas). The set Fml(V) of formulas is the smallest set
with:

– If p ∈ Σ is a predicate symbol and θi ∈ Trm(V), then p(θ1, . . . , θn) ∈
Fml(V).

– If φ, ψ ∈ Fml(V), then ¬φ, (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ) ∈ Fml(V).
– If φ ∈ Fml(V) and x ∈ V , then ∀xφ, ∃xφ ∈ Fml(V).
– If φ ∈ Fml(V) and α ∈ HP(V), then [α]φ, 〈α〉φ ∈ Fml(V).

A.2 Semantics

The valuation val(ν, ·) of terms and formulas, and the semantics ρ(α) of hybrid
programs are simultaneously inductively defined in Definitions A.3, A.4 and 2.4,
respectively.

Definition A.3 (Valuation of Terms). The valuation of terms with respect
to state ν is defined by:

1. val(ν, x) = ν(x) if x is a variable
2. val(ν, f(θ1, . . . , θn)) = f ℓ

(

val(ν, θ1), . . . , val(ν, θn)
)

, where f ℓ is the opera-
tion associated to f .

Definition A.4 (Valuation of Formulas). The valuation of formulas with
respect to ν is defined by:

1. val(ν, p(θ1, . . . , θn)) = pℓ
(

val(ν, θ1), . . . , val(ν, θn)
)

, where pℓ is the relation
associated to p

2. val(ν, φ ∧ ψ) is defined as usual, the same holds for ¬,∨,→,↔
3. val(ν, ∀xφ) = true :⇐⇒ val(ν[x 7→ d], φ) = true for all d ∈ R

4. val(ν, ∃xφ) = true :⇐⇒ val(ν[x 7→ d], φ) = true for some d ∈ R

5. val(ν, [α]φ) = true :⇐⇒ val(ω, φ) = true for all ω with (ν, ω) ∈ ρ(α)
6. val(ν, 〈α〉φ) = true :⇐⇒ val(ω, φ) = true for some ω with (ν, ω) ∈ ρ(α)

B Embedding Linear Hybrid Automata

In this section we show that hybrid automata [16] can be embedded faithfully
into dL.

Proposition B.1 (Hybrid Automata Embedding). There is an effective
mapping Φ from linear hybrid automata to formulas of dL such that the following
diagram commutes (Trace is the set of hybrid automata traces, while Mod is the
set of satisfying models for the respective formulas):

HA Fml(V)

Trace Mod

Φ

�

Proof. Without loss of generality we can assume the absence of (convex) invari-
ants since they can be deferred to transition guards for reachability investiga-
tions. Moreover, by using instant transitions to subsequent initial locations, we
can assume the presence of a single initial location s0 without loss of generality.
Hence, assume a linear hybrid automaton with a set of discrete locations S, an
initial location s0, jump constraints jump(e) relating the prestate variables x and
poststate variables x+ for each edge e, continuous evolutions ẋ = c (see below
for differential inclusions).

The linear hybrid automaton can reach a state satisfying condition φ if and
only if the following dL formula is satisfiable:

〈

s := s0;
(

?s = s1; (x
+ := ∗; ?jump(e);x := x+); s := s2

∪ ?s = s1; ẋ = c

∪ . . .
)∗〉

φ .

The system actions in this formula are subject to a choice for each edge e from
some state s1 to some state s2 (accordingly for more locations). The random
assignment, in turn, can be axiomatised in dL as follows:

〈x := ∗〉φ ↔ ∃y 〈x := y〉φ

Further, notice that differential inequalities are expressible with differential
equations in dL provided, for instance, θ = c ∈ R is constant:

[ẋ ≤ θ]φ ≡ [z := x; ż = θ]∀x (x ≤ z → φ) ≡ ∀x
(

〈z := x; ż = θ〉x ≤ z → φ
)

Similarly, disjunctions in flow constraints can be expressed as ẋ = c1 ∪ ẋ = c2
rather than ẋ = c. Conjunctions lead to systems of differential equations, whereas
negations as in [ẋ 6= θ]φ ≡ ∀xφ are pointless from a reachability point of view.

