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Abstract

Belief propagation over pairwise connected Markov Random Fields has become
a widely used approach, and has been successfully applied to several important
computer vision problems. However, pairwise interactions are often insufficient to
capture the full statistics of the problem. Higher-order interactions are sometimes
required. Unfortunately, the complexity of belief propagation is exponential in the
size of the largest clique. In this paper, we introduce a new technique to compute
belief propagation messages in time linear with respect to clique size for a large
class of potential functions over real-valued variables. We discuss how this technique
can be generalized to still wider classes of potential functions at varying levels of
efficiency. Also, we develop a form of nonparametric belief representation specifically
designed to address issues common to networks with higher-order cliques and also
to the use of guaranteed-convergent forms of belief propagation.

To illustrate these techniques, we perform efficient inference in graphical models
where the spatial prior of natural images is captured by 2×2 cliques. This approach
shows significant improvement over the commonly used pairwise-connected models,
and may benefit a variety of applications using belief propagation to infer images
or range images, including stereo, shape-from-shading, image-based rendering, seg-
mentation, and matting.
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1 Introduction

In the past few decades, the application of probabilistic models for solving
computer vision problems has lead to significant advances. Many of these prob-
abilistic models can be simplified by factoring large probability distributions
using graphical models. Unfortunately, statistical inference in arbitrary fac-
torized distributions is still NP-hard [1]. Recently, the method of loopy belief
propagation has been shown to produce excellent results in several real-world
computer vision problems [2–7]. However, this method has some drawbacks.
The most serious is that the running time of belief propagation is exponential
in the size of the largest graph clique. This means that for problems with many
labels or real-valued variables, graphical representations are typically limited
to pairwise interactions between variables. Unfortunately, for many problems
in computer vision, pairwise interactions fail to capture the rich statistical
distribution of the problem domain. For example, natural images exhibit rich
higher-order statistics that cannot be captured by pairwise connected Markov
Random Fields (MRFs). In section 3, we introduce a new technique to com-
pute belief propagation messages in time linear with respect to clique size
that works for a large class of potential functions without resorting to approx-
imation. In section 7, we further improve on the efficiency and performance
of belief propagation by presenting a nonparametric, particle-like represen-
tation of belief propagation messages that is simultaneously compatible with
higher-order non-pairwise interactions and also with recent extensions to belief
propagation that guarantee convergence [8].

These advancements allow us to efficiently solve inference problems that were
previously unavailable to belief propagation. In section 8, we show that a
prior model of natural images using 2 × 2 MRF cliques strongly outperforms
pairwise-connected models. The ability to use more accurate models of image
or range image priors has the potential to significantly aid the performance of
several computer vision applications, including stereo [3], photometric stereo
[4], shape-from-shading [9], image-based rendering [10], segmentation, and
matting [7].

1.1 Methods of Statistical Inference

The problem of statistical inference is central to artificial intelligence and
to computation in general. Statistical inference is the problem of finding the
expected value E[ ~X] of a multivariate distribution P ( ~X) (also known as the
Minimum Mean-Squared Error point estimate, or MMSE), or, alternatively,
finding the most likely point in a distribution (also known as the Maximum a
Posteriori point estimate, or MAP). Successful methods of statistical inference
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can allow us to locate likely values of unknown things, such as the likely
transcription of a spoken audio recording P (text|audio), or the likely 3D shape
of an object in a photograph P (shape|image). Unfortunately, in the general
case, finding the MAP or MMSE point estimate of a distribution is NP-Hard
[1]. Thus, for many real-world problems with large, complex distributions,
approximate methods must be used to estimate the MAP or MMSE points of
a distribution.

One simple approach is to use a gradient descent or related methods on the
posterior distribution to find the MAP estimate. The problem is that gradi-
ent descent can easily become stuck in local minima. This is a serious prob-
lem for all but the most simple posterior distributions. A related approach is
Markov chain Monte Carlo (MCMC) sampling. In this family of algorithms,
we seek to approximate the posterior distribution by generating a set of sam-
ples from this distribution. Sampling can be used to compute a MAP estimate
by simply selecting the sample with the highest probability according to the
model probability distribution. MMSE and other estimators can also be ap-
proximated from a sample list. Unfortunately, MCMC sampling can also be
prohibitively slow, especially in high dimensional problems. Additionally, it is
often difficult to determine if the algorithm has converged, or if some impor-
tant portion of the state space has not yet been explored by the stochastic
sampling algorithm.

One key insight that has been greatly helpful for statistical inference is to
exploit local structure within a probability distribution. Specifically, many
probability distributions can be factorized, or represented as a product of
potential functions, each of which ranges over only a small subset of variables
of the problem space ~X:

p( ~X) ∝
∏

φi(~xi) ~xi ⊂ ~X (1)

Such probability distributions are often represented in the form of a factor

graph. A factor graph is a bipartite graph in which each potential function
φi(~xi) is represented by a factor node f , which is connected to one variable
node v for each element of the vector ~xi. Example factor graphs are depicted
in figures 2 and 3.

One popular method of statistical inference that exploits factorized probability
distributions is graph cuts [11]. Graph cuts are a method of estimating the
MAP point estimate of a factorized distribution that is based on the max-flow
min-cut theorem for graphs. For graph cuts to work, the potential functions
in equation 1 must meet a set of constraints [12]. Specifically, each potential
function must be regular. For potential functions of two variables, this means
that for any three variable states x1, x2, and α, we must have

φ(x1, x2) + φ(α, α) ≥ φ(α, x2) + φ(x1, α) (2)
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Intuitively, regular potential functions must encourage its associated variables
to be equal. Potential functions of three or more variables have similar con-
straints [13]. These constraints are compatible with many simple models of
spatial priors for images [14]. However, many real-world applications require
potential functions that violate these constraints, such as the Lambertian con-
straint in shape-from-shading [9], hard linear constraints of the type discussed
in section 3.3, or the spatial priors of 3D shape, which include planar sur-
faces [15]. Graph cuts was originally designed for inference of binary random
variables, but was extended to multivariate distributions

Another popular method for statistical inference for factorized distributions is
belief propagation. Belief propagation can be used to estimate either the MAP
or the MMSE of a distribution. Belief propagation works for with arbitrary
potential functions, including non-regular potentials that are not available to
graph cuts. Belief propagation has been used with great success in a variety
of applications [16,17,2–4]. Point estimates obtained using belief propagation
typically outperform gradient descent significantly, and belief propagation can
succeed in cases where gradient descent is overwhelmed by local suboptimal
extrema [9] Perhaps the most serious difficulty with using belief propagation is
that it is slow for factors with many variables. Specifically, belief propagation
requires computing messages from each factor node to each of its neighbors in
the factor graph; each of these messages requires computation that is expo-
nential in the number of neighbors of the factor node (this is also known as the
clique size, equal to the number of variables in ~xi). In this paper, we introduce
methods that reduce the amount of computation from exponential to linear in
the number of neighbors. This computational shortcut makes efficient many
inference tasks that were previously inaccessible to belief propagation.

2 Belief Propagation

Belief propagation is a method for estimating the single-variate marginals of
a multivariate probability distribution of the form:

p( ~X) ∝
∏

φi(~xi) ~xi ⊂ ~X (3)

As mentioned above, factorized probability distributions are often represented
in the form of a factor graph, such as the ones shown in figures 2 and 3. Sum-
product belief propagation estimates the marginals b(xi) =

∫

X\xi
p(~x)d~x by

iteratively computing messages along each edge of the graph according to the
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equations:

mt
i→f(xi) =

∏

g∈N (i)\f

mt−1
g→i(xi) (4)

mt
f→i(xi) =

∫

~xN (f)\i

φf

(

~xN (f)

)

∏

j∈N (f)\i

mt
j→f(xj) d~x (5)

bti(xi) ∝
∏

g∈N (i)

mt
g→i(xi) (6)

where f and g are factor nodes, i and j are variable nodes, and N (i) is the
set of neighbors of node i (see [18,19,8] for further details on classic belief
propagation). The integrand of equation 5 sums over a function whose range
is of dimensionality N (i)−1, and the integral must be evaluated for each value
of xi. At each iteration of belief propagation, messages mt

i→f (xi) are passed
from variable nodes to factor nodes, and messages mt

f→i(xi) are passed from
factor nodes to variable nodes.

In equation 6, bi(xi) is the estimated marginal of variable i. The expected value

of ~X can be computed by finding the mean of each marginal. This is equivalent
to the finding minimum mean-squared error (MMSE) point estimate of the

distribution in equation 3. If the maximally likely value of ~X is desired (also
known as the maximum a posteriori (MAP) point estimate), then the integrals
of equation 5 are replaced by supremas. This is known as max-product belief
propagation (rather than sum-product belief propagation).

When the underlying factor graph is a tree, one iteration of sum-product belief
propagation is guaranteed to compute the correct marginals [19]. If the factor
graph contains loops, the messages must be updated iteratively. This is known
as loopy belief propagation (LBP). Loopy belief propagation is not guaranteed
to converge, and for a long time, little was known about the quality of the
approximation when convergence was reached. Loopy belief propagation origi-
nally became popular as it was applied successfully to a variety of applications,
achieving outstanding empirical results in a number of fields [16,17,2–4]. Later,
several theoretical results demonstrated that belief propagation could be ex-
pected to achieve high quality approximations in a variety of circumstances
[20,21]. More recently, it was shown that when sum-product belief propagation
converges, the resulting marginals form a minima of the Bethe free energy, a
quantity from statistical physics which can be thought of as an approximate
measure of the distance between a multivariate probability distribution and
a set of marginals [19]. This connection between Bethe free energy and loopy
belief propagation provided a sound theoretical justification for the applica-
tion of belief propagation to networks with loops. Furthermore, this discovery
has lead to new belief propagation methods that minimize Bethe free energy
directly, and are guaranteed to converge [22,8]. The computational shortcuts
we describe in section 3 are compatible with these convergent variants of be-

5



Fig. 1. Insert Figure 1 about here.

lief propagation, and in section 6, we will discuss these convergent methods in
greater detail.

For continuous random variables, the integrals of equation 5 typically cannot
be computed or represented analytically. In these cases, the beliefs bi(xi) and
messages mi→f (xi) are often approximated by discrete histograms. When mes-
sages are represented by histograms, the integrand of equation 5 is replaced
by a summand:

mt
f→i(xi) =

∑

~xN (f)\i

φf

(

~xN (f)

)

∏

j∈N (f)\i

mt
j→f(xj) (7)

and the algorithm proceeds as before. In the next several sections, we will
assume that messages are represented using discrete histograms. We will con-
tinue to write the belief propagation equations in continuous form, so that
the error of discretization can be postponed for as long as possible. In section
7, we will discuss alternate methods of message representation, their implica-
tions for belief propagation inference in networks with higher order cliques,
and ways of minimizing discretization error.

3 Efficient Belief Propagation

Belief propagation has been applied successfully to a variety of computer
vision problems [2–4]. However, for many computer vision problems, belief
propagation is prohibitively slow. For discrete message representations such
as histograms, the computational bottleneck of belief propagation is the high-
dimensional integrand in equation 5. Performing this integrand has a com-
plexity of O(MN ), where M is the number of possible labels for each variable,
and N is the number of neighbors of f . In many computer vision problems,
variables are continuous or have many labels. In these cases, applications of
belief propagation have nearly always been restricted to pairwise connected
Markov Random Fields, where each potential function in equation 3 depends
on only two variable nodes [2,3]. However, pairwise connected models are of-
ten insufficient to capture the full complexity of the joint distribution of the
problem. In this section, we describe methods to efficiently compute belief
propagation messages over continuous random variables for a wide range of
higher-order (non-pairwise) potential functions.
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3.1 Linear Constraint Nodes

Consider potential functions of the form

φ(~x) = g(~x · ~v) (8)

where ~x and ~v are vectors of lengthN . Factor nodes of this form will be referred
to as Linear Constraint Nodes (LCNs). Normally, computing messages from
such factor nodes takes O(MN ) time. Here, we show that, using a change
of variables, this computation can be done in O(NM2) time. For notational
simplicity, we illustrate this using N = 4, although the method extends easily
to arbitrary N . For shorthand, let Mi ≡ mf→i and mi ≡ mi→f Then we have:

M1(x1) =
∫ ∫ ∫

g(v1x1 + v2x2 + v3x3 + v4x4)

m2(x2)m3(x3)m4(x4)dx2 dx3 dx4 (9)

=
∫ ∫ ∫

J g(v1x1 + y2)m2(
y2 − y3

v2

)

m3(
y3 − y4

v3
)m4(

y4

v4
)dy2dy3 dy4 (10)

∝
∫

g(v1x1 + y2)

(

∫

m2(
y2 − y3

v2
)

(

∫

m3(
y3 − y4

v3
)m4(

y4

v4
)dy4

)

dy3

)

dy2 (11)

where J is the (constant) Jacobian corresponding to the change of variables.
Since belief propagation messages are only defined up to a constant for most
variations of LBP, the Jacobian can be safely ignored in this case. Here we
have used the change of variables:

y4 = v4x4 (12)

y3 = v3x3 + y4 (13)

y2 = v2x2 + y3 (14)

J = 1/(v2v3v4) (15)

This allows us to perform each integrand one at a time. Since each of the N−1
integrands depend only on two variables, each can be computed in O(M2)
time. In section 7.3, we provide more technical details on how to compute
these integrals for histogram-based message representations, and show that the
method of computing messages described here not only results in a significant
computational speed-up, but also lowers the discretization error.

The transformation of variables used above works for any vector ~v. However,
there are many possible transformations. Clever choice of the transformation
of variables may allow one to reuse intermediate computations during the
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computation of other messages, or to embed additional nonlinear potential
functions of pairs of variables yi and yi+1 at no extra computational cost. The
choice of transformation of variables is discussed further in section 5.

If vi = ±1 for all i, and messages are represented as uniform-width histograms,
then each integrand in equation 11 can be reduced to a O(M logM) compu-
tation using discrete Fourier transforms as in [23]. Although we describe our
approach for sum-product belief propagation, the same approach is valid for
max-product belief propagation. For max-product belief propagation, each
maximal in equation 11 can be closely approximated in linear time using the
distance transform methods described in [23].

3.2 Linear Constraint Nodes and Projection Pursuit Density Estimation Meth-

ods

Systems of linear constraint nodes, of the form

P (~x) ≈ P̃ (~x) =
K
∏

k=1

gk(~x · ~vk) (16)

have been very successful in approximating multivariate, continuous proba-
bility distributions P (~x). Projection pursuit density estimation [24], Minimax
Entropy and FRAME [25,26], Products of Experts [27], and Fields of Experts
[28] all work by approximating distributions P (~x) as products of linear con-
straint nodes (as in equation 16). Previously, performing inference over these
graphical models typically required using gradient descent or related meth-
ods. These approaches often struggled with local maxima. In section 8, we
will show how the shortcut introduced in section 3.1 allows us to perform in-
ference in Fields of Experts using belief propagation. Our results significantly
outperform gradient descent based methods of optimization.

Products of linear potential functions have several attractive features that
have lead to their success. Their factorized nature simplifies the problem of
learning parameters, and several powerful methods for learning parameters
gk and ~vk have been developed [27,29–31]. Additionally, systems of linear po-
tential functions as in equation 16 are members of the exponential family of
probability density models [25]. One consequence of this is that when the po-
tential functions gk are learned so as to minimize the KL-divergence between
P (~x) and P̃ (~x)

DKL[P (~x)||P̃ (~x)] =
∫

P (~x) log
P (~x)

P̃ (~x)
d~x (17)

(or equivalently, learned so as to maximize the log likelihood of the training
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data), the single-variate marginals of P̃ (~x) projected onto each vector vk will
match those of the target distribution P (~x):

∫

P (~x)δ(~x · ~vk − ρ)d~x =
∫

P̃ (~x)δ(~x · ~v − ρ)d~x ∀ρ, k (18)

Furthermore, of all probability distributions that share this property (those
that satisfy equation 18), P̃ (~x) will achieve the maximal possible entropy
[25]. Intuitively, this suggests that P̃ makes as few assumptions as possible
regarding features ~v′ that the model was not trained on.

Finally, we point out that, given enough linear potential functions, the product
of those potential functions can approximate any probability distribution or
desired nonlinear potential function arbitrarily well. Suppose we allow K to
approach infinity. Then equation 16 becomes

log P̃ (~x) =
∫

|v|=1
g~v(~x · ~v)d~v (19)

Now consider the Radon transform

R[f(~x)](ρ,~v) =
∫

f(~x)δ(~x · ~v − ρ)d~x (20)

where ~v is constrained to be of unit norm. The adjoint of the Radon transform
[32] has the form

R†[ψ(ρ,~v)](~x) =
∫

|v|=1
ψ(~x · ~v,~v) d~v (21)

The Radon transform is invertible [32], and since the adjoint of an invertible
function is itself invertible, equation 21 is also invertible. This means that we
can always choose our potential functions g~v(ρ) in such a way that P̃ (~x) =
P (~x) exactly. Specifically, choosing g~v(ρ) = R†−1[logP (~x)] results in a perfect
reproduction of the target probability distribution P (~x). In practice, large
values of K are often impractical. However, in our experience, all but the
most pathological probability density functions P (~x) can be approximated
well with only a small number of linear potential functions. In figure 1, we
illustrate how a product of several linear potential functions can be used to
approximate an arbitrary function.
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Fig. 2. Insert Figure 2 about here.

3.3 Hard Linear Constraint Nodes

A subclass of linear constraint nodes that is especially useful is the hard linear

constraint node. Hard linear constraint nodes have the form:

φ(~x) =











1 if ~x · ~v = 0

0 otherwise
(22)

or equivalently, hard linear constraint nodes have a nonlinearity g that is a
delta function. We refer to linear constraint nodes that are not of this form
as soft linear constraint nodes.

Hard linear constraint nodes are useful because they enforce linear dependen-
cies among the variable nodes in a graphical model. For example, a hard linear
constraint node may enforce that variables a, b, and c obey the relationship
a + b = c. This ability to enforce linear dependencies means that hard linear
constraint nodes allow us to utilize overcomplete representations of the prob-
lem space ~X. Specifically, a factor graph that uses an overcomplete represen-
tation is one that has more variable nodes than there are degrees of freedom in
the underlying probability distribution. When the representation of ~X is over-
complete, then there must be linear dependencies among the variables of ~X of
the form ~x ·~v = 0. These dependencies must be enforced to prevent computing
estimates that are internally inconsistent. Using standard belief propagation
(equation 7), enforcing such constraints would be intractable. Using the meth-
ods in equation 11, these constraints can be efficiently enforced using a set of
hard linear constraint nodes.

For any computational problem, finding the best way to represent the problem
state space is crucial; some problems can be solved much more easily given
the right representation. A single complete representation forces us to decide
on only one representation, whereas overcomplete representations allow us
to retain the benefits of multiple complete representations. One example of
the use of overcomplete representations is multi-scale approaches in computer
vision, which have been very successful in several domains. Another example
can be found in the primate visual cortex, which is overcomplete by a factor
of at least 200:1 relative to retinal input.

In figure 2, we demonstrate how hard linear constraint nodes may be used
to exploit multiple-resolution techniques with belief propagation. Multiple-
resolution methods, and similar approaches such as wavelet-domain process-
ing and image-pyramid techniques, are all highly successful in computer vi-
sion, and have contributed to algorithms for image denoising [33], shape-from-

10



stereo [34], motion [35], texture classification [36], region classification [37],
and segmentation [38]. Previous statistical inference approaches that exploited
multiple-resolution methods were limited to simple Gaussian models or gra-
dient descent optimization methods. The use of hard linear constraint nodes
makes multiple-resolution representations available to belief propagation tech-
niques.

Another example of an overcomplete representation often used in vision is
surface normal maps used to represent 3D surface shape. Such maps, or “needle
maps,” are typically represented using two values per pixel: p = ∂z

∂x
and q =

∂z
∂y

. For any real surface z(x, y), its gradient field must satisfy the zero curl
requirement, or equivalently,

∂

∂y

(

∂z

∂x

)

=
∂

∂x

(

∂z

∂y

)

(23)

∂

∂y
p =

∂

∂x
q (24)

In the computer vision literature, this equality also referred to as the integra-
bility constraint, which ensures that a surface’s normal map must integrate to
a valid surface z. When p and q do not satisfy this relationship, there is no sur-
face z(x, y) that is consistent with p and q. In discrete form, the integrability
constraint is equivalent to

p(x, y) − q(x, y) + q(x + 1, y) − p(x, y + 1) = 0 (25)

where

p(x, y) = z(x + 1, y)− z(x, y) (26)

q(x, y) = z(x, y + 1) − z(x, y) (27)

The integrability constraint can be enforced efficiently using a hard linear
constraint node of four variables. For many problems of 3D shape inference,
representing shape using a surface normal map can be a great advantage.
Consider the classic problem of shape-from-shading, where the image intensity
at each point restricts the surface normal to lie along some one-dimensional
manifold, according to the Lambertian equation:

i(x, y) = max(0,
1 + pLp + qLq√

1 + p2 + q2
√

1 + L2
p + L2

q

) (28)

where Lp and Lq specify the lighting direction. This relationship between p
and q could be implemented as a pairwise clique in an overcomplete factor
graph with the integrability constraint enforced using hard linear constraint
nodes of clique-size four [9]. Alternatively, the Lambertian relationship could
be enforced using cliques of size three in a complete factor graph whose variable
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nodes represent depth at each pixel:

i(x, y) = max(0,
s(x, y)

√

1 + L2
p + L2

q

) (29)

s(x, y) =
1 + (zx+1,y − zx,yLp) + (zx,y+1 − zx,y)Lq
√

1 + (zx+1,y − zx,y)2 + (zx,y+1 − zx,y)2
(30)

However, note that because absolute depth is completely ambiguous in shape-
from-shading, the computed marginals of z should be expected to be highly
uniform over a large range of depths. Even if an absolute depth is arbitrarily
chosen at one node, belief propagation is then charged with the task of propa-
gating this value to all nodes in the image. Since uncertainty compounds over
space, this measure would be ineffective outside of a small radius. Thus, using
an overcomplete representation in this case is essential.

Another useful application of hard linear constraint nodes is the ability to
aggregate over a set of local data to compute global features, such as by
summing over several variable nodes. For example, in [39], the authors seek to
infer the location and activity of a person from a stream of several days worth
of GPS coordinates. In order to place a prior over the number of times a given
activity occurs in a single day, variable nodes representing individual activities
must be summed over. In [39], techniques similar to hard linear constraint
nodes are used to perform belief propagation efficiently, where a tree of variable
nodes is constructed, each node summing over two children. The methods of
this paper show that such a tree structure can be replaced by a single hard
linear constraint factor node, by setting ~v in equation 8 to [−1, 1, 1, . . . , 1]. This
would reduce the memory requirements by half (without increasing the number
of operations), and, for convergent variants of belief propagation (discussed
in section 6), would reduce the number of iterations of belief propagation
required. The results of this paper also show how belief propagation can be
made efficient for a much larger class of potential functions, including other
examples that can be used to aggregate data across many variable nodes. For
example, section 5, we show how variable nodes that extract the maximum
value from a stream of local variable nodes can also be made efficient.

4 Nonlinear Constraint Nodes

We now extend our method to include potential functions of the form

φ(~x) = g(g1(x1) + · · · + gN(xN)) (31)

For the sake of brevity, we consider the case where N = 3, although the same
method works for cliques of arbitrary size. If gi is invertible for all i, then we
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can apply a change of variables to equation 5 to get:

M1(x1) =
∫ ∫

g(g1(x1) + g2(x2) + g3(x3))

m2(x2)m3(x3)dx2 dx3 (32)

=
∫ ∫

J(x̂2, x̂3)g(g1(x1) + x̂2 + x̂3)

m2(g
−1
2 (x̂2))m3(g

−1
3 (x̂3))dx̂2 dx̂3 (33)

where we have applied the change of variables

x̂2 = g2(x2) (34)

x̂3 = g3(x3) (35)

J(x̂2, x̂3) =

(

∂

∂x̂2
g−1
2 (x̂2)

)(

∂

∂x̂3
g−1
3 (x̂3)

)

(36)

The Jacobian J(x̂2, x̂3) can be absorbed into the messages by defining

m̂i(x̂i) = mi(g
−1
i (x̂i))

∂

∂x̂i
g−1

i (x̂i) (37)

and so we have

M1(x1) =
∫ ∫

g(g1(x1)+x̂2+x̂3)m̂2(x̂2)m̂3(x̂3)dx̂2dx̂3 (38)

We can then apply the methods of section 3.1 to get

M1(x1) ∝
∫

g(g1(x1)+y2)
∫

m̂2(y2−y3)m̂3(y3)dy3dy2 (39)

where we have made the change of variables y2 = x̂2 + x̂3 and y3 = x̂3.

If gi is not invertible, we can still apply the same technique if we integrate
equation 5 separately for each branch of g−1

i (xi). For example, if gi(xi) = x2
i ,

simply integrate over the range (−∞, 0], and then over the range (0,+∞),
and add the two integrals together. gi(xi) has an inverse within both of these
ranges.

Using these techniques, belief propagation can be performed efficiently for
a wide range of high dimensional potential functions. These include all axis-
aligned generalized Gaussian distributions and Gaussian Scale Mixtures, which
are popular for natural image models and denoising [33]. Since additional
nonlinear potential functions of pairs of variables yi and yi+1 can be embedded
into equation 39 at no additional computational cost, many non axis-aligned
Gaussians and other potential functions can also be computed efficiently using
these methods.
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5 Transformed Variable Elimination

The computational shortcuts introduced in the previous sections can be made
even more general, and to apply to an even larger class of potential functions.
In this section, we widen the class of potential functions that can benefit
from the efficient belief propagation techniques developed so far, and at the
same time, place these techniques in a broader computational framework that
provides a different perspective into how these computational speed-ups are
achieved, and how these methods can be tailored to suit specific applications.

For higher-order cliques, the problem of computing messages

mt
f→i(xi) =

∑

~xN (f)\i

φf

(

~xN (f)

)

∏

j∈N (f)\i

mt
j→f(xj) (40)

is not unlike the problem of computing a single-variate marginal

Pi(xi) =
∑

X\xi

P (X) (41)

Thus, belief propagation exploits the factorization of a high-dimensional prob-
ability distribution to decompose a difficult problem (exponential in the di-
mensionality of X) into several easier, but similar problems (each exponential
in N , the dimensionality of the clique).

When P (X) can be factorized (as in equation 3), single variate marginals can
be computed efficiently using the Variable Elimination Algorithm [40]. Note
that this algorithm differs from belief propagation in that rather than com-
puting all single-variate marginals of a distribution the elimination algorithm
finds the marginal of only one variable. The variable elimination algorithm
works by choosing a variable xj ∈ X \ xi, and then summing over all terms
φk that depend on xj . For example, if P (X) = f1(x1, x2, x3)f2(x3, x4), then
eliminating the variable x4 would proceed as:

Pi(x1) =
∑

x2

∑

x3

∑

x4

f1(x1, x2, x3)f2(x3, x4) (42)

=
∑

x2

∑

x3

f1(x1, x2, x3)
∑

x4

f2(x3, x4) (43)

=
∑

x2

∑

x3

f1(x1, x2, x3)g(x3) (44)

The variable elimination process is repeated until all variables other than xi

have been eliminated. The computational complexity of the variable elimina-
tion algorithm depends on the structure of the factorization, and also on the
order of elimination chosen. When the order is optimal, the complexity of the
variable elimination algorithm is O(NMT+1), where M is the number of states
of each variable, and T is the treewidth of the Markov Random Field (MRF)
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underlying the factorization of P (X) (see [41] for a review of the treewidth of
a graph). Unless the graph is very dense, T +1 is typically less than the num-
ber of variable nodes in the graph, and so the variable elimination algorithm
represents a substantial improvement over brute force summation to compute
a single-variate marginal.

If it was possible to use the variable elimination algorithm to more efficiently
compute a belief propagation message (equation 40), then it also would have
been possible to further factorize the clique potential function φf(xN (f)) into
a product of smaller, more efficient potential functions. Thus, we can assume
that φf does not factorize, and so a direct application of the variable elimina-
tion algorithm cannot help to make belief propagation more efficient. The key
insight of using linear constraint nodes is that by applying a transform T to
the space X \ xi we may be factorize the transformed potential function, and
so be able to apply variable elimination to an otherwise unfactorable clique.

By framing the methods of section 3 in this way, we can illustrate how these
methods can be extended to a larger class of potential functions φf . So far,
the methods of this paper has focused on finding transforms of φf(xN (f)) that
result in an underlying MRF in the form of a tree. A tree has a treewidth
of one. Thus, once a MRF is in tree form, variable elimination can be used
to compute the marginal of any node in O(NM2) time. It is also possible to
consider transforms T that transform the clique into other graphs of bounded
treewidth that still represent a computational advantage over brute force sum-
mation. This allows us to improve the performance of a wider class of potential
functions φf .

Let us restrict ourselves for now to linear transforms T . Let M be the inverse
transform matrix, so that M~y = ~x, for ~x ∈ X. M must be an invertible
matrix, and it must preserve xi. Without loss of generality, we assume that
i = 1, and so the top row of M must be (1, 0, 0, ..., 0). Using transform T ,
computing belief propagation messages now becomes

mt
f→i(x1) = mt

f→i(y1) (45)

= JM

∫

Y \y1

φf (M~y)
∏

j∈N (f)\i

mt
j→f(Mj∗ · ~y)d~y (46)

where JM is the Jacobian of M, and Mj∗ is the jth row of M. The goal of
using a transform T is to choose a transform such that φ factorizes under T :

φf (~x) = φf(M~y) =
KY
∏

i=1

φ
(i)
f (~yi) ~yi ⊂ ~Y (47)

The integrand in equation 46 specifies a MRF graph G with variable nodes
labeled y1 through yN . Each of the KY subsets ~yi must be fully connected in
G. Additionally, because of the incoming messages mt

j→f , for each row Mj
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of M, the variables corresponding to the nonzero entries of Mj∗ must also
be fully connected in G. The computational cost of computing the integral in
equation 46 with messages represented as histograms will then be O(NMTG),
where TG is the treewidth of the graph G.

5.1 Products of Linear Constraint Nodes

To illustrate the flexibility of this approach, we will now use this analysis to
show that messages from a single factor node consisting of a product of K
linear experts can be computed in time O(NMK+1). Suppose the potential

function φf over clique ~X is:

φf(~x) =
K
∏

k=1

fk(~x · ~v(k)) (48)

As described in section 3.2, one way to implement such a product of multiple
linear constraints is by constructing a separate factor node for each constraint
fk (figure 3 is an example). Messages from those factors would then be com-
puted independently, each in O(NM2) time, using the methods of section 3.1.
Alternatively, these factor nodes can be combined into one, and the methods
of section 3.1 no longer apply. The underlying probability distributions repre-
sented by these two factor graphs are equivalent; only their factorizations are
different. Because belief propagation exploits the structure of the factor graph
to perform inference efficiently, the results of belief propagation will depend
on the shape of the factor graph even if the underlying probability distribution
is unchanged. As mentioned in section 2, when sum-product belief propaga-
tion converges, the resulting marginals form a minima of the Bethe free en-
ergy, a quantity from statistical physics which estimates the distance between
the true multivariate probability distribution and the estimated single-variate
marginals [19]. The quality of this approximation improves as larger cliques
are grouped together [42]. As an extreme example, consider that any probabil-
ity distribution can be represented by a factor graph with a single factor node
connected to each variable node. Inference using belief propagation in such a
graph would be exact, but intractable. Conversely, splitting factor nodes into
multiple factors typically improves belief propagation efficiency but reduces
the quality of the approximation. Thus, combining a product of multiple lin-
ear constraints (as in equation 48) into a single factor node may cause belief
propagation to estimate marginals more accurately than using a separate fac-
tor node for each linear constraints. Products of multiple linear constraints
within a single factor node are not eligible for the methods of section 3.1, but
using the transformed variable elimination methods of this section, we can
show how these messages can be computed in O(NMK+1) time. Assuming
that N << M , this represents a computational advantage over the original
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brute-force approach as long as K + 1 < N .

Under transformation T , φf of equation 48 becomes

φf(~y) =
K
∏

k=1

fk(M~y · ~v(k)) =
K
∏

k=1

fk(~y · M′~v(k)) (49)

where M′ denotes the transpose of M. There are many transforms T that
can reduce the computation of messages from this factor node from O(MN ) to
O(NMK+1). Here, we will choose M to be an upper-triangular band matrix
with bandwidth K +1, with row M1∗ = (1, 0, ..., 0). Next, we constrain M so
that the vector M′~v(k) is zero everywhere except for elements 1 through K+1.
Note that this ensures that under transform T , in the MRF G underlying Y , yi

and yj are only connected for |i−j| ≤ K. This ensures that G has a treewidth
of K.

The constraint that the vector M′~v(k) is only nonzero in elements 1 through
K + 1 is equivalent to

M∗i · ~v(k) = 0 ∀k ≤ K, K + 1 < i ≤ N (50)

where M∗i is the ith column of M. By construction, column M is only nonzero
between elements i − K and i. Thus, we can achieve our constraint by set-
ting the (K + 1)-element vector (M(i−K),i, ...,Mi,i) to be perpendicular to

(v
(k)
i−K , ..., v

(k)
i ) for all k ≤ K, and K < i ≤ N . Note that if the bandwidth of

M (and thus the treewidth of G) were any smaller, this constraint could not
be satisfied. Also note that for K = 1, the transform described here matches
the example transform used as an example in section 3.1. For the change of
variables used in equation 10, M is given by

M =





























1 0 0 0

0 1
v2

− 1
v2

0

0 0 1
v3

− 1
v3

0 0 0 1
v4





























(51)

M−1 =





















1 0 0 0

0 v2 v3 v4

0 0 v3 v4

0 0 0 v4





















(52)
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5.2 Embedding Additional Potentials

In section 3, we mentioned that a good choice of the transform of variables
may allow one to embed additional pairwise nonlinear potential functions at
no additional cost. We will explain that in more detail here. Suppose that
our factorized distribution P ( ~X) contains the factors φ1(~x) and φ2(~x), both
ranging over the same subset of variables ~x, where

φ1(~x) = g1(~x·~v) (53)

φ2(~x) = g2(~x·~v1, ~x·~v2) (54)

One approach is to implement φ1 and φ2 as two separate factor nodes in the
factor graph. However, this requires additional computation. Additionally, un-
necessarily separating overlapping factors can degrade the Bethe approxima-
tion that underlies belief propagation, reducing accuracy [42]. Combining these
factors into a single factor node with potential φ1φ2 could be advantageous.

Let M be a matrix that allows messages mt
φ1→1(xi) from φ1 to variable node

x1 to be computed in O(NM2) time (if ~x contains four variables, then M
is the matrix given by equation 51). Now suppose that v1 and v2 both lie in
the plane defined by two consecutive rows j and j + 1 of M−1. Then, in the
transformed space ~y = M−1~x, the MRF corresponding to φ2 consists of only
a single connection joining variables yj and jj+1. This means that, under the
transformed space, the two potential functions φ1 and φ2 have overlapping
factor graphs. That allows us to combine φ1 and φ2 into one factor node and
still compute messages efficiently.

For example, consider the four-dimensional linear constraint node

φ1(~x) = g(v1x1 + v2x2 + v3x3 + v4x4) (55)

discussed in section 3. Using the change of variables given by M in equation
51, we can compute messages M1 = mf→1 efficiently according to

M1(x1) ∝
∫

g(v1x1 + y2)

(

∫

m2(
y2 − y3

v2
)

(

∫

m3(
y3 − y4

v3
)m4(

y4

v4
)dy4

)

dy3

)

dy2 (56)

Now suppose that φ2(~x) = h(x3, x4). Both x3 and x4 lie on the plane spanned
by y3 = v3x3 + v4x4 and y4 = v4x4. That means that we can represent φ2(~x)
as

φ2(~x) = h(
y3 − y4

v3
,
y4

v4
) = ĥ(y3, y4) (57)
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Thus, messages from the combined factor node φ1φ2 can be computed as

M1(x1) ∝
∫

g(v1x1 + y2)

(

∫

m2(
y2 − y3

v2
)

(

∫

m3(
y3 − y4

v3
)m4(

y4

v4
)ĥ(y3, y4)dy4

)

dy3

)

dy2 (58)

In a previous paper by one of the authors [9], this technique was used for an
application that infers 3D shape from a shaded image. The approach described
here made it possible to to combine a hard linear constraint that enforced the
integrability of the surface:

φ1(~x) = δ((q1 − q2) + (p1 − p2)) (59)

with a spatial prior on the second order derivative of depth ∂2z
∂x∂y

:

φ2(~x) = exp(−|q1 − q2|
2b

) (60)

5.3 Sums of Linear Constraint Nodes

It is also useful to note that some potential functions φf (~x) which cannot be
made more efficient under any transform T can be expressed as the sum of
some number of efficient potential functions. For example, we may find that

φf(~x) = φf1(~x) + φf2(~x) (61)

where φf1 and φf2 admit transforms that reduce each potential to a low-
treewidth MRF. In such cases, the belief propagation messages mf→i(xi) can
be computed by summing messages from φf1 and φf2:

mt
f→i(xi) = mt

f1→i(xi) +mt
f2→i(xi) (62)

Thus, if a potential is a sum of linear constraint nodes, messages mf→i(xi) can
be computed in time O(bNM2), where b is the number of terms in equation
61.

As an example, consider the hard constraint node that enforces that variable
xn is the maximum of several variable nodes:

xn = max
i

{x1, . . . , xn−1} (63)

φf(~x) = δ(xn − max
i

{x1, . . . , xn−1}) (64)
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This type of constraint may be useful to extract a pertinent global feature
from a stream of variable nodes. The potential φf(~x) can be expressed as a
sum of n MRFs with treewidths of 1. To illustrate with N = 4:

φf(~x) = δ(x4 − max
i

{x1, x2, x3}) (65)

= H(x1 − x2)H(x1 − x3)δ(x4 − x1) +

H(x2 − x1)H(x2 − x3)δ(x4 − x2) +

H(x3 − x1)H(x3 − x2)δ(x4 − x3) (66)

where H is defined by

H(x) ≡











1 x > 0

0 otherwise
(67)

Each line of equation 66 is already in the form of a tree-shaped MRF; no
change of variables is needed. Specifically, if we set φf1(~x) to be the first line
of equation 66, then we can compute mf→i(x4) as:

mt
f→i(x4) = mt

f1→i(x4) +mt
f2→i(x4) +mt

f3→i(x4) (68)

mt
f1→i(x4) =

∫ ∞

−∞

(
∫ x1

−∞
m2(x2)dx2

)(
∫ x1

−∞
m3(x3)dx3

)

δ(x4 − x1)m1(x1)dx1 (69)

6 Convergent Loopy Belief Propagation

One of the biggest shortcomings of loopy belief propagation is that it is not
guaranteed to converge. Convergence becomes increasingly unlikely when the
factor graph contains many tight loops, or when potential functions are “high
energy,” or nearly deterministic [43]. The application in higher-order spatial
priors in section 8 contains a high number of very tight loops. Also, applica-
tions that use hard linear constraint nodes (such as the shape-from-shading ap-
plication in [9]) often have convergence problems using standard belief propa-
gation, even using different dampening, scheduling, or reweighting techniques.
In general, applications that can utilize the computational shortcuts intro-
duced in this paper also tend to benefit greatly from techniques that improve
the convergence properties of belief propagation.

Fortunately, it was recently discovered that when standard sum-product loopy
belief propagation converges, the resulting marginals minimize a quantity from
statistical physics known as the Bethe free energy [19]. This has lead to the
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development of belief propagation algorithms that minimize the Bethe free
energy directly [44,8], and do so while ensuring convergence.

In the applications shown later in section 8, we use the algorithm described
in [8], which modifies equations 4 and 5 by:

mt
i→f(xi) = mt−1

f→i(xi)
1−ni

ni

∏

g∈N (i)\f

mt−1
g→i(xi)

1
ni (70)

mt
f→i(xi) =

∫

~xN (f)\i

φ̃f

(

~xN (f)

)

∏

j∈N (f)\i

mt
j→f(xj) d~x (71)

bti(xi) ∝
∏

g∈N (i)

mt
g→i(xi)

1
ni (72)

where ni = |N (i)|. Initially, φ̃f is set to equal φf . Each time the estimated
beliefs in equation 72 converge, φ̃f is updated according to

φ̃f(~xN (f)) = φf (~xN (f))
∏

j∈N (f)

bτj (xj)
nj−1

nj (73)

where bτj (xj) is the belief at variable node j the last time the algorithm con-
verged. The algorithm continues until bτj (xj) itself converges.

Not only does this approach guarantee convergence, but we have found that
the results are often superior to standard LBP when standard LBP does con-
verge.

One drawback to Heskes’ convergent algorithm is that it is not compatible with
max-product belief propagation. However, when maximum a-posteriori point
estimates are desired, we can achieve them using the approach proposed by
Yuille [44], which introduces a temperature T , and replaces the energy function

of equation 3 with
∏

φi(~xi)
1
T . As the algorithm converges, T is reduced. As T

approaches zero, the computed marginals will approximate the “maximals” of
max-product belief propagation.

Another method for improving the performance and convergence properties
of the original belief propagation equation is to use tree reweighting methods
[45,46]. Tree-reweighted extensions to belief propagation apply to both sum-
product belief propagation [45] and max-product belief propagation [46]. In
[46], tree-reweighting methods ensure convergence for a variant of max-product
belief propagation. While this approach is typically formulated specifically for
pairwise connected MRFs, a straightforward generalization to arbitrary factor
graphs would utilize standard belief propagation as a central step. Thus, the
computational shortcuts introduced in this paper apply directly. For tree-
reweighted variants of sum-product belief propagation [45], a key component
of the algorithm is a belief propagation procedure of a form similar to that in
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equations 70-72. Thus, the methods of this paper apply to this variation as
well.

7 Message Representation for Belief Propagation

For continuous random variables, the integrals of equation 9 or 11 typically
cannot be computed analytically. In these cases, the beliefs bi(xi) and mes-
sages mi→f(xi) are often approximated by discrete histograms. Discretization
error can be a serious issue for histogram representations, especially for highly
kurtotic or near-certain beliefs. These errors can propagate across nodes and
accumulate over iterations. Also, for some applications, adequate covering of
the variable space requires many bins. Even using the techniques of section 3,
a high value of message length M incurs a high computational cost. In this
section, we will discuss different methods of representing messages, and how
to reduce discretization error.

7.1 Parametric Message Representation

One method of representing belief propagation messages is to assume that each
message and belief can be well approximated with a Gaussian [4,6]. However,
for many applications, marginals are often highly non-Gaussian. This is often
the case in computer vision, where natural image statistics have distributions
which are highly kurtotic. Even more problematic are random variables encod-
ing the hidden underlying parameters of a scene, such as 3D shape or surface
material, which often have bimodal or multimodal messages and beliefs. The
shape-from-shading application of [9] and the facial appearance model of [47]
are two examples of applications of belief propagation with highly multimodal
messages and marginals. Among those problems where the Gaussian approxi-
mation is effective, many can be solved more simply using linear programming
or gradient descent methods. For these reasons, we will focus here on the more
flexible histogram and particle-based representations.

7.2 Particle-Based Message Representations

Particle based belief propagation works by approximating each message by a
set of samples, or particles. Each particle is associated with a mean µ and a
weight w. Each message mi→f(xi) is represented with M particles, with means

{µ(m)
if }M

m=1 and weights {w(m)
if }M

m=1. In the case where the potential function
φf is sufficiently simple, such as a small mixture of Gaussians, mf→i(xi) can
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be approximated as:

mf→i(xi) ≈ m̃f→i(xi) =
M
∑

m=1

w
(m)
fi φf(xi, ~µ

(m)
N (f)\i,f ) (74)

w
(m)
fi =

∏

j∈N (f)\i

w
(m)
jf (75)

where ~µ
(m)
N (f)\i,f is a vector composed of the mth particles from each message

m̃j→f such that j ∈ N (f)\i [48]. If φf is not of a simple form, then it is helpful
to perform an additional step where we define m̃f→i(xi) by sampling from

equation 74, to simplify subsequent computations [47]. In this case, let µ
(m)
fi

be a sample drawn from φf(xi, ~µ
(m)
N (f)\i,f ). We can then approximate m̃f→i(xi)

as:

m̃f→i(xi) =
M
∑

m=1

w
(m)
fi N (xi;µ

(m)
fi ,Λfi) (76)

where N (x;µ,Λ) is a Gaussian density function with mean µ and variance Λ.

For particle based belief propagation, the computational bottleneck lies in
computing {µ(m)

if }M
m=1 according to equation 4, which requires sampling from

m′
i→f(xi), defined as:

m′
i→f(xi) = ζfi(xi)

∏

g∈N (i)\f

m̃g→i(xi) (77)

ζfi(xi) =
∫

~xN (f)\i

φf(~x)d~x (78)

If m̃g→i(xi) is computed as in equation 76, this requires sampling from a prod-
uct of D − 1 mixtures of M Gaussians each, where D = |N (i)|. A straight-
forward sampling method would require interpreting m′

i→f (xi) a weighted mix-
ture of MD−1 Gaussians, and sampling from that, which requires O(MD) op-
erations. Instead, [47] showed how Gibbs sampling could be used to sample

{µ(m)
if }M

m=1 from m′
i→f (xi) in O(DκM2) steps, where κ is the number of Gibbs

sampling iterations required. Note that if m̃f→i(xi) is computed as in equation
74, this step is made more difficult.

Particle-based belief propagation was originally developed for pairwise con-
nected MRFs using standard belief propagation. Both higher-order potential
functions and Heskes’ convergent belief propagation pose several additional ob-
stacles for nonparametric belief propagation. Graphs with higher-order cliques
tend to be more highly connected, and thus have higher values of D. For in-
stance, the denoising problem in section 8 uses a network with D = 12 (see
figure 3). Particle-based belief propagation is typically considered impractical
for D > 8 [48].
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This problem is exacerbated by the adjustments made in convergent variations
of belief propagation. As mentioned earlier, heavily connected graphs typical
of problems with high-order cliques, as well as graphs with high-energy poten-
tial functions such as hard linear constraint nodes, all tend to benefit greatly
from convergent belief propagation. The greatest obstacle to particle-based
message representations imposed by convergent belief propagation is the ex-
ponentiation of messages, as in equation 70. Thus, rather than sampling µ

(m)
if

from a product of D mixtures of M Gaussians (already a challenging task),
samples must be drawn from such a product raised to an arbitrary, fractional
exponent. One more difficulty in using particle-based messages for convergent
belief propagation is that the potential function φf has been replaced with φ̃f

(in equation 71), which requires sampling from a product of more Gaussian
mixtures. Thus, for convergent belief propagation, equation 77 becomes

m′
i→f(xi) = ζfi(xi)

(

bτi (xi)

m̃t
i→f(xi)

)

nj−1

nj ∏

g∈N (i)\f

m̃t−1
g→i(xi)

1
ni (79)

Recall that each message m̃t−1
g→i is represented as a mixture of Gaussians. Sam-

pling from such a distribution would be quite challenging.

7.3 Histogram-Based Message Representations

Particle-based representations benefit from the their flexible and dynamic
structure, which allow them to focus computational effort on the most likely
values of a probability distribution. One way to achieve similar flexibility of
representation without incurring the computational expense of sampling from
complex distributions is to use histograms with variable-width bins, where
each bin may have a different, possibly dynamic, width. Using variable-width
bin histograms, messages are approximated as:

mf→i(xi) ≈ m̂f→i(xi) =
M
∑

m=1

w
(m)
fi B

β
(m)
i

β
(m−1)
i

(xi) (80)

B
β1

β0
(x) ≡











1 x ∈ [β0, β1)

0 otherwise
(81)

Variable-width bin histograms have been used successfully to improve the
speed and performance of the join tree algorithm [49,50]. Here we show that
such a representation, when applied to belief propagation, can overcome the
obstacles encountered in applying particle-based representations to Heskes’
guaranteed-convergent LBP variation [8], or to problems with highly-connected
graphs. We require that each message mi→f(xi) and mf→i(xi) to and from a
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given variable node i must have the same bin edges {β(m)
i }M

m=1. Because of
this, and because histogram bins are non-overlapping (unlike Gaussian ker-
nels), both multiplication and exponentiation now become trivial:

((

M
∑

m=1

wmB
bm

bm−1
(xi)

)(

M
∑

m=1

w′
m B

bm

bm−1
(x)

))η

=
M
∑

k=1

(wmw
′
m)ηB

bm

bm−1
(x) (82)

Thus, equation 70 can be computed efficiently, even for high values of D:

mt
i→f(xi) ≈ m̂t

i→f (xi) (83)

m̂t
i→f(xi) ≡ m̂t

i→f (xi)
1−ni

ni

∏

g∈N (i)\f

m̂t−1
g→i(xi)

1
ni (84)

=
M
∑

m=1

(

w
(m)
fi

)

1−ni
ni

∏

g∈N (i)\f

(

w
(m)
gi

)
1

ni B
β

(m)
i

β
(m−1)
i

(xi) (85)

Using linear constraint nodes, computing messages from factor to variable
nodes mf→i(xi) (as in equation 11) can be viewed as a series of convolutions
of scaled histograms. For the example in section 3.1, the first step is to compute
the integral

M3,4(y3) =
∫

m3(
y3 − y4

v3
)m4(

y4

v4
)dy4 (86)

= [m3(t/v3) ∗m4(t/v4)](y3) (87)

where ∗ denotes convolution. mf→i(xi) can be computed as

M2,3,4(y2) = [m2(t/v2) ∗M3,4(t)](y2) (88)

mf→i(xi) = [g(−t) ∗M2,3,4(t)](−v1x1) (89)

Consider the simplest case for computing M3,4(y3), where m3 and m4 are

represented by histograms with all bins of width 1 (β
(m)
3 = β

(m)
4 = m), and

v3 = v4 = 1, so that no scaling is required. Often, such a convolution of
histograms is approximated as a discrete convolution:

M̂3,4(y3) =
M
∑

m=1

w
(m)
2,3 B

β
(m)
2,3

β
(m−1)
2,3

(xi) (90)

w
(m)
2,3 =

M
∑

m′=1

w
(m−m′)
3 w

(m′)
4 (91)

β
(m)
2,3 = m (92)
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However, this approximation can result in compounded discretization error.

For example, suppose that m3(x) = m4(x) = B
1

0(x). Then M3,4(y3) is a piece-
wise linear function that is nonzero within the interval (−1, 2). However, using
the approximation in equation 91, M̂3,4(y3) will be nonzero only within [0, 1],
because both m̂3 and m̂4 have only one nonzero bin. A reduction in dis-
cretization error can be achieved by discretizing M̂3,4(y3) after the integration
is performed:

w
(m)
2,3 =

1

Wm

∫ β
(m)
2,3

β
(m−1)
2,3

(∫

m̂3(
y3 − y4

v3

)m̂4(
y4

v4

)dy4

)

dy3 (93)

Wm = β
(m)
2,3 − β

(m−1)
2,3 (94)

In the more general case, where {β(m)
i }M

m=0 and ~v are all arbitrary, an approxi-
mation like equation 91 is more difficult. Thus, in general, equation 93 is often
more accurate and more convenient.

Note that the brute-force O(MN ) computation of an N dimensional integral
of discrete histograms such as equation 7 would typically employ a method
similar to equation 91, where integration is performed after discretization.
Thus, by using linear constraint nodes, we can reduce discretization error in
addition to saving time.

To implement equation 93, first observe that the product m̂3(
y3−y4

v3
)m̂4(

y4

v4
) is

equal to a 2D histogram under an affine transform. Equation 93 integrates
this 2D function over a rectangular region. This is equivalent to summing the

areas of a set of four- to six-sided polygons, each weighted by w
(m−m′)
3 w

(m′)
4 .

It can be shown that the total number of such polygons cannot exceed 3M2.
Thus, equation 93 can be computed in O(M2) time.

At the start of the belief propagation algorithm, the locations of histogram bin
edges {bm}M

m=1 can be initialized based on local estimates of the marginal, such
as single-variate potential functions φ(xi). In the denoising example in section
8, the intensity value of each pixel has a single-variate Gaussian potential
function whose mean is the observed (noisy) pixel intensity. In this case, we
set {bm}M

m=1 so that each bin is equally likely under this Gaussian distribution.

In some applications, such as the denoising application, it is sufficient to hold
these bin widths fixed throughout the belief propagation execution. In other
applications, if the range of values xi is especially large, or if messages are
expected to be very low in entropy, then it may be beneficial to adapt the
histogram bin edges to best represent the current beliefs. For Heskes’ conver-
gent variation of belief propagation, this can be most conveniently done when
bi(xi) reaches convergence, and φ̃f is updated.
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Several strategies are available for adjusting the bin locations of each variable
node. One approach is to simply delete low-likelihood bins and split high-
likelihood bins apart. This strategy is related to some previous works that
adaptively restrict the search space of belief propagation to only those states
with high predicted likelihoods [51]. Another strategy is to run a special, single
iteration of belief propagation where each bin is first split into 2 or 3 bins.
Following this high-resolution iteration, bins can be recombined until only M
bins remain. Recombination can be performed to minimize either sum-squared
error with the high-resolution message, or the KL-divergence (as used by [49]
to combine two possibly multidimensional histograms). Finally, if messages are
expected to approximate a particular functional form, one strategy is to fit the
beliefs to some parametric function and place the histogram bins to minimize
error. In the denoising application of section 8, a small performance boost
can be achieved by placing bins to minimize KL-divergence with a Gaussian
fitted to the latest beliefs. Despite the Gaussian arrangement of bin edges,
highly non-Gaussian distributions may still be effectively represented by such a
histogram. At the same time, placing bins in this way allows belief propagation
to focus computational effort on the most likely and most interesting intensity
values.

Regardless of the strategy used, if a variable node’s bin locations are altered,
it is never necessary to perform interpolation to find new values of bin weights
{w(m)

fi }M
m=1. Beliefs and messages can be retained using the original, unaltered

bin locations until the belief propagation algorithm updates that variable node
according to equations 4 through 6. During that update, incoming messages
can be constructed using the new bin locations.

Note that the locations of histogram bins for the intermediate messages M̂3,4

and M̂2,3,4 can also be dynamically adapted. Similar strategies that are avail-
able for adapting message bin locations are also available for setting the bin
locations of intermediate messages.

Finally, we point out that histogram representations and Monte Carlo inte-
gration can be combined to retain some of the advantages of both. By storing
beliefs and messages in histogram form, messages m̂i→f(xi) from variable to
factor nodes (equation 70) can be computed easily. At the same time, the
bin weights of m̂f→i(xi) can be estimated using Monte Carlo integration by

drawing samples {~µ(m)
j,f } from each input message m̂t

j→f(xj) and then sam-

pling from φf(xi, ~µ
(m)
N (f)\i,f ) as in equation 74. Bin weights w

(m)
fi can then be

set according to the number of particles that fall within each bin. This allows
messages m̂f→i(xi) to be computed efficiently with little sacrifice in quality.
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Fig. 3. Insert Figure 3 about here.

Table 1
Insert Table 1 about here.

Fig. 4. Insert Figure 4 about here.

8 Application to Higher-Order Spatial Priors

Several state-of-the-art computer vision algorithms use belief propagation.
A number of these, including stereo [3], photometric stereo [4], shape-from-
shading [9], image-based rendering [10], segmentation and matting [7] work
over a grid at the pixel level. These algorithms solve ambiguous and under-
constrained problems, where having a strong prior for images or 3D shape
is essential. However, the computational complexity of belief propagation has
constrained these algorithms to weak pairwise interactions between neighbor-
ing pixels. These pairwise interactions capture the smoothness properties of
images, but they overlook much of the rich statistics of natural scenes. Find-
ing a way to exploit a stronger model of image priors using belief propagation
could greatly enhance the performance of these algorithms.

One promising recent model for capturing natural image statistics beyond
pairwise interactions is the Fields of Experts model (FoE), which provides a
way to learn an image model from natural scenes [28]. FoE has shown itself to
be highly effective at capturing complex image statistics by performing well
at image denoising and image inpainting (filling in holes) using a gradient
descent algorithm. The FoE model describes the prior probability of an image
as the product of several Student-t distributions:

p(~I) ∝ p̃(~I) =
∏

C

K
∏

i=1

(

1 +
1

2
(~IC · ~Ji)

2
)−αi

(95)

where C is the set of all (overlapping) n×n patches in the image, and ~Ji is an

n× n filter. The parameters ~Ji and αi are learned from a database of natural
images.

Recently, an attempt was made at performing inference in Fields of Experts
models using loopy belief propagation, and the approach was tested on an
image denoising problem [5]. The authors showed that using three 2×2 Fields
of Experts filters yields a significant improvement over pairwise models. In
their approach, the authors mitigate the computational complexity of equation
5 by restricting the intensity at each pixel to lie within a range defined by its
immediate neighbors within the noisy image. Specifically, the true intensity
value of each pixel is assumed to lie between the brightest and darkest of its
nearest four neighbors within the noisy image, after a slight Gaussian blur
is applied. Thus, computational complexity of each message is still O(MN ),
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Table 2
Insert Table 2 about here.

Table 3
Insert Table 3 about here.

but M (the number of possible labels) is significantly reduced (note that here,
N = 4). One drawback of this approach is that it is particular to image
denoising. In many problems requiring a strong image or range image prior
such as stereo and other depth inference algorithms, it can be difficult to
restrict the search space of each variable based solely on local properties of the
algorithm input. We seek to develop an implementation of Fields of Experts
for belief propagation that can be applied to arbitrary image or range image
inference problems.

Using the methods of section 3, efficient belief propagation is possible in
higher-order Fields of Experts factor graphs without relying on simplifying as-
sumptions specific to image denoising. In this section, in order to demonstrate
the viability of this approach, we apply our methods to the image denoising
problem, using the same 2 × 2 filters as [5]. Although we use image denois-
ing as an example problem, note that this approach is not specific to image
denoising, and can be used as a spatial prior for a variety of computer vision
applications.

In the denoising problem described here, we are given a natural image (such
as figure 4a) that has been corrupted with additive Gaussian noise of known
variance (such as figure 4b). The object is to remove this noise and recover the
original image. Using the Fields of Experts model, the conditional probability
of the denoised image ~I given the noisy image ~IN , is modeled by

p(~I|~IN) ∝ p̃(~I|~IN) (96)

p̃(~I|~IN) = p̃(~I)
∏

x,y

(

1

σ
√

2π
e(

~I(x,y)−~IN (x,y))2/(2σ2)

)

(97)

where the (unnormalized) prior p̃(~I) is the Fields of Experts model given in
equation 95. The Fields of Experts spatial prior is implemented according
to the factor graph in figure 3. The Gaussian likelihood is implemented as a
prior at each node, and requires no additional messages. Note that this model
is capable of performing denoising in a variety of other noise circumstances,
such as non-Gaussian or multiplicative noise.

Note that in the factor graph in figure 3, the observed, noisy pixel values are
not explicitly represented as variable nodes. Instead, the Gaussian likelihood
potential functions are absorbed into the factor nodes neighboring each pixel,
and therefore require no additional belief propagation messages.

In our implementation, each variable node’s beliefs and messages are repre-
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sented using 16 bins. Bin edges are initialized so that each bin has equal proba-
bility under the Gaussian distribution P (true intensity|noisy intensity), and
bins span the range of possible intensity values from 0 to 255. Results are
reported for the case where bin edges remain static during the inference pro-
cedure, and also for the case where bin edges are occasionally updated to
minimize the KL-divergence between the histogram b̂i(xi) and a Gaussian dis-
tribution fitted to the current beliefs. Intermediate messages (such as M̂3,4(y3)

and M̂2,3,4(y2)) were represented as histograms with 32 bins. Bin edges for
intermediate messages were chosen by first computing a histogram of 96 bins,
where edges were chosen to minimize the KL-divergence between the convolu-
tion of two Gaussians fit to the two convolved input messages. Then the most
unlikely consecutive pairs of these bins were combined until 32 bins remained.
We ran each image for 15 outer-loop iterations (15 updates of φ̃f , as in equa-
tion 73) of the convergent belief propagation algorithm described in section 6.
On average, this required about 35 iterations of belief propagation. The 2× 2
Fields of Experts parameters used by our model were the same as those in [5].

For comparison, we also tested 2 × 2 Fields of Experts using the gradient
descent algorithm used in [28] (code available online). In each case, gradient
descent was run for 3000 iterations using a step-size of 0.1.

Sample results from our approach are shown in figure 4. We measured the
average peak signal to noise ratio (PSNR) for each algorithm over the same
set of 10 images from the Berkeley segmentation database [52] that was used
in [5]. Here, PSNR is defined by

PSNR = 20 log10(255/
√
MSE) (98)

where MSE is the mean squared error. These results are shown in table 1. In
tables 1 and 1, we also show results for five canonical images from denoising
literature, as used by Portilla [33].

As shown in figure 4c, belief propagation over pairwise-connected Markov ran-
dom fields tends to produce piecewise constant results. A 2×2 Fields of Experts
model promises to correct this problem by modeling not only the statistics of
neighboring pixels, but whole blocks of four pixels. However, gradient descent
(fig. 4d) is unable to fully exploit this model, achieving signal-to-noise ratios
that do not exceed those of the pairwise-connected model using belief propaga-
tion. Local minima encountered by gradient descent are likely at fault. Figures
4e and 4f show the results of our approach, which outperform both pairwise
connected MRFs and gradient descent over the same statistical model (2 × 2
FoEs) by over a decibel of PSNR.

More importantly, using the methods of section 3, belief propagation can be
performed efficiently in higher-order factor nodes without relying on domain-
specific approximations or simplifying assumptions. On a 2.2GHz Opteron 275,
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our algorithm takes under two minutes for each iteration of belief propagation
on a 256 × 256 image. By comparison, the method of [5] took 16 minutes per
iteration on a 3GHz Xeon, and benefited from a reduced search space.

In addition to an improvement in running time, our approach also yielded
some improvement in quality over the more brute-force belief propagation ap-
proach used by Lan et. al. [5]. One difference between these two methods is
that, in order to reduce the search space of the problem, [5] relies on the as-
sumption that pixel intensities in the original image should lie within some
range determined by their immediate neighbors in the noisy image. Because
this assumption is only applicable for image denoising, and our interest lies
in developing spatial priors that can be used by any belief propagation al-
gorithm, our approach does not restrict the search space. This assumption is
violated by just under 10% of the pixels in the images tested, so it is reasonable
to ask if this assumption could account for the improvement in performance
achieved by our approach. However, when our linear constraints node algo-
rithm is forced to make this same assumption and restrict the search space for
each pixel according to its neighbors, performance improves slightly. For the
suite of 10 Berkeley images tested in table 1, restricting the search space as in
[5] increased PSNR from 31.62 to 31.68 for σ=10 and from 27.40 to 27.57 for
σ=20. This improvement most likely results from focusing histogram bins on
more likely intensity values. However, while this assumption may offer some
small performance gain, it is important to remember that such assumptions are
not available for other applications of spatial priors where belief propagation is
more necessary, such as stereo [3], photometric stereo [4], shape-from-shading
[9], image-based rendering [10], segmentation, and matting [7].

If the assumption made by Lan et. al. [5] to reduce the search space is not the
cause of the performance gain of our approach, then it is most likely due to
the convergent variant of belief propagation [43] and nonparametric message
representations used by our approach. One reason that this performance gain is
of interest is that although the underlying statistical model of natural images
is identical between the two methods, the factor graph used by [5] is not
identical to the one used by our method (seen in figure 3). The graph used in
[5] uses a single factor node for all three 2×2 experts within a clique, whereas
our method separates each expert into its own factor node. By separating out
these factors, the Bethe free energy approximation used by belief propagation
is degraded. The good performance of our approach shows that this sacrifice
in the quality of the Bethe approximation was less than the advantages offered
by convergent belief propagation and variable width bin histograms.

For the sake of comparison, we also present results for two state-of-the-art
denoising algorithms: 5×5 FoEs using gradient descent [28], and an algorithm
that uses Gaussian scale mixtures to model the joint distribution of wavelet
coefficients [33]. These algorithms are designed specifically for image denois-
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Table 4
Insert Table 4 about here.

Table 5
Insert Table 5 about here.

ing; they cannot easily be adapted for use as spatial priors in more complex
algorithms like stereo, shape from shading, matting, and others. We present
them here in tables 2 and 3, for a sense of perspective.

Belief propagation computes the single-variate marginals of each pixel value.
The expected value of the denoised image, or the minimum mean-squared
error (MMSE) point estimate, can be computed by taking the mean of each
marginal. This approach usually yields the best results for our algorithm. In
figure 4 and in tables 2 and 3, we also show results for the intensity values that
maximize the marginal, or the “maximum marginal” (MM) point estimate. For
fixed-width histograms, a continuous MRF that approximates intensity using
only 16 bins would typically show high discretization error for point estimates
computed this way. By using variable width histograms, these quality of these
point estimates is nearly equal to MMSE results. As discussed in section 6,
maximum a posteriori (MAP) point estimates can be computed using either
non-convergent max-product belief propagation, or by performing annealing
within convergent sum-product belief propagation [22]. For problems with
smooth, unimodal likelihood functions like image denoising, using MAP point
estimates is rarely beneficial.

In table 1, results using linear constraint nodes are presented both with and
without dynamic readjustment of histogram bin locations. In each case, his-
togram bins are initialized so that each bin has an equal likelihood under to the
Gaussian likelihood function. In the dynamic case, bins are also adjusted after
each outer-loop iteration, as described earlier. This procedure takes negligible
time, and yields a small but significant performance improvement. For other
applications, where initial estimates of the marginals may be less accurate, or
beliefs fluctuate more during inference (such as the shape-from-shading algo-
rithm in [9]), dynamic histogram bin edge adjustments are more important to
performance.

In addition to showing that LCNs allow belief propagation to efficiently cap-
ture nonpairwise aspects of the statistics of natural scenes, we are also inter-
ested in showing that belief propagation outperforms gradient descent tech-
niques at finding maximally likely images I that optimize p̃(~I|~IN) (equation

97). In tables 4 and 5, we show the unnormalized log likelihoods log p̃(~I|~IN)
for the denoised images computed by both gradient descent and by our belief
propagation approach. These algorithms both use the same 2 × 2 Fields of
Experts model, and so both algorithms are attempting to opimize the same
energy function. Because the spatial prior P (~I) may not be optimal, it is possi-
ble for an algorithm to achieve poor denoising results despite finding superior
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optima of p̃(~I|~IN). Tables 4 and 5 show that this is not the case. All variants
of belief propagation with LCNs find denoised images that are significantly
more likely (according to the model) than those chosen by gradient descent.

9 Conclusions

In this paper, we have introduced a way to efficiently perform belief propaga-
tion over large graph cliques, reducing computation from O(MN ) to O(NM2)
for a wide variety of potential functions. We have shown how these methods
can be generalized in several ways to benefit a larger subclass of potential func-
tions. Additionally, we have developed methods for representing belief propa-
gation messages for continuous variables that remain computationally efficient
for highly connected graphs, convergent variants of belief propagation, and the
use of the computational shortcuts introduced in this paper. These message
representations allow discretization error to be minimized while at the same
time preserving computational efficiency.

The techniques introduced in this paper open up a wealth of powerful, higher-
order statistical models for inference using belief propagation methods that
would previously have been intractable. Belief propagation is a promising
framework of optimization for these models, because it often outperforms
gradient-based optimization methods by exploiting factorizations, and by per-
forming optimization within the much larger search space of single-variate
marginals, which is less prone to local extrema. Computer vision in particular
stands to benefit greatly from higher order statistical models due to the com-
plex statistical structure of natural images and underlying image properties.
In particular, enabling belief propagation to exploit non-pairwise statistical re-
lationships in images such as the Fields of Experts models, and to take advan-
tage of overcomplete representations of a state-space such as multi-resolution
representations, may prove especially useful in computer vision.

To illustrate our techniques, we applied belief propagation to the problem
of performing statistical inference over higher order spatial priors of images.
When these spatial priors are applied to image denoising, we demonstrated a
significant performance increase over belief propagation in pairwise models and
also over gradient-descent based methods for higher-order models. At the same
time, a sizeable speed increase was shown over previous belief propagation
approaches to higher-order graph cliques. The ability to exploit higher order
spatial priors using belief propagation may be of great benefit to a number of
computer vision tasks that seek to infer images or range images in ambiguous,
uncertain circumstances, including stereo [3], photometric stereo [4], shape-
from-shading [9], image-based rendering [10], segmentation, and matting [7].
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a) Target Function b) 2 linear experts c) 4 linear experts d) 6 linear experts e) 8 linear experts

Fig. 1. Illustrating how products of linear potential functions can approximate arbitrary functions. a) The target potential function to be

approximated: a two-dimensional mixture of Gaussians. Subfigures b) through e) show the target function approximated with an increasing

number of linear potential functions. Vectors vk were chosen to manually to be evenly spaced.
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Coarse Spatial Scale 

Fine Spatial Scale 

Fig. 2. A factor graph that demonstrates the use of multiple resolu-

tion inference for belief propagation. Each circle represents a variable
at one of three spatial scales, and each black square represents a hard

linear constraint factor node. Here, each hard linear constraint node

enforces that its upper neighbor is the block average of the pixels in
the next finer spatial scale. Wavelet and Laplacian image pyramids

are also possible. The methods of section 3.1 reduce the number of

operations required to compute belief propagation messages in this
network from O(M5) to O(M2).
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Fig. 3. A factor graph used to perform image denoising using three
2 × 2 Fields of Experts filters. Each variable node, shown here as
circles, represents the true image intensity at a given pixel. The three

gray squares represent factor nodes corresponding to the three 2× 2

Fields of Experts filters.
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a) Original Input b) Noisy Image (σ = 20) PSNR = 21.11

c) Pairwise MRF, Belief Propagation PSNR = 27.03 d) 2× 2 FoE, Gradient Descent PSNR = 26.14

e) 2× 2 FoE, Constraint Nodes, MM PSNR = 28.73 f) 2× 2 FoE, Constraint Nodes, MMSE PSNR = 28.81

Fig. 4. Using higher-order Fields of Experts to perform image denoising. a) A cropping from the original image (from [33]). b) The original
image with additive Gaussian noise of σ = 20. c) The output of belief propagation over a pairwise-connected Markov Random Field, similar

to the model described in [23]. Pairwise models tend to produce piecewise constant image regions [5]. d) Denoising using the gradient descent
algorithm employed by [28], with three 2×2 Fields of Experts filters learned from natural images. e) Results using the same 2×2 FoE model
as d), except using linear constraint nodes (the methods described in section 3) and the graphical model of figure 3. Intensity values were
chosen to be the grey value with maximal marginal probability. f) As in e, except the intensity values were chosen to be the expected value

of the estimated marginal.
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σ = 10 σ = 20

Noisy Input Images 28.13 22.11

Hand-tuned Pairwise MRF using belief propagation [5] 30.73 26.66

2× 2 FoE using gradient descent (algorithm from [28]) 30.59 26.09

2× 2 FoE using belief propagation (from [5]) 30.89 27.29

2× 2 FoE using LCNs, Fixed Histograms, MMSE 31.51 27.29

2× 2 FoE using LCNs & Adaptive Histograms, Max Marginals 31.55 27.25

2× 2 FoE using LCNs & Adaptive Histograms, MMSE 31.62 27.40

Table 1

Peak signal-to-noise ratio (in decibels) for pairwise and higher-order models, averaged over the ten images from the Berkeley segmentation
database [52] used in [5]. Peak signal-to-noise ratio (PSNR), in decibels, for pairwise and higher-order models, averaged over the ten images

from the Berkeley segmentation database [52] used in [5]. PSNR is defined in equation 98. MMSE point estimates are taken by computing

the mean of each marginal, which gives us the approximated mean of the posterior distribution. Max marginal point estimates are choosing
the maximal value of each marginal. Denoising using linear constraint nodes (LCNs) with 2 × 2 FoEs outperforms both belief propagation
on pairwise MRFs and gradient descent on identical FoEs.
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σ = 10 (PSNR = 28.13) boat peppers house lena barbara

2x2 FoE, Gradient Descent [28] 30.61 30.73 31.00 30.91 30.19

2x2 FoE, BP using LCNs, Adaptive Histograms, Max Marginal 32.30 32.95 33.92 33.49 30.11

2x2 FoE, BP using LCNs, Adaptive Histograms, MMSE 32.28 32.85 33.71 33.34 30.24

5x5 FoE, Gradient Descent [28] 33.04 34.18 35.14 35.03 32.85

Portilla et. al. [33] 33.58 33.77 35.35 35.61 34.03

Table 2
Denoising results for five canonical denoising images (used in [33]). Image noise σ = 10. BP using LCNs refers to belief propagation using the

linear constraint node computational shortcut. State of the art denoising algorithms (bottom two rows) are also reported. Note that these

algorithms are designed especially for denoising, and would be difficult to use as a spatial prior for other vision tasks like stereo, shape from
shading, and others. All error values are given in peak signal-to-noise ratio (equation 98).
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σ = 20 (PSNR = 22.11) boat peppers house lena barbara

2x2 FoE, Gradient Descent [28] 26.14 26.15 26.49 26.45 25.44

2x2 FoE, BP using LCNs, Adaptive Histograms, Max Marginal 28.73 29.03 30.60 30.39 25.29

2x2 FoE, BP using LCNs, Adaptive Histograms, MMSE 28.81 29.09 30.46 30.31 25.47

5x5 FoE, Gradient Descent [28] 29.82 30.19 32.02 31.81 28.31

Portilla et. al. [33] 30.38 30.31 32.39 32.66 30.32

Table 3
Results as in table 3, except under noise with σ = 20. All error values are given in peak signal-to-noise ratio (equation 98).
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σ = 10 Berkeley Suite boat peppers house lena barbara

Original Image -3.93 -26.62 -6.57 -6.40 -25.82 -27.84

Noisy Image -4.15 -28.25 -7.03 -6.92 -27.78 -29.25

2x2 FoE, Gradient Descent [28] -3.94 -26.65 -6.65 -6.52 -26.20 -27.79

2x2 FoE, BP using LCNs, Fixed Histograms, MMSE -3.80 -25.70 -6.45 -6.31 -25.35 -26.73

2x2 FoE, BP using LCNs, Fixed Histograms, Max Marginal -3.80 -25.68 -6.45 -6.31 -25.34 -26.67

2x2 FoE, BP using LCNs, Adaptive Histograms, MMSE -3.80 -25.68 -6.44 -6.31 -25.33 -26.69

2x2 FoE, BP using LCNs, Adaptive Histograms, Max Marginal -3.79 -25.62 -6.43 -6.30 -25.28 -26.62

Table 4
The (unnormalized) log-likelihood of each image reconstruction according to the 2× 2 FoE model. All values are given as log p̃(I|IN )× 10−5,

where p̃(I|IN ) is given in equation 97. The values given for the Berkeley Suite images show the mean unnormalized log-likelihood for the

ten images from the Berkeley segmentation database [52] used in [5]. The five denoising algorithms shown here all seek to optimize the same
equation (i.e. equation 97 using the 2 × 2 FoE model). In each case, belief propagation significantly outperforms gradient descent. Thus,

in addition to producing denoised images with less error, belief propagation does a better job at finding the optimum values of the FoE

probability model. This means that the improvement in performance is not due to peculiarities of the FoE model. Also note that, according
to the model, the denoised images computed using belief propagation have greater likelihood than the original image. This suggests that

improving the model is more important than improving the method of optimization.
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σ = 20 Berkeley Suite boat peppers house lena barbara

Original Image -4.19 -28.44 -7.03 -6.85 -27.64 -29.66

Noisy Image -4.86 -33.39 -8.33 -8.25 -33.10 -34.04

2x2 FoE, Gradient Descent [28] -4.29 -29.29 -7.33 -7.21 -28.93 -30.18

2x2 FoE, BP using LCNs, Fixed Histograms, MMSE -4.00 -27.89 -7.00 -6.87 -27.55 -28.88

2x2 FoE, BP using LCNs, Fixed Histograms, Max Marginal -4.02 -27.83 -6.99 -6.86 -27.51 -28.77

2x2 FoE, BP using LCNs, Adaptive Histograms, MMSE -3.99 -27.85 -6.99 -6.86 -27.52 -28.82

2x2 FoE, BP using LCNs, Adaptive Histograms, Max Marginal -3.98 -27.76 -6.97 -6.84 -27.43 -28.71

Table 5
Results as in table 4, except under noise with σ = 20. All values are given as log p̃(I|IN )× 10−5, where p̃(I|IN ) is given in equation 97.
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