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Abstract

Ad hoc querying is difficult on very large datasets, since it is usually not possible to have the
entire dataset on disk. While compression can be used to decrease the size of the dataset, compressed
data is notoriously difficult to index or access.

In this paper we consider a very large dataset comprising multiple distinct time sequences. Each
point in the sequence is a numerical value. We show how to compress such a dataset into a format that
supports ad hoc querying, provided that a small error can be tolerated when the data is uncompressed.
Experiments on large, real world datasets (AT&T customer calling patterns) show that the proposed
method achieves an average of less than 5% error in any data value after compressing to a mere 2.5%
of the original space (i.e., a 40:1 compression ratio), with these numbers not very sensitive to dataset
size. Experiments on aggregate queries achieved a 0.5% reconstruction error with under 2% space
requirement.

1 Introduction

The bulk of the data in most data warehouses has a time component (e.g., sales per week, transactions
per minute, phone calls per day, etc.). More formally, these datasets are of N time sequences, each of
duration M, organized in an N x M matrix (N row vectors of dimensionality M ). In such databases,
decision support (i.e., statistical analysis) requires the ability to perform ad hoc queries. What one
would like is a way to compress data in such a way that ad hoc queries are still supported efficiently.
In this paper, we introduce a way to do this, for numerical (time sequence) data, at the cost of a small
loss in numerical accuracy.

When the dataset is very large, accessing specific data values is a difficult problem. For instance, if
the data is on tape, such access is next to impossible. When the data is all on disk, the cost of disk
storage, even with today’s falling disk prices, is typically a major concern, and anything one can do to
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decrease the amount of disk storage required is of value. We, the authors, ourselves have experience
with more than one dataset that ran into hundreds of gigabytes, making storage of the data on disk
prohibitively expensive. Unfortunately, most data compression techniques require large blocks of data
to be effective, so that random access to arbitrary pieces of the data is no longer conveniently possible,
making it difficult to issue ad hoc queries, and therefore do not support the sort of random ad hoc
access desired for data mining and for many forms of decision support. Instead, the query style is forced
to be one of careful planning for a “processing run” in which large chunks of data are temporarily
uncompressed, examined as needed, and then compressed back immediately.

The goal of this paper is to develop techniques that will permit the compression of such large datasets
in a manner that continues to permit random access to the cells of the matrix. By the term “random
access” we mean that the time to reconstruct the value of any single cell is constant with respect to the
number of rows N and columns M, with a small proportionality constant. Ideally, it should require 1
or 2 disk accesses (versus 1 disk access that the uncompressed file would require if the whole file could
fit on the disk). This is what is required to efficiently support ad hoc queries.

Table 1 provides an example of the kind of matrix that is typical in warehousing applications, where
rows are customers, columns are days, and the values are the dollar amounts spent on phone calls each
day. Alternatively, rows could correspond to patients, with hourly recordings of their temperature for
the past 48 hours, or companies, with stock closing prices over the past 365 days. Such a setting also
appears in other contexts. In information retrieval systems rows could be text documents, columns
could be vocabulary terms, with the (¢, ) entry showing the importance of the j-th term for the ¢-th
document.

day We Th Fr Sa Su
customer 7/10/96 7/11/96 7/12/96 T7/13/96 7/14/96
ABC Inc. 1 1 1 0 0
DEF 1td. 2 2 2 0 0
GHI Inc. 1 1 1 0 0
KLM Co. 5 5 5 0 0
Smith 0 0 0 2 2
Johnson 0 0 0 3 3
Thompson 0 0 0 1 1

Table 1: Example of a (customer-day) matrix

To make our discussion more concrete, we will refer to rows as “customers” and to columns as “days”.
The mathematical machinery is applicable to many different applications, such as those mentioned in
the preceding paragraph, including ones where there is no notion of a customer or a day, as long as the
problem involves a set of vectors or, equivalently, an N x M matrix X.

Decision support and data mining on large datasets often involves, at the lowest level, obtaining
answers to queries, both exploratory queries as well as queries to verify hypotheses. These queries may
require access to data records, either individually or in the aggregate: for one, some, or all customers;
for one, some, or all days. Two typical queries are:

e Queries on specific cells of the data matrix: ‘what was the amount of sales to GHI Inc. on July
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o Aggregate queries on selected rows and columns: ‘find the total sales to business customers (ABC,
DEF, GHI, and KLM) for the week ending July 12, 1996.

We study these two main classes of queries in this paper.

There are three underlying assumptions/motivations behind the present work:

e The data matrix is huge, of the order of several GigaBytes. For example, in large corporations
like AT&T, there are millions of customers (= rows);

e The number of rows N is much larger than the number of columns M:
N>M (1)

As mentioned, N is on the order of millions; we expect that the number of columns M is of the
order of hundreds. For example, M =365 if we maintain daily data for a year’s duration and 10*12
if we maintain monthly data for the last decade;

e There are no updates on the data matrix, or they are so rare that they can be batched and
performed off-line.

In this paper we explore the application of a variety of lossy compression techniques that permit
quick reconstruction of arbitrary parts of the dataset. We find that Singular Value Decomposition of
the given data matrix, followed by retention of only the few most important principal components,
works rather well, resulting in a compressed version that can be used to reconstruct an arbitrary value
with only one disk look-up, and with small average error in the reconstructed value. We develop an
enhanced algorithm, which we call SVDD, that exhibits not only a smaller average reconstruction error
than SVD (and the other compression techniques we tried), but also a very good bound on the error of
the data value reconstructed worst. We present computation of SVDD with only three passes over the
matrix.

No previous work, to our knowledge, has addressed the problem we study in this paper, even though
work on data compression abounds. Some interesting work has been done on compression with fast
searching in a large database of bit vectors [12, 5]. Our work is different because our focus is on a
dataset of real-valued numbers rather than bit vectors.

Well-designed index structures are necessary to support ad hoc queries. There has been much work
on index structures, including some excellent recent work specifically aimed at decision support [8, 10].
However, the design of indices is not the focus of this paper. Our concern is actually getting the data
records once they have been identified, which we expect would typically be by means of an index, but
could, for the purposes of this paper, be by any other means just as well.

The paper is organized as follows: Section 2 gives the survey. Section 3 describes the mathematical
background for the singular value decomposition (SVD). Section 4 gives the algorithms and the proposed
enhancements. Section 5 gives experimental results on real datasets. Section 6 makes some observations.
Section 7 lists the conclusions and directions for future research.



2 Survey - Alternative Methods

The problem we address in this paper is the compression of a set of time sequences (or vectors), in a
potentially lossy manner, while maintaining “random access”, that is, fast reconstruction of any desired
cell of the matrix. Several popular data representation techniques from different areas come to mind,
including (lossless) string compression, Fourier analysis, clustering, and singular value decomposition
(SVD). We examine the first three in the next three subsections, and present SVD in detail in the next
section.

2.1 String Compression

Algorithms for lossless string compression are widely available (e.g., gzip, based on the well-known
Lempel-Ziv algorithm [29], Huffman coding, arithmetic coding, etc.; see [23]). While these techniques
can achieve fairly good compression, the difficulty with them has to do with reconstruction of the
compressed data. Given a query that asks about some customers or some days, we have to uncompress
the entire database, for all customers and all days, to be able to answer the query. When there is a
continuous stream of queries, as one would expect in data analysis, it effectively becomes the case that
the data is retained uncompressed much (or all) of the time.

One attempt to work around this problem is to segment the data and then compress each segment
independently. If the segments are large enough, good compression may be achieved while making
it sufficient to uncompress only the relevant segments. This idea works only if most queries follow a
particular form that matches the segmentation. For truly ad hoc querying, as is often the case in data
analysis, such segmentation is not effective. A large fraction of the queries cut across many segments,
so that large fractions of the database have to be reconstructed.

For the above reasons, we do not examine lossless compression methods in more detail here.

2.2 Clustering

A different approach is to exploit the observation that the behavior of many customers is likely to be
similar. If similar customers can be clustered together, a single cluster representative could serve as a
good approximation of the others. Other customers need only have a reference to specify the correct
cluster representative. Reconstruction in this case is particularly simple: To find the value of cell z; ;,
find the cluster-representative for the ¢-th customer, and return its j-th entry. This application of
clustering is known in the signal processing literature as vector quantization [16].

Clustering has attracted tremendous interest, from diverse fields and for diverse applications: in
information retrieval for grouping together documents represented as vectors [20]; in pattern matching,
for grouping together samples of the training set [3]; in the social and natural sciences for statistical
analysis [9]. Excellent surveys on clustering include [18, 13, 26].

Although useful in numerous applications, in our setting clustering might not scale-up. The so-called
“sound” clustering algorithms, which presumably give the highest quality clusters [26], are typically
O(N?) or O(Nlog N). Faster, approximate algorithms include the popular “k-means” algorithm [17],
which requires a constant, but large number of passes over the dataset, thus becoming impractical



for the huge datasets we have in mind. Recent fast clustering algorithms for huge databases include
CLARANS [14], BIRCH [28], and CLUDIS [6]. However, these have only been tried for M =2 dimensions.
They will probably suffer in high dimensionalities (e.g., M = 100), if they are based on R*-trees [6] or
any other related spatial access method [28].

In our experiments we used an off-the-shelf clustering method from the *S’ statistical package [2]. The
method is quadratic on the number of records N, and it builds a cluster-hierarchy, which we truncate
at the appropriate levels, to obtain the desirable number of clusters. We set the distance function to
be the Euclidean distance, and the “element-to-cluster” distance function to be the maximum distance
between the element and the members of the cluster. This results in many tight clusters, which should
lead to small reconstruction error. The package had no problems with high dimensions, at the expense
of its inability to scale-up for large V.

2.3 Spectral Methods

The lossy spectral representation of real time sequences has been studied extensively in the signal
processing literature. Fourier analysis is perhaps the best known of the standard techniques, although
there is a plethora of other techniques, such as wavelets [19], linear predictive coding [16], and so forth.

Consider Fourier analysis, where a given time signal is “transformed” to obtain a set of Fourier
coefficients. In many practical signals, it is the case that most of the “energy” (or “information”) is
concentrated in the first few Fourier coefficients [21]. One can then throw away the remaining coefficients.
This effect has also been observed in the data mining context[1].

The DFT and other associated methods (e.g., DCT, DWT) are all linear transformations, which
effectively consider an M-long time sequence as a point in M-d space, and rotate the axes. This is
exactly what the proposed SVD does, but in an optimal (in the sense of Ly-norm approximation) way
for the given dataset (Figure 1 gives an illustration). Thus, we expect that all these methods will be
inferior to the proposed SVD. This is the main reason that we don’t put much emphasis on the spectral
methods. Additional reasons are the following:

e Spectral methods are tuned for time sequences, ideally with a few low-frequency harmonics. Thus,
they won’t perform well if the input signals have several spikes or abrupt jumps. Therefore, one
should expect SVD to handle discontinuities better than spectral methods.

e The SVD can be applied not only to time sequences, but to any arbitrary, even heterogeneous,
M-dimensional vectors. For example, a patient record could be a “vector” comprising elements
age, weight, height, cholesterol level, etc.. In such a setting, the spectral methods do not apply.

Alternatively, we could treat our two-dimensional matrix as a “photograph image”, the values of the
cells being the gray-scale values, and apply ideas from two-dimensional signal processing, such as a 2-D
Fourier Transform. This is a bad idea because one is now transforming the entire dataset globally, and
this is clearly worse than doing it a row at a time: The reason is that adjacent customers need not be
related, making the columns look like white-noise signals, which are the worst case for compression.
Also, reconstruction of any chosen data cell requires more work.

In conclusion, spectral methods on a row-basis are a good idea; however, their reconstruction per-
formance will never exceed the one for SVD, which constitutes the optimal linear transformation for a



Symbol Definition

N number of records/time sequences

M duration (length) of each sequence

k cutoff (number of principal components retained during compression)
X the N x M data matrix
X

r

A

the N x M reconstruction of the data matrix
rank of the data matrix
diagonal matrix with eigenvalues

[|-]]2 FEuclidean (= L3) norm

X matrix multiplication

X! the transpose of X

T value at row ¢ and column j of the matrix X

T reconstructed (approximate) value at row ¢ and column j

T the 2-th row of the matrix X

Txj = Xj | the j-th column of the matrix X

x the mean cell value of X

Vi number (=count) of outlier cells for which deltas are stored in SVDD

given that 7 principal components have been retained
RMSPFE | normalized root mean squared error
s% disk space after compression, per cent of original

Table 2: Symbols, definitions and notation from matrix algebra.

given dataset. In our experiments, we use DCT as representative of the spectral methods because it is
very close to optimal when the data is correlated [7, p. 109], as is the case in our datasets.

3 Introduction to SVD — The Proposed Method

The proposed method is based on the so-called Singular Value Decomposition (SVD) of the data matrix.
SVD is a popular and powerful operation, and it has been used in numerous applications, such as
statistical analysis (as the driving engine behind the Principal Component Analysis [11]), text retrieval
under the name of Latent Semantic Indexing [4], pattern recognition and dimensionality reduction as
the Karhunen-Loeve (KL) transform [3], and face recognition [25]. SVD is particularly useful in settings
that involve least-squares optimization such as in linear regression, dimensionality reduction, and matrix
approximation. See [24] or [15] for more details. The latter citation also gives ‘C’ code.

3.1 Preliminaries
We shall use the following notational conventions from linear algebra:

e Bold capital letters denote matrices, e.g., U, X.

e Bold lower-case letters denote column vectors, e.g., u, v.



e The “x” symbol indicates explicitly the multiplication of two matrices, two vectors, or a matrix
and a vector.

Table 2 gives a list of symbols and their definitions

The SVD is based on the concepts of eigenvalues and eigenvectors:

Definition 3.1 For a square n X n matriz S, the unit vector u and the scalar A that satisfy
Sxu=AXxu (2)

are called an eigenvector and its corresponding eigenvalue of the matriz S.

3.2 Intuition behind SVD

Before we give the definition of SVD, it is best that we try to give the intuition behind it. Consider a set
of points as before, represented as an N x M matrix X. In our running example, such a matrix would
represent for N customers and M days, the dollar amount spent by each customer on each day. It would
be desirable to group similar customers together, as well as similar days together. This is exactly what
SVD does, automatically! Each group corresponds to a “pattern” or a “principal component”, i.e., an
important grouping of days that is a “good feature” to use, because it has a high discriminatory power
and is orthogonal to the other such groups.

Figure 1 illustrates the rotation of axis that SVD implies: suppose that we have M =2 dimensions;
then our customers are 2-d points, as in Figure 1. The corresponding 2 directions (2’ and y’) that SVD
suggests are shown. The meaning is that, if we are allowed only k=1, the best direction to project on
is the direction of z'; the next best is y', etc.

Figure 1: Illustration of the rotation of axis that SVD implies: the “best” axis to project is z’.

3.3 Definition of SVD
The formal definition for SVD follows:

Theorem 3.1 (SVD) Given an N X M real matriz X we can express it as
X=UxAxV! (3)

where U is a column-orthonormal N X r matriz, r is the rank of the matrizx X, A is a diagonal r X r
matriz and V is a column-orthonormal M X r matriz.



Proof: See [15, p. 59]. O

Recall that a matrix U is called column-orthonormal if its columns u; are mutually orthogonal unit
vectors. Equivalently: U! x U = I, where I is the identity matrix. Also, recall that the rank of a matrix
is the highest number of linearly independent rows (or columns).

Eq. 3 equivalently states that a matrix X can be brought in the following form, the so-called spectral
decomposition [11, p. 11]:

X = Mup X vi4 dgug X v ...+ A, x vE (4)

where u;, and v; are column vectors of the U and V matrices respectively, and A; the diagonal elements
of the matrix A. Without loss of generality, we can assume that the eigenvalues A; are sorted in
decreasing order. Returning to Figure 1, vy is exactly the unit vector of the best 2’ axis; vy is the unit
vector of the second best axis, %', and so on.

Geometrically, A gives the strengths of the dimensions (as eigenvalues), V gives the respective direc-
tions, and U x A gives the locations along these dimensions where the points occur.

In addition to axis rotation, another intuitive way of thinking about SVD is that it tries to identify
“rectangular blobs” of related values in the X matrix. This is best illustrated through an example.

Example: For example, for the above “toy” matrix of Table 1, we have two “blobs” of values, while
the rest of the entries are zero. This is confirmed by the SVD, which identifies them both:

[ 0.18 0
0.36 0
. _ 8;2 8 [9.64 0 ]X[wg 0.58 0.58 0 0 5)
090 0 0 599 0 0 0 071 071
0 0.80
0 027

or, in “spectral decomposition” form:

[ 0.18 ] [0
0.36 0
0.18 0
X = 9.64x | 0.90 | x[0.58, 0.58, 0.58, 0, 0] + 5.29x | 0 | x[0,0, 0, 0.71, 0.71]
0 0.53
0 0.80
0] | 0.27 |

Notice that the rank of the X matrix is r=2: there are effectively 2 types of customers: weekday
(business) and weekend (residential) callers, and two patterns (i.e., groups-of-days): the “weekday
pattern” (that is, the group {*We’, ‘Th’, ‘Fr’}), and the “weekend pattern” (that is, the group {‘Sa’,
‘Su’}). The intuitive meaning of the U and V matrices is as follows:

Observation 3.1 U can be thought of as the customer-to-pattern similarity matrix,



Observation 3.2 Symmetrically, V is the day-to-pattern similarity matrix.

For example, v; 3 = 0 means that the first day (‘We’) has zero similarity with the 2nd pattern (the
“weekend pattern”).

Observation 3.3 The column vectors v; (j = 1,2,...) of the V are unit vectors that correspond to
the directions for optimal projection of the given set of points

For example, in Figure 1, vi and vy are the unit vectors on the directions z’ and y’, respectively.

Observation 3.4 The i-th row vector of U x A gives the coordinates of the i-th data vector (“cus-
tomer”), when it is projected in the new space dictated by SVD.

Lemma 3.2 The matriz C = X' x X is a symmelric matriz, whose eigenvalues are the squares of
the A; elements of the A matriz of the SVD of X. Moreover, the columns of the V matriz are the

eigenvectors of the C matriz.

C=VxA*xV! (6)

Proof: See [7]. 0
The intuitive meaning of the M x M matrix C = X' x X is that it gives the column-to-column

similarities. In our example, we have the day-to-day similarities:

31 31 31 0 0
31 31 31 0 0
C=X'xX|31 31 31 0 0
0 0 0 14 14
0 0 0 14 14

A symmetric lemma can be defined with respect to a “row-to-row similarity” matrix R = X x X1,
We do not present this lemma since it is not required below, whereas Lemma 3.2 is the basis of the
two-pass algorithm for the computation of the SVD, which we present is subsection 4.1.

3.4 Outline of Proposed Method

In conclusion, the proposed method is to use the SVD of the data matrix X (see Eq. 4),

X = Z /\iui X Vf (7)
=1
and truncate to the first k few terms (k <r < M):

k
X = Z /\iui X Vf (8)

=1



The idea is to keep as many eigenvectors as the space restrictions permit. The retained terms are known
as the k principal components. We refer to this method as “SVD?” for the rest of this work, or as “plain
SVD” (in light of the upcoming enhancements).

The original matrix X comprise N % M data elements; the SVD representation, after truncating
to k principal components, will need N * k data elements for the U matrix, £ data elements for the
eigenvalues, and k* M data elements for the V matrix. Thus the ratio s of space-after over space-before
is

_N*k—l—k—l—k*MNk (9)
° T N+ M ~ M
where the approximation holds, since N > M > k.

4 Algorithms and Enhancements: SVDD

In this section, we first present the algorithms for the “plain SVD” method outlined above; afterwards,
we propose an enhancement, the “SVDD” method, which gives much better performance.

4.1 Algorithms for Plain SVD

Here we describe the efficient implementation of SVD for large matrices. Specifically, we present a fast,
2-pass algorithm to compute the U, A and V matrices. We also discuss how to reconstruct a desired
cell (¢, 7) from the compressed structure. For the discussion below, recall that k is the number of
eigenvalues (and eigenvectors) retained. Typically, & < M, resulting in a matrix U much smaller than
the original matrix X.

2-pass computation of SVD: We show that it takes only two passes over the large data matrix
to compute the SVD, assuming that there is enough memory to hold the M x M column-to-column
similarity matrix C. The idea is to exploit Lemma 3.2. The lemma tells us that we can work with
the smallest dimension (M, in our case), compute the M x M column-to-column similarity matrix C
(which can be done in a single pass), and then compute its eigenvectors (i.e., the V matrix) and its
eigenvalues (i.e., the square of the A matrix), in main-memory, since the C matrix is small. Then only
one more pass is required to determine U, as explained next.

Computation of C: During the first pass, we construct C. This is done by keeping track of the
partial sum of each element of C. One row (= M elements) of X is read in at a time, after which
every combination of two elements in that row is multiplied and added to the appropriate element of
C. Pseudocode for the algorithm is given in Figure 2.

Computation of U: Given that C is in main memory, we find its eigenvalues and eigenvectors, by
Lemma 3.2: C = V x A? x V. We are ultimately interested in finding the SVD of the data matrix
X = U x A x VL. Since we already have A and V¢, U can be constructed as follows:

U=XxVxAt (10)

10



/* input: pointer to matrix X on disk */
/* output: column-to-column similarity matrix C */

for i := 1 to M do
for j :=1 to M do

Clil[j1 < 0;
for i := 1 to N do
Read :-th row of X from the disk (X[il[11, ..., X[il[M])

for j :=1 to M do
for 1 :=1 to M do
C[j1[1] += X[i][jI1*X[i][1];

Figure 2: Algorithm for computing the column-to-column similarity matrix C in one pass.

or, equivalently:
M
ULJ‘:ZMJH*UTH’]'//\]' 1=1,...,N; j=1,...,k (11)
m=1

Pseudocode for this is given in Figure 3. Notice that the computation of the ¢-th row u; . of the matrix
U needs only the i-th row z; . of the data matrix X (as well as the matrix V and the eigenvalues, which
are assumed to be in main memory). This is the reason that we need only one more pass over the rows
of the X, in our goal to compute and print U.

/* input: pointer to X on disk, eigenvectors (V matrix), and eigenvalues A; */
/* output: row-to-pattern similarity matrix U =*/

for i := 1 to N do
Read X[i][*] from disk; /* row vector of X */
for j :=1 to k do
Ulil1[j]1 <« o;
for 1 :=1 to M do
Uil [j] += X[i1[11*V[1]1[j];
Ulil[j] — ULil1L31 /7 Ay

Figure 3: Algorithm for computing the “row-to-pattern similarity matrix” U.

Reconstruction: Given the truncated U, A and V matrices, we can derive the reconstructed value
&; ; of any desired cell (¢, 7) of the original matrix using Eq. 8, or, identically:
k
Big= D Am AU * 0 1=1,..,N; j=1,....M (12)

m=1

This requires O(k) compute time, independent of N and M. Assuming that V and A are already
pinned in memory, that the matrix U is stored row-wise on disk, and that an entire row fits in one disk
block, only a single disk access is required to perform this reconstruction.

11



4.2 Proposed Enhancement: SVD with Deltas

There is always the possibility that some data may be approximated poorly. By storing this information
separately, we can establish a bound on the error of any individual data element, and also get a reduction
in the overall error.

We choose the cells for which the SVD reconstruction shows the highest error, and maintain a set
of triplets of the form (row, column, delta), where delta is the difference between the actual value and
the value that SVD reconstructs. The motivation is that a given customer may follow the patterns that
SVD expects, with a few deviations on some particular days. Thus, it is more reasonable to store the
deltas for those specific days, as opposed to treating the whole customer as an outlier. With this, one
can “clean up” any gross errors that the SVD algorithm may have been unable to handle. We call the
resulting method, “SVDD”, for “SVD with Deltas”.

The practical question that arises is how much storage to allocate for keeping outlier information. In
other words, we have to tradeoff the number k of principal components retained against the number of
data cells that can be considered outliers. Formally, we must solve the following problem:

Given: a desired compression ratio (say, compressed size s% of the original)
Find: the optimal number of principal components k,,: to keep,

Such That: the total reconstruction error is minimized when we are allowed to store cell-
level deltas.

Let kjqr be the largest value of k& that does not violate the space requirement, and 7, be the
count of outlier cells that we can afford to store, after we have chosen to maintain k eigenvalues. A
straightforward, ineflicient way to proceed is given in Figure 4.

/* input: pointer to X on disk, kmax
/* output: kopy */

for k := 1 to kyaz do
determine the number of outliers 7; we can afford to store;
compute the SVD of the array with given k (two passes);
find the errors for every cell;
pick the 7, largest ones (one more pass) and
compute the error measure g

kopt — value of k with the smallest error measure €

Figure 4: Straightforward, inefficient algorithm for SVDD

We can factor out several passes and do the whole operation in three passes rather than 3 * k...
The idea is to create priority queues for the deltas (one queue for each candidate value of k), and to
compute all the necessary deltas for all the queues in a single pass over the data matrix. Figure 5
presents pseudocode.

12



input: pointer to X on disk, kpmax

output: matrices A, V, and U

pass 1:
compute A and V, keeping kma.r eigenvalues

estimate the number of outliers <; that we can afford to store to stay within s, for
k=1, 2, ..., kmaz
initialize kjar priority queues to store the i largest cell-outliers for each
candidate value of &k
pass 2: for each row of the data matrix,
compute the error of each cell according to k=1,2, ..., kpmar eigenvalues;
insert the appropriate cells into the appropriate priority-queue;
accumulate the reconstruction error ¢; for each k value, so far.
kopt < the k value that gives the smallest error ej;
using kop: as the chosen cut-off value k, truncate A and V;

pass 3:
pass through each row of the data matrix, to compute and print the corresponding row

of U, using Eq. 11.

Figure 5: 3-pass algorithm for SVDD.

Note that the definition of the reconstruction error is orthogonal to the SVDD algorithm. We continue
to use the sum of squared errors (see Eq. 13) as our error metric, as in the rest of this paper.

Data structures for SVDD: Clearly, we need to store U, the k,,; eigenvalues, and V, as in the
plain SVD. In addition, we have to store the 7y, triplets of the form (row, column, delta) for the outlier
cells. This should be done in a hash table, where the key is the combination of (row*M + column), that
is, the order of the cell in the row-major scanning. Optionally, we could use a main-memory Bloom
filter [22], which would predict the majority of non-outliers, and thus save several probes into the hash
table.

Reconstruction: Reconstructing the value of a single cell, say (7, 7) now requires:

e one disk access to fetch the i-th row of U (asin plain SVD), and then k,,; main memory operations
with A and V, to reconstruct the value of the cell that plain SVD would have reconstructed, using
Eq. 8 or 12;

e one probe of hash table to find whether this cell was an outlier, in which case we add the corre-
sponding delta value, and enjoy error-free reconstruction.
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5 Experiments

We consider two types of queries in our experiments: queries that seek a specific data value, for a specific
customer and a specific day; and queries that seek an aggregate over a set of customers and a set of
days. Clearly, these are not the only query types supported by the techniques just described. However,
we use these two classes of queries as representative.

We ran our experiments on a variety of real and synthetic datasets. We present here results from two
real datasets. The general trends were similar in the other datasets. Following is a description of them.

‘phonel00K’ The first dataset is business data (specifically, AT&T customer calling data). For a
selected set of customers, it contains the daily call volume over some period. Given a large
enough number of customers and a long enough period of interest, the size of this dataset makes
it extremely unmanageable for data analysis. We have N=100,000 customers and M =366 days
(a leap year) for each. The size of ‘phonel00K’ is 0.2 GigaBytes. We also used subsets of this
dataset, called ‘phone1000’ (1000 rows), ‘phone2000’ (2000 rows), etc.

‘stocks’ The second dataset is a list of daily stock closing prices for a number of stocks, again over
a specific period. There are N=381 stocks, with M =128 days each. The size of ‘stocks’ is 341
KBytes.

Methods: We used plain SVD, the proposed SVDD (SVD with deltas), the hierarchical clustering
method (described in Sec. 2.2), and the Discrete Cosine Transform (DCT) from the spectral methods
(Sec. 2.3).

Error measure: There are many different measures that one could use for reconstruction error, based
on different application needs. The root-mean-squared-error (absolute or relative) is the typical error
measure for forecasting applications in time series [27]. We use this metric, one again, normalized with

respect to the standard deviation of the data values being recorded. We call this the root mean square
percent error (RMSPE).L. .

For any method, let Z; ; be the reconstructed value of the i, j cell, when the original value was z; ;
and let & be the mean cell value of X.

Definition 5.1 The RMSPFE is defined as the normalized root mean squared error:

\/Z ] (&35 — 245)?
\/Z 12] (i —2)?

!The signal processing community uses the signal strength (mean squared amplitude) as a standard normalization factor
(for example, in computing “signal-to-noise ratio”). By analogy, our first instinct was to divide by the root-mean-squared
z;;. However, our sequence, unlike audio or electro-magnetic signals, do not have zero mean. So we have chosen to subtract
out the mean, thereby computing the standard deviation rather than signal strength in the denominator. Note that the
choice of normalizing constant does not affect the trends discovered in the experiments, but does impact the magnitude
of the normalized error values reported. If we had used signal strength rather than deviation as our normalization, the
results we report would appear even better

(13)
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We ran three sets of experiments: The first was to determine the accuracy vs. space tradeoff for
the competing methods. The second was to see how the error changes for aggregate queries involving
multiple cells. The last was to see how our method scales up with dataset size. These are the topics of
the upcoming subsections, correspondingly.

5.1 Accuracy vs. Space Trade-off

Here we compare the reconstruction error vs. required storage space of four compression methods:
hierarchical clustering, DCT, SVD, and SVDD with b bytes of storage space for each number stored.
For the clustering method, we store the cluster centroids and an array containing the cluster number
to which each point belongs. If there are k clusters to be stored, then (b X k x M)+ (N X b) bytes are
required. For DCT, we store the low-frequency coeflicients; if k coeflicients are kept for each row, then
N x k x b space is required. The space requirements for SVD are given by Eq. 9; the space requirements
for SVDD involve the same formula (but for fewer PCs) and then O(b) bytes for each delta stored. To
make all results comparable, we present storage space required not in absolute terms, but rather as a
percentage (s%) of the storage required uncompressed.
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awol | . "phone2000.delta.out" -a- | 40 4 "stocks.delta.out" -=-
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@ @
= 20 = 20
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Figure 6: Reconstruction error (RMSPE) vs. disk storage space (s%) for clustering (“+7), DCT (“x”),
SVD (#$7), and SVDD (“07). The SVD and SVDD curves overlap for low values of s (= the percent
space consumed).

Figure 6 plots the reconstruction error (RMSPE) that the competing methods require, as a function
of the ratio of disk space to store the compressed format compared to storing the entire matrix. The left
graph is for the ‘phone2000’ dataset, while the right one for the ‘stocks’ dataset. The labels “svd’,
“delta”, “det” and “hc” correspond to the plain SVD, the SVD with deltas, DCT, and the hierarchical
clustering method as described earlier in subsection 2.2. The observations are as follows:

e In both cases, the proposed SVDD method did the best.

e DCT did not do well. In the ‘phone2000’ case, it consistently had the highest reconstruction
error. For stocks prices, which are modeled well as random walks [21], it is believed to be the
best among the spectral methods, exactly because successive stock prices are highly correlated.
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| storage space || SVD (abs error) | SVDD (abs error) | SVD (normalized) | SVDD (normalized) |

5% 1794.917 53.745 465.4% 13.93%
10% 1268.717 26.464 328.9% 6.86%
15% 635.456 16.8 164.7% 4.35%
20% 472.784 11.82 122.6% 3.06%
25% 404.824 10.546 104.9% 2.73%

Table 3: Worst-case error as a function of storage space for the ‘phone2000’ dataset, both in absolute

: : ABS
and in normalized Sii o, terms.

This explains why DCT performs better for the ‘stocks’ dataset as opposed to the ‘phone2000’
dataset.

e Plain SVD and clustering were close to each other, alternating in the second and third place.
Specifically, SVD was better for the ‘stocks’ dataset. It should be noted that the clustering
method we used was a high-quality quadratic method. Even so, the plain SVD outperformed it
or had a comparable reconstruction error. It is questionable how much more reconstruction error
a scalable, linear clustering method will lead to, if it can work for M & 100 at all.

e The SVDD algorithm did best on both datasets, consistently. For very small storage sizes (un-
der s = 2% for ‘phone2000’ and under s = 6% for ‘stocks’), the optimum value of k,,; was
kmaz: that is, it turned out best to devote all the available storage to keeping as many principal
components as possible and no outliers.

e Lor 10% space requirement (i.e., a 10:1 compression ratio), the error was less than 2% for SVDD
on both datasets. Even a 50:1 compression ratio (s = 2%) resulted in an error of under 10%. As a
point of reference, the Lempel-Ziv (gzip) algorithm had a space requirement of s ~ 25% for both
datasets.

Normalized Worst-Case Error vs. Storage Size
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Figure 7: Worst-case error as a function of storage space for the ‘phone2000’ dataset.
Thus far, we have used the mean error, RMSPE, as our error metric. However, it is often useful to

bound the error on any individual point. We ran some additional experiments on the ‘phone2000’
dataset to determine the worst-case error for any one matrix cell. Table 3 shows the results of these
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experiments for the SVD and SVDD techniques. We plot the maximum error, for a single data point in
a time series, as a function of storage space for the ‘phone2000’ dataset. Figure 7 presents the same
information in a graph. As in the case of RMSPE the error has been normalized with respect to the
standard deviation of the dataset.

The results are astounding. Even where the RMSPE is quite reasonable for the plain SVD technique,
we find that the worst case error for a single data value can still be very large, potentially causing
estimates for selected individual points to be way off. (This is true for the clustering and DCT techniques
as well). On the other hand, the SVDD technique bounds the worst error pretty well, so that one can
have confidence that the reconstructed value of every single point is within a few percent of the correct
value, even with a significant compression ratio.

Delta Dropoff
1000 T :

"delta.drop.SVD" ——

100

10 £

log(delta value)

Ol L L L L
0 100000 200000 300000 400000 500000
nth delta

Figure 8: Absolute error vs. deltas ordered by reconstruction error for plain SVD applied to the
‘phone2000’ dataset at 10% storage (k = 31 principal components).

To understand this phenomenon further, we plotted the distribution of errors for the individual cells.
Figure 8 shows the results for the ‘phone2000’ dataset, using the SVD technique. The X-axis has the
cells rank ordered by the error in their reconstruction, for the first 50,000 cells, and the Y-axis has the
absolute error. Observe the steep initial drop in error (the Y-axis is on a logarithmic scale), indicating
that only a few points suffer an error anywhere close to the worst-case bound. This is the reason for
the good performance of SVDD. By explicitly recording these few very bad cases, it is able to bound
the worst case error to under 10% without consuming large amounts of storage. What this means is
that, with SVDD, not only do we get good compression with remarkably low average error, but we also
know that the worst case cell error is also a close approximation.

Another observation from Figure 8 is that most matrix cells are reconstructed after compression with
an error substantially less than the mean error RMSPE. In applications where a few erroneous data
points are tolerable, one may actually care more about the median rather than the mean error, and
this median error is one or two orders of magnitude less than the mean error, so all of our techniques
actually do much better than one would imagine based on the results for mean error presented above.

For the rest of this work we mainly focus on SVDD, since it performed significantly better than the
other techniques.
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5.2 Reconstruction Error for Aggregate Queries

The results of the previous experiment are very encouraging: less than 2% error with a 10% space
requirement for the SVDD. In fact, the results are even better for aggregate queries because errors tend
to cancel out when cell values are aggregated.

In general, an aggregate query specifies some rows and columns of the data matrix and asks for an
aggregate function f() of the specified cells (e.g., ‘find the sum of sales among our NJ customers, for
the 1st of every month in 1995°). The function f() could be, e.g., sum(), avg(), stddev(), etc.

query error (phone2000) query error (phone2000)
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(a) ‘phone2000’ linear scales (b) ‘phone2000’ logarithmic scales

Figure 9: Query error vs. space overhead for aggregate (avg) queries (“47): (a) linear and (b) logarith-
mic scales. The RMSPE (of single-cell queries) is also shown (“<$7) for comparison.

For a given aggregate query, we define the normalized query error ()., as the relative error between
the correct response and our approximate response:

Qerr = |F(X) = S|/ F(X)] (14)
where f() is the aggregate function, over a set of cells that the query specified.

We posed 50 aggregate queries to determine the average of a randomly selected set of rows and
columns in the ‘phone2000’ dataset. The number of rows and columns selected was tuned so that
approximately 10% of the data cells would be included in the selection. Figure 9 presents the results
averaged over the 50 queries, showing how error varies as a function of the storage space used. The
results are shown for the SVDD method only, since the rest of the methods showed similar behavior.
The error was well under 0.5% even with the storage space set to only 2% of the original. In other
words, a 50:1 compression ratio can be comfortably obtained. Figure 9 also shows the error for queries
on individual cells, that is, the RMSPE that we showed previously.

Estimates of answers to aggregate queries can be obtained through sampling. (Note that sampling is
not likely to be able to provide estimates of individual cell values, and is therefore not comparable to
the work in the bulk of this paper). In initial experiments we ran, simple uniform sampling performed
poorly compared with SVDD for aggregate queries. We did not implement more sophisticated sampling
techniques, and an open question is how our techniques compare with sophisticated adaptive sampling
for aggregate queries.
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5.3 Scale-up

Here we show the reconstruction error for the proposed SVDD method. The current version of the clus-
tering method could not scale up beyond N = 3000. We tried using a small sample to do the clustering
and then assigning the remaining records to the existing clusters, but this gave very poor results. As
mentioned, clustering for large datasets is the topic of recent research (BIRCH [28], CLARANS [14],

etc.); however, none of these algorithms scales up for high-dimensional points. Thus, we focus our
attention on SVDD for the rest of the experiments.

Figure 10 shows the curves for subsets of size N = 1,000, 2,000, 5,000, 10,000, 20,000, 50,000 and the
full set of N=100,000 customers from the ‘phonel00K” dataset, for the SVDD method.
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Figure 10: Reconstruction error (RMSPE) vs. storage space (s%) for SVDD, on the ‘phonel00K’
dataset

Notice that

e the error is around 2% at the 10% space consumption, for all of the sample sizes;

e the graphs are fairly homogeneous, for a wide span of database sizes (1,000 < N < 100,000).

As was previously mentioned, the errors for aggregate queries will be even less.

In Table 4 we show how the maximum error changes with the dataset size. We find that for plain
SVD the maximum error increases with dataset size. Intuitively, this is because, as the dataset becomes
larger, there is a greater likelihood of one bad outlier point that gets reconstructed poorly. However,
with the SVDD technique, the maximum error remains approximately constant with dataset size.

6 Discussion

Below we describe how to extend the SVDD algorithm for use with a DataCube, and mention a practical
issue. Appendix A discusses the ability of SVD to provide visualization of datasets, essentially for free.
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dataset | SVD (normalized) | SVDD (normalized) |

‘phonel000°’ 227.1% 10.6%
‘phone2000°’ 328.9% 6.8%
‘phone5000° 890.8% 7.9%
‘phonel10000° 1306.5% 8.6%
‘phone20000° 1829.6% 7.4%
‘phone50000° 3849.0% 9.4%
‘phonel00K’ 5335.6% 7.4%

Table 4: Comparison between SVD and SVDD of worst-case normalized errors at 10% storage, for

increasing dataset sizes.

6.1 DataCube Compression

Whereas we focus on time sequences in this paper, the techniques described above apply in general to
multi-dimensional data. For instance, consider the well-known productid X storeid x weekid array
of sales figures. This corresponds to a “DataCube” [8] with three dimensions, while the customer-day
dataset we have been discussing corresponds to a DataCube of two dimensions. There are several ways

to handle the issue:

o We can group these as productid X (storeid X weekid) or as (productid x storeid) x weekid.
Which we prefer is a function of the number of values in each dimension. In general, the more
square the matrix, the better the compression, but also the more the work that has to be done
to compress. So we pick the largest size for the smaller dimension that still leaves it computable
within the available memory resources. The main point to note is that, since the cells in the array
are reconstructed individually, how dimensions are collapsed makes no difference to the availability

of access.

e This problem has also been examined in the principal component analysis literature, under the
name of 3-mode PCA [11, p. 233]. The idea is again to approximate the given “DataCube” element
x5, with Zh,lﬂ“ a;nbjickrgni, where the parameters a., bs, ¢, and g. are chosen to minimize the
error. The 3-mode PCA has been extended, in theory, to N-mode analysis. It is an interesting
open question to find out the relative benefits of each alternative.

6.2 Practical Issue
In one of our real datasets (results not reported in this paper), we observed that there were several

customers that did not make any purchases at all. An “engineering” solution in this case is to flag all
these customers, and build a Bloom filter [22], to help detect them quickly.

7 Conclusions

We have examined the problem of providing fast “random access” capability on a huge collection of

time sequences. Qur contributions are:
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e The formulation of the problem as a lossy compression problem, and the proposal of several
tools to solve it, from diverse areas, like signal processing (DFT, etc.), pattern recognition and
information retrieval (clustering), and matrix algebra (SVD).

e The description of SVD, which is a powerful tool in matrix algebra. We hope that the intuition
we tried to provide and the pointers to citations and source code, will make SVD accessible to a
wider database audience.

¢ The enhancement of SVD and the detailed design of SVDD, which has several desirable properties:

— It achieves excellent compression, with the ability to accurately reconstruct the original data
matrix (5% error for a 40:1 compression ratio of the largest dataset).

— It bounds the worst-case error of any individual data value pretty well. Our experiments
showed that the reconstructed value of every single cell is within 10% of the correct value
at 10% storage, for datasets of increasing size (unlike plain SVD, whose worst-case error
increases with dataset size).

— Its computation requires only three passes over the dataset, which is very desirable for huge
datasets.

— Like SVD, it naturally leads to dimensionality reduction of the given dataset while still
preserving distances well, thus allowing visualization and providing a method of detecting
outliers for data analysis.

— It can handle any arbitrary vectors in addition to time sequences without any additional
effort.

We presented experiments on real datasets (stocks, calling patterns of AT&T customers), which
highlighted the above claims.

Directions for future research include (a) the design and implementation of robust, scalable clustering
algorithms and their comparison against SVDD; (b) the study of the so-called “robust” SVD algorithms
(which try to minimize the effect of outliers); and (c) the use of 3-mode and N-mode PCA for DataCube
problems.
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A Visualization

Recall that SVD performs a change of axes, and it maintains the first & of them. Thus, we readily have
the first 2 or 3 axes, which can be used to map each time sequence into a point in 2- or 3- dimensional
space. These points can be plotted to give an idea of the density and structure of the dataset. Figure 11
shows the scatter-plot of the ‘phone2000’ and ‘stocks’ datasets in the 2-dimensional SVD space, that
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Figure 11: Scatter plot of our two datasets, the ‘phone2000’ and the ‘stocks’ datasets, in SVD space

is, the first axis corresponds to the first (and strongest) principal component (= linear combination of
existing columns), and the second axis corresponds to the second principal component.

There are several observations we can make from the two plots:

e In the ‘phone2000’ dataset, most of the points are concentrated close to the origin, with a
few exceptions. The exceptions correspond to high-volume customers, while the majority of the
customers use the services much less. We could probably make the hypothesis that there is some
skewed, Zipf-like distribution of our customers, which could lead to marketing decisions.

e In the ‘stocks’ dataset, there is a similar situation but with less skew. Moreover, most of the points
are very close to the horizontal axis, implying that they all follow closely the first eigenvector.
Presumably, due to the long duration of the sequences, most of the stocks followed the general
pattern of the stock market, and thus exhibit similar trends, after scaling.

o The closeness to the horizontal axis explains the excellent compression that we saw in Figure 6(b).
It also explains why clustering didn’t perform well. Except for a few points close to the origin, the
majority of the points are scattered on the horizontal axis. A handful of them are even away from
the horizontal axis. Thus, there are no natural clusters to look for, which explains why clustering
didn’t do well. On the contrary, the ‘phone2000’ dataset has almost no points along either of
the two axes because the point at approximately (300,000, -15,000) created a large distraction and
tilted the axis in an unfavorable way for SVD.

e Presumably, a financial analyst should examine those exceptional stocks whose points are away
from the horizontal axis. Also, a marketing analyst could focus on the distraction of the ‘phone2000’
dataset.

e In both scatter-plots, there are some outliers. Instead of using additional principal components
to achieve better approximations for them, it is much cheaper to store their deltas. This is the
reason that SVDD often performs so much better than the plain SVD.
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