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AbstractAd hoc querying is di�cult on very large datasets, since it is usually not possible to have theentire dataset on disk. While compression can be used to decrease the size of the dataset, compresseddata is notoriously di�cult to index or access.In this paper we consider a very large dataset comprising multiple distinct time sequences. Eachpoint in the sequence is a numerical value. We show how to compress such a dataset into a format thatsupports ad hoc querying, provided that a small error can be tolerated when the data is uncompressed.Experiments on large, real world datasets (AT&T customer calling patterns) show that the proposedmethod achieves an average of less than 5% error in any data value after compressing to a mere 2.5%of the original space (i.e., a 40:1 compression ratio), with these numbers not very sensitive to datasetsize. Experiments on aggregate queries achieved a 0.5% reconstruction error with under 2% spacerequirement.1 IntroductionThe bulk of the data in most data warehouses has a time component (e.g., sales per week, transactionsper minute, phone calls per day, etc.). More formally, these datasets are of N time sequences, each ofduration M , organized in an N � M matrix (N row vectors of dimensionality M). In such databases,decision support (i.e., statistical analysis) requires the ability to perform ad hoc queries. What onewould like is a way to compress data in such a way that ad hoc queries are still supported e�ciently.In this paper, we introduce a way to do this, for numerical (time sequence) data, at the cost of a smallloss in numerical accuracy.When the dataset is very large, accessing speci�c data values is a di�cult problem. For instance, ifthe data is on tape, such access is next to impossible. When the data is all on disk, the cost of diskstorage, even with today's falling disk prices, is typically a major concern, and anything one can do to�Work performed while visiting AT&T.yWork performed while visiting AT&T. Partially supported by NSF grants EEC-94-02384, IRI-9205273, IRI-9625428.



decrease the amount of disk storage required is of value. We, the authors, ourselves have experiencewith more than one dataset that ran into hundreds of gigabytes, making storage of the data on diskprohibitively expensive. Unfortunately, most data compression techniques require large blocks of datato be e�ective, so that random access to arbitrary pieces of the data is no longer conveniently possible,making it di�cult to issue ad hoc queries, and therefore do not support the sort of random ad hocaccess desired for data mining and for many forms of decision support. Instead, the query style is forcedto be one of careful planning for a \processing run" in which large chunks of data are temporarilyuncompressed, examined as needed, and then compressed back immediately.The goal of this paper is to develop techniques that will permit the compression of such large datasetsin a manner that continues to permit random access to the cells of the matrix. By the term \randomaccess" we mean that the time to reconstruct the value of any single cell is constant with respect to thenumber of rows N and columns M , with a small proportionality constant. Ideally, it should require 1or 2 disk accesses (versus 1 disk access that the uncompressed �le would require if the whole �le could�t on the disk). This is what is required to e�ciently support ad hoc queries.Table 1 provides an example of the kind of matrix that is typical in warehousing applications, whererows are customers, columns are days, and the values are the dollar amounts spent on phone calls eachday. Alternatively, rows could correspond to patients, with hourly recordings of their temperature forthe past 48 hours, or companies, with stock closing prices over the past 365 days. Such a setting alsoappears in other contexts. In information retrieval systems rows could be text documents, columnscould be vocabulary terms, with the (i; j) entry showing the importance of the j-th term for the i-thdocument. day We Th Fr Sa Sucustomer 7/10/96 7/11/96 7/12/96 7/13/96 7/14/96ABC Inc. 1 1 1 0 0DEF Ltd. 2 2 2 0 0GHI Inc. 1 1 1 0 0KLM Co. 5 5 5 0 0Smith 0 0 0 2 2Johnson 0 0 0 3 3Thompson 0 0 0 1 1Table 1: Example of a (customer-day) matrixTo make our discussion more concrete, we will refer to rows as \customers" and to columns as \days".The mathematical machinery is applicable to many di�erent applications, such as those mentioned inthe preceding paragraph, including ones where there is no notion of a customer or a day, as long as theproblem involves a set of vectors or, equivalently, an N � M matrix X.Decision support and data mining on large datasets often involves, at the lowest level, obtaininganswers to queries, both exploratory queries as well as queries to verify hypotheses. These queries mayrequire access to data records, either individually or in the aggregate: for one, some, or all customers;for one, some, or all days. Two typical queries are:� Queries on speci�c cells of the data matrix: `what was the amount of sales to GHI Inc. on July2



11, 1996?'� Aggregate queries on selected rows and columns: `�nd the total sales to business customers (ABC,DEF, GHI, and KLM) for the week ending July 12, 1996.'We study these two main classes of queries in this paper.There are three underlying assumptions/motivations behind the present work:� The data matrix is huge, of the order of several GigaBytes. For example, in large corporationslike AT&T, there are millions of customers (= rows);� The number of rows N is much larger than the number of columns M :N �M (1)As mentioned, N is on the order of millions; we expect that the number of columns M is of theorder of hundreds. For example, M=365 if we maintain daily data for a year's duration and 10*12if we maintain monthly data for the last decade;� There are no updates on the data matrix, or they are so rare that they can be batched andperformed o�-line.In this paper we explore the application of a variety of lossy compression techniques that permitquick reconstruction of arbitrary parts of the dataset. We �nd that Singular Value Decomposition ofthe given data matrix, followed by retention of only the few most important principal components,works rather well, resulting in a compressed version that can be used to reconstruct an arbitrary valuewith only one disk look-up, and with small average error in the reconstructed value. We develop anenhanced algorithm, which we call SVDD, that exhibits not only a smaller average reconstruction errorthan SVD (and the other compression techniques we tried), but also a very good bound on the error ofthe data value reconstructed worst. We present computation of SVDD with only three passes over thematrix.No previous work, to our knowledge, has addressed the problem we study in this paper, even thoughwork on data compression abounds. Some interesting work has been done on compression with fastsearching in a large database of bit vectors [12, 5]. Our work is di�erent because our focus is on adataset of real-valued numbers rather than bit vectors.Well-designed index structures are necessary to support ad hoc queries. There has been much workon index structures, including some excellent recent work speci�cally aimed at decision support [8, 10].However, the design of indices is not the focus of this paper. Our concern is actually getting the datarecords once they have been identi�ed, which we expect would typically be by means of an index, butcould, for the purposes of this paper, be by any other means just as well.The paper is organized as follows: Section 2 gives the survey. Section 3 describes the mathematicalbackground for the singular value decomposition (SVD). Section 4 gives the algorithms and the proposedenhancements. Section 5 gives experimental results on real datasets. Section 6 makes some observations.Section 7 lists the conclusions and directions for future research.3



2 Survey - Alternative MethodsThe problem we address in this paper is the compression of a set of time sequences (or vectors), in apotentially lossy manner, while maintaining \random access", that is, fast reconstruction of any desiredcell of the matrix. Several popular data representation techniques from di�erent areas come to mind,including (lossless) string compression, Fourier analysis, clustering, and singular value decomposition(SVD). We examine the �rst three in the next three subsections, and present SVD in detail in the nextsection.2.1 String CompressionAlgorithms for lossless string compression are widely available (e.g., gzip, based on the well-knownLempel-Ziv algorithm [29], Hu�man coding, arithmetic coding, etc.; see [23]). While these techniquescan achieve fairly good compression, the di�culty with them has to do with reconstruction of thecompressed data. Given a query that asks about some customers or some days, we have to uncompressthe entire database, for all customers and all days, to be able to answer the query. When there is acontinuous stream of queries, as one would expect in data analysis, it e�ectively becomes the case thatthe data is retained uncompressed much (or all) of the time.One attempt to work around this problem is to segment the data and then compress each segmentindependently. If the segments are large enough, good compression may be achieved while makingit su�cient to uncompress only the relevant segments. This idea works only if most queries follow aparticular form that matches the segmentation. For truly ad hoc querying, as is often the case in dataanalysis, such segmentation is not e�ective. A large fraction of the queries cut across many segments,so that large fractions of the database have to be reconstructed.For the above reasons, we do not examine lossless compression methods in more detail here.2.2 ClusteringA di�erent approach is to exploit the observation that the behavior of many customers is likely to besimilar. If similar customers can be clustered together, a single cluster representative could serve as agood approximation of the others. Other customers need only have a reference to specify the correctcluster representative. Reconstruction in this case is particularly simple: To �nd the value of cell xi;j ,�nd the cluster-representative for the i-th customer, and return its j-th entry. This application ofclustering is known in the signal processing literature as vector quantization [16].Clustering has attracted tremendous interest, from diverse �elds and for diverse applications: ininformation retrieval for grouping together documents represented as vectors [20]; in pattern matching,for grouping together samples of the training set [3]; in the social and natural sciences for statisticalanalysis [9]. Excellent surveys on clustering include [18, 13, 26].Although useful in numerous applications, in our setting clustering might not scale-up. The so-called\sound" clustering algorithms, which presumably give the highest quality clusters [26], are typicallyO(N2) or O(N logN). Faster, approximate algorithms include the popular \k-means" algorithm [17],which requires a constant, but large number of passes over the dataset, thus becoming impractical4



for the huge datasets we have in mind. Recent fast clustering algorithms for huge databases includeCLARANS [14], BIRCH [28], and CLUDIS [6]. However, these have only been tried forM=2 dimensions.They will probably su�er in high dimensionalities (e.g., M � 100), if they are based on R*-trees [6] orany other related spatial access method [28].In our experiments we used an o�-the-shelf clustering method from the `S' statistical package [2]. Themethod is quadratic on the number of records N , and it builds a cluster-hierarchy, which we truncateat the appropriate levels, to obtain the desirable number of clusters. We set the distance function tobe the Euclidean distance, and the \element-to-cluster" distance function to be the maximum distancebetween the element and the members of the cluster. This results in many tight clusters, which shouldlead to small reconstruction error. The package had no problems with high dimensions, at the expenseof its inability to scale-up for large N .2.3 Spectral MethodsThe lossy spectral representation of real time sequences has been studied extensively in the signalprocessing literature. Fourier analysis is perhaps the best known of the standard techniques, althoughthere is a plethora of other techniques, such as wavelets [19], linear predictive coding [16], and so forth.Consider Fourier analysis, where a given time signal is \transformed" to obtain a set of Fouriercoe�cients. In many practical signals, it is the case that most of the \energy" (or \information") isconcentrated in the �rst few Fourier coe�cients [21]. One can then throw away the remaining coe�cients.This e�ect has also been observed in the data mining context[1].The DFT and other associated methods (e.g., DCT, DWT) are all linear transformations, whiche�ectively consider an M -long time sequence as a point in M -d space, and rotate the axes. This isexactly what the proposed SVD does, but in an optimal (in the sense of L2-norm approximation) wayfor the given dataset (Figure 1 gives an illustration). Thus, we expect that all these methods will beinferior to the proposed SVD. This is the main reason that we don't put much emphasis on the spectralmethods. Additional reasons are the following:� Spectral methods are tuned for time sequences, ideally with a few low-frequency harmonics. Thus,they won't perform well if the input signals have several spikes or abrupt jumps. Therefore, oneshould expect SVD to handle discontinuities better than spectral methods.� The SVD can be applied not only to time sequences, but to any arbitrary, even heterogeneous,M -dimensional vectors. For example, a patient record could be a \vector" comprising elementsage, weight, height, cholesterol level, etc.. In such a setting, the spectral methods do not apply.Alternatively, we could treat our two-dimensional matrix as a \photograph image", the values of thecells being the gray-scale values, and apply ideas from two-dimensional signal processing, such as a 2-DFourier Transform. This is a bad idea because one is now transforming the entire dataset globally, andthis is clearly worse than doing it a row at a time: The reason is that adjacent customers need not berelated, making the columns look like white-noise signals, which are the worst case for compression.Also, reconstruction of any chosen data cell requires more work.In conclusion, spectral methods on a row-basis are a good idea; however, their reconstruction per-formance will never exceed the one for SVD, which constitutes the optimal linear transformation for a5



Symbol De�nitionN number of records/time sequencesM duration (length) of each sequencek cuto� (number of principal components retained during compression)X the N �M data matrixX̂ the N �M reconstruction of the data matrixr rank of the data matrix� diagonal matrix with eigenvaluesjj:jj2 Euclidean (= L2) norm� matrix multiplicationXt the transpose of Xxi;j value at row i and column j of the matrix Xx̂i;j reconstructed (approximate) value at row i and column jxi;� the i-th row of the matrix Xx�;j � xj the j-th column of the matrix X�x the mean cell value of Xi number (=count) of outlier cells for which deltas are stored in SVDDgiven that i principal components have been retainedRMSPE normalized root mean squared errors% disk space after compression, per cent of originalTable 2: Symbols, de�nitions and notation from matrix algebra.given dataset. In our experiments, we use DCT as representative of the spectral methods because it isvery close to optimal when the data is correlated [7, p. 109], as is the case in our datasets.3 Introduction to SVD { The Proposed MethodThe proposed method is based on the so-called Singular Value Decomposition (SVD) of the data matrix.SVD is a popular and powerful operation, and it has been used in numerous applications, such asstatistical analysis (as the driving engine behind the Principal Component Analysis [11]), text retrievalunder the name of Latent Semantic Indexing [4], pattern recognition and dimensionality reduction asthe Karhunen-Loeve (KL) transform [3], and face recognition [25]. SVD is particularly useful in settingsthat involve least-squares optimization such as in linear regression, dimensionality reduction, and matrixapproximation. See [24] or [15] for more details. The latter citation also gives `C' code.3.1 PreliminariesWe shall use the following notational conventions from linear algebra:� Bold capital letters denote matrices, e.g., U, X.� Bold lower-case letters denote column vectors, e.g., u, v.6



� The \�" symbol indicates explicitly the multiplication of two matrices, two vectors, or a matrixand a vector.Table 2 gives a list of symbols and their de�nitionsThe SVD is based on the concepts of eigenvalues and eigenvectors:De�nition 3.1 For a square n� n matrix S, the unit vector u and the scalar � that satisfyS� u = �� u (2)are called an eigenvector and its corresponding eigenvalue of the matrix S.3.2 Intuition behind SVDBefore we give the de�nition of SVD, it is best that we try to give the intuition behind it. Consider a setof points as before, represented as an N �M matrix X. In our running example, such a matrix wouldrepresent for N customers and M days, the dollar amount spent by each customer on each day. It wouldbe desirable to group similar customers together, as well as similar days together. This is exactly whatSVD does, automatically! Each group corresponds to a \pattern" or a \principal component", i.e., animportant grouping of days that is a \good feature" to use, because it has a high discriminatory powerand is orthogonal to the other such groups.Figure 1 illustrates the rotation of axis that SVD implies: suppose that we have M=2 dimensions;then our customers are 2-d points, as in Figure 1. The corresponding 2 directions (x0 and y0) that SVDsuggests are shown. The meaning is that, if we are allowed only k=1, the best direction to project onis the direction of x0; the next best is y0, etc.
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y’Figure 1: Illustration of the rotation of axis that SVD implies: the \best" axis to project is x0.3.3 De�nition of SVDThe formal de�nition for SVD follows:Theorem 3.1 (SVD) Given an N �M real matrix X we can express it asX = U���Vt (3)where U is a column-orthonormal N � r matrix, r is the rank of the matrix X, � is a diagonal r � rmatrix and V is a column-orthonormal M � r matrix.7



Proof: See [15, p. 59]. 2Recall that a matrix U is called column-orthonormal if its columns ui are mutually orthogonal unitvectors. Equivalently: Ut�U = I, where I is the identity matrix. Also, recall that the rank of a matrixis the highest number of linearly independent rows (or columns).Eq. 3 equivalently states that a matrix X can be brought in the following form, the so-called spectraldecomposition [11, p. 11]: X = �1u1 � vt1 + �2u2 � vt2 + : : :+ �rur � vtr (4)where ui, and vi are column vectors of the U and V matrices respectively, and �i the diagonal elementsof the matrix �. Without loss of generality, we can assume that the eigenvalues �i are sorted indecreasing order. Returning to Figure 1, v1 is exactly the unit vector of the best x0 axis; v2 is the unitvector of the second best axis, y0, and so on.Geometrically, � gives the strengths of the dimensions (as eigenvalues), V gives the respective direc-tions, and U �� gives the locations along these dimensions where the points occur.In addition to axis rotation, another intuitive way of thinking about SVD is that it tries to identify\rectangular blobs" of related values in the X matrix. This is best illustrated through an example.Example: For example, for the above \toy" matrix of Table 1, we have two \blobs" of values, whilethe rest of the entries are zero. This is con�rmed by the SVD, which identi�es them both:X = 266666666664 0:18 00:36 00:18 00:90 00 0:530 0:800 0:27 377777777775� " 9:64 00 5:29 # � " 0:58 0:58 0:58 0 00 0 0 0:71 0:71 # (5)or, in \spectral decomposition" form:X = 9:64� 266666666664 0:180:360:180:90000 377777777775� [0:58; 0:58; 0:58; 0; 0] + 5:29� 266666666664 00000:530:800:27 377777777775� [0; 0; 0; 0:71; 0:71]Notice that the rank of the X matrix is r=2: there are e�ectively 2 types of customers: weekday(business) and weekend (residential) callers, and two patterns (i.e., groups-of-days): the \weekdaypattern" (that is, the group f`We', `Th', `Fr'g), and the \weekend pattern" (that is, the group f`Sa',`Su'g). The intuitive meaning of the U and V matrices is as follows:Observation 3.1 U can be thought of as the customer-to-pattern similarity matrix,8



Observation 3.2 Symmetrically, V is the day-to-pattern similarity matrix.For example, v1;2 = 0 means that the �rst day (`We') has zero similarity with the 2nd pattern (the\weekend pattern").Observation 3.3 The column vectors vj (j = 1; 2; : : :) of the V are unit vectors that correspond tothe directions for optimal projection of the given set of pointsFor example, in Figure 1, v1 and v2 are the unit vectors on the directions x0 and y0, respectively.Observation 3.4 The i-th row vector of U � � gives the coordinates of the i-th data vector (\cus-tomer"), when it is projected in the new space dictated by SVD.Lemma 3.2 The matrix C = Xt � X is a symmetric matrix, whose eigenvalues are the squares ofthe �i elements of the � matrix of the SVD of X. Moreover, the columns of the V matrix are theeigenvectors of the C matrix. C = V��2 �Vt (6)Proof: See [7]. 2The intuitive meaning of the M �M matrix C = Xt � X is that it gives the column-to-columnsimilarities. In our example, we have the day-to-day similarities:C = Xt �X2666664 31 31 31 0 031 31 31 0 031 31 31 0 00 0 0 14 140 0 0 14 14 3777775A symmetric lemma can be de�ned with respect to a \row-to-row similarity" matrix R = X�Xt.We do not present this lemma since it is not required below, whereas Lemma 3.2 is the basis of thetwo-pass algorithm for the computation of the SVD, which we present is subsection 4.1.3.4 Outline of Proposed MethodIn conclusion, the proposed method is to use the SVD of the data matrix X (see Eq. 4),X = rXi=1 �iui � vti (7)and truncate to the �rst k few terms (k � r �M):X̂ = kXi=1 �iui � vti (8)9



The idea is to keep as many eigenvectors as the space restrictions permit. The retained terms are knownas the k principal components. We refer to this method as \SVD" for the rest of this work, or as \plainSVD" (in light of the upcoming enhancements).The original matrix X comprise N �M data elements; the SVD representation, after truncatingto k principal components, will need N � k data elements for the U matrix, k data elements for theeigenvalues, and k �M data elements for the V matrix. Thus the ratio s of space-after over space-beforeis s = N � k + k + k �MN �M � kM (9)where the approximation holds, since N �M � k.4 Algorithms and Enhancements: SVDDIn this section, we �rst present the algorithms for the \plain SVD" method outlined above; afterwards,we propose an enhancement, the \SVDD" method, which gives much better performance.4.1 Algorithms for Plain SVDHere we describe the e�cient implementation of SVD for large matrices. Speci�cally, we present a fast,2-pass algorithm to compute the U, � and V matrices. We also discuss how to reconstruct a desiredcell (i, j) from the compressed structure. For the discussion below, recall that k is the number ofeigenvalues (and eigenvectors) retained. Typically, k �M , resulting in a matrix U much smaller thanthe original matrix X.2-pass computation of SVD: We show that it takes only two passes over the large data matrixto compute the SVD, assuming that there is enough memory to hold the M �M column-to-columnsimilarity matrix C. The idea is to exploit Lemma 3.2. The lemma tells us that we can work withthe smallest dimension (M , in our case), compute the M �M column-to-column similarity matrix C(which can be done in a single pass), and then compute its eigenvectors (i.e., the V matrix) and itseigenvalues (i.e., the square of the � matrix), in main-memory, since the C matrix is small. Then onlyone more pass is required to determine U, as explained next.Computation of C: During the �rst pass, we construct C. This is done by keeping track of thepartial sum of each element of C. One row (= M elements) of X is read in at a time, after whichevery combination of two elements in that row is multiplied and added to the appropriate element ofC. Pseudocode for the algorithm is given in Figure 2.Computation of U: Given that C is in main memory, we �nd its eigenvalues and eigenvectors, byLemma 3.2: C = V � �2 �Vt. We are ultimately interested in �nding the SVD of the data matrixX = U���Vt. Since we already have � and Vt, U can be constructed as follows:U = X�V ���1 (10)10



/* input: pointer to matrix X on disk *//* output: column-to-column similarity matrix C */for i := 1 to M dofor j := 1 to M doC[i][j]  0;for i := 1 to N doRead i-th row of X from the disk (X[i][1], ..., X[i][M])for j := 1 to M dofor l := 1 to M doC[j][l] += X[i][j]*X[i][l];Figure 2: Algorithm for computing the column-to-column similarity matrix C in one pass.or, equivalently: ui;j = MXm=1 xi;m � vm;j=�j i = 1; : : : ; N ; j = 1; : : : ; k (11)Pseudocode for this is given in Figure 3. Notice that the computation of the i-th row ui;� of the matrixU needs only the i-th row xi;� of the data matrix X (as well as the matrixV and the eigenvalues, whichare assumed to be in main memory). This is the reason that we need only one more pass over the rowsof the X, in our goal to compute and print U./* input: pointer to X on disk, eigenvectors (V matrix), and eigenvalues �j *//* output: row-to-pattern similarity matrix U */for i := 1 to N doRead X[i][*] from disk; /* row vector of X */for j := 1 to k doU[i][j]  0;for l := 1 to M doU[i][j] += X[i][l]*V[l][j];U[i][j]  U[i][j] / �j;Figure 3: Algorithm for computing the \row-to-pattern similarity matrix" U.Reconstruction: Given the truncated U, � and V matrices, we can derive the reconstructed valuex̂i;j of any desired cell (i; j) of the original matrix using Eq. 8, or, identically:x̂i;j = kXm=1�m � ui;m � vj;m i = 1; : : : ; N ; j = 1; : : : ;M (12)This requires O(k) compute time, independent of N and M . Assuming that V and � are alreadypinned in memory, that the matrix U is stored row-wise on disk, and that an entire row �ts in one diskblock, only a single disk access is required to perform this reconstruction.11



4.2 Proposed Enhancement: SVD with DeltasThere is always the possibility that some data may be approximated poorly. By storing this informationseparately, we can establish a bound on the error of any individual data element, and also get a reductionin the overall error.We choose the cells for which the SVD reconstruction shows the highest error, and maintain a setof triplets of the form (row, column, delta), where delta is the di�erence between the actual value andthe value that SVD reconstructs. The motivation is that a given customer may follow the patterns thatSVD expects, with a few deviations on some particular days. Thus, it is more reasonable to store thedeltas for those speci�c days, as opposed to treating the whole customer as an outlier. With this, onecan \clean up" any gross errors that the SVD algorithm may have been unable to handle. We call theresulting method, \SVDD", for \SVD with Deltas".The practical question that arises is how much storage to allocate for keeping outlier information. Inother words, we have to tradeo� the number k of principal components retained against the number ofdata cells that can be considered outliers. Formally, we must solve the following problem:Given: a desired compression ratio (say, compressed size s% of the original)Find: the optimal number of principal components kopt to keep,Such That: the total reconstruction error is minimized when we are allowed to store cell-level deltas.Let kmax be the largest value of k that does not violate the space requirement, and k be thecount of outlier cells that we can a�ord to store, after we have chosen to maintain k eigenvalues. Astraightforward, ine�cient way to proceed is given in Figure 4./* input: pointer to X on disk, kmax/* output: kopt */for k := 1 to kmax dodetermine the number of outliers k we can afford to store;compute the SVD of the array with given k (two passes);find the errors for every cell;pick the k largest ones (one more pass) andcompute the error measure �kkopt  value of k with the smallest error measure �kFigure 4: Straightforward, ine�cient algorithm for SVDDWe can factor out several passes and do the whole operation in three passes rather than 3 � kmax.The idea is to create priority queues for the deltas (one queue for each candidate value of k), and tocompute all the necessary deltas for all the queues in a single pass over the data matrix. Figure 5presents pseudocode. 12



input: pointer to X on disk, kmaxoutput: matrices �, V, and Upass 1:compute � and V, keeping kmax eigenvaluesestimate the number of outliers k that we can afford to store to stay within s%, fork=1, 2, : : :, kmaxinitialize kmax priority queues to store the k largest cell-outliers for eachcandidate value of kpass 2: for each row of the data matrix,compute the error of each cell according to k=1,2, ..., kmax eigenvalues;insert the appropriate cells into the appropriate priority-queue;accumulate the reconstruction error �k for each k value, so far.kopt  the k value that gives the smallest error �k;using kopt as the chosen cut-off value k, truncate � and V;pass 3:pass through each row of the data matrix, to compute and print the corresponding rowof U, using Eq. 11. Figure 5: 3-pass algorithm for SVDD.Note that the de�nition of the reconstruction error is orthogonal to the SVDD algorithm. We continueto use the sum of squared errors (see Eq. 13) as our error metric, as in the rest of this paper.Data structures for SVDD: Clearly, we need to store U, the kopt eigenvalues, and V, as in theplain SVD. In addition, we have to store the kopt triplets of the form (row, column, delta) for the outliercells. This should be done in a hash table, where the key is the combination of (row*M+column), thatis, the order of the cell in the row-major scanning. Optionally, we could use a main-memory Bloom�lter [22], which would predict the majority of non-outliers, and thus save several probes into the hashtable.Reconstruction: Reconstructing the value of a single cell, say (i; j) now requires:� one disk access to fetch the i-th row ofU (as in plain SVD), and then kopt main memory operationswith � andV, to reconstruct the value of the cell that plain SVD would have reconstructed, usingEq. 8 or 12;� one probe of hash table to �nd whether this cell was an outlier, in which case we add the corre-sponding delta value, and enjoy error-free reconstruction.13



5 ExperimentsWe consider two types of queries in our experiments: queries that seek a speci�c data value, for a speci�ccustomer and a speci�c day; and queries that seek an aggregate over a set of customers and a set ofdays. Clearly, these are not the only query types supported by the techniques just described. However,we use these two classes of queries as representative.We ran our experiments on a variety of real and synthetic datasets. We present here results from tworeal datasets. The general trends were similar in the other datasets. Following is a description of them.`phone100K' The �rst dataset is business data (speci�cally, AT&T customer calling data). For aselected set of customers, it contains the daily call volume over some period. Given a largeenough number of customers and a long enough period of interest, the size of this dataset makesit extremely unmanageable for data analysis. We have N=100,000 customers and M=366 days(a leap year) for each. The size of `phone100K' is 0.2 GigaBytes. We also used subsets of thisdataset, called `phone1000' (1000 rows), `phone2000' (2000 rows), etc.`stocks' The second dataset is a list of daily stock closing prices for a number of stocks, again overa speci�c period. There are N=381 stocks, with M=128 days each. The size of `stocks' is 341KBytes.Methods: We used plain SVD, the proposed SVDD (SVD with deltas), the hierarchical clusteringmethod (described in Sec. 2.2), and the Discrete Cosine Transform (DCT) from the spectral methods(Sec. 2.3).Error measure: There are many di�erent measures that one could use for reconstruction error, basedon di�erent application needs. The root-mean-squared-error (absolute or relative) is the typical errormeasure for forecasting applications in time series [27]. We use this metric, one again, normalized withrespect to the standard deviation of the data values being recorded. We call this the root mean squarepercent error (RMSPE).1. .For any method, let x̂i;j be the reconstructed value of the i; j cell, when the original value was xi;jand let �x be the mean cell value of X.De�nition 5.1 The RMSPE is de�ned as the normalized root mean squared error:qPNi=1PMj=1(x̂ij � xij)2qPNi=1PMj=1(xij � �x)2 (13)1The signal processing community uses the signal strength (mean squared amplitude) as a standard normalization factor(for example, in computing \signal-to-noise ratio"). By analogy, our �rst instinct was to divide by the root-mean-squaredxij. However, our sequence, unlike audio or electro-magnetic signals, do not have zero mean. So we have chosen to subtractout the mean, thereby computing the standard deviation rather than signal strength in the denominator. Note that thechoice of normalizing constant does not a�ect the trends discovered in the experiments, but does impact the magnitudeof the normalized error values reported. If we had used signal strength rather than deviation as our normalization, theresults we report would appear even better 14



We ran three sets of experiments: The �rst was to determine the accuracy vs. space tradeo� forthe competing methods. The second was to see how the error changes for aggregate queries involvingmultiple cells. The last was to see how our method scales up with dataset size. These are the topics ofthe upcoming subsections, correspondingly.5.1 Accuracy vs. Space Trade-o�Here we compare the reconstruction error vs. required storage space of four compression methods:hierarchical clustering, DCT, SVD, and SVDD with b bytes of storage space for each number stored.For the clustering method, we store the cluster centroids and an array containing the cluster numberto which each point belongs. If there are k clusters to be stored, then (b� k �M) + (N � b) bytes arerequired. For DCT, we store the low-frequency coe�cients; if k coe�cients are kept for each row, thenN �k�b space is required. The space requirements for SVD are given by Eq. 9; the space requirementsfor SVDD involve the same formula (but for fewer PCs) and then O(b) bytes for each delta stored. Tomake all results comparable, we present storage space required not in absolute terms, but rather as apercentage (s%) of the storage required uncompressed.
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(a) `phone2000' (b) `stocks'Figure 6: Reconstruction error (RMSPE) vs. disk storage space (s%) for clustering (\+"), DCT (\�"),SVD (\3"), and SVDD (\2"). The SVD and SVDD curves overlap for low values of s (= the percentspace consumed).Figure 6 plots the reconstruction error (RMSPE) that the competing methods require, as a functionof the ratio of disk space to store the compressed format compared to storing the entire matrix. The leftgraph is for the `phone2000' dataset, while the right one for the `stocks' dataset. The labels \svd',\delta", \dct" and \hc" correspond to the plain SVD, the SVD with deltas, DCT, and the hierarchicalclustering method as described earlier in subsection 2.2. The observations are as follows:� In both cases, the proposed SVDD method did the best.� DCT did not do well. In the `phone2000' case, it consistently had the highest reconstructionerror. For stocks prices, which are modeled well as random walks [21], it is believed to be thebest among the spectral methods, exactly because successive stock prices are highly correlated.15



storage space SVD (abs error) SVDD (abs error) SVD (normalized) SVDD (normalized)5% 1794.917 53.745 465.4% 13.93%10% 1268.717 26.464 328.9% 6.86%15% 635.456 16.8 164.7% 4.35%20% 472.784 11.82 122.6% 3.06%25% 404.824 10.546 104.9% 2.73%Table 3: Worst-case error as a function of storage space for the `phone2000' dataset, both in absoluteand in normalized ABSStd:Dev: terms.This explains why DCT performs better for the `stocks' dataset as opposed to the `phone2000'dataset.� Plain SVD and clustering were close to each other, alternating in the second and third place.Speci�cally, SVD was better for the `stocks' dataset. It should be noted that the clusteringmethod we used was a high-quality quadratic method. Even so, the plain SVD outperformed itor had a comparable reconstruction error. It is questionable how much more reconstruction errora scalable, linear clustering method will lead to, if it can work for M � 100 at all.� The SVDD algorithm did best on both datasets, consistently. For very small storage sizes (un-der s = 2% for `phone2000' and under s = 6% for `stocks'), the optimum value of kopt waskmax: that is, it turned out best to devote all the available storage to keeping as many principalcomponents as possible and no outliers.� For 10% space requirement (i.e., a 10:1 compression ratio), the error was less than 2% for SVDDon both datasets. Even a 50:1 compression ratio (s = 2%) resulted in an error of under 10%. As apoint of reference, the Lempel-Ziv (gzip) algorithm had a space requirement of s � 25% for bothdatasets.
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Figure 7: Worst-case error as a function of storage space for the `phone2000' dataset.Thus far, we have used the mean error, RMSPE, as our error metric. However, it is often useful tobound the error on any individual point. We ran some additional experiments on the `phone2000'dataset to determine the worst-case error for any one matrix cell. Table 3 shows the results of these16



experiments for the SVD and SVDD techniques. We plot the maximum error, for a single data point ina time series, as a function of storage space for the `phone2000' dataset. Figure 7 presents the sameinformation in a graph. As in the case of RMSPE the error has been normalized with respect to thestandard deviation of the dataset.The results are astounding. Even where the RMSPE is quite reasonable for the plain SVD technique,we �nd that the worst case error for a single data value can still be very large, potentially causingestimates for selected individual points to be way o�. (This is true for the clustering and DCT techniquesas well). On the other hand, the SVDD technique bounds the worst error pretty well, so that one canhave con�dence that the reconstructed value of every single point is within a few percent of the correctvalue, even with a signi�cant compression ratio.
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Figure 8: Absolute error vs. deltas ordered by reconstruction error for plain SVD applied to the`phone2000' dataset at 10% storage (k = 31 principal components).To understand this phenomenon further, we plotted the distribution of errors for the individual cells.Figure 8 shows the results for the `phone2000' dataset, using the SVD technique. The X-axis has thecells rank ordered by the error in their reconstruction, for the �rst 50,000 cells, and the Y-axis has theabsolute error. Observe the steep initial drop in error (the Y-axis is on a logarithmic scale), indicatingthat only a few points su�er an error anywhere close to the worst-case bound. This is the reason forthe good performance of SVDD. By explicitly recording these few very bad cases, it is able to boundthe worst case error to under 10% without consuming large amounts of storage. What this means isthat, with SVDD, not only do we get good compression with remarkably low average error, but we alsoknow that the worst case cell error is also a close approximation.Another observation from Figure 8 is that most matrix cells are reconstructed after compression withan error substantially less than the mean error RMSPE. In applications where a few erroneous datapoints are tolerable, one may actually care more about the median rather than the mean error, andthis median error is one or two orders of magnitude less than the mean error, so all of our techniquesactually do much better than one would imagine based on the results for mean error presented above.For the rest of this work we mainly focus on SVDD, since it performed signi�cantly better than theother techniques. 17



5.2 Reconstruction Error for Aggregate QueriesThe results of the previous experiment are very encouraging: less than 2% error with a 10% spacerequirement for the SVDD. In fact, the results are even better for aggregate queries because errors tendto cancel out when cell values are aggregated.In general, an aggregate query speci�es some rows and columns of the data matrix and asks for anaggregate function f() of the speci�ed cells (e.g., `�nd the sum of sales among our NJ customers, forthe 1st of every month in 1995'). The function f() could be, e.g., sum(), avg(), stddev(), etc.
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(a) `phone2000' linear scales (b) `phone2000' logarithmic scalesFigure 9: Query error vs. space overhead for aggregate (avg) queries (\+"): (a) linear and (b) logarith-mic scales. The RMSPE (of single-cell queries) is also shown (\3") for comparison.For a given aggregate query, we de�ne the normalized query error Qerr as the relative error betweenthe correct response and our approximate response:Qerr = jf(X)� f(X̂)j=jf(X)j (14)where f() is the aggregate function, over a set of cells that the query speci�ed.We posed 50 aggregate queries to determine the average of a randomly selected set of rows andcolumns in the `phone2000' dataset. The number of rows and columns selected was tuned so thatapproximately 10% of the data cells would be included in the selection. Figure 9 presents the resultsaveraged over the 50 queries, showing how error varies as a function of the storage space used. Theresults are shown for the SVDD method only, since the rest of the methods showed similar behavior.The error was well under 0.5% even with the storage space set to only 2% of the original. In otherwords, a 50:1 compression ratio can be comfortably obtained. Figure 9 also shows the error for querieson individual cells, that is, the RMSPE that we showed previously.Estimates of answers to aggregate queries can be obtained through sampling. (Note that sampling isnot likely to be able to provide estimates of individual cell values, and is therefore not comparable tothe work in the bulk of this paper). In initial experiments we ran, simple uniform sampling performedpoorly compared with SVDD for aggregate queries. We did not implement more sophisticated samplingtechniques, and an open question is how our techniques compare with sophisticated adaptive samplingfor aggregate queries. 18



5.3 Scale-upHere we show the reconstruction error for the proposed SVDD method. The current version of the clus-tering method could not scale up beyond N = 3000. We tried using a small sample to do the clusteringand then assigning the remaining records to the existing clusters, but this gave very poor results. Asmentioned, clustering for large datasets is the topic of recent research (BIRCH [28], CLARANS [14],etc.); however, none of these algorithms scales up for high-dimensional points. Thus, we focus ourattention on SVDD for the rest of the experiments.Figure 10 shows the curves for subsets of size N = 1,000, 2,000, 5,000, 10,000, 20,000, 50,000 and thefull set of N=100,000 customers from the `phone100K' dataset, for the SVDD method.
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dataset SVD (normalized) SVDD (normalized)`phone1000' 227.1% 10.6%`phone2000' 328.9% 6.8%`phone5000' 890.8% 7.9%`phone10000' 1306.5% 8.6%`phone20000' 1829.6% 7.4%`phone50000' 3849.0% 9.4%`phone100K' 5335.6% 7.4%Table 4: Comparison between SVD and SVDD of worst-case normalized errors at 10% storage, forincreasing dataset sizes.6.1 DataCube CompressionWhereas we focus on time sequences in this paper, the techniques described above apply in general tomulti-dimensional data. For instance, consider the well-known productid � storeid � weekid arrayof sales �gures. This corresponds to a \DataCube" [8] with three dimensions, while the customer-daydataset we have been discussing corresponds to a DataCube of two dimensions. There are several waysto handle the issue:� We can group these as productid � (storeid � weekid) or as (productid � storeid) � weekid.Which we prefer is a function of the number of values in each dimension. In general, the moresquare the matrix, the better the compression, but also the more the work that has to be doneto compress. So we pick the largest size for the smaller dimension that still leaves it computablewithin the available memory resources. The main point to note is that, since the cells in the arrayare reconstructed individually, how dimensions are collapsed makes no di�erence to the availabilityof access.� This problem has also been examined in the principal component analysis literature, under thename of 3-mode PCA [11, p. 233]. The idea is again to approximate the given \DataCube" elementxijk with Ph;l;r aihbjlckrghlr where the parameters a�, b�, c� and g� are chosen to minimize theerror. The 3-mode PCA has been extended, in theory, to N -mode analysis. It is an interestingopen question to �nd out the relative bene�ts of each alternative.6.2 Practical IssueIn one of our real datasets (results not reported in this paper), we observed that there were severalcustomers that did not make any purchases at all. An \engineering" solution in this case is to ag allthese customers, and build a Bloom �lter [22], to help detect them quickly.7 ConclusionsWe have examined the problem of providing fast \random access" capability on a huge collection oftime sequences. Our contributions are: 20



� The formulation of the problem as a lossy compression problem, and the proposal of severaltools to solve it, from diverse areas, like signal processing (DFT, etc.), pattern recognition andinformation retrieval (clustering), and matrix algebra (SVD).� The description of SVD, which is a powerful tool in matrix algebra. We hope that the intuitionwe tried to provide and the pointers to citations and source code, will make SVD accessible to awider database audience.� The enhancement of SVD and the detailed design of SVDD, which has several desirable properties:{ It achieves excellent compression, with the ability to accurately reconstruct the original datamatrix (5% error for a 40:1 compression ratio of the largest dataset).{ It bounds the worst-case error of any individual data value pretty well. Our experimentsshowed that the reconstructed value of every single cell is within 10% of the correct valueat 10% storage, for datasets of increasing size (unlike plain SVD, whose worst-case errorincreases with dataset size).{ Its computation requires only three passes over the dataset, which is very desirable for hugedatasets.{ Like SVD, it naturally leads to dimensionality reduction of the given dataset while stillpreserving distances well, thus allowing visualization and providing a method of detectingoutliers for data analysis.{ It can handle any arbitrary vectors in addition to time sequences without any additionale�ort.We presented experiments on real datasets (stocks, calling patterns of AT&T customers), whichhighlighted the above claims.Directions for future research include (a) the design and implementation of robust, scalable clusteringalgorithms and their comparison against SVDD; (b) the study of the so-called \robust" SVD algorithms(which try to minimize the e�ect of outliers); and (c) the use of 3-mode and N -mode PCA for DataCubeproblems.Acknowledgments:We would like to thank Ken Church, Rick Greer, and Inderpal Singh Mumick for constructive discus-sions, and Hans-Peter Kriegel, Raymond Ng, and Xiaowei Xu for providing code on clustering.A VisualizationRecall that SVD performs a change of axes, and it maintains the �rst k of them. Thus, we readily havethe �rst 2 or 3 axes, which can be used to map each time sequence into a point in 2- or 3- dimensionalspace. These points can be plotted to give an idea of the density and structure of the dataset. Figure 11shows the scatter-plot of the `phone2000' and `stocks' datasets in the 2-dimensional SVD space, that21
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(a) `phone2000' (b) `stocks'Figure 11: Scatter plot of our two datasets, the `phone2000' and the `stocks' datasets, in SVD spaceis, the �rst axis corresponds to the �rst (and strongest) principal component (= linear combination ofexisting columns), and the second axis corresponds to the second principal component.There are several observations we can make from the two plots:� In the `phone2000' dataset, most of the points are concentrated close to the origin, with afew exceptions. The exceptions correspond to high-volume customers, while the majority of thecustomers use the services much less. We could probably make the hypothesis that there is someskewed, Zipf-like distribution of our customers, which could lead to marketing decisions.� In the `stocks' dataset, there is a similar situation but with less skew. Moreover, most of the pointsare very close to the horizontal axis, implying that they all follow closely the �rst eigenvector.Presumably, due to the long duration of the sequences, most of the stocks followed the generalpattern of the stock market, and thus exhibit similar trends, after scaling.� The closeness to the horizontal axis explains the excellent compression that we saw in Figure 6(b).It also explains why clustering didn't perform well. Except for a few points close to the origin, themajority of the points are scattered on the horizontal axis. A handful of them are even away fromthe horizontal axis. Thus, there are no natural clusters to look for, which explains why clusteringdidn't do well. On the contrary, the `phone2000' dataset has almost no points along either ofthe two axes because the point at approximately (300,000, -15,000) created a large distraction andtilted the axis in an unfavorable way for SVD.� Presumably, a �nancial analyst should examine those exceptional stocks whose points are awayfrom the horizontal axis. Also, a marketing analyst could focus on the distraction of the `phone2000'dataset.� In both scatter-plots, there are some outliers. Instead of using additional principal componentsto achieve better approximations for them, it is much cheaper to store their deltas. This is thereason that SVDD often performs so much better than the plain SVD.22
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